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ABSTRACT 

Larsen, J. and Dancy, H., 1983. Open boundaries in short wave simulations --  a new 
approach. Coastal Eng., 7: 285--297. 

A new way of implementing radiation boundary conditions in finite difference 
schemes is reported. Instead of prescribing the incident field at the model boundary, 
waves are generated inside the model boundary. All outgoing waves are absorbed at open 
boundaries using so-called "sponge" layers. 

INTRODUCTION 

In the simulation of short waves for coastal engineering applications, the 
domain of integration is virtually infinite. However, economical constraints 
necessitate that the computational domain is limited as far as possible. At 
the open boundary so introduced, proper boundary conditions must account 
for the coupling between the wave field on the computational mesh and the 
field in the infinite domain left out of the computation. The standard way 
of solution is to reformulate the scattering problem as a radiation problem 
(Israeli and Orszag, 1981 ). All waves are then outgoing waves and they must 
be absorbed on open boundaries. 

Perfect absorption can only be obtained in very specialized cases, e.g. 
one-dimensional, linear wave problems (Verboom et al., 1982). For more 
general problems, higher-order boundary conditions can be found by the use 
of an expansion technique and the application of pseudo-differential 
operators (Engquist and Majda, 1977). Another approach is to introduce 
artificial damping in the formulation of the problem. Israeli and Orszag 
(1981) have shown how a combination of damping or "sponge" layers and 
absorbing boundary conditions very efficiently absorbs outgoing waves. 
Madsen (1983) describes the absorption properties of porous structures in 
short.wave simulations. 
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In this paper we report a new way of reformulating the scattering problem 
as a radiation problem. The incident wave field is simply added on a line 
inside the computat ional  domain. We consider the implementation of this 
technique in a finite-difference formulation. Then a very efficient method of 
implementing "sponge" layers in difference schemes is described, and a 
linear analysis of  the one<iimensional, modified Preissmann box scheme 
(Preissmann, 1961; McCowan, 1978) is carried out. Finally, a number of 
results with a two-dimensional scheme (Abbott,  1979} is shown. 

THE RADIATION PROBLEM 

In Fig. 1 we show a definition sketch of the problem. Abbot t  et al. (1978) 
have shown the feasibility of using the Boussinesq equations for short-wave 
simulations in shallow water. The equations read (Peregrine, 1967): 

ah 
- -  + V . (hu )  = 0 ( i )  
at 

and 

au 1 a 1 
- - -  + (u'V)u+gV~ = - D - V [ V ' ( D u ) ] -  D 2 

at  2 ot 6 ot 
(2) 

where h = D + ~ is the water depth, D is the still-water depth, [ is the surface 
elevation and u = (u, v) is the horizontal velocity vector. At solid boundaries 
the normal velocity should be zero. At open boundaries the incident field 
([I, u I) is specified and the scattered field, i s  = ~ _ ~I and u s = u - u I must  
be absorbed here. 
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Fig. 1. Definition sketch. 
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Previously the method of characteristics was used to separate incoming 
from outgoing waves. However, this method only works well when the waves 
are linear and approach the open boundary at almost right angles. In the 
present paper we propose to generate the waves inside the model boundary 
by perturbing the surface elevation along a straight line. 

We want to generate an incident wave of  celerity c and elevation ,71 that  
propagates at an angle 0 with respect to the line of  generation, l. This wave 
has the celerity c sin0 perpendicular to I. For simplicity, let l pass through 
the grid points (if this is not  so, the amount  to be added is distributed to 
the grid points closest to l) and let the distance between successive points 
on l be As, then the volume flux across 1 is ~I c sin0 As in both directions. 
This amount  must be balanced by adding volume to the system. Since a grid 
point  covers an area of  A x A y ,  where AX and Ay are the grid spacing in the 
x- and y-directions, respectively, the surface elevation to be added to ~ at 
each grid point  of  I is: 

As 
~* = 2 7 7 I c A t - -  sin0 

AxAy 

In one dimension, eq. 3 reduces to: 

~* = 2~ICr 

where Cr = cA t / A x  is the Courant number. 
In Fig. 2 we show a one-dimensional 

boundary is fully reflecting. 
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Fig. 2. Wave generation test. 
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Cnoidal waves of height 0.5 m are generated at x = 200 m. The water 
depth is 10 m and the wave period is 20 s. The surface elevation is plotted 
each second between 100 and 120 s after the start of the calculation. We see 
a standing wave to the left of the line of  generation and a progressing wave 
of double the incident wave height to the right of this line. Since the waves 
are non-linear we do not  have perfect nodal points. The figure shows that  the 
waves, which are reflected at the left boundary,  pass through the line of 
generation wi thout  distortion. 

ABSORPTION 

By generating waves inside the computational  domain we are certain that  
all waves are outgoing waves. Hence all waves must be absorbed at an open 
boundary. In the code we do this by dividing, at each time step, the surface 
elevation and the flow on a few grid lines next to the boundary by a set of 
numbers which increase towards the boundary. We linearize the Boussinesq 
eqs. 1 and 2 to get the one-dimensional long-wave equations: 

ap 
a~_ + ~ = o ( 5 )  
at  ax 

and 

a p  a~- 
- -  + gD - -  = 0 (6) 
at  ax  

where p = uD is the flux. We use the modified Preissmann box scheme 
(McCowan, 1978) in the analysis. This scheme is fully centered on 
[ ( j + ~ } A x , n h t ]  in both space and time. We have used the representation: 

(~.n+, n-, ~.n+, _ ~ - ' ) / 4 A t  = - ~  " n+, n+,, n 
"Y+,-~)+, + ' i  t a ( P i + , - P i  J + ( 1 - 2 a ) ( P i + I - P ~ )  

+ a(pdn; ' - p ~ j - '  ) ] / A x  (7) 

n+, n-, + p~+, _ p ~ - 1 ) / 4 a  t -gD ,at~j+, Pi÷, Pb ,  [ ..n÷, _ ~+,)+ ( 1 -  n - = 2o0 (~y+,- ~~ 
+ o4~'1~1' - ~'}'-')1 lax (8 )  

n where ~ ) =  [ ( j A x , n A t ) ,  etc., and a is a weighting factor. After each time step 
we divide the surface elevation and the fluxes with g (x) on the sponge layer 
grid lines. In eqs. 7 and 8 this corresponds to replacing the variables at time 
step n and n - 1  with the values that  result after division by p and g2, respec- 
tively. Denoting these values by a star we find the differential equations 
corresponding to the combined process of solving eqs. 7 and 8 and dividing 
on the grid lines: 

a~* avp* l - p - :  
- -  + -  = -  ~ *  ( 9 )  
at ax A t  



289 

and 

ap_* + gD a.v~* _ 1-/'t-.~- 2 p* (I0) 
at ax A t  

where 

~(x) -- a + ( 1 - 2 a ) / ~  + a/~ 2 (11) 

Introducing: 

~-~* = ~*vexp(-i¢o t ) / ~  

and 

p** = p*vexp( - i co t )  

where we have assumed time-harmonic motion of frequency ¢o, into eqs. 
9 and 10 we finally get the equations: 

d~** 
- ~/p** ( 1 2 )  

dx 

and 

dp** 
= - -y~** ( 1 3 )  

dx 

where 

= [ik _(~-2_ 1) /CrAx] /v  (14) 

in which Cr = x/'g-~St/Ax is the Courant number and k = ¢o/x/gD is the wave 
number. The sponge layer is the interval 0 <= x ~_ xs. To be specific we use 
the function: 

{ exp[(2 -x/z~x - 2-xs lax) In a]  fo r  0 < x < Xs 

~t(x) = 1 for Xs < x 
(15) 

where a is a constant that  depends on the number of grici lines in the layer, 
xs /Ax .  This function is shown in Fig. 3 for two different sets of  values for 
xs /Ax  and a. The function p is continuous at x = Xs. 

For x >xs  we write the solution as: 

~**(x) = exp(ikx)  + R e x p ( - i k x )  

which represents the superposition of an incoming wave from infinity with 
unit  amplitude and a reflected wave with amplitude R. Denoting the solution 
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Fig. 3. The function/~ (eq. 15) vs. distance for two different sponge layers. 

in the sponge layer by Is we find the reflection coefficient by matching the 
two solutions at x = Xs. The result is 

ih~s -d~'s/dx 
R = exp (-2ihXs) (16) 

ik~s +d~s/dx x=xs 

At the boundary x = 0 we impose the condition ~ = O. The solution in the 
sponge layer is then given by: 

) ( )] ~s = A exp 7(s)ds - exp - ~ 7(s)ds / p  (17) 
o 

where A is a constant. 
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Fig. 4. Reflection coefficient vs. the dimensionless wave number kx s for two different 
numbers of  grid points in the "sponge" layer. 

In Fig. 4 we have plotted IRI against the non-dimensiona] wave number 
kxs, which is 2~ times the number of wave lengths in the sponge layer corre- 
sponding to ~ = 0.5. For a layer of thickness Xs = 5 ~ x  we choose a = 2 and 
for a layer of thickness x s = 10Ax we choose a = 5 in eq. 15. The use of only 
f ive grid l ines in the  sponge  layer covers  m o s t  engineer ing  appl icat ions .  In 
Fig. 5 we  have  s h o w n  h o w  the  sponge  layer behaves  in a o n e - d i m e n s i o n a l  
s imula t ion .  S inewaves  o f  a wave l eng th  o f  2 0 0  m are created  on  the  le f t -hand 
b o u n d a r y .  At  the  r ight-hand b o u n d a r y ,  waves  are absorbed  in a sponge  layer  
o f  w i d t h  xs  = 5&x.  

T h e  m a x i m u m  and m i n i m u m  wave  he ights  are Hmax = 0 . 0 4 4  and Hmi n = 
0 . 0 4 0 ,  respect ive ly .  H e n c e ,  the  re f l ec t ion  c o e f f i c i e n t  is: 

H m a  x - H m i  n 
IRI = = 5% (18)  

Hma x + Hmi n 



2 9 2  

SPON6E 
LAYER 

o.o  

YXXY~ YXXY! YXXY~YX XY YX (Y'~'x"~~'YV 7 ~  
o.o, yV !YYYY/YY~'V' YVIIV~Y~, !V"/YY' VYVV~/V~ 

o/VVVV\'VVVV\ 'Vg. VV~ VV',/~ VV'/V~ VV \/V\/V\A 
xAAAA/,AA AA'~£ AA, AA \AA 

-o.o, XXXX) XXXX,xXXX~,ZXX XX XX (X,xXX (X~,X,>(/ 

0 I O0 200 

Fig. 5. Wave absorption test. 
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For this example kXs=lr/2 and eq. 18 agrees fairly well with the analytic 
result of  IRI = 6.8%. We have tried the sponge layer with solitary waves of 
the same height as the water depths, and the reflected waves could not be 
separated from the trailing noise of  this high wave. In order to visualize the 
sponge layer effect, we have arranged two sponge layers, each of  width 5Ax, 
symmetrical about the line x = 250, as shown in Fig. 6. At the left boundary 
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Fig. 6. Wave absorption test. 

Fig. 7. Wave diffraction test with internal wave generation, a. Contour plot o f  surface 
elevation, b. Velocity plot. t = 7 5  sec. 
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we generate cnoidal waves of one meter wave height. The grid spacing is 
Ax = 10 m. The surface elevation is hardly visible after the double passage 
through the sponge layer. 

TWO-DIMENSIONAL SIMULATION RESULTS 

In the two-dimensional simulation we use the $21MK8 system (Abbott,  
1979). For all the examples we show in this section, we use a square model 
with a side length of 600 m. The still water depth is 9 m. We use a square 
grid with Ax = 10 m. All boundaries are open and we use sponge layers of 
width 5Ax here. The lines of wave generation are each marked by two 
arrows on the figures. 

In Fig. 7 a simple diffraction test is shown. Figure 7a shows the surface 
elevations and Fig. 7b shows the velocities 75 s after the start of the simula- 
tion. The breakwater is fully reflecting. Waves are added perpendicular to 
the line of generation. The incident wave is a sine wave of period 12 s and 
height 0.5 m. A standing wave pattern is formed -- as expected -- in front  of 
the breakwater and this pattern is only insignificantly distorted by the 
generation process. 

In order to show the feasibility of generating a short-crested wave field, 
i.e. a wave field with a directional spectrum, we have performed the simula- 
tions shown in Figs. 8 and 9. In Fig. 8 we show the generation of a sine 
wave, which propagates obliquely to the grid line, forming an angle of 45 ° 
with the grid line. The period is 12 s and the wave height is 0.5 m. Figure 8a 
shows a contour  plot of the surface elevations and Fig. 8b shows the velocity 
plot  75M after the start of the simulation. The result of a simulation of the 
addition of  two waves is shown in Fig. 9. Sine waves of period 12 s are added 
perpendicular to the lines marked 1 and 2 in the figure. The velocity plot is 
drawn 36 s after the start of the computations. The short crestedness of the 
waves is apparent. 

From Fig. 8 we see tha t  waves of  oblique directions can be generated on a 
line parallel to the model boundary. Hence the additional computational  
points, which must be introduced to accommodate the sponge layer, are five 
times the number of grid points along the open boundaries. Higher-order 
boundary conditions require a similar amount  of additional grid points (cf. 
Engquist and Majda, 1977); but the present method,  which appears to be 
generally applicable, is by far the simplest to implement. 

CONCLUSIONS 

A new way of implementing radiation boundary conditions in finite 
difference schemes is reported. The incident waves are simply added on lines 
inside the model boundary and then all waves are absorbed on the boundary. 

Fig. 8. Generation of  waves which propagate in a direction forming an angle o f  45 ° wi th  
the line o f  generation, a. Contour plot o f  surface elevation, h. Velocity plot. t = 75 sec. 
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Fig. 9. Generation of  short  crested waves. Velocity plot. t = 36 sec. 

The linear analysis for the sponge layers shows that they have very broad- 
banded damping characteristics. Using only five grid lines in the sponge 
layer, reflection coefficients of less than 7% magnitude were obtained even 
with only 5% of the wave length in the sponge layer. The simulation results 
show that general incident wave fields can be generated by the new method 
and that the scattered field is only insignificantly distorted by the generation 
process and the sponge layers at the boundary.  
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