source: anuga_core/documentation/user_manual/anuga_user_manual.tex @ 4088

Last change on this file since 4088 was 4088, checked in by sexton, 17 years ago

tex usermanual updates

  • Property svn:keywords set to LastChangedDate LastChangedRevision LastChangedBy HeadURL Id
File size: 131.1 KB
Line 
1% Complete documentation on the extended LaTeX markup used for Python
2% documentation is available in ``Documenting Python'', which is part
3% of the standard documentation for Python.  It may be found online
4% at:
5%
6%     http://www.python.org/doc/current/doc/doc.html
7
8
9%labels
10%Sections and subsections \label{sec: }
11%Chapters \label{ch: }
12%Equations \label{eq: }
13%Figures \label{fig: }
14
15% Is latex failing with;
16% `modanuga_user_manual.ind' not found?
17% try this command-line
18%   makeindex modanuga_user_manual.idx
19% To produce the modanuga_user_manual.ind file.
20
21
22\documentclass{manual}
23
24\usepackage{graphicx}
25\usepackage{datetime}
26
27\input{definitions}
28
29\title{\anuga User Manual}
30\author{Geoscience Australia and the Australian National University}
31
32% Please at least include a long-lived email address;
33% the rest is at your discretion.
34\authoraddress{Geoscience Australia \\
35  Email: \email{ole.nielsen@ga.gov.au}
36}
37
38%Draft date
39
40% update before release!
41% Use an explicit date so that reformatting
42% doesn't cause a new date to be used.  Setting
43% the date to \today can be used during draft
44% stages to make it easier to handle versions.
45
46
47\longdate       % Make date format long using datetime.sty
48%\settimeformat{xxivtime} % 24 hour Format
49\settimeformat{oclock} % Verbose
50\date{\today, \ \currenttime}
51%\hyphenation{set\_datadir}
52
53\ifhtml
54\date{\today} % latex2html does not know about datetime
55\fi
56
57
58
59
60
61\release{1.0}   % release version; this is used to define the
62                % \version macro
63
64\makeindex          % tell \index to actually write the .idx file
65\makemodindex       % If this contains a lot of module sections.
66
67\setcounter{tocdepth}{3}
68\setcounter{secnumdepth}{3}
69
70
71\begin{document}
72\maketitle
73
74
75% This makes the contents more accessible from the front page of the HTML.
76\ifhtml
77\chapter*{Front Matter\label{front}}
78\fi
79
80%Subversion keywords:
81%
82%$LastChangedDate: 2006-12-18 04:00:34 +0000 (Mon, 18 Dec 2006) $
83%$LastChangedRevision: 4088 $
84%$LastChangedBy: sexton $
85
86\input{copyright}
87
88
89\begin{abstract}
90\label{def:anuga}
91
92\noindent \anuga\index{\anuga} is a hydrodynamic modelling tool that
93allows users to model realistic flow problems in complex geometries.
94Examples include dam breaks or the effects of natural hazards such
95as riverine flooding, storm surges and tsunami.
96
97The user must specify a study area represented by a mesh of triangular
98cells, the topography and bathymetry, frictional resistance, initial
99values for water level (called \emph{stage}\index{stage} within \anuga),
100boundary
101conditions and forces such as windstress or pressure gradients if
102applicable.
103
104\anuga tracks the evolution of water depth and horizontal momentum
105within each cell over time by solving the shallow water wave equation
106governing equation using a finite-volume method.
107
108\anuga also incorporates a mesh generator, called \code{pmesh}, that
109allows the user to set up the geometry of the problem interactively as
110well as tools for interpolation and surface fitting, and a number of
111auxiliary tools for visualising and interrogating the model output.
112
113Most \anuga components are written in the object-oriented programming
114language Python and most users will interact with \anuga by writing
115small Python programs based on the \anuga library
116functions. Computationally intensive components are written for
117efficiency in C routines working directly with the Numerical Python
118structures.
119
120
121\end{abstract}
122
123\tableofcontents
124
125
126\chapter{Introduction}
127
128
129\section{Purpose}
130
131The purpose of this user manual is to introduce the new user to the
132inundation software, describe what it can do and give step-by-step
133instructions for setting up and running hydrodynamic simulations.
134
135\section{Scope}
136
137This manual covers only what is needed to operate the software after
138installation and configuration. It does not includes instructions
139for installing the software or detailed API documentation, both of
140which will be covered in separate publications and by documentation
141in the source code.
142
143\section{Audience}
144
145Readers are assumed to be familiar with the operating environment
146and have a general understanding of the subject matter, as well as
147enough programming experience to adapt the code to different
148requirements and to understand the basic terminology of
149object-oriented programming.
150
151\pagebreak
152\chapter{Background}
153
154
155Modelling the effects on the built environment of natural hazards such
156as riverine flooding, storm surges and tsunami is critical for
157understanding their economic and social impact on our urban
158communities.  Geoscience Australia and the Australian National
159University are developing a hydrodynamic inundation modelling tool
160called \anuga to help simulate the impact of these hazards.
161
162The core of \anuga is the fluid dynamics module, called \code{shallow\_water},
163which is based on a finite-volume method for solving the Shallow Water
164Wave Equation.  The study area is represented by a mesh of triangular
165cells.  By solving the governing equation within each cell, water
166depth and horizontal momentum are tracked over time.
167
168A major capability of \anuga is that it can model the process of
169wetting and drying as water enters and leaves an area.  This means
170that it is suitable for simulating water flow onto a beach or dry land
171and around structures such as buildings.  \anuga is also capable
172of modelling hydraulic jumps due to the ability of the finite-volume
173method to accommodate discontinuities in the solution.
174
175To set up a particular scenario the user specifies the geometry
176(bathymetry and topography), the initial water level (stage),
177boundary conditions such as tide, and any forcing terms that may
178drive the system such as wind stress or atmospheric pressure
179gradients. Gravity and frictional resistance from the different
180terrains in the model are represented by predefined forcing terms.
181
182A mesh generator, called pmesh, allows the user to set up the geometry
183of the problem interactively and to identify boundary segments and
184regions using symbolic tags.  These tags may then be used to set the
185actual boundary conditions and attributes for different regions
186(e.g. the Manning friction coefficient) for each simulation.
187
188Most \anuga components are written in the object-oriented programming
189language Python.  Software written in Python can be produced quickly
190and can be readily adapted to changing requirements throughout its
191lifetime.  Computationally intensive components are written for
192efficiency in C routines working directly with the Numerical Python
193structures.  The animation tool developed for \anuga is based on
194OpenSceneGraph, an Open Source Software (OSS) component allowing high
195level interaction with sophisticated graphics primitives.
196See \cite{nielsen2005} for more background on \anuga.
197
198\chapter{Restrictions and limitations on \anuga}
199\label{ch:limitations}
200
201Although a powerful and flexible tool for hydrodynamic modelling, \anuga has a
202number of limitations that any potential user need to be aware of. They are
203
204\begin{itemize}
205  \item The mathematical model is the 2D shallow water wave equation.
206  As such it cannot resolve vertical convection and consequently not breaking
207  waves or 3D turbulence (e.g.\ vorticity).
208  \item The surface is assumed to be open, e.g. \anuga cannot model
209  flow under ceilings or in pipes
210  \item All spatial coordinates are assumed to be UTM (meters). As such,
211  ANUGA is unsuitable for modelling flows in areas larger than one UTM zone
212  (6 degrees wide).
213  \item Fluid is assumed to be inviscid
214  \item The finite volume is a very robust and flexible numerical technique,
215  but it is not the fastest method around. If the geometry is sufficiently
216  simple and if there is no need for wetting or drying, a finite-difference
217  method may be able to solve the problem faster than \anuga.
218  %\item Mesh resolutions near coastlines with steep gradients need to be...   
219  \item Frictional resistance is implemented using Manning's formula, but
220  \anuga has not yet been fully validated in regard to bottom roughness
221  \item ANUGA contains no tsunami-genic functionality relating to
222  earthquakes.
223\end{itemize}
224
225
226
227\chapter{Getting Started}
228\label{ch:getstarted}
229
230This section is designed to assist the reader to get started with
231\anuga by working through some examples. Two examples are discussed;
232the first is a simple example to illustrate many of the ideas, and
233the second is a more realistic example.
234
235\section{A Simple Example}
236\label{sec:simpleexample}
237
238\subsection{Overview}
239
240What follows is a discussion of the structure and operation of a
241script called \file{runup.py}.
242
243This example carries out the solution of the shallow-water wave
244equation in the simple case of a configuration comprising a flat
245bed, sloping at a fixed angle in one direction and having a
246constant depth across each line in the perpendicular direction.
247
248The example demonstrates the basic ideas involved in setting up a
249complex scenario. In general the user specifies the geometry
250(bathymetry and topography), the initial water level, boundary
251conditions such as tide, and any forcing terms that may drive the
252system such as wind stress or atmospheric pressure gradients.
253Frictional resistance from the different terrains in the model is
254represented by predefined forcing terms. In this example, the
255boundary is reflective on three sides and a time dependent wave on
256one side.
257
258The present example represents a simple scenario and does not
259include any forcing terms, nor is the data taken from a file as it
260would typically be.
261
262The conserved quantities involved in the
263problem are stage (absolute height of water surface),
264$x$-momentum and $y$-momentum. Other quantities
265involved in the computation are the friction and elevation.
266
267Water depth can be obtained through the equation
268
269\begin{tabular}{rcrcl}
270  \code{depth} &=& \code{stage} &$-$& \code{elevation}
271\end{tabular}
272
273
274\subsection{Outline of the Program}
275
276In outline, \file{runup.py} performs the following steps:
277
278\begin{enumerate}
279
280   \item Sets up a triangular mesh.
281
282   \item Sets certain parameters governing the mode of
283operation of the model-specifying, for instance, where to store the model output.
284
285   \item Inputs various quantities describing physical measurements, such
286as the elevation, to be specified at each mesh point (vertex).
287
288   \item Sets up the boundary conditions.
289
290   \item Carries out the evolution of the model through a series of time
291steps and outputs the results, providing a results file that can
292be visualised.
293
294\end{enumerate}
295
296\subsection{The Code}
297
298%FIXME: we are using the \code function here.
299%This should be used wherever possible
300For reference we include below the complete code listing for
301\file{runup.py}. Subsequent paragraphs provide a
302`commentary' that describes each step of the program and explains it
303significance.
304
305\verbatiminput{demos/runup.py}
306
307\subsection{Establishing the Mesh}\index{mesh, establishing}
308
309The first task is to set up the triangular mesh to be used for the
310scenario. This is carried out through the statement:
311
312{\small \begin{verbatim}
313    points, vertices, boundary = rectangular(10, 10)
314\end{verbatim}}
315
316The function \function{rectangular} is imported from a module
317\module{mesh\_factory} defined elsewhere. (\anuga also contains
318several other schemes that can be used for setting up meshes, but we
319shall not discuss these.) The above assignment sets up a $10 \times
32010$ rectangular mesh, triangulated in a regular way. The assignment
321
322{\small \begin{verbatim}
323    points, vertices, boundary = rectangular(m, n)
324\end{verbatim}}
325
326returns:
327
328\begin{itemize}
329
330   \item a list \code{points} giving the coordinates of each mesh point,
331
332   \item a list \code{vertices} specifying the three vertices of each triangle, and
333
334   \item a dictionary \code{boundary} that stores the edges on
335   the boundary and associates each with one of the symbolic tags \code{`left'}, \code{`right'},
336   \code{`top'} or \code{`bottom'}.
337
338\end{itemize}
339
340(For more details on symbolic tags, see page
341\pageref{ref:tagdescription}.)
342
343An example of a general unstructured mesh and the associated data
344structures \code{points}, \code{vertices} and \code{boundary} is
345given in Section \ref{sec:meshexample}.
346
347
348
349
350\subsection{Initialising the Domain}
351
352These variables are then used to set up a data structure
353\code{domain}, through the assignment:
354
355{\small \begin{verbatim}
356    domain = Domain(points, vertices, boundary)
357\end{verbatim}}
358
359This creates an instance of the \class{Domain} class, which
360represents the domain of the simulation. Specific options are set at
361this point, including the basename for the output file and the
362directory to be used for data:
363
364{\small \begin{verbatim}
365    domain.set_name('runup')
366\end{verbatim}}
367
368{\small \begin{verbatim}
369    domain.set_datadir('.')
370\end{verbatim}}
371
372In addition, the following statement now specifies that the
373quantities \code{stage}, \code{xmomentum} and \code{ymomentum} are
374to be stored:
375
376{\small \begin{verbatim}
377    domain.set_quantities_to_be_stored(['stage', 'xmomentum',
378    'ymomentum'])
379\end{verbatim}}
380
381
382\subsection{Initial Conditions}
383
384The next task is to specify a number of quantities that we wish to
385set for each mesh point. The class \class{Domain} has a method
386\method{set\_quantity}, used to specify these quantities. It is a
387flexible method that allows the user to set quantities in a variety
388of ways---using constants, functions, numeric arrays, expressions
389involving other quantities, or arbitrary data points with associated
390values, all of which can be passed as arguments. All quantities can
391be initialised using \method{set\_quantity}. For a conserved
392quantity (such as \code{stage, xmomentum, ymomentum}) this is called
393an \emph{initial condition}. However, other quantities that aren't
394updated by the equation are also assigned values using the same
395interface. The code in the present example demonstrates a number of
396forms in which we can invoke \method{set\_quantity}.
397
398
399\subsubsection{Elevation}
400
401The elevation, or height of the bed, is set using a function,
402defined through the statements below, which is specific to this
403example and specifies a particularly simple initial configuration
404for demonstration purposes:
405
406{\small \begin{verbatim}
407    def f(x,y):
408        return -x/2
409\end{verbatim}}
410
411This simply associates an elevation with each point \code{(x, y)} of
412the plane.  It specifies that the bed slopes linearly in the
413\code{x} direction, with slope $-\frac{1}{2}$,  and is constant in
414the \code{y} direction.
415
416Once the function \function{f} is specified, the quantity
417\code{elevation} is assigned through the simple statement:
418
419{\small \begin{verbatim}
420    domain.set_quantity('elevation', f)
421\end{verbatim}}
422
423
424\subsubsection{Friction}
425
426The assignment of the friction quantity (a forcing term)
427demonstrates another way we can use \method{set\_quantity} to set
428quantities---namely, assign them to a constant numerical value:
429
430{\small \begin{verbatim}
431    domain.set_quantity('friction', 0.1)
432\end{verbatim}}
433
434This specifies that the Manning friction coefficient is set to 0.1
435at every mesh point.
436
437\subsubsection{Stage}
438
439The stage (the height of the water surface) is related to the
440elevation and the depth at any time by the equation
441
442{\small \begin{verbatim}
443    stage = elevation + depth
444\end{verbatim}}
445
446
447For this example, we simply assign a constant value to \code{stage},
448using the statement
449
450{\small \begin{verbatim}
451    domain.set_quantity('stage', -.4)
452\end{verbatim}}
453
454which specifies that the surface level is set to a height of $-0.4$,
455i.e. 0.4 units (m) below the zero level.
456
457Although it is not necessary for this example, it may be useful to
458digress here and mention a variant to this requirement, which allows
459us to illustrate another way to use \method{set\_quantity}---namely,
460incorporating an expression involving other quantities. Suppose,
461instead of setting a constant value for the stage, we wished to
462specify a constant value for the \emph{depth}. For such a case we
463need to specify that \code{stage} is everywhere obtained by adding
464that value to the value already specified for \code{elevation}. We
465would do this by means of the statements:
466
467{\small \begin{verbatim}
468    h = 0.05 # Constant depth
469    domain.set_quantity('stage', expression = 'elevation + %f' %h)
470\end{verbatim}}
471
472That is, the value of \code{stage} is set to $\code{h} = 0.05$ plus
473the value of \code{elevation} already defined.
474
475The reader will probably appreciate that this capability to
476incorporate expressions into statements using \method{set\_quantity}
477greatly expands its power.) See Section \ref{sec:Initial Conditions} for more
478details.
479
480\subsection{Boundary Conditions}\index{boundary conditions}
481
482The boundary conditions are specified as follows:
483
484{\small \begin{verbatim}
485    Br = Reflective_boundary(domain)
486
487    Bt = Transmissive_boundary(domain)
488
489    Bd = Dirichlet_boundary([0.2,0.,0.])
490
491    Bw = Time_boundary(domain=domain,
492                f=lambda t: [(0.1*sin(t*2*pi)-0.3), 0.0, 0.0])
493\end{verbatim}}
494
495The effect of these statements is to set up a selection of different
496alternative boundary conditions and store them in variables that can be
497assigned as needed. Each boundary condition specifies the
498behaviour at a boundary in terms of the behaviour in neighbouring
499elements. The boundary conditions introduced here may be briefly described as
500follows:
501
502\begin{itemize}
503    \item \textbf{Reflective boundary}\label{def:reflective boundary} Returns same \code{stage} as
504      as present in its neighbour volume but momentum vector
505      reversed 180 degrees (reflected).
506      Specific to the shallow water equation as it works with the
507      momentum quantities assumed to be the second and third conserved
508      quantities. A reflective boundary condition models a solid wall.
509    \item \textbf{Transmissive boundary}\label{def:transmissive boundary} Returns same conserved quantities as
510      those present in its neighbour volume. This is one way of modelling
511      outflow from a domain, but it should be used with caution if flow is
512      not steady state as replication of momentum at the boundary
513      may cause occasional spurious effects. If this occurs,
514      consider using e.g. a Dirichlet boundary condition.
515    \item \textbf{Dirichlet boundary}\label{def:dirichlet boundary} Specifies
516      constant values for stage, $x$-momentum and $y$-momentum at the boundary.
517    \item \textbf{Time boundary}\label{def:time boundary} Like a Dirichlet
518      boundary but with behaviour varying with time.
519\end{itemize}
520
521\label{ref:tagdescription}Before describing how these boundary
522conditions are assigned, we recall that a mesh is specified using
523three variables \code{points}, \code{vertices} and \code{boundary}.
524In the code we are discussing, these three variables are returned by
525the function \code{rectangular}; however, the example given in
526Section \ref{sec:realdataexample} illustrates another way of
527assigning the values, by means of the function
528\code{create\_mesh\_from\_regions}.
529
530These variables store the data determining the mesh as follows. (You
531may find that the example given in Section \ref{sec:meshexample}
532helps to clarify the following discussion, even though that example
533is a \emph{non-rectangular} mesh.)
534
535\begin{itemize}
536\item The variable \code{points} stores a list of 2-tuples giving the
537coordinates of the mesh points.
538
539\item The variable \code{vertices} stores a list of 3-tuples of
540numbers, representing vertices of triangles in the mesh. In this
541list, the triangle whose vertices are \code{points[i]},
542\code{points[j]}, \code{points[k]} is represented by the 3-tuple
543\code{(i, j, k)}.
544
545\item The variable \code{boundary} is a Python dictionary that
546not only stores the edges that make up the boundary but also assigns
547symbolic tags to these edges to distinguish different parts of the
548boundary. An edge with endpoints \code{points[i]} and
549\code{points[j]} is represented by the 2-tuple \code{(i, j)}. The
550keys for the dictionary are the 2-tuples \code{(i, j)} corresponding
551to boundary edges in the mesh, and the values are the tags are used
552to label them. In the present example, the value \code{boundary[(i,
553j)]} assigned to \code{(i, j)]} is one of the four tags
554\code{`left'}, \code{`right'}, \code{`top'} or \code{`bottom'},
555depending on whether the boundary edge represented by \code{(i, j)}
556occurs at the left, right, top or bottom of the rectangle bounding
557the mesh. The function \code{rectangular} automatically assigns
558these tags to the boundary edges when it generates the mesh.
559\end{itemize}
560
561The tags provide the means to assign different boundary conditions
562to an edge depending on which part of the boundary it belongs to.
563(In Section \ref{sec:realdataexample} we describe an example that
564uses different boundary tags---in general, the possible tags are not
565limited to `left', `right', `top' and `bottom', but can be specified
566by the user.)
567
568Using the boundary objects described above, we assign a boundary
569condition to each part of the boundary by means of a statement like
570
571{\small \begin{verbatim}
572    domain.set_boundary({'left': Br, 'right': Bw, 'top': Br, 'bottom': Br})
573\end{verbatim}}
574
575This statement stipulates that, in the current example, the right
576boundary varies with time, as defined by the lambda function, while the other
577boundaries are all reflective.
578
579The reader may wish to experiment by varying the choice of boundary
580types for one or more of the boundaries. (In the case of \code{Bd}
581and \code{Bw}, the three arguments in each case represent the
582\code{stage}, $x$-momentum and $y$-momentum, respectively.)
583
584{\small \begin{verbatim}
585    Bw = Time_boundary(domain=domain,
586                       f=lambda t: [(0.1*sin(t*2*pi)-0.3), 0.0, 0.0])
587\end{verbatim}}
588
589
590
591\subsection{Evolution}\index{evolution}
592
593The final statement \nopagebreak[3]
594{\small \begin{verbatim}
595    for t in domain.evolve(yieldstep = 0.1, duration = 4.0):
596        print domain.timestepping_statistics()
597\end{verbatim}}
598
599causes the configuration of the domain to `evolve', over a series of
600steps indicated by the values of \code{yieldstep} and
601\code{duration}, which can be altered as required.  The value of
602\code{yieldstep} controls the time interval between successive model
603outputs.  Behind the scenes more time steps are generally taken.
604
605
606\subsection{Output}
607
608The output is a NetCDF file with the extension \code{.sww}. It
609contains stage and momentum information and can be used with the
610ANUGA viewer \code{animate} (see Section \ref{sec:animate})
611visualisation package
612to generate a visual display. See Section \ref{sec:file formats}
613(page \pageref{sec:file formats}) for more on NetCDF and other file
614formats.
615
616The following is a listing of the screen output seen by the user
617when this example is run:
618
619\verbatiminput{examples/runupoutput.txt}
620
621
622\section{How to Run the Code}
623
624The code can be run in various ways:
625
626\begin{itemize}
627  \item{from a Windows or Unix command line} as in\ \code{python runup.py}
628  \item{within the Python IDLE environment}
629  \item{within emacs}
630  \item{within Windows, by double-clicking the \code{runup.py}
631  file.}
632\end{itemize}
633
634
635\section{Exploring the Model Output}
636
637The following figures are screenshots from the \anuga visualisation
638tool \code{animate}. Figure \ref{fig:runupstart} shows the domain
639with water surface as specified by the initial condition, $t=0$.
640Figure \ref{fig:runup2} shows later snapshots for $t=2.3$ and
641$t=4$ where the system has been evolved and the wave is encroaching
642on the previously dry bed.  All figures are screenshots from an
643interactive animation tool called animate which is part of \anuga and
644distributed as in the package anuga\_viewer.
645Animate is described in more detail is Section \ref{sec:animate}.
646
647\begin{figure}[hbt]
648
649  \centerline{\includegraphics[width=75mm, height=75mm]
650    {graphics/bedslopestart.jpg}}
651
652  \caption{Runup example viewed with the ANUGA viewer}
653  \label{fig:runupstart}
654\end{figure}
655
656
657\begin{figure}[hbt]
658
659  \centerline{
660   \includegraphics[width=75mm, height=75mm]{graphics/bedslopeduring.jpg}
661    \includegraphics[width=75mm, height=75mm]{graphics/bedslopeend.jpg}
662   }
663
664  \caption{Runup example viewed with ANGUA viewer}
665  \label{fig:runup2}
666\end{figure}
667
668
669
670\clearpage
671
672%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
673
674\section{A slightly more complex example}
675\label{sec:channelexample}
676
677\subsection{Overview}
678
679The next example is about waterflow in a channel with varying boundary conditions and
680more complex topograhies. These examples build on the
681concepts introduced through the \file{runup.py} in Section \ref{sec:simpleexample}.
682The example will be built up through three progressively more complex scripts.
683
684\subsection{Overview}
685As in the case of \file{runup.py}, the actions carried
686out by the program can be organised according to this outline:
687
688\begin{enumerate}
689
690   \item Set up a triangular mesh.
691
692   \item Set certain parameters governing the mode of
693operation of the model---specifying, for instance, where to store the
694model output.
695
696   \item Set up initial conditions for various quantities such as the elevation, to be specified at each mesh point (vertex).
697
698   \item Set up the boundary conditions.
699
700   \item Carry out the evolution of the model through a series of time
701steps and output the results, providing a results file that can be
702visualised.
703
704\end{enumerate}
705
706
707\subsection{The Code}
708
709Here is the code for the first version of the channel flow \file{channel1.py}:
710
711\verbatiminput{demos/channel1.py}
712
713In discussing the details of this example, we follow the outline
714given above, discussing each major step of the code in turn.
715
716\subsection{Establishing the Mesh}\index{mesh, establishing}
717
718In this example we use a similar simple structured triangular mesh as in \code{runup.py} 
719for simplicity, but this time we will use a symmetric one and also
720change the physical extent of the domain. The assignment
721
722{\small \begin{verbatim}
723    points, vertices, boundary = rectangular_cross(m, n,
724                                                   len1=length, len2=width)
725\end{verbatim}}
726returns a m x n mesh similar to the one used in the previous example, except that now the
727extent in the x and y directions are given by the value of \code{length} and \code{width} 
728respectively.
729
730Defining m and n in terms of the extent as in this example provides a convenient way of
731controlling the resolution: By defining dx and dy to be the desired size of each hypothenuse in the mesh we can write the mesh generation as follows:
732
733{\small \begin{verbatim}
734length = 10.
735width = 5.
736dx = dy = 1           # Resolution: Length of subdivisions on both axes
737
738points, vertices, boundary = rectangular_cross(int(length/dx), int(width/dy),
739                                               len1=length, len2=width)
740\end{verbatim}}
741which yields a mesh of length=10m, width=5m with 1m spacings. To increase the resolution, as we will later in this example, one merely decrease the values of dx and dy.
742
743The rest of this script is as in the previous example.
744% except for an application of the 'expression' form of \code{set\_quantity} where we use the value of \code{elevation} to define the (dry) initial condition for \code{stage}:
745%{\small \begin{verbatim}
746%  domain.set_quantity('stage', expression='elevation')
747%\end{verbatim}}
748
749\section{Model Output}
750
751The following figure is a screenshot from the \anuga visualisation
752tool \code{animate} of output from this example.
753\begin{figure}[hbt]
754  \centerline{\includegraphics[height=75mm]
755    {graphics/channel1.png}}%
756
757  \caption{Simple channel example viewed with the ANUGA viewer.}
758  \label{fig:channel1}
759\end{figure}
760
761
762\subsection{Changing boundary conditions on the fly}
763
764Here is the code for the second version of the channel flow \file{channel2.py}:
765\verbatiminput{demos/channel2.py}
766This example differs from the first version in that a constant outflow boundary condition has
767been defined
768{\small \begin{verbatim}
769    Bo = Dirichlet_boundary([-5, 0, 0]) # Outflow
770\end{verbatim}}
771and that it is applied to the right hand side boundary when the water level there exceeds 0m.
772{\small \begin{verbatim}
773for t in domain.evolve(yieldstep = 0.2, finaltime = 40.0):
774    domain.write_time()
775
776    if domain.get_quantity('stage').get_values(interpolation_points=[[10, 2.5]]) > 0:       
777        print 'Stage > 0: Changing to outflow boundary'
778        domain.set_boundary({'right': Bo})
779\end{verbatim}}
780
781The if statement in the timestepping loop (evolve) gets the quantity
782\code{stage} and obtain the interpolated value at the point (10m,
7832.5m) which is on the right boundary. If the stage exceeds 0m a
784message is printed and the old boundary condition at tag 'right' is
785replaced by the outflow boundary using the method
786{\small \begin{verbatim} 
787    domain.set_boundary({'right': Bo})
788\end{verbatim}}
789This type of dynamically varying boundary could for example be used to model the
790breakdown of a sluice door when water exceeds a certain level.
791
792\subsection{Output}
793
794The text output from this example looks like this
795{\small \begin{verbatim} 
796...
797Time = 15.4000, delta t in [0.03789902, 0.03789916], steps=6 (6)
798Time = 15.6000, delta t in [0.03789896, 0.03789908], steps=6 (6)
799Time = 15.8000, delta t in [0.03789891, 0.03789903], steps=6 (6)
800Stage > 0: Changing to outflow boundary
801Time = 16.0000, delta t in [0.02709050, 0.03789898], steps=6 (6)
802Time = 16.2000, delta t in [0.03789892, 0.03789904], steps=6 (6)
803...
804\end{verbatim}}
805
806
807\subsection{Flow through more complex topograhies}
808
809Here is the code for the third version of the channel flow \file{channel3.py}:
810\verbatiminput{demos/channel3.py}
811
812This example differs from the first two versions in that the topography
813contains obstacles.
814
815This is accomplished here by defining the function \code{topography} as follows
816{\small \begin{verbatim}
817def topography(x,y):
818    """Complex topography defined by a function of vectors x and y
819    """
820   
821    z = -x/10                               
822
823    N = len(x)
824    for i in range(N):
825
826        # Step
827        if 10 < x[i] < 12:
828            z[i] += 0.4 - 0.05*y[i]       
829       
830        # Constriction
831        if 27 < x[i] < 29 and y[i] > 3:
832            z[i] += 2       
833       
834        # Pole
835        if (x[i] - 34)**2 + (y[i] - 2)**2 < 0.4**2:
836            z[i] += 2
837
838    return z
839\end{verbatim}}
840
841In addition, changing the resolution to dx=dy=0.1 creates a finer mesh resolving the new featurse better.
842
843A screenshot of this model at time == 15s is
844\begin{figure}[hbt]
845
846  \centerline{\includegraphics[height=75mm]
847    {graphics/channel3.png}}
848
849  \caption{More complex flow in a channel}
850  \label{fig:channel3}
851\end{figure}
852
853
854
855
856\clearpage
857
858%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
859
860\section{An Example with Real Data}
861\label{sec:realdataexample} The following discussion builds on the
862concepts introduced through the \file{runup.py} example and
863introduces a second example, \file{runcairns.py}.  This refers to
864a real-life scenario, in which the domain of interest surrounds the
865Cairns region. Two scenarios are given; firstly, a
866hypothetical tsunami wave is generated by a submarine mass failure
867situated on the edge of the continental shelf, and secondly, a fixed wave
868of given amplitude and period is introduced through the boundary.
869
870\subsection{Overview}
871As in the case of \file{runup.py}, the actions carried
872out by the program can be organised according to this outline:
873
874\begin{enumerate}
875
876   \item Set up a triangular mesh.
877
878   \item Set certain parameters governing the mode of
879operation of the model---specifying, for instance, where to store the
880model output.
881
882   \item Input various quantities describing physical measurements, such
883as the elevation, to be specified at each mesh point (vertex).
884
885   \item Set up the boundary conditions.
886
887   \item Carry out the evolution of the model through a series of time
888steps and output the results, providing a results file that can be
889visualised.
890
891\end{enumerate}
892
893
894
895\subsection{The Code}
896
897Here is the code for \file{runcairns.py}:
898
899\verbatiminput{demos/cairns/runcairns.py}
900
901In discussing the details of this example, we follow the outline
902given above, discussing each major step of the code in turn.
903
904\subsection{Establishing the Mesh}\index{mesh, establishing}
905
906One obvious way that the present example differs from
907\file{runup.py} is in the use of a more complex method to
908create the mesh. Instead of imposing a mesh structure on a
909rectangular grid, the technique used for this example involves
910building mesh structures inside polygons specified by the user,
911using a mesh-generator referred to as \code{pmesh}.
912
913In its simplest form, \code{pmesh} creates the mesh within a single
914polygon whose vertices are at geographical locations specified by
915the user. The user specifies the \emph{resolution}---that is, the
916maximal area of a triangle used for triangulation---and a triangular
917mesh is created inside the polygon using a mesh generation engine.
918On any given platform, the same mesh will be returned.
919%Figure
920%\ref{fig:pentagon} shows a simple example of this, in which the
921%triangulation is carried out within a pentagon.
922
923
924%\begin{figure}[hbt]
925
926%  \caption{Mesh points are created inside the polygon}
927  %\label{fig:pentagon}
928%\end{figure}
929
930Boundary tags are not restricted to \code{`left'}, \code{`bottom'},
931\code{`right'} and \code{`top'}, as in the case of
932\file{runup.py}. Instead the user specifies a list of
933tags appropriate to the configuration being modelled.
934
935In addition, \code{pmesh} provides a way to adapt to geographic or
936other features in the landscape, whose presence may require an
937increase in resolution. This is done by allowing the user to specify
938a number of \emph{interior polygons}, each with a specified
939resolution. It is also
940possible to specify one or more `holes'---that is, areas bounded by
941polygons in which no triangulation is required.
942
943%\begin{figure}[hbt]
944%  \caption{Interior meshes with individual resolution}
945%  \label{fig:interior meshes}
946%\end{figure}
947
948In its general form, \code{pmesh} takes for its input a bounding
949polygon and (optionally) a list of interior polygons. The user
950specifies resolutions, both for the bounding polygon and for each of
951the interior polygons. Given this data, \code{pmesh} first creates a
952triangular mesh with varying resolution.
953
954The function used to implement this process is
955\function{create\_mesh\_from\_regions}. Its arguments include the
956bounding polygon and its resolution, a list of boundary tags, and a
957list of pairs \code{[polygon, resolution]}, specifying the interior
958polygons and their resolutions.
959
960The resulting mesh is output to a \emph{mesh file}\index{mesh
961file}\label{def:mesh file}. This term is used to describe a file of
962a specific format used to store the data specifying a mesh. (There
963are in fact two possible formats for such a file: it can either be a
964binary file, with extension \code{.msh}, or an ASCII file, with
965extension \code{.tsh}. In the present case, the binary file format
966\code{.msh} is used. See Section \ref{sec:file formats} (page
967\pageref{sec:file formats}) for more on file formats.)
968
969In practice, the details of the polygons used are read from a
970separate file \file{project.py}. Here is a complete listing of
971\file{project.py}:
972
973\verbatiminput{demos/cairns/project.py}
974
975Figure \ref{fig:cairns3d} illustrates the landscape of the region
976for the Cairns example. Understanding the landscape is important in
977determining the location and resolution of interior polygons. The
978supporting data is found in the ASCII grid, \code{cairns.asc}, which
979has been sourced from the publically available Australian Bathymetry
980and Topography Grid 2005, \cite{grid250}. The required resolution
981for inundation modelling will depend on the underlying topography and
982bathymetry; as the terrain becomes more complex, the desired resolution
983would decrease to the order of tens of metres.
984
985\begin{figure}[hbt]
986\centerline{\includegraphics[scale=0.5]{graphics/cairns3.jpg}}
987\caption{Landscape of the Cairns scenario.}
988\label{fig:cairns3d}
989
990\end{figure}
991The following statements are used to read in the specific polygons
992from \code{project.cairns} and assign a defined resolution to
993each polygon.
994
995{\small \begin{verbatim}
996    islands_res = 100000
997    cairns_res = 100000
998    shallow_res = 500000
999    interior_regions = [[project.poly_cairns, cairns_res],
1000                        [project.poly_island0, islands_res],
1001                        [project.poly_island1, islands_res],
1002                        [project.poly_island2, islands_res],
1003                        [project.poly_island3, islands_res],
1004                        [project.poly_shallow, shallow_res]]
1005\end{verbatim}}
1006
1007Figure \ref{fig:cairnspolys}
1008illustrates the polygons used for the Cairns scenario.
1009
1010\begin{figure}[hbt]
1011
1012  \centerline{\includegraphics[scale=0.5]
1013      {graphics/cairnsmodel.jpg}}
1014  \caption{Interior and bounding polygons for the Cairns example.}
1015  \label{fig:cairnspolys}
1016\end{figure}
1017
1018The statement
1019
1020
1021{\small \begin{verbatim}
1022remainder_res = 10000000 
1023_ = cache(create_mesh_from_regions,
1024          project.polyAll,
1025           {'boundary_tags': {'top': [0], 'ocean_east': [1],
1026                              'bottom': [2], 'onshore': [3]},
1027           'maximum_triangle_area': remainder_res,
1028           'filename': meshname,
1029           'interior_regions': interior_regions},
1030          verbose = True, evaluate=False)
1031\end{verbatim}}
1032
1033is then used to create the mesh, taking the bounding polygon to be
1034the polygon \code{polyAll} specified in \file{project.py}.
1035The argument \code{boundary\_tags} assigns a dictionary, whose keys
1036are the names of the boundary tags used for the bounding
1037polygon---\code{`top'}, \code{`ocean\_east'}, \code{`bottom'}, and
1038\code{`onshore'}--- and whose values identify the indices of the
1039segments associated with each of these tags. (The value associated
1040with each boundary tag is a one-element list.)
1041
1042
1043
1044\subsection{Initialising the Domain}
1045
1046As with \file{runup.py}, once we have created the mesh, the next
1047step is to create the data structure \code{domain}. We did this for
1048\file{runup.py} by inputting lists of points and triangles and
1049specifying the boundary tags directly. However, in the present case,
1050we use a method that works directly with the mesh file
1051\code{meshname}, as follows:
1052
1053
1054{\small \begin{verbatim}
1055    domain = Domain(meshname, use_cache=True, verbose=True)
1056\end{verbatim}}
1057
1058Providing a filename instead of the lists used in \file{runup.py}
1059above causes \code{Domain} to convert a mesh file \code{meshname}
1060into an instance of \code{Domain}, allowing us to use methods like
1061\method{set\_quantity} to set quantities and to apply other
1062operations.
1063
1064%(In principle, the
1065%second argument of \function{pmesh\_to\_domain\_instance} can be any
1066%subclass of \class{Domain}, but for applications involving the
1067%shallow-water wave equation, the second argument of
1068%\function{pmesh\_to\_domain\_instance} can always be set simply to
1069%\class{Domain}.)
1070
1071The following statements specify a basename and data directory, and
1072identify quantities to be stored. For the first two, values are
1073taken from \file{project.py}.
1074
1075{\small \begin{verbatim}
1076    domain.set_name(project.basename)
1077    domain.set_datadir(project.outputdir)
1078    domain.set_quantities_to_be_stored(['stage', 'xmomentum',
1079        'ymomentum'])
1080\end{verbatim}}
1081
1082
1083\subsection{Initial Conditions}
1084Quantities for \file{runcairns.py} are set
1085using similar methods to those in \file{runup.py}. However,
1086in this case, many of the values are read from the auxiliary file
1087\file{project.py} or, in the case of \code{elevation}, from an
1088ancillary points file.
1089
1090
1091
1092\subsubsection{Stage}
1093
1094For the scenario we are modelling in this case, we use a callable
1095object \code{tsunami\_source}, assigned by means of a function
1096\function{slide\_tsunami}. This is similar to how we set elevation in
1097\file{runup.py} using a function---however, in this case the
1098function is both more complex and more interesting.
1099
1100The function returns the water displacement for all \code{x} and
1101\code{y} in the domain. The water displacement is a double Gaussian
1102function that depends on the characteristics of the slide (length,
1103width, thickness, slope, etc), its location (origin) and the depth at that
1104location. For this example, we choose to apply the slide function
1105at a specified time into the simulation.
1106
1107\subsubsection{Friction}
1108
1109We assign the friction exactly as we did for \file{runup.py}:
1110
1111{\small \begin{verbatim}
1112    domain.set_quantity('friction', 0.0)
1113\end{verbatim}}
1114
1115
1116\subsubsection{Elevation}
1117
1118The elevation is specified by reading data from a file:
1119
1120{\small \begin{verbatim}
1121    domain.set_quantity('elevation',
1122                        filename = project.dem_name + '.pts',
1123                        use_cache = True,
1124                        verbose = True)
1125\end{verbatim}}
1126
1127%However, before this step can be executed, some preliminary steps
1128%are needed to prepare the file from which the data is taken. Two
1129%source files are used for this data---their names are specified in
1130%the file \file{project.py}, in the variables \code{coarsedemname}
1131%and \code{finedemname}. They contain `coarse' and `fine' data,
1132%respectively---that is, data sampled at widely spaced points over a
1133%large region and data sampled at closely spaced points over a
1134%smaller subregion. The data in these files is combined through the
1135%statement
1136
1137%{\small \begin{verbatim}
1138%combine_rectangular_points_files(project.finedemname + '.pts',
1139%                                 project.coarsedemname + '.pts',
1140%                                 project.combineddemname + '.pts')
1141%\end{verbatim}}
1142%The effect of this is simply to combine the datasets by eliminating
1143%any coarse data associated with points inside the smaller region
1144%common to both datasets. The name to be assigned to the resulting
1145%dataset is also derived from the name stored in the variable
1146%\code{combinedname} in the file \file{project.py}.
1147
1148\subsection{Boundary Conditions}\index{boundary conditions}
1149
1150Setting boundaries follows a similar pattern to the one used for
1151\file{runup.py}, except that in this case we need to associate a
1152boundary type with each of the
1153boundary tag names introduced when we established the mesh. In place of the four
1154boundary types introduced for \file{runup.py}, we use the reflective
1155boundary for each of the
1156eight tagged segments defined by \code{create_mesh_from_regions}:
1157
1158{\small \begin{verbatim}
1159Bd = Dirichlet_boundary([0.0,0.0,0.0])
1160domain.set_boundary( {'ocean_east': Bd, 'bottom': Bd, 'onshore': Bd,
1161                          'top': Bd} )
1162\end{verbatim}}
1163
1164\subsection{Evolution}
1165
1166With the basics established, the running of the `evolve' step is
1167very similar to the corresponding step in \file{runup.py}. For the slide
1168scenario,
1169the simulation is run for 5000 seconds with the output stored every ten seconds.
1170For this example, we choose to apply the slide at 60 seconds into the simulation.
1171
1172{\small \begin{verbatim}
1173    import time t0 = time.time()
1174
1175   
1176    for t in domain.evolve(yieldstep = 10, finaltime = 60):
1177            domain.write_time()
1178            domain.write_boundary_statistics(tags = 'ocean_east')     
1179           
1180        # add slide
1181        thisstagestep = domain.get_quantity('stage')
1182        if allclose(t, 60):
1183            slide = Quantity(domain)
1184            slide.set_values(tsunami_source)
1185            domain.set_quantity('stage', slide + thisstagestep)
1186   
1187        for t in domain.evolve(yieldstep = 10, finaltime = 5000,
1188                               skip_initial_step = True):
1189            domain.write_time()
1190        domain.write_boundary_statistics(tags = 'ocean_east')
1191\end{verbatim}}
1192
1193For the fixed wave scenario, the simulation is run to 10000 seconds,
1194with the first half of the simulation stored at two minute intervals,
1195and the second half of the simulation stored at ten second intervals.
1196This functionality is especially convenient as it allows the detailed
1197parts of the simulation to be viewed at higher time resolution.
1198
1199
1200{\small \begin{verbatim}
1201
1202# save every two mins leading up to wave approaching land
1203    for t in domain.evolve(yieldstep = 120, finaltime = 5000):
1204        domain.write_time()
1205        domain.write_boundary_statistics(tags = 'ocean_east')     
1206
1207    # save every 30 secs as wave starts inundating ashore
1208    for t in domain.evolve(yieldstep = 10, finaltime = 10000,
1209                           skip_initial_step = True):
1210        domain.write_time()
1211        domain.write_boundary_statistics(tags = 'ocean_east')
1212       
1213\end{verbatim}}
1214
1215\section{Exploring the Model Output}
1216
1217Now that the scenario has been run, the user can view the output in a number of ways.
1218As described earlier, the user may run animate to view a three-dimensional representation
1219of the simulation.
1220
1221The user may also be interested in a maximum inundation map. This simply shows the
1222maximum water depth over the domain and is achieved with the function sww2dem (described in
1223Section \label{sec:basicfileconversions}).
1224\file{ExportResults.py} demonstrates how this function can be used:
1225
1226\verbatiminput{demos/cairns/ExportResults.py}
1227
1228The script generates an maximum water depth ASCII grid at a defined
1229resolution (here 100 m$^2$) which can then be viewed in a GIS environment, for
1230example. The parameters used in the function are defined in \file{project.py}.
1231Figures \ref{fig:maxdepthcairnsslide} and \ref{fig:maxdepthcairnsfixedwave} show
1232the maximum water depth within the defined region for the slide and fixed wave scenario
1233respectively.
1234The user could develop a maximum absolute momentum or other expressions which can be
1235derived from the quantities.
1236
1237\begin{figure}[hbt]
1238\centerline{\includegraphics[scale=0.5]{graphics/slidedepth.jpg}}
1239\caption{Maximum inundation map for the Cairns side scenario.}
1240\label{fig:maxdepthcairnsslide}
1241\end{figure}
1242
1243\begin{figure}[hbt]
1244\centerline{\includegraphics[scale=0.5]{graphics/fixedwavedepth.jpg}}
1245\caption{Maximum inundation map for the Cairns fixed wave scenario.}
1246\label{fig:maxdepthcairnsfixedwave}
1247\end{figure}
1248
1249The user may also be interested in interrogating the solution at a particular spatial
1250location to understand the behaviour of the system through time. To do this, the user
1251must first define the locations of interest. A number of locations have been
1252identified for the Cairns scenario, as shown in Figure \ref{fig:cairnsgauges}.
1253
1254\begin{figure}[hbt]
1255\centerline{\includegraphics[scale=0.5]{graphics/cairnsgauges.jpg}}
1256\caption{Point locations to show time series information for the Cairns scenario.}
1257\label{fig:cairnsgauges}
1258\end{figure}
1259
1260These locations
1261must be stored in either a .csv or .txt file. The corresponding .csv file for
1262the gauges shown in Figure \ref{fig:cairnsgauges} is \file{gauges.csv}
1263
1264\verbatiminput{demos/cairns/gauges.csv}.
1265
1266Header information has been included to identify the location in terms of eastings and
1267northings, and each gauge is given a name. The elevation column can be zero here.
1268This information is then passed to the function sww2timeseries (shown in
1269\file{GetTimeseries.py} which generates figures for
1270each desired quantity for each point location.
1271
1272\verbatiminput{demos/cairns/GetTimeseries.py}
1273
1274Here, the time series for the quantities stage and speed will be generated for
1275each gauge defined in the gauge file. Typically, stage is used over depth, particularly
1276for offshore gauges. In being able to interpret the output for onshore gauges however,
1277we use depth rather than stage. As an example output,
1278Figure \ref{fig:reef} shows the time series for the quantity stage (or depth for
1279onshore gauges) for the Elford Reef location for the slide scenario.
1280
1281\begin{figure}[hbt]
1282\centerline{\includegraphics[scale=0.5]{graphics/gaugeElfordReefslide.png}}
1283\caption{Time series information of the quantity depth for the Elford Reef location for the slide scenario.}
1284\label{fig:reef}
1285\end{figure}
1286
1287Note, the user may choose to compare the output for each scenario by updating
1288the \code{production\_dirs} as required. For example,
1289
1290{\small \begin{verbatim}
1291
1292        production_dirs = {'slide': 'Slide',
1293                           'fixed_wave': 'Fixed Wave'}
1294       
1295\end{verbatim}}
1296
1297In this case, the time series output for Elford Reef would be:
1298
1299\begin{figure}[hbt]
1300\centerline{\includegraphics[scale=0.5]{graphics/gaugeElfordReefboth.png}}
1301\caption{Time series information of the quantity depth for the Elford Reef location for the slide and fixed wave scenario.}
1302\label{fig:reefboth}
1303\end{figure}
1304
1305
1306%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1307%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1308
1309\chapter{\anuga Public Interface}
1310\label{ch:interface}
1311
1312This chapter gives an overview of the features of \anuga available
1313to the user at the public interface. These are grouped under the
1314following headings, which correspond to the outline of the examples
1315described in Chapter \ref{ch:getstarted}:
1316
1317\begin{itemize}
1318    \item Establishing the Mesh
1319    \item Initialising the Domain
1320    \item Specifying the Quantities
1321    \item Initial Conditions
1322    \item Boundary Conditions
1323    \item Forcing Functions
1324    \item Evolution
1325\end{itemize}
1326
1327The listings are intended merely to give the reader an idea of what
1328each feature is, where to find it and how it can be used---they do
1329not give full specifications; for these the reader
1330may consult the code. The code for every function or class contains
1331a documentation string, or `docstring', that specifies the precise
1332syntax for its use. This appears immediately after the line
1333introducing the code, between two sets of triple quotes.
1334
1335Each listing also describes the location of the module in which
1336the code for the feature being described can be found. All modules
1337are in the folder \file{inundation} or one of its subfolders, and the
1338location of each module is described relative to \file{inundation}. Rather
1339than using pathnames, whose syntax depends on the operating system,
1340we use the format adopted for importing the function or class for
1341use in Python code. For example, suppose we wish to specify that the
1342function \function{create\_mesh\_from\_regions} is in a module called
1343\module{mesh\_interface} in a subfolder of \module{inundation} called
1344\code{pmesh}. In Linux or Unix syntax, the pathname of the file
1345containing the function, relative to \file{inundation}, would be
1346
1347\begin{center}
1348%    \code{pmesh/mesh\_interface.py}
1349    \code{pmesh}$\slash$\code{mesh\_interface.py}
1350\end{center}
1351
1352while in Windows syntax it would be
1353
1354\begin{center}
1355    \code{pmesh}$\backslash$\code{mesh\_interface.py}
1356\end{center}
1357
1358Rather than using either of these forms, in this chapter we specify
1359the location simply as \code{pmesh.mesh\_interface}, in keeping with
1360the usage in the Python statement for importing the function,
1361namely:
1362\begin{center}
1363    \code{from pmesh.mesh\_interface import create\_mesh\_from\_regions}
1364\end{center}
1365
1366Each listing details the full set of parameters for the class or
1367function; however, the description is generally limited to the most
1368important parameters and the reader is again referred to the code
1369for more details.
1370
1371The following parameters are common to many functions and classes
1372and are omitted from the descriptions given below:
1373
1374%\begin{center}
1375\begin{tabular}{ll}  %\hline
1376%\textbf{Name } & \textbf{Description}\\
1377%\hline
1378\emph{use\_cache} & Specifies whether caching is to be used for improved performance. See Section \ref{sec:caching} for details on the underlying caching functionality\\
1379\emph{verbose} & If \code{True}, provides detailed terminal output
1380to the user\\  % \hline
1381\end{tabular}
1382%\end{center}
1383
1384\section{Mesh Generation}
1385
1386Before discussing the part of the interface relating to mesh
1387generation, we begin with a description of a simple example of a
1388mesh and use it to describe how mesh data is stored.
1389
1390\label{sec:meshexample} Figure \ref{fig:simplemesh} represents a
1391very simple mesh comprising just 11 points and 10 triangles.
1392
1393
1394\begin{figure}[h]
1395  \begin{center}
1396    \includegraphics[width=90mm, height=90mm]{triangularmesh.jpg}
1397  \end{center}
1398
1399  \caption{A simple mesh}
1400  \label{fig:simplemesh}
1401\end{figure}
1402
1403
1404The variables \code{points}, \code{vertices} and \code{boundary}
1405represent the data displayed in Figure \ref{fig:simplemesh} as
1406follows. The list \code{points} stores the coordinates of the
1407points, and may be displayed schematically as in Table
1408\ref{tab:points}.
1409
1410
1411\begin{table}
1412  \begin{center}
1413    \begin{tabular}[t]{|c|cc|} \hline
1414      index & \code{x} & \code{y}\\  \hline
1415      0 & 1 & 1\\
1416      1 & 4 & 2\\
1417      2 & 8 & 1\\
1418      3 & 1 & 3\\
1419      4 & 5 & 5\\
1420      5 & 8 & 6\\
1421      6 & 11 & 5\\
1422      7 & 3 & 6\\
1423      8 & 1 & 8\\
1424      9 & 4 & 9\\
1425      10 & 10 & 7\\  \hline
1426    \end{tabular}
1427  \end{center}
1428
1429  \caption{Point coordinates for mesh in
1430    Figure \protect \ref{fig:simplemesh}}
1431  \label{tab:points}
1432\end{table}
1433
1434The list \code{vertices} specifies the triangles that make up the
1435mesh. It does this by specifying, for each triangle, the indices
1436(the numbers shown in the first column above) that correspond to the
1437three points at its vertices, taken in an anti-clockwise order
1438around the triangle. Thus, in the example shown in Figure
1439\ref{fig:simplemesh}, the variable \code{vertices} contains the
1440entries shown in Table \ref{tab:vertices}. The starting point is
1441arbitrary so triangle $(0,1,3)$ is considered the same as $(1,3,0)$
1442and $(3,0,1)$.
1443
1444
1445\begin{table}
1446  \begin{center}
1447    \begin{tabular}{|c|ccc|} \hline
1448      index & \multicolumn{3}{c|}{\code{vertices}}\\ \hline
1449      0 & 0 & 1 & 3\\
1450      1 & 1 & 2 & 4\\
1451      2 & 2 & 5 & 4\\
1452      3 & 2 & 6 & 5\\
1453      4 & 4 & 5 & 9\\
1454      5 & 4 & 9 & 7\\
1455      6 & 3 & 4 & 7\\
1456      7 & 7 & 9 & 8\\
1457      8 & 1 & 4 & 3\\
1458      9 & 5 & 10 & 9\\  \hline
1459    \end{tabular}
1460  \end{center}
1461
1462  \caption{Vertices for mesh in Figure \protect \ref{fig:simplemesh}}
1463  \label{tab:vertices}
1464\end{table}
1465
1466Finally, the variable \code{boundary} identifies the boundary
1467triangles and associates a tag with each.
1468
1469\refmodindex[pmesh.meshinterface]{pmesh.mesh\_interface}\label{sec:meshgeneration}
1470
1471\begin{funcdesc}  {create\_mesh\_from\_regions}{bounding_polygon,
1472                             boundary_tags,
1473                             maximum_triangle_area,
1474                             filename=None,
1475                             interior_regions=None,
1476                             poly_geo_reference=None,
1477                             mesh_geo_reference=None,
1478                             minimum_triangle_angle=28.0}
1479Module: \module{pmesh.mesh\_interface}
1480
1481This function allows a user to initiate the automatic creation of a
1482mesh inside a specified polygon (input \code{bounding_polygon}).
1483Among the parameters that can be set are the \emph{resolution}
1484(maximal area for any triangle in the mesh) and the minimal angle
1485allowable in any triangle. The user can specify a number of internal
1486polygons within each of which a separate mesh is to be created,
1487generally with a smaller resolution. \code{interior_regions} is a
1488paired list containing the interior polygon and its resolution.
1489Additionally, the user specifies a list of boundary tags, one for
1490each edge of the bounding polygon.
1491
1492\textbf{WARNING}. Note that the dictionary structure used for the
1493parameter \code{boundary\_tags} is different from that used for the
1494variable \code{boundary} that occurs in the specification of a mesh.
1495In the case of \code{boundary}, the tags are the \emph{values} of
1496the dictionary, whereas in the case of \code{boundary_tags}, the
1497tags are the \emph{keys} and the \emph{value} corresponding to a
1498particular tag is a list of numbers identifying boundary edges
1499labelled with that tag. Because of this, it is theoretically
1500possible to assign the same edge to more than one tag. However, an
1501attempt to do this will cause an error.
1502\end{funcdesc}
1503
1504
1505
1506\subsection{Advanced mesh generation}
1507
1508For more control over the creation of the mesh outline, use the
1509methods of the class \class{Mesh}
1510
1511
1512\begin{classdesc}  {Mesh}{userSegments=None,
1513                 userVertices=None,
1514                 holes=None,
1515                 regions=None}
1516Module: \module{pmesh.mesh}
1517
1518A class used to build a mesh outline and generate a two-dimensional
1519triangular mesh. The mesh outline is used to describe features on the
1520mesh, such as the mesh boundary. Many of this classes methods are used
1521to build a mesh outline, such as \code{add\_vertices} and
1522\code{add\_region\_from\_polygon}.
1523
1524\end{classdesc}
1525
1526
1527\subsubsection{Key Methods of Class Mesh}
1528
1529
1530\begin{methoddesc} {add\_hole}{x,y}
1531Module: \module{pmesh.mesh},  Class: \class{Mesh}
1532
1533This method is used to build the mesh outline.  It defines a hole,
1534when the boundary of the hole has already been defined, by selecting a
1535point within the boundary.
1536
1537\end{methoddesc}
1538
1539
1540\begin{methoddesc}  {add\_hole\_from\_polygon}{self, polygon, tags=None}
1541Module: \module{pmesh.mesh},  Class: \class{Mesh}
1542
1543This method is used to add a `hole' within a region ---that is, to
1544define a interior region where the triangular mesh will not be
1545generated---to a \class{Mesh} instance. The region boundary is described by
1546the polygon passed in.  Additionally, the user specifies a list of
1547boundary tags, one for each edge of the bounding polygon.
1548\end{methoddesc}
1549
1550
1551\begin{methoddesc}  {add\_points_and_segments}{self, points, segments,
1552    segment\_tags=None}
1553Module: \module{pmesh.mesh},  Class: \class{Mesh}
1554
1555This method is used to build the mesh outline. It adds points and
1556segments connecting the points.  A tag for each segment can optionally
1557be added.
1558
1559\end{methoddesc}
1560
1561\begin{methoddesc} {add\_region}{x,y}
1562Module: \module{pmesh.mesh},  Class: \class{Mesh}
1563
1564This method is used to build the mesh outline.  It defines a region,
1565when the boundary of the region has already been defined, by selecting
1566a point within the boundary.  A region instance is returned.  This can
1567be used to set the resolution.
1568
1569\end{methoddesc}
1570
1571\begin{methoddesc}  {add\_region\_from\_polygon}{self, polygon, tags=None,
1572                                max_triangle_area=None}
1573Module: \module{pmesh.mesh},  Class: \class{Mesh}
1574
1575This method is used to build the mesh outline.  It adds a region to a
1576\class{Mesh} instance.  Regions are commonly used to describe an area
1577with an increased density of triangles, by setting
1578\code{max_triangle_area}.  The
1579region boundary is described by the input \code{polygon}.  Additionally, the
1580user specifies a list of segment tags, one for each edge of the
1581bounding polygon.
1582
1583\end{methoddesc}
1584
1585
1586
1587
1588
1589\begin{methoddesc} {add\_vertices}{point_data}
1590Module: \module{pmesh.mesh},  Class: \class{Mesh}
1591
1592Add user vertices. The point_data can be a list of (x,y) values, a numeric
1593array or a geospatial_data instance.   
1594\end{methoddesc}
1595
1596\begin{methoddesc} {auto\_segment}{raw_boundary=raw_boundary,
1597                    remove_holes=remove_holes,
1598                    smooth_indents=smooth_indents,
1599                    expand_pinch=expand_pinch}
1600Module: \module{pmesh.mesh},  Class: \class{Mesh}
1601
1602Add segments between some of the user vertices to give the vertices an
1603outline.  The outline is an alpha shape. This method is
1604useful since a set of user vertices need to be outlined by segments
1605before generate_mesh is called.
1606       
1607\end{methoddesc}
1608
1609\begin{methoddesc}  {export\_mesh_file}{self,ofile}
1610Module: \module{pmesh.mesh},  Class: \class{Mesh}
1611
1612This method is used to save the mesh to a file. \code{ofile} is the
1613name of the mesh file to be written, including the extension.  Use
1614the extension \code{.msh} for the file to be in NetCDF format and
1615\code{.tsh} for the file to be ASCII format.
1616\end{methoddesc}
1617
1618\begin{methoddesc}  {generate\_mesh}{self,
1619                      maximum_triangle_area=None,
1620                      minimum_triangle_angle=28.0,
1621                      verbose=False}
1622Module: \module{pmesh.mesh},  Class: \class{Mesh}
1623
1624This method is used to generate the triangular mesh.  The  maximal
1625area of any triangle in the mesh can be specified, which is used to
1626control the triangle density, along with the
1627minimum angle in any triangle.
1628\end{methoddesc}
1629
1630
1631
1632\begin{methoddesc}  {import_ungenerate_file}{self,ofile, tag=None}
1633Module: \module{pmesh.mesh},  Class: \class{Mesh}
1634
1635This method is used to import a polygon file in the ungenerate
1636format, which is used by arcGIS. The polygons from the file are converted to
1637vertices and segments. \code{ofile} is the name of the polygon file.
1638\code{tag} is the tag given to all the polygon's segments.
1639
1640This function can be used to import building footprints.
1641\end{methoddesc}
1642
1643%%%%%%
1644\section{Initialising the Domain}
1645
1646%Include description of the class Domain and the module domain.
1647
1648%FIXME (Ole): This is also defined in a later chapter
1649%\declaremodule{standard}{...domain}
1650
1651\begin{classdesc} {Domain} {source=None,
1652                 triangles=None,
1653                 boundary=None,
1654                 conserved_quantities=None,
1655                 other_quantities=None,
1656                 tagged_elements=None,
1657                 use_inscribed_circle=False,
1658                 mesh_filename=None,
1659                 use_cache=False,
1660                 verbose=False,
1661                 full_send_dict=None,
1662                 ghost_recv_dict=None,
1663                 processor=0,
1664                 numproc=1}
1665Module: \refmodule{abstract_2d_finite_volumes.domain}
1666
1667This class is used to create an instance of a data structure used to
1668store and manipulate data associated with a mesh. The mesh is
1669specified either by assigning the name of a mesh file to
1670\code{source} or by specifying the points, triangle and boundary of the
1671mesh.
1672\end{classdesc}
1673
1674\subsection{Key Methods of Domain}
1675
1676\begin{methoddesc} {set\_name}{name}
1677    Module: \refmodule{abstract\_2d\_finite\_volumes.domain},
1678    page \pageref{mod:domain} 
1679
1680    Assigns the name \code{name} to the domain.
1681\end{methoddesc}
1682
1683\begin{methoddesc} {get\_name}{}
1684    Module: \module{abstract\_2d\_finite\_volumes.domain}
1685
1686    Returns the name assigned to the domain by \code{set\_name}. If no name has been
1687    assigned, returns \code{`domain'}.
1688\end{methoddesc}
1689
1690\begin{methoddesc} {set\_datadir}{name}
1691    Module: \module{abstract\_2d\_finite\_volumes.domain}
1692
1693    Specifies the directory used for SWW files, assigning it to the
1694    pathname \code{name}. The default value, before
1695    \code{set\_datadir} has been run, is the value \code{default\_datadir}
1696    specified in \code{config.py}.
1697
1698    Since different operating systems use different formats for specifying pathnames,
1699    it is necessary to specify path separators using the Python code \code{os.sep}, rather than
1700    the operating-specific ones such as `$\slash$' or `$\backslash$'.
1701    For this to work you will need to include the statement \code{import os}
1702    in your code, before the first appearance of \code{set\_datadir}.
1703
1704    For example, to set the data directory to a subdirectory
1705    \code{data} of the directory \code{project}, you could use
1706    the statements:
1707
1708    {\small \begin{verbatim}
1709        import os
1710        domain.set_datadir{'project' + os.sep + 'data'}
1711    \end{verbatim}}
1712\end{methoddesc}
1713
1714\begin{methoddesc} {get\_datadir}{}
1715    Module: \module{abstract\_2d\_finite\_volumes.domain}
1716
1717    Returns the data directory set by \code{set\_datadir} or,
1718    if \code{set\_datadir} has not
1719    been run, returns the value \code{default\_datadir} specified in
1720    \code{config.py}.
1721\end{methoddesc}
1722
1723\begin{methoddesc} {set\_minimum_storable_height}{}
1724    Module: \module{shallow\_water.shallow\_water\_domain}
1725
1726    Sets the minimum depth that will be recognised when writing
1727    to an sww file. This is useful for removing thin water layers
1728    that seems to be caused by friction creep.
1729\end{methoddesc}
1730
1731
1732\begin{methoddesc} {set\_maximum_allowed_speed}{}
1733    Module: \module{shallow\_water.shallow\_water\_domain}
1734
1735    Set the maximum particle speed that is allowed in water
1736    shallower than minimum_allowed_height. This is useful for
1737    controlling speeds in very thin layers of water and at the same time
1738    allow some movement avoiding pooling of water.
1739\end{methoddesc}
1740
1741
1742\begin{methoddesc} {set\_time}{time=0.0}
1743    Module: \module{abstract\_2d\_finite\_volumes.domain}
1744
1745    Sets the initial time, in seconds, for the simulation. The
1746    default is 0.0.
1747\end{methoddesc}
1748
1749\begin{methoddesc} {set\_default\_order}{n}
1750    Sets the default (spatial) order to the value specified by
1751    \code{n}, which must be either 1 or 2. (Assigning any other value
1752    to \code{n} will cause an error.)
1753\end{methoddesc}
1754
1755
1756\begin{methoddesc} {set\_store\_vertices\_uniquely}{flag, reduction=None}
1757Decide whether vertex values should be stored uniquely as
1758computed in the model or whether they should be reduced to one
1759value per vertex using self.reduction.
1760\end{methoddesc}
1761
1762
1763% Structural methods
1764\begin{methoddesc}{get\_nodes}{absolute=False}
1765    Return x,y coordinates of all nodes in mesh.
1766
1767    The nodes are ordered in an Nx2 array where N is the number of nodes.
1768    This is the same format they were provided in the constructor
1769    i.e. without any duplication.
1770
1771    Boolean keyword argument absolute determines whether coordinates
1772    are to be made absolute by taking georeference into account
1773    Default is False as many parts of ANUGA expects relative coordinates.
1774\end{methoddesc}
1775
1776
1777\begin{methoddesc}{get\_vertex_coordinates}{absolute=False}
1778       
1779    Return vertex coordinates for all triangles.
1780       
1781    Return all vertex coordinates for all triangles as a 3*M x 2 array
1782    where the jth vertex of the ith triangle is located in row 3*i+j and
1783    M the number of triangles in the mesh.
1784
1785    Boolean keyword argument absolute determines whether coordinates
1786    are to be made absolute by taking georeference into account
1787    Default is False as many parts of ANUGA expects relative coordinates.
1788\end{methoddesc}
1789       
1790       
1791\begin{methoddesc}{get\_triangles}{indices=None}
1792
1793        Return Mx3 integer array where M is the number of triangles.
1794        Each row corresponds to one triangle and the three entries are
1795        indices into the mesh nodes which can be obtained using the method
1796        get\_nodes()
1797
1798        Optional argument, indices is the set of triangle ids of interest.
1799\end{methoddesc}
1800   
1801\begin{methoddesc}{get\_disconnected\_triangles}{}
1802
1803Get mesh based on nodes obtained from get_vertex_coordinates.
1804
1805        Return array Mx3 array of integers where each row corresponds to
1806        a triangle. A triangle is a triplet of indices into
1807        point coordinates obtained from get_vertex_coordinates and each
1808        index appears only once.\\
1809
1810        This provides a mesh where no triangles share nodes
1811        (hence the name disconnected triangles) and different
1812        nodes may have the same coordinates.\\
1813
1814        This version of the mesh is useful for storing meshes with
1815        discontinuities at each node and is e.g. used for storing
1816        data in sww files.\\
1817
1818        The triangles created will have the format
1819
1820        {\small \begin{verbatim}
1821        [[0,1,2],
1822         [3,4,5],
1823         [6,7,8],
1824         ...
1825         [3*M-3 3*M-2 3*M-1]]   
1826         \end{verbatim}}       
1827\end{methoddesc}
1828
1829
1830
1831%%%%%%
1832\section{Initial Conditions}
1833\label{sec:Initial Conditions}
1834In standard usage of partial differential equations, initial conditions
1835refers to the values associated to the system variables (the conserved
1836quantities here) for \code{time = 0}. In setting up a scenario script
1837as described in Sections \ref{sec:simpleexample} and \ref{sec:realdataexample},
1838\code{set_quantity} is used to define the initial conditions of variables
1839other than the conserved quantities, such as friction. Here, we use the terminology
1840of initial conditions to refer to initial values for variables which need
1841prescription to solve the shallow water wave equation. Further, it must be noted
1842that \code{set_quantity} does not necessarily have to be used in the initial
1843condition setting; it can be used at any time throughout the simulation.
1844
1845\begin{methoddesc}{set\_quantity}{name,
1846    numeric = None,
1847    quantity = None,
1848    function = None,
1849    geospatial_data = None,
1850    filename = None,
1851    attribute_name = None,
1852    alpha = None,
1853    location = 'vertices',
1854    indices = None,
1855    verbose = False,
1856    use_cache = False}
1857  Module: \module{abstract\_2d\_finite\_volumes.domain}
1858  (see also \module{abstract\_2d\_finite\_volumes.quantity.set\_values})
1859
1860This function is used to assign values to individual quantities for a
1861domain. It is very flexible and can be used with many data types: a
1862statement of the form \code{domain.set\_quantity(name, x)} can be used
1863to define a quantity having the name \code{name}, where the other
1864argument \code{x} can be any of the following:
1865
1866\begin{itemize}
1867\item a number, in which case all vertices in the mesh gets that for
1868the quantity in question.
1869\item a list of numbers or a Numeric array ordered the same way as the mesh vertices.
1870\item a function (e.g.\ see the samples introduced in Chapter 2)
1871\item an expression composed of other quantities and numbers, arrays, lists (for
1872example, a linear combination of quantities, such as
1873\code{domain.set\_quantity('stage','elevation'+x))}
1874\item the name of a file from which the data can be read. In this case, the optional argument attribute\_name will select which attribute to use from the file. If left out, set\_quantity will pick one. This is useful in cases where there is only one attribute.
1875\item a geospatial dataset (See Section \ref{sec:geospatial}).
1876Optional argument attribute\_name applies here as with files.
1877\end{itemize}
1878
1879
1880Exactly one of the arguments
1881  numeric, quantity, function, points, filename
1882must be present.
1883
1884
1885Set quantity will look at the type of the second argument (\code{numeric}) and
1886determine what action to take.
1887
1888Values can also be set using the appropriate keyword arguments.
1889If x is a function, for example, \code{domain.set\_quantity(name, x)}, \code{domain.set\_quantity(name, numeric=x)}, and \code{domain.set\_quantity(name, function=x)}
1890are all equivalent.
1891
1892
1893Other optional arguments are
1894\begin{itemize}
1895\item \code{indices} which is a list of ids of triangles to which set\_quantity should apply its assignment of values.
1896\item \code{location} determines which part of the triangles to assign
1897  to. Options are 'vertices' (default), 'edges', 'unique vertices', and 'centroids'.
1898\end{itemize}
1899
1900%%%
1901\anuga provides a number of predefined initial conditions to be used
1902with \code{set\_quantity}. See for example callable object
1903\code{slump\_tsunami} below.
1904
1905\end{methoddesc}
1906
1907
1908
1909
1910\begin{funcdesc}{set_region}{tag, quantity, X, location='vertices'}
1911  Module: \module{abstract\_2d\_finite\_volumes.domain}
1912 
1913  (see also \module{abstract\_2d\_finite\_volumes.quantity.set\_values})
1914 
1915This function is used to assign values to individual quantities given
1916a regional tag.   It is similar to \code{set\_quantity}.
1917For example, if in pmesh a regional tag of 'ditch' was
1918used, set\_region can be used to set elevation of this region to
1919-10m. X is the constant or function to be applied to the quantity,
1920over the tagged region.  Location describes how the values will be
1921applied.  Options are 'vertices' (default), 'edges', 'unique
1922vertices', and 'centroids'.
1923
1924This method can also be called with a list of region objects.  This is
1925useful for adding quantities in regions, and having one quantity
1926value based on another quantity. See  \module{abstract\_2d\_finite\_volumes.region} for
1927more details.
1928\end{funcdesc}
1929
1930
1931
1932
1933\begin{funcdesc}{slump_tsunami}{length, depth, slope, width=None, thickness=None,
1934                x0=0.0, y0=0.0, alpha=0.0,
1935                gravity=9.8, gamma=1.85,
1936                massco=1, dragco=1, frictionco=0, psi=0,
1937                dx=None, kappa=3.0, kappad=0.8, zsmall=0.01,
1938                domain=None,
1939                verbose=False}
1940Module: \module{shallow\_water.smf}
1941
1942This function returns a callable object representing an initial water
1943displacement generated by a submarine sediment failure. These failures can take the form of
1944a submarine slump or slide. In the case of a slide, use \code{slide_tsunami} instead.
1945
1946The arguments include as a minimum, the slump or slide length, the water depth to the centre of sediment
1947mass, and the bathymetric slope. Other slump or slide parameters can be included if they are known.
1948\end{funcdesc}
1949
1950
1951%%%
1952\begin{funcdesc}{file\_function}{filename,
1953    domain = None,
1954    quantities = None,
1955    interpolation_points = None,
1956    verbose = False,
1957    use_cache = False}
1958Module: \module{abstract\_2d\_finite\_volumes.util}
1959
1960Reads the time history of spatial data for
1961specified interpolation points from a NetCDF file (\code{filename})
1962and returns
1963a callable object. \code{filename} could be a \code{sww} file.
1964Returns interpolated values based on the input
1965file using the underlying \code{interpolation\_function}.
1966
1967\code{quantities} is either the name of a single quantity to be
1968interpolated or a list of such quantity names. In the second case, the resulting
1969function will return a tuple of values---one for each quantity.
1970
1971\code{interpolation\_points} is a list of absolute coordinates or a
1972geospatial object
1973for points at which values are sought.
1974
1975The model time stored within the file function can be accessed using
1976the method \code{f.get\_time()}
1977
1978
1979The underlying algorithm used is as follows:\\
1980Given a time series (i.e.\ a series of values associated with
1981different times), whose values are either just numbers or a set of
1982 numbers defined at the vertices of a triangular mesh (such as those
1983 stored in SWW files), \code{Interpolation\_function} is used to
1984 create a callable object that interpolates a value for an arbitrary
1985 time \code{t} within the model limits and possibly a point \code{(x,
1986 y)} within a mesh region.
1987
1988 The actual time series at which data is available is specified by
1989 means of an array \code{time} of monotonically increasing times. The
1990 quantities containing the values to be interpolated are specified in
1991 an array---or dictionary of arrays (used in conjunction with the
1992 optional argument \code{quantity\_names}) --- called
1993 \code{quantities}. The optional arguments \code{vertex\_coordinates}
1994 and \code{triangles} represent the spatial mesh associated with the
1995 quantity arrays. If omitted the function created by
1996 \code{Interpolation\_function} will be a function of \code{t} only.
1997
1998 Since, in practice, values need to be computed at specified points,
1999 the syntax allows the user to specify, once and for all, a list
2000 \code{interpolation\_points} of points at which values are required.
2001 In this case, the function may be called using the form \code{f(t,
2002 id)}, where \code{id} is an index for the list
2003 \code{interpolation\_points}.
2004
2005
2006\end{funcdesc}
2007
2008%%%
2009%% \begin{classdesc}{Interpolation\_function}{self,
2010%%     time,
2011%%     quantities,
2012%%     quantity_names = None,
2013%%     vertex_coordinates = None,
2014%%     triangles = None,
2015%%     interpolation_points = None,
2016%%     verbose = False}
2017%% Module: \module{abstract\_2d\_finite\_volumes.least\_squares}
2018
2019%% Given a time series (i.e.\ a series of values associated with
2020%% different times), whose values are either just numbers or a set of
2021%% numbers defined at the vertices of a triangular mesh (such as those
2022%% stored in SWW files), \code{Interpolation\_function} is used to
2023%% create a callable object that interpolates a value for an arbitrary
2024%% time \code{t} within the model limits and possibly a point \code{(x,
2025%% y)} within a mesh region.
2026
2027%% The actual time series at which data is available is specified by
2028%% means of an array \code{time} of monotonically increasing times. The
2029%% quantities containing the values to be interpolated are specified in
2030%% an array---or dictionary of arrays (used in conjunction with the
2031%% optional argument \code{quantity\_names}) --- called
2032%% \code{quantities}. The optional arguments \code{vertex\_coordinates}
2033%% and \code{triangles} represent the spatial mesh associated with the
2034%% quantity arrays. If omitted the function created by
2035%% \code{Interpolation\_function} will be a function of \code{t} only.
2036
2037%% Since, in practice, values need to be computed at specified points,
2038%% the syntax allows the user to specify, once and for all, a list
2039%% \code{interpolation\_points} of points at which values are required.
2040%% In this case, the function may be called using the form \code{f(t,
2041%% id)}, where \code{id} is an index for the list
2042%% \code{interpolation\_points}.
2043
2044%% \end{classdesc}
2045
2046%%%
2047%\begin{funcdesc}{set\_region}{functions}
2048%[Low priority. Will be merged into set\_quantity]
2049
2050%Module:\module{abstract\_2d\_finite\_volumes.domain}
2051%\end{funcdesc}
2052
2053
2054
2055%%%%%%
2056\section{Boundary Conditions}\index{boundary conditions}
2057
2058\anuga provides a large number of predefined boundary conditions,
2059represented by objects such as \code{Reflective\_boundary(domain)} and
2060\code{Dirichlet\_boundary([0.2, 0.0, 0.0])}, described in the examples
2061in Chapter 2. Alternatively, you may prefer to ``roll your own'',
2062following the method explained in Section \ref{sec:roll your own}.
2063
2064These boundary objects may be used with the function \code{set\_boundary} described below
2065to assign boundary conditions according to the tags used to label boundary segments.
2066
2067\begin{methoddesc}{set\_boundary}{boundary_map}
2068Module: \module{abstract\_2d\_finite\_volumes.domain}
2069
2070This function allows you to assign a boundary object (corresponding to a
2071pre-defined or user-specified boundary condition) to every boundary segment that
2072has been assigned a particular tag.
2073
2074This is done by specifying a dictionary \code{boundary\_map}, whose values are the boundary objects
2075and whose keys are the symbolic tags.
2076
2077\end{methoddesc}
2078
2079\begin{methoddesc} {get\_boundary\_tags}{}
2080Module: \module{abstract\_2d\_finite\_volumes.domain}
2081
2082Returns a list of the available boundary tags.
2083\end{methoddesc}
2084
2085%%%
2086\subsection{Predefined boundary conditions}
2087
2088\begin{classdesc}{Reflective\_boundary}{Boundary}
2089Module: \module{shallow\_water}
2090
2091Reflective boundary returns same conserved quantities as those present in
2092the neighbouring volume but reflected.
2093
2094This class is specific to the shallow water equation as it works with the
2095momentum quantities assumed to be the second and third conserved quantities.
2096\end{classdesc}
2097
2098%%%
2099\begin{classdesc}{Transmissive\_boundary}{domain = None}
2100Module: \module{abstract\_2d\_finite\_volumes.generic\_boundary\_conditions}
2101
2102A transmissive boundary returns the same conserved quantities as
2103those present in the neighbouring volume.
2104
2105The underlying domain must be specified when the boundary is instantiated.
2106\end{classdesc}
2107
2108%%%
2109\begin{classdesc}{Dirichlet\_boundary}{conserved_quantities=None}
2110Module: \module{abstract\_2d\_finite\_volumes.generic\_boundary\_conditions}
2111
2112A Dirichlet boundary returns constant values for each of conserved
2113quantities. In the example of \code{Dirichlet\_boundary([0.2, 0.0, 0.0])},
2114the \code{stage} value at the boundary is 0.2 and the \code{xmomentum} and
2115\code{ymomentum} at the boundary are set to 0.0. The list must contain
2116a value for each conserved quantity.
2117\end{classdesc}
2118
2119%%%
2120\begin{classdesc}{Time\_boundary}{domain = None, f = None}
2121Module: \module{abstract\_2d\_finite\_volumes.generic\_boundary\_conditions}
2122
2123A time-dependent boundary returns values for the conserved
2124quantities as a function \code{f(t)} of time. The user must specify
2125the domain to get access to the model time.
2126\end{classdesc}
2127
2128%%%
2129\begin{classdesc}{File\_boundary}{Boundary}
2130Module: \module{abstract\_2d\_finite\_volumes.generic\_boundary\_conditions}
2131
2132This method may be used if the user wishes to apply a SWW file or
2133a time series file to a boundary segment or segments.
2134The boundary values are obtained from a file and interpolated to the
2135appropriate segments for each conserved quantity.
2136\end{classdesc}
2137
2138
2139
2140%%%
2141\begin{classdesc}{Transmissive\_Momentum\_Set\_Stage\_boundary}{Boundary}
2142Module: \module{shallow\_water}
2143
2144This boundary returns same momentum conserved quantities as
2145those present in its neighbour volume but sets stage as in a Time\_boundary.
2146The underlying domain must be specified when boundary is instantiated
2147
2148This type of boundary is useful when stage is known at the boundary as a
2149function of time, but momenta (or speeds) aren't.
2150
2151This class is specific to the shallow water equation as it works with the
2152momentum quantities assumed to be the second and third conserved quantities.
2153\end{classdesc}
2154
2155
2156\begin{classdesc}{Dirichlet\_Discharge\_boundary}{Boundary}
2157Module: \module{shallow\_water}
2158
2159Sets stage (stage0)
2160Sets momentum (wh0) in the inward normal direction.
2161\end{classdesc}
2162
2163
2164
2165\subsection{User-defined boundary conditions}
2166\label{sec:roll your own}
2167
2168All boundary classes must inherit from the generic boundary class
2169\code{Boundary} and have a method called \code{evaluate} which must
2170take as inputs \code{self, vol\_id, edge\_id} where self refers to the
2171object itself and vol\_id and edge\_id are integers referring to
2172particular edges. The method must return a list of three floating point
2173numbers representing values for \code{stage},
2174\code{xmomentum} and \code{ymomentum}, respectively.
2175
2176The constructor of a particular boundary class may be used to specify
2177particular values or flags to be used by the \code{evaluate} method.
2178Please refer to the source code for the existing boundary conditions
2179for examples of how to implement boundary conditions.
2180
2181
2182
2183%\section{Forcing Functions}
2184%
2185%\anuga provides a number of predefined forcing functions to be used with .....
2186
2187
2188
2189
2190\section{Evolution}\index{evolution}
2191
2192  \begin{methoddesc}{evolve}{yieldstep = None, finaltime = None, duration = None, skip_initial_step = False}
2193
2194  Module: \module{abstract\_2d\_finite\_volumes.domain}
2195
2196  This function (a method of \class{domain}) is invoked once all the
2197  preliminaries have been completed, and causes the model to progress
2198  through successive steps in its evolution, storing results and
2199  outputting statistics whenever a user-specified period
2200  \code{yieldstep} is completed (generally during this period the
2201  model will evolve through several steps internally
2202  as the method forces the water speed to be calculated
2203  on successive new cells). The user
2204  specifies the total time period over which the evolution is to take
2205  place, by specifying values (in seconds) for either \code{duration}
2206  or \code{finaltime}, as well as the interval in seconds after which
2207  results are to be stored and statistics output.
2208
2209  You can include \method{evolve} in a statement of the type:
2210
2211  {\small \begin{verbatim}
2212      for t in domain.evolve(yieldstep, finaltime):
2213          <Do something with domain and t>
2214  \end{verbatim}}
2215
2216  \end{methoddesc}
2217
2218
2219
2220\subsection{Diagnostics}
2221
2222
2223  \begin{funcdesc}{statistics}{}
2224  Module: \module{abstract\_2d\_finite\_volumes.domain}
2225
2226  \end{funcdesc}
2227
2228  \begin{funcdesc}{timestepping\_statistics}{}
2229  Module: \module{abstract\_2d\_finite\_volumes.domain}
2230
2231  Returns a string of the following type for each
2232  timestep:
2233
2234  \code{Time = 0.9000, delta t in [0.00598964, 0.01177388], steps=12
2235  (12)}
2236
2237  Here the numbers in \code{steps=12 (12)} indicate the number of steps taken and
2238  the number of first-order steps, respectively.
2239  \end{funcdesc}
2240
2241
2242  \begin{funcdesc}{boundary\_statistics}{quantities = None, tags = None}
2243  Module: \module{abstract\_2d\_finite\_volumes.domain}
2244
2245  Returns a string of the following type when \code{quantities = 'stage'} and \code{tags = ['top', 'bottom']}:
2246
2247  {\small \begin{verbatim}
2248 Boundary values at time 0.5000:
2249    top:
2250        stage in [ -0.25821218,  -0.02499998]
2251    bottom:
2252        stage in [ -0.27098821,  -0.02499974]
2253  \end{verbatim}}
2254
2255  \end{funcdesc}
2256
2257
2258  \begin{funcdesc}{get\_quantity}{name, location='vertices', indices = None}
2259  Module: \module{abstract\_2d\_finite\_volumes.domain}
2260 
2261  Allow access to individual quantities and their methods
2262
2263  \end{funcdesc}
2264
2265
2266  \begin{funcdesc}{get\_values}{location='vertices', indices = None}
2267  Module: \module{abstract\_2d\_finite\_volumes.quantity}
2268
2269  Extract values for quantity as an array
2270
2271  \end{funcdesc}
2272 
2273
2274  \begin{funcdesc}{get\_integral}{}
2275  Module: \module{abstract\_2d\_finite\_volumes.quantity}
2276
2277  Return computed integral over entire domain for this quantity
2278
2279  \end{funcdesc}
2280
2281 
2282 
2283
2284  \begin{funcdesc}{get\_maximum\_value}{indices = None}
2285  Module: \module{abstract\_2d\_finite\_volumes.quantity}
2286
2287  Return maximum value of quantity (on centroids)
2288
2289  Optional argument indices is the set of element ids that
2290  the operation applies to. If omitted all elements are considered.
2291
2292  We do not seek the maximum at vertices as each vertex can
2293  have multiple values - one for each triangle sharing it.           
2294  \end{funcdesc}
2295
2296 
2297
2298  \begin{funcdesc}{get\_maximum\_location}{indices = None}
2299  Module: \module{abstract\_2d\_finite\_volumes.quantity}
2300
2301  Return location of maximum value of quantity (on centroids)
2302
2303  Optional argument indices is the set of element ids that
2304  the operation applies to.
2305
2306  We do not seek the maximum at vertices as each vertex can
2307  have multiple values - one for each triangle sharing it.
2308
2309  If there are multiple cells with same maximum value, the
2310  first cell encountered in the triangle array is returned.       
2311  \end{funcdesc}
2312
2313
2314 
2315  \begin{funcdesc}{get\_wet\_elements}{indices=None}
2316  Module: \module{shallow\_water.shallow\_water\_domain} 
2317
2318  Return indices for elements where h $>$ minimum_allowed_height
2319  Optional argument indices is the set of element ids that the operation applies to.
2320  \end{funcdesc}
2321
2322
2323  \begin{funcdesc}{get\_maximum\_inundation\_elevation}{indices=None}
2324  Module: \module{shallow\_water.shallow\_water\_domain} 
2325
2326  Return highest elevation where h $>$ 0.\\
2327  Optional argument indices is the set of element ids that the operation applies to.\\
2328 
2329  Example to find maximum runup elevation:\\ 
2330     z = domain.get_maximum_inundation_elevation() 
2331  \end{funcdesc}
2332
2333
2334  \begin{funcdesc}{get\_maximum\_inundation\_location}{indices=None}
2335  Module: \module{shallow\_water.shallow\_water\_domain} 
2336 
2337  Return location (x,y) of highest elevation where h $>$ 0.\\
2338  Optional argument indices is the set of element ids that the operation applies to.\\
2339
2340  Example to find maximum runup location:\\
2341     x, y = domain.get_maximum_inundation_location() 
2342  \end{funcdesc}
2343
2344 
2345 
2346\section{Other}
2347
2348  \begin{funcdesc}{domain.create\_quantity\_from\_expression}{string}
2349
2350  Handy for creating derived quantities on-the-fly as for example
2351  \begin{verbatim} 
2352  Depth = domain.create_quantity_from_expression('stage-elevation')
2353
2354  exp = '(xmomentum*xmomentum + ymomentum*ymomentum)**0.5')       
2355  Absolute_momentum = domain.create_quantity_from_expression(exp)
2356  \end{verbatim} 
2357 
2358  %See also \file{Analytical\_solution\_circular\_hydraulic\_jump.py} for an example of use.
2359  \end{funcdesc}
2360
2361
2362
2363
2364
2365%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2366%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2367
2368\chapter{\anuga System Architecture}
2369
2370
2371\section{File Formats}
2372\label{sec:file formats}
2373
2374\anuga makes use of a number of different file formats. The
2375following table lists all these formats, which are described in more
2376detail in the paragraphs below.
2377
2378\bigskip
2379
2380\begin{center}
2381
2382\begin{tabular}{|ll|}  \hline
2383
2384\textbf{Extension} & \textbf{Description} \\
2385\hline\hline
2386
2387\code{.sww} & NetCDF format for storing model output
2388\code{f(t,x,y)}\\
2389
2390\code{.tms} & NetCDF format for storing time series \code{f(t)}\\
2391
2392\code{.xya} & ASCII format for storing arbitrary points and
2393associated attributes\\
2394
2395\code{.pts} & NetCDF format for storing arbitrary points and
2396associated attributes\\
2397
2398\code{.asc} & ASCII format of regular DEMs as output from ArcView\\
2399
2400\code{.prj} & Associated ArcView file giving more metadata for
2401\code{.asc} format\\
2402
2403\code{.ers} & ERMapper header format of regular DEMs for ArcView\\
2404
2405\code{.dem} & NetCDF representation of regular DEM data\\
2406
2407\code{.tsh} & ASCII format for storing meshes and associated
2408boundary and region info\\
2409
2410\code{.msh} & NetCDF format for storing meshes and associated
2411boundary and region info\\
2412
2413\code{.nc} & Native ferret NetCDF format\\
2414
2415\code{.geo} & Houdinis ASCII geometry format (?) \\  \par \hline
2416%\caption{File formats used by \anuga}
2417\end{tabular}
2418
2419
2420\end{center}
2421
2422The above table shows the file extensions used to identify the
2423formats of files. However, typically, in referring to a format we
2424capitalise the extension and omit the initial full stop---thus, we
2425refer, for example, to `SWW files' or `PRJ files'.
2426
2427\bigskip
2428
2429A typical dataflow can be described as follows:
2430
2431\subsection{Manually Created Files}
2432
2433\begin{tabular}{ll}
2434ASC, PRJ & Digital elevation models (gridded)\\
2435NC & Model outputs for use as boundary conditions (e.g. from MOST)
2436\end{tabular}
2437
2438\subsection{Automatically Created Files}
2439
2440\begin{tabular}{ll}
2441ASC, PRJ  $\rightarrow$  DEM  $\rightarrow$  PTS & Convert
2442DEMs to native \code{.pts} file\\
2443
2444NC $\rightarrow$ SWW & Convert MOST boundary files to
2445boundary \code{.sww}\\
2446
2447PTS + TSH $\rightarrow$ TSH with elevation & Least squares fit\\
2448
2449TSH $\rightarrow$ SWW & Convert TSH to \code{.sww}-viewable using
2450\code{animate}\\
2451
2452TSH + Boundary SWW $\rightarrow$ SWW & Simulation using
2453\code{\anuga}\\
2454
2455Polygonal mesh outline $\rightarrow$ & TSH or MSH
2456\end{tabular}
2457
2458
2459
2460
2461\bigskip
2462
2463\subsection{SWW and TMS Formats}
2464
2465The SWW and TMS formats are both NetCDF formats, and are of key
2466importance for \anuga.
2467
2468An SWW file is used for storing \anuga output and therefore pertains
2469to a set of points and a set of times at which a model is evaluated.
2470It contains, in addition to dimension information, the following
2471variables:
2472
2473\begin{itemize}
2474    \item \code{x} and \code{y}: coordinates of the points, represented as Numeric arrays
2475    \item \code{elevation}, a Numeric array storing bed-elevations
2476    \item \code{volumes}, a list specifying the points at the vertices of each of the
2477    triangles
2478    % Refer here to the example to be provided in describing the simple example
2479    \item \code{time}, a Numeric array containing times for model
2480    evaluation
2481\end{itemize}
2482
2483
2484The contents of an SWW file may be viewed using the anuga viewer
2485\code{animate}, which creates an on-screen geometric
2486representation. See section \ref{sec:animate} (page
2487\pageref{sec:animate}) in Appendix \ref{ch:supportingtools} for more
2488on \code{animate}.
2489
2490Alternatively, there are tools, such as \code{ncdump}, that allow
2491you to convert an NetCDF file into a readable format such as the
2492Class Definition Language (CDL). The following is an excerpt from a
2493CDL representation of the output file \file{runup.sww} generated
2494from running the simple example \file{runup.py} of
2495Chapter \ref{ch:getstarted}:
2496
2497\verbatiminput{examples/bedslopeexcerpt.cdl}
2498
2499The SWW format is used not only for output but also serves as input
2500for functions such as \function{file\_boundary} and
2501\function{file\_function}, described in Chapter \ref{ch:interface}.
2502
2503A TMS file is used to store time series data that is independent of
2504position.
2505
2506
2507\subsection{Mesh File Formats}
2508
2509A mesh file is a file that has a specific format suited to
2510triangular meshes and their outlines. A mesh file can have one of
2511two formats: it can be either a TSH file, which is an ASCII file, or
2512an MSH file, which is a NetCDF file. A mesh file can be generated
2513from the function \function{create\_mesh\_from\_regions} (see
2514Section \ref{sec:meshgeneration}) and used to initialise a domain.
2515
2516A mesh file can define the outline of the mesh---the vertices and
2517line segments that enclose the region in which the mesh is
2518created---and the triangular mesh itself, which is specified by
2519listing the triangles and their vertices, and the segments, which
2520are those sides of the triangles that are associated with boundary
2521conditions.
2522
2523In addition, a mesh file may contain `holes' and/or `regions'. A
2524hole represents an area where no mesh is to be created, while a
2525region is a labelled area used for defining properties of a mesh,
2526such as friction values.  A hole or region is specified by a point
2527and bounded by a number of segments that enclose that point.
2528
2529A mesh file can also contain a georeference, which describes an
2530offset to be applied to $x$ and $y$ values---eg to the vertices.
2531
2532
2533\subsection{Formats for Storing Arbitrary Points and Attributes}
2534
2535An XYA file is used to store data representing arbitrary numerical
2536attributes associated with a set of points.
2537
2538The format for an XYA file is:\\
2539%\begin{verbatim}
2540
2541            first line:     \code{[attribute names]}\\
2542            other lines:  \code{x y [attributes]}\\
2543
2544            for example:\\
2545            \code{elevation, friction}\\
2546            \code{0.6, 0.7, 4.9, 0.3}\\
2547            \code{1.9, 2.8, 5, 0.3}\\
2548            \code{2.7, 2.4, 5.2, 0.3}
2549
2550        The first two columns are always implicitly assumed to be $x$, $y$ coordinates.
2551        Use the same delimiter for the attribute names and the data.
2552
2553        An XYA file can optionally end with a description of the georeference:
2554
2555            \code{\#geo reference}\\
2556            \code{56}\\
2557            \code{466600.0}\\
2558            \code{8644444.0}
2559
2560        Here the first number specifies the UTM zone (in this case zone 56)  and other numbers specify the
2561        easting and northing
2562        coordinates (in this case (466600.0, 8644444.0)) of the lower left corner.
2563
2564A PTS file is a NetCDF representation of the data held in an XYA
2565file. If the data is associated with a set of $N$ points, then the
2566data is stored using an $N \times 2$ Numeric array of float
2567variables for the points and an $N \times 1$ Numeric array for each
2568attribute.
2569
2570%\end{verbatim}
2571
2572\subsection{ArcView Formats}
2573
2574Files of the three formats ASC, PRJ and ERS are all associated with
2575data from ArcView.
2576
2577An ASC file is an ASCII representation of DEM output from ArcView.
2578It contains a header with the following format:
2579
2580\begin{tabular}{l l}
2581\code{ncols}      &   \code{753}\\
2582\code{nrows}      &   \code{766}\\
2583\code{xllcorner}  &   \code{314036.58727982}\\
2584\code{yllcorner}  & \code{6224951.2960092}\\
2585\code{cellsize}   & \code{100}\\
2586\code{NODATA_value} & \code{-9999}
2587\end{tabular}
2588
2589The remainder of the file contains the elevation data for each grid point
2590in the grid defined by the above information.
2591
2592A PRJ file is an ArcView file used in conjunction with an ASC file
2593to represent metadata for a DEM.
2594
2595
2596\subsection{DEM Format}
2597
2598A DEM file is a NetCDF representation of regular DEM data.
2599
2600
2601\subsection{Other Formats}
2602
2603
2604
2605
2606\subsection{Basic File Conversions}
2607\label{sec:basicfileconversions}
2608
2609  \begin{funcdesc}{sww2dem}{basename_in, basename_out = None,
2610            quantity = None,
2611            timestep = None,
2612            reduction = None,
2613            cellsize = 10,
2614            NODATA_value = -9999,
2615            easting_min = None,
2616            easting_max = None,
2617            northing_min = None,
2618            northing_max = None,
2619            expand_search = False,
2620            verbose = False,
2621            origin = None,
2622            datum = 'WGS84',
2623            format = 'ers'}
2624  Module: \module{shallow\_water.data\_manager}
2625
2626  Takes data from an SWW file \code{basename_in} and converts it to DEM format (ASC or
2627  ERS) of a desired grid size \code{cellsize} in metres.
2628  The easting and northing values are used if the user wished to clip the output
2629  file to a specified rectangular area. The \code{reduction} input refers to a function
2630  to reduce the quantities over all time step of the SWW file, example, maximum.
2631  \end{funcdesc}
2632
2633
2634  \begin{funcdesc}{dem2pts}{basename_in, basename_out=None,
2635            easting_min=None, easting_max=None,
2636            northing_min=None, northing_max=None,
2637            use_cache=False, verbose=False}
2638  Module: \module{shallow\_water.data\_manager}
2639
2640  Takes DEM data (a NetCDF file representation of data from a regular Digital
2641  Elevation Model) and converts it to PTS format.
2642  \end{funcdesc}
2643
2644
2645
2646%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2647%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2648
2649\chapter{Basic \anuga Assumptions}
2650
2651
2652Physical model time cannot be earlier than 1 Jan 1970 00:00:00.
2653If one wished to recreate scenarios prior to that date it must be done
2654using some relative time (e.g. 0).
2655
2656
2657All spatial data relates to the WGS84 datum (or GDA94) and has been
2658projected into UTM with false easting of 500000 and false northing of
26591000000 on the southern hemisphere (0 on the northern).
2660
2661It is assumed that all computations take place within one UTM zone.
2662
2663DEMs, meshes and boundary conditions can have different origins within
2664one UTM zone. However, the computation will use that of the mesh for
2665numerical stability.
2666
2667When generating a mesh it is assumed that polygons do not cross.
2668Having polygons tht cross can cause the mesh generation to fail or bad
2669meshes being produced.
2670
2671
2672%OLD
2673%The dataflow is: (See data_manager.py and from scenarios)
2674%
2675%
2676%Simulation scenarios
2677%--------------------%
2678%%
2679%
2680%Sub directories contain scrips and derived files for each simulation.
2681%The directory ../source_data contains large source files such as
2682%DEMs provided externally as well as MOST tsunami simulations to be used
2683%as boundary conditions.
2684%
2685%Manual steps are:
2686%  Creation of DEMs from argcview (.asc + .prj)
2687%  Creation of mesh from pmesh (.tsh)
2688%  Creation of tsunami simulations from MOST (.nc)
2689%%
2690%
2691%Typical scripted steps are%
2692%
2693%  prepare_dem.py:  Convert asc and prj files supplied by arcview to
2694%                   native dem and pts formats%
2695%
2696%  prepare_pts.py: Convert netcdf output from MOST to an sww file suitable
2697%                  as boundary condition%
2698%
2699%  prepare_mesh.py: Merge DEM (pts) and mesh (tsh) using least squares
2700%                   smoothing. The outputs are tsh files with elevation data.%
2701%
2702%  run_simulation.py: Use the above together with various parameters to
2703%                     run inundation simulation.
2704
2705
2706%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2707%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2708
2709\appendix
2710
2711\chapter{Supporting Tools}
2712\label{ch:supportingtools}
2713
2714This section describes a number of supporting tools, supplied with \anuga, that offer a
2715variety of types of functionality and enhance the basic capabilities of \anuga.
2716
2717\section{caching}
2718\label{sec:caching}
2719
2720The \code{cache} function is used to provide supervised caching of function
2721results. A Python function call of the form
2722
2723      {\small \begin{verbatim}
2724      result = func(arg1,...,argn)
2725      \end{verbatim}}
2726
2727  can be replaced by
2728
2729      {\small \begin{verbatim}
2730      from caching import cache
2731      result = cache(func,(arg1,...,argn))
2732      \end{verbatim}}
2733
2734  which returns the same output but reuses cached
2735  results if the function has been computed previously in the same context.
2736  \code{result} and the arguments can be simple types, tuples, list, dictionaries or
2737  objects, but not unhashable types such as functions or open file objects.
2738  The function \code{func} may be a member function of an object or a module.
2739
2740  This type of caching is particularly useful for computationally intensive
2741  functions with few frequently used combinations of input arguments. Note that
2742  if the inputs or output are very large caching may not save time because
2743  disc access may dominate the execution time.
2744
2745  If the function definition changes after a result has been cached, this will be
2746  detected by examining the functions \code{bytecode (co\_code, co\_consts,
2747  func\_defaults, co\_argcount)} and the function will be recomputed.
2748  However, caching will not detect changes in modules used by \code{func}.
2749  In this case cache must be cleared manually.
2750
2751  Options are set by means of the function \code{set\_option(key, value)},
2752  where \code{key} is a key associated with a
2753  Python dictionary \code{options}. This dictionary stores settings such as the name of
2754  the directory used, the maximum
2755  number of cached files allowed, and so on.
2756
2757  The \code{cache} function allows the user also to specify a list of dependent files. If any of these
2758  have been changed, the function is recomputed and the results stored again.
2759
2760  %Other features include support for compression and a capability to \ldots
2761
2762
2763   \textbf{USAGE:} \nopagebreak
2764
2765    {\small \begin{verbatim}
2766    result = cache(func, args, kwargs, dependencies, cachedir, verbose,
2767                   compression, evaluate, test, return_filename)
2768    \end{verbatim}}
2769
2770
2771\section{ANUGA viewer - animate}
2772\label{sec:animate}
2773 The output generated by \anuga may be viewed by
2774means of the visualisation tool \code{animate}, which takes the
2775\code{SWW} file output by \anuga and creates a visual representation
2776of the data. Examples may be seen in Figures \ref{fig:runupstart}
2777and \ref{fig:runup2}. To view an \code{SWW} file with
2778\code{animate} in the Windows environment, you can simply drag the
2779icon representing the file over an icon on the desktop for the
2780\code{animate} executable file (or a shortcut to it), or set up a
2781file association to make files with the extension \code{.sww} open
2782with \code{animate}. Alternatively, you can operate \code{animate}
2783from the command line, in both Windows and Linux environments.
2784
2785On successful operation, you will see an interactive moving-picture
2786display. You can use keys and the mouse to slow down, speed up or
2787stop the display, change the viewing position or carry out a number
2788of other simple operations. Help is also displayed when you press
2789the \code{h} key.
2790
2791The main keys operating the interactive screen are:\\
2792
2793\begin{center}
2794\begin{tabular}{|ll|}   \hline
2795
2796\code{w} & toggle wireframe \\
2797
2798space bar & start/stop\\
2799
2800up/down arrows & increase/decrease speed\\
2801
2802left/right arrows & direction in time \emph{(when running)}\\
2803& step through simulation \emph{(when stopped)}\\
2804
2805left mouse button & rotate\\
2806
2807middle mouse button & pan\\
2808
2809right mouse button & zoom\\  \hline
2810
2811\end{tabular}
2812\end{center}
2813
2814\vfill
2815
2816The following table describes how to operate animate from the command line:
2817
2818Usage: \code{animate [options] swwfile \ldots}\\  \nopagebreak
2819Options:\\  \nopagebreak
2820\begin{tabular}{ll}
2821  \code{--display <type>} & \code{MONITOR | POWERWALL | REALITY\_CENTER |}\\
2822                                    & \code{HEAD\_MOUNTED\_DISPLAY}\\
2823  \code{--rgba} & Request a RGBA colour buffer visual\\
2824  \code{--stencil} & Request a stencil buffer visual\\
2825  \code{--stereo} & Use default stereo mode which is \code{ANAGLYPHIC} if not \\
2826                                    & overridden by environmental variable\\
2827  \code{--stereo <mode>} & \code{ANAGLYPHIC | QUAD\_BUFFER | HORIZONTAL\_SPLIT |}\\
2828                                    & \code{VERTICAL\_SPLIT | LEFT\_EYE | RIGHT\_EYE |}\\
2829                                     & \code{ON | OFF} \\
2830  \code{-alphamax <float 0-1>} & Maximum transparency clamp value\\
2831  \code{-alphamin <float 0-1>} & Transparency value at \code{hmin}\\
2832\end{tabular}
2833
2834\begin{tabular}{ll}
2835  \code{-cullangle <float angle 0-90>} & Cull triangles steeper than this value\\
2836  \code{-help} & Display this information\\
2837  \code{-hmax <float>} & Height above which transparency is set to
2838                                     \code{alphamax}\\
2839\end{tabular}
2840
2841\begin{tabular}{ll}
2842
2843  \code{-hmin <float>} & Height below which transparency is set to
2844                                     zero\\
2845\end{tabular}
2846
2847\begin{tabular}{ll}
2848  \code{-lightpos <float>,<float>,<float>} & $x,y,z$ of bedslope directional light ($z$ is
2849                                     up, default is overhead)\\
2850\end{tabular}
2851
2852\begin{tabular}{ll}
2853  \code{-loop}  & Repeated (looped) playback of \code{.swm} files\\
2854
2855\end{tabular}
2856
2857\begin{tabular}{ll}
2858  \code{-movie <dirname>} & Save numbered images to named directory and
2859                                     quit\\
2860
2861  \code{-nosky} & Omit background sky\\
2862
2863
2864  \code{-scale <float>} & Vertical scale factor\\
2865  \code{-texture <file>} & Image to use for bedslope topography\\
2866  \code{-tps <rate>} & Timesteps per second\\
2867  \code{-version} & Revision number and creation (not compile)
2868                                     date\\
2869\end{tabular}
2870
2871\section{utilities/polygons}
2872
2873  \declaremodule{standard}{utilities.polygon}
2874  \refmodindex{utilities.polygon}
2875
2876  \begin{classdesc}{Polygon\_function}{regions, default = 0.0, geo_reference = None}
2877  Module: \code{utilities.polygon}
2878
2879  Creates a callable object that returns one of a specified list of values when
2880  evaluated at a point \code{x, y}, depending on which polygon, from a specified list of polygons, the
2881  point belongs to. The parameter \code{regions} is a list of pairs
2882  \code{(P, v)}, where each \code{P} is a polygon and each \code{v}
2883  is either a constant value or a function of coordinates \code{x}
2884  and \code{y}, specifying the return value for a point inside \code{P}. The
2885  optional parameter \code{default} may be used to specify a value
2886  for a point not lying inside any of the specified polygons. When a
2887  point lies in more than one polygon, the return value is taken to
2888  be the value for whichever of these polygon appears later in the
2889  list.
2890  %FIXME (Howard): CAN x, y BE VECTORS?
2891
2892  \end{classdesc}
2893
2894  \begin{funcdesc}{read\_polygon}{filename}
2895  Module: \code{utilities.polygon}
2896
2897  Reads the specified file and returns a polygon. Each
2898  line of the file must contain exactly two numbers, separated by a comma, which are interpreted
2899  as coordinates of one vertex of the polygon.
2900  \end{funcdesc}
2901
2902  \begin{funcdesc}{populate\_polygon}{polygon, number_of_points, seed = None, exclude = None}
2903  Module: \code{utilities.polygon}
2904
2905  Populates the interior of the specified polygon with the specified number of points,
2906  selected by means of a uniform distribution function.
2907  \end{funcdesc}
2908
2909  \begin{funcdesc}{point\_in\_polygon}{polygon, delta=1e-8}
2910  Module: \code{utilities.polygon}
2911
2912  Returns a point inside the specified polygon and close to the edge. The distance between
2913  the returned point and the nearest point of the polygon is less than $\sqrt{2}$ times the
2914  second argument \code{delta}, which is taken as $10^{-8}$ by default.
2915  \end{funcdesc}
2916
2917  \begin{funcdesc}{inside\_polygon}{points, polygon, closed = True, verbose = False}
2918  Module: \code{utilities.polygon}
2919
2920  Used to test whether the members of a list of points
2921  are inside the specified polygon. Returns a Numeric
2922  array comprising the indices of the points in the list that lie inside the polygon.
2923  (If none of the points are inside, returns \code{zeros((0,), 'l')}.)
2924  Points on the edges of the polygon are regarded as inside if
2925  \code{closed} is set to \code{True} or omitted; otherwise they are regarded as outside.
2926  \end{funcdesc}
2927
2928  \begin{funcdesc}{outside\_polygon}{points, polygon, closed = True, verbose = False}
2929  Module: \code{utilities.polygon}
2930
2931  Exactly like \code{inside\_polygon}, but with the words `inside' and `outside' interchanged.
2932  \end{funcdesc}
2933
2934  \begin{funcdesc}{is\_inside\_polygon}{point, polygon, closed=True, verbose=False}
2935  Module: \code{utilities.polygon}
2936
2937  Returns \code{True} if \code{point} is inside \code{polygon} or
2938  \code{False} otherwise. Points on the edges of the polygon are regarded as inside if
2939  \code{closed} is set to \code{True} or omitted; otherwise they are regarded as outside.
2940  \end{funcdesc}
2941
2942  \begin{funcdesc}{is\_outside\_polygon}{point, polygon, closed=True, verbose=False}
2943  Module: \code{utilities.polygon}
2944
2945  Exactly like \code{is\_outside\_polygon}, but with the words `inside' and `outside' interchanged.
2946  \end{funcdesc}
2947
2948  \begin{funcdesc}{point\_on\_line}{x, y, x0, y0, x1, y1}
2949  Module: \code{utilities.polygon}
2950
2951  Returns \code{True} or \code{False}, depending on whether the point with coordinates
2952  \code{x, y} is on the line passing through the points with coordinates \code{x0, y0}
2953  and \code{x1, y1} (extended if necessary at either end).
2954  \end{funcdesc}
2955
2956  \begin{funcdesc}{separate\_points\_by\_polygon}{points, polygon, closed = True, verbose = False}
2957    \indexedcode{separate\_points\_by\_polygon}
2958  Module: \code{utilities.polygon}
2959
2960  \end{funcdesc}
2961
2962  \begin{funcdesc}{polygon\_area}{polygon}
2963  Module: \code{utilities.polygon}
2964
2965  Returns area of arbitrary polygon (reference http://mathworld.wolfram.com/PolygonArea.html)
2966  \end{funcdesc}
2967
2968  \begin{funcdesc}{plot\_polygons}{polygons, figname, verbose = False}
2969  Module: \code{utilities.polygon}
2970
2971  Plots each polygon contained in input polygon list, e.g.
2972 \code{polygons = [poly1, poly2, poly3]} where \code{poly1 = [[x11,y11],[x12,y12],[x13,y13]]}
2973 etc.  Each polygon is closed for plotting purposes and subsequent plot saved to \code{figname}.
2974  Returns list containing the minimum and maximum of \code{x} and \code{y},
2975  i.e. \code{[x_{min}, x_{max}, y_{min}, y_{max}]}.
2976  \end{funcdesc}
2977
2978\section{coordinate\_transforms}
2979
2980\section{geospatial\_data}
2981\label{sec:geospatial}
2982
2983This describes a class that represents arbitrary point data in UTM
2984coordinates along with named attribute values.
2985
2986%FIXME (Ole): This gives a LaTeX error
2987%\declaremodule{standard}{geospatial_data}
2988%\refmodindex{geospatial_data}
2989
2990
2991
2992\begin{classdesc}{Geospatial\_data}
2993  {data_points = None,
2994    attributes = None,
2995    geo_reference = None,
2996    default_attribute_name = None,
2997    file_name = None}
2998Module: \code{geospatial\_data}
2999
3000This class is used to store a set of data points and associated
3001attributes, allowing these to be manipulated by methods defined for
3002the class.
3003
3004The data points are specified either by reading them from a NetCDF
3005or XYA file, identified through the parameter \code{file\_name}, or
3006by providing their \code{x}- and \code{y}-coordinates in metres,
3007either as a sequence of 2-tuples of floats or as an $M \times 2$
3008Numeric array of floats, where $M$ is the number of points.
3009Coordinates are interpreted relative to the origin specified by the
3010object \code{geo\_reference}, which contains data indicating the UTM
3011zone, easting and northing. If \code{geo\_reference} is not
3012specified, a default is used.
3013
3014Attributes are specified through the parameter \code{attributes},
3015set either to a list or array of length $M$ or to a dictionary whose
3016keys are the attribute names and whose values are lists or arrays of
3017length $M$. One of the attributes may be specified as the default
3018attribute, by assigning its name to \code{default\_attribute\_name}.
3019If no value is specified, the default attribute is taken to be the
3020first one.
3021\end{classdesc}
3022
3023
3024\begin{methoddesc}{import\_points\_file}{delimiter = None, verbose = False}
3025
3026\end{methoddesc}
3027
3028
3029\begin{methoddesc}{export\_points\_file}{ofile, absolute=False}
3030
3031\end{methoddesc}
3032
3033
3034\begin{methoddesc}{get\_data\_points}{absolute = True}
3035
3036\end{methoddesc}
3037
3038
3039\begin{methoddesc}{set\_attributes}{attributes}
3040
3041\end{methoddesc}
3042
3043
3044\begin{methoddesc}{get\_attributes}{attribute_name = None}
3045
3046\end{methoddesc}
3047
3048
3049\begin{methoddesc}{get\_all\_attributes}{}
3050
3051\end{methoddesc}
3052
3053
3054\begin{methoddesc}{set\_default\_attribute\_name}{default_attribute_name}
3055
3056\end{methoddesc}
3057
3058
3059\begin{methoddesc}{set\_geo\_reference}{geo_reference}
3060
3061\end{methoddesc}
3062
3063
3064\begin{methoddesc}{add}{}
3065
3066\end{methoddesc}
3067
3068
3069\begin{methoddesc}{clip}{}
3070Clip geospatial data by a polygon
3071
3072Inputs are \code{polygon} which is either a list of points, an Nx2 array or
3073a Geospatial data object and \code{closed}(optional) which determines
3074whether points on boundary should be regarded as belonging to the polygon
3075(\code{closed=True}) or not (\code{closed=False}).
3076Default is \code{closed=True}.
3077         
3078Returns new Geospatial data object representing points
3079inside specified polygon.
3080\end{methoddesc}
3081
3082
3083\section{pmesh GUI}
3084 \emph{Pmesh}
3085allows the user to set up the mesh of the problem interactively.
3086It can be used to build the outline of a mesh or to visualise a mesh
3087automatically generated.
3088
3089Pmesh will let the user select various modes. The current allowable
3090modes are vertex, segment, hole or region.  The mode describes what
3091sort of object is added or selected in response to mouse clicks.  When
3092changing modes any prior selected objects become deselected.
3093
3094In general the left mouse button will add an object and the right
3095mouse button will select an object.  A selected object can de deleted
3096by pressing the the middle mouse button (scroll bar).
3097
3098\section{alpha\_shape}
3099\emph{Alpha shapes} are used to generate close-fitting boundaries
3100around sets of points. The alpha shape algorithm produces a shape
3101that approximates to the `shape formed by the points'---or the shape
3102that would be seen by viewing the points from a coarse enough
3103resolution. For the simplest types of point sets, the alpha shape
3104reduces to the more precise notion of the convex hull. However, for
3105many sets of points the convex hull does not provide a close fit and
3106the alpha shape usually fits more closely to the original point set,
3107offering a better approximation to the shape being sought.
3108
3109In \anuga, an alpha shape is used to generate a polygonal boundary
3110around a set of points before mesh generation. The algorithm uses a
3111parameter $\alpha$ that can be adjusted to make the resultant shape
3112resemble the shape suggested by intuition more closely. An alpha
3113shape can serve as an initial boundary approximation that the user
3114can adjust as needed.
3115
3116The following paragraphs describe the class used to model an alpha
3117shape and some of the important methods and attributes associated
3118with instances of this class.
3119
3120\begin{classdesc}{Alpha\_Shape}{points, alpha = None}
3121Module: \code{alpha\_shape}
3122
3123To instantiate this class the user supplies the points from which
3124the alpha shape is to be created (in the form of a list of 2-tuples
3125\code{[[x1, y1],[x2, y2]}\ldots\code{]}, assigned to the parameter
3126\code{points}) and, optionally, a value for the parameter
3127\code{alpha}. The alpha shape is then computed and the user can then
3128retrieve details of the boundary through the attributes defined for
3129the class.
3130\end{classdesc}
3131
3132
3133\begin{funcdesc}{alpha\_shape\_via\_files}{point_file, boundary_file, alpha= None}
3134Module: \code{alpha\_shape}
3135
3136This function reads points from the specified point file
3137\code{point\_file}, computes the associated alpha shape (either
3138using the specified value for \code{alpha} or, if no value is
3139specified, automatically setting it to an optimal value) and outputs
3140the boundary to a file named \code{boundary\_file}. This output file
3141lists the coordinates \code{x, y} of each point in the boundary,
3142using one line per point.
3143\end{funcdesc}
3144
3145
3146\begin{methoddesc}{set\_boundary\_type}{self,raw_boundary=True,
3147                          remove_holes=False,
3148                          smooth_indents=False,
3149                          expand_pinch=False,
3150                          boundary_points_fraction=0.2}
3151Module: \code{alpha\_shape},  Class: \class{Alpha\_Shape}
3152
3153This function sets flags that govern the operation of the algorithm
3154that computes the boundary, as follows:
3155
3156\code{raw\_boundary = True} returns raw boundary, i.e. the regular edges of the
3157                alpha shape.\\
3158\code{remove\_holes = True} removes small holes (`small' is defined by
3159\code{boundary\_points\_fraction})\\
3160\code{smooth\_indents = True} removes sharp triangular indents in
3161boundary\\
3162\code{expand\_pinch = True} tests for pinch-off and
3163corrects---preventing a boundary vertex from having more than two edges.
3164\end{methoddesc}
3165
3166
3167\begin{methoddesc}{get\_boundary}{}
3168Module: \code{alpha\_shape},  Class: \class{Alpha\_Shape}
3169
3170Returns a list of tuples representing the boundary of the alpha
3171shape. Each tuple represents a segment in the boundary by providing
3172the indices of its two endpoints.
3173\end{methoddesc}
3174
3175
3176\begin{methoddesc}{write\_boundary}{file_name}
3177Module: \code{alpha\_shape},  Class: \class{Alpha\_Shape}
3178
3179Writes the list of 2-tuples returned by \code{get\_boundary} to the
3180file \code{file\_name}, using one line per tuple.
3181\end{methoddesc}
3182
3183\section{Numerical Tools}
3184
3185The following table describes some useful numerical functions that
3186may be found in the module \module{utilities.numerical\_tools}:
3187
3188\begin{tabular}{|p{8cm} p{8cm}|}  \hline
3189\code{angle(v1, v2=None)} & Angle between two-dimensional vectors
3190\code{v1} and \code{v2}, or between \code{v1} and the $x$-axis if
3191\code{v2} is \code{None}. Value is in range $0$ to $2\pi$. \\
3192
3193\code{normal\_vector(v)} & Normal vector to \code{v}.\\
3194
3195\code{mean(x)} & Mean value of a vector \code{x}.\\
3196
3197\code{cov(x, y=None)} & Covariance of vectors \code{x} and \code{y}.
3198If \code{y} is \code{None}, returns \code{cov(x, x)}.\\
3199
3200\code{err(x, y=0, n=2, relative=True)} & Relative error of
3201$\parallel$\code{x}$-$\code{y}$\parallel$ to
3202$\parallel$\code{y}$\parallel$ (2-norm if \code{n} = 2 or Max norm
3203if \code{n} = \code{None}). If denominator evaluates to zero or if
3204\code{y}
3205is omitted or if \code{relative = False}, absolute error is returned.\\
3206
3207\code{norm(x)} & 2-norm of \code{x}.\\
3208
3209\code{corr(x, y=None)} & Correlation of \code{x} and \code{y}. If
3210\code{y} is \code{None} returns autocorrelation of \code{x}.\\
3211
3212\code{ensure\_numeric(A, typecode = None)} & Returns a Numeric array
3213for any sequence \code{A}. If \code{A} is already a Numeric array it
3214will be returned unaltered. Otherwise, an attempt is made to convert
3215it to a Numeric array. (Needed because \code{array(A)} can
3216cause memory overflow.)\\
3217
3218\code{histogram(a, bins, relative=False)} & Standard histogram. If
3219\code{relative} is \code{True}, values will be normalised against
3220the total and thus represent frequencies rather than counts.\\
3221
3222\code{create\_bins(data, number\_of\_bins = None)} & Safely create
3223bins for use with histogram. If \code{data} contains only one point
3224or is constant, one bin will be created. If \code{number\_of\_bins}
3225is omitted, 10 bins will be created.\\  \hline
3226
3227\end{tabular}
3228
3229
3230\chapter{Modules available in \anuga}
3231
3232
3233\section{\module{abstract\_2d\_finite\_volumes.general\_mesh} }
3234\declaremodule[generalmesh]{}{general\_mesh}
3235\label{mod:generalmesh}
3236
3237\section{\module{abstract\_2d\_finite\_volumes.neighbour\_mesh} }
3238\declaremodule[neighbourmesh]{}{neighbour\_mesh}
3239\label{mod:neighbourmesh}
3240
3241\section{\module{abstract\_2d\_finite\_volumes.domain} --- Generic module for 2D triangular domains for finite-volume computations of conservation laws}
3242\declaremodule{}{domain}
3243\label{mod:domain}
3244
3245
3246\section{\module{abstract\_2d\_finite\_volumes.quantity}}
3247\declaremodule{}{quantity}
3248\label{mod:quantity}
3249
3250\begin{verbatim} 
3251Class Quantity - Implements values at each triangular element
3252
3253To create:
3254
3255   Quantity(domain, vertex_values)
3256
3257   domain: Associated domain structure. Required.
3258
3259   vertex_values: N x 3 array of values at each vertex for each element.
3260                  Default None
3261
3262   If vertex_values are None Create array of zeros compatible with domain.
3263   Otherwise check that it is compatible with dimenions of domain.
3264   Otherwise raise an exception
3265
3266\end{verbatim} 
3267   
3268   
3269   
3270
3271\section{\module{shallow\_water} --- 2D triangular domains for finite-volume
3272computations of the shallow water wave equation. This module contains a specialisation
3273of class Domain from module domain.py consisting of methods specific to the Shallow Water
3274Wave Equation
3275}
3276\declaremodule[shallowwater]{}{shallow\_water}
3277\label{mod:shallowwater}
3278
3279
3280
3281
3282%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3283
3284\chapter{Frequently Asked Questions}
3285
3286
3287\section{General Questions}
3288
3289\subsubsection{What is \anuga?}
3290It is a software package suitable for simulating 2D water flows in
3291complex geometries.
3292
3293\subsubsection{Why is it called \anuga?}
3294The software was developed in collaboration between the
3295Australian National University (ANU) and Geoscience Australia (GA).
3296
3297\subsubsection{How do I obtain a copy of \anuga?}
3298See url{https://datamining.anu.edu.au/anuga} for all things ANUGA.
3299
3300%\subsubsection{What developments are expected for \anuga in the future?}
3301%This
3302
3303\subsubsection{Are there any published articles about \anuga that I can reference?}
3304See url{https://datamining.anu.edu.au/anuga} for links.
3305
3306
3307\section{Modelling Questions}
3308
3309\subsubsection{Which type of problems are \anuga good for?}
3310General 2D waterflows in complex geometries such as
3311dam breaks, flows amoung structurs, coastal inundation etc.
3312
3313\subsubsection{Which type of problems are beyond the scope of \anuga?}
3314See Chapter \ref{ch:limitations}.
3315
3316\subsubsection{Can I start the simulation at an arbitrary time?}
3317Yes, using \code{domain.set\_time()} you can specify an arbitrary
3318starting time. This is for example useful in conjunction with a
3319file\_boundary, which may start hours before anything hits the model
3320boundary. By assigning a later time for the model to start,
3321computational resources aren't wasted.
3322
3323\subsubsection{Can I change values for any quantity during the simulation?}
3324Yes, using \code{domain.set\_quantity()} inside the domain.evolve
3325loop you can change values of any quantity. This is for example
3326useful if you wish to let the system settle for a while before
3327assigning an initial condition. Another example would be changing
3328the values for elevation to model e.g. erosion.
3329
3330\subsubsection{Can I change boundary conditions during the simulation?}
3331Not sure, but it would be nice :-)
3332
3333\subsubsection{Why does a file\_function return a list of numbers when evaluated?}
3334Currently, file\_function works by returning values for the conserved
3335quantities \code{stage}, \code{xmomentum} and \code{ymomentum} at a given point in time
3336and space as a triplet. To access e.g.\ \code{stage} one must specify element 0 of the
3337triplet returned by file\_function.
3338
3339\subsubsection{Which diagnostics are available to troubleshoot a simulation?}
3340
3341\subsubsection{How do I use a DEM in my simulation?}
3342You use \code{dem2pts} to convert your DEM to the required .pts format. This .pts file is then called
3343when setting the elevation data to the mesh in \code{domain.set_quantity}
3344
3345\subsubsection{What sort of DEM resolution should I use?}
3346Try and work with the \emph{best} you have available. Onshore DEMs
3347are typically available in 25m, 100m and 250m grids. Note, offshore
3348data is often sparse, or non-existent.
3349
3350\subsubsection{What sort of mesh resolution should I use?}
3351The mesh resolution should be commensurate with your DEM - it does not make sense to put in place a mesh which is finer than your DEM. As an example,
3352if your DEM is on a 25m grid, then the cell resolution should be of the order of 315$m^2$ (this represents half the area of the square grid). Ideally,
3353you need a fine mesh over regions where the DEM changes rapidly, and other areas of significant interest, such as the coast.
3354If meshes are too coarse, discretisation errors in both stage and momentum may lead to unphysical results. All studies should include sensitivity and convergence studies based on different resolutions.
3355
3356
3357\subsubsection{How do I tag interior polygons?}
3358At the moment create_mesh_from_regions does not allow interior
3359polygons with symbolic tags. If tags are needed, the interior
3360polygons must be created subsequently. For example, given a filename
3361of polygons representing solid walls (in Arc Ungenerate format) can
3362be tagged as such using the code snippet:
3363\begin{verbatim}
3364  # Create mesh outline with tags
3365  mesh = create_mesh_from_regions(bounding_polygon,
3366                                  boundary_tags=boundary_tags)
3367  # Add buildings outlines with tags set to 'wall'. This would typically
3368  # bind to a Reflective boundary
3369  mesh.import_ungenerate_file(buildings_filename, tag='wall')
3370
3371  # Generate and write mesh to file
3372  mesh.generate_mesh(maximum_triangle_area=max_area)
3373  mesh.export_mesh_file(mesh_filename)
3374\end{verbatim}
3375
3376Note that a mesh object is returned from \code{create_mesh_from_regions}
3377when file name is omitted.
3378
3379\subsubsection{How often should I store the output?}
3380This will depend on what you are trying to answer with your model and how much memory you have available on your machine. If you need
3381to look in detail at the evolution, then you will need to balance your storage requirements and the duration of the simulation.
3382If the SWW file exceeds 1Gb, another SWW file will be created until the end of the simulation. As an example, to store all the conserved
3383quantities on a mesh with approximately 300000 triangles on a 2 min interval for 5 hours will result in approximately 350Mb SWW file
3384(as for the \file{run\_sydney\_smf.py} example).
3385
3386\subsection{Boundary Conditions}
3387
3388\subsubsection{How do I create a Dirichlet boundary condition?}
3389
3390A Dirichlet boundary condition sets a constant value for the
3391conserved quantities at the boundaries. A list containing
3392the constant values for stage, xmomentum and ymomentum is constructed
3393and used in the function call, e.g. \code{Dirichlet_boundary([0.2,0.,0.])}
3394
3395\subsubsection{How do I know which boundary tags are available?}
3396The method \code{domain.get\_boundary\_tags()} will return a list of
3397available tags for use with
3398\code{domain.set\_boundary\_condition()}.
3399
3400
3401
3402
3403
3404\chapter{Glossary}
3405
3406\begin{tabular}{|lp{10cm}|c|}  \hline
3407%\begin{tabular}{|llll|}  \hline
3408    \emph{Term} & \emph{Definition} & \emph{Page}\\  \hline
3409
3410    \indexedbold{\anuga} & Name of software (joint development between ANU and
3411    GA) & \pageref{def:anuga}\\
3412
3413    \indexedbold{bathymetry} & offshore elevation &\\
3414
3415    \indexedbold{conserved quantity} & conserved (stage, x and y
3416    momentum) & \\
3417
3418%    \indexedbold{domain} & The domain of a function is the set of all input values to the
3419%    function.&\\
3420
3421    \indexedbold{Digital Elevation Model (DEM)} & DEMs are digital files consisting of points of elevations,
3422sampled systematically at equally spaced intervals.& \\
3423
3424    \indexedbold{Dirichlet boundary} & A boundary condition imposed on a differential equation
3425 that specifies the values the solution is to take on the boundary of the
3426 domain. & \pageref{def:dirichlet boundary}\\
3427
3428    \indexedbold{edge} & A triangular cell within the computational mesh can be depicted
3429    as a set of vertices joined by lines (the edges). & \\
3430
3431    \indexedbold{elevation} & refers to bathymetry and topography &\\
3432
3433    \indexedbold{evolution} & integration of the shallow water wave equations
3434    over time &\\
3435
3436    \indexedbold{finite volume method} & The method evaluates the terms in the shallow water
3437    wave equation as fluxes at the surfaces of each finite volume. Because the
3438    flux entering a given volume is identical to that leaving the adjacent volume,
3439    these methods are conservative. Another advantage of the finite volume method is
3440    that it is easily formulated to allow for unstructured meshes. The method is used
3441    in many computational fluid dynamics packages. & \\
3442
3443    \indexedbold{forcing term} & &\\
3444
3445    \indexedbold{flux} & the amount of flow through the volume per unit
3446    time & \\
3447
3448    \indexedbold{grid} & Evenly spaced mesh & \\
3449
3450    \indexedbold{latitude} & The angular distance on a mericlear north and south of the
3451    equator, expressed in degrees and minutes. & \\
3452
3453    \indexedbold{longitude} & The angular distance east or west, between the meridian
3454    of a particular place on Earth and that of the Prime Meridian (located in Greenwich,
3455    England) expressed in degrees or time.& \\
3456
3457    \indexedbold{Manning friction coefficient} & &\\
3458
3459    \indexedbold{mesh} & Triangulation of domain &\\
3460
3461    \indexedbold{mesh file} & A TSH or MSH file & \pageref{def:mesh file}\\
3462
3463    \indexedbold{NetCDF} & &\\
3464   
3465    \indexedbold{node} & A point at which edges meet & \\   
3466
3467    \indexedbold{northing} & A rectangular (x,y) coordinate measurement of distance
3468    north from a north-south reference line, usually a meridian used as the axis of
3469    origin within a map zone or projection. Northing is a UTM (Universal Transverse
3470    Mercator) coordinate. & \\
3471
3472    \indexedbold{points file} & A PTS or XYA file & \\  \hline
3473
3474    \end{tabular}
3475
3476    \begin{tabular}{|lp{10cm}|c|}  \hline
3477
3478    \indexedbold{polygon} & A sequence of points in the plane. \anuga represents a polygon
3479    either as a list consisting of Python tuples or lists of length 2 or as an $N \times 2$
3480    Numeric array, where $N$ is the number of points.
3481
3482    The unit square, for example, would be represented either as
3483    \code{[ [0,0], [1,0], [1,1], [0,1] ]} or as \code{array( [0,0], [1,0], [1,1],
3484    [0,1] )}.
3485
3486    NOTE: For details refer to the module \module{utilities/polygon.py}. &
3487    \\     \indexedbold{resolution} &  The maximal area of a triangular cell in a
3488    mesh & \\
3489
3490
3491    \indexedbold{reflective boundary} & Models a solid wall. Returns same conserved
3492    quantities as those present in the neighbouring volume but reflected. Specific to the
3493    shallow water equation as it works with the momentum quantities assumed to be the
3494    second and third conserved quantities. & \pageref{def:reflective boundary}\\
3495
3496    \indexedbold{stage} & &\\
3497
3498%    \indexedbold{try this}
3499
3500    \indexedbold{animate} & visualisation tool used with \anuga & 
3501    \pageref{sec:animate}\\
3502
3503    \indexedbold{time boundary} & Returns values for the conserved
3504quantities as a function of time. The user must specify
3505the domain to get access to the model time. & \pageref{def:time boundary}\\
3506
3507    \indexedbold{topography} & onshore elevation &\\
3508
3509    \indexedbold{transmissive boundary} & & \pageref{def:transmissive boundary}\\
3510
3511    \indexedbold{vertex} & A point at which edges meet. & \\
3512
3513    \indexedbold{xmomentum} & conserved quantity (note, two-dimensional SWW equations say
3514    only \code{x} and \code{y} and NOT \code{z}) &\\
3515
3516    \indexedbold{ymomentum}  & conserved quantity & \\  \hline
3517
3518    \end{tabular}
3519
3520
3521%The \code{\e appendix} markup need not be repeated for additional
3522%appendices.
3523
3524
3525%
3526%  The ugly "%begin{latexonly}" pseudo-environments are really just to
3527%  keep LaTeX2HTML quiet during the \renewcommand{} macros; they're
3528%  not really valuable.
3529%
3530%  If you don't want the Module Index, you can remove all of this up
3531%  until the second \input line.
3532%
3533
3534%begin{latexonly}
3535%\renewcommand{\indexname}{Module Index}
3536%end{latexonly}
3537\input{mod\jobname.ind}        % Module Index
3538%
3539%begin{latexonly}
3540%\renewcommand{\indexname}{Index}
3541%end{latexonly}
3542\input{\jobname.ind}            % Index
3543
3544
3545
3546\begin{thebibliography}{99}
3547\bibitem[nielsen2005]{nielsen2005} 
3548{\it Hydrodynamic modelling of coastal inundation}.
3549Nielsen, O., S. Roberts, D. Gray, A. McPherson and A. Hitchman.
3550In Zerger, A. and Argent, R.M. (eds) MODSIM 2005 International Congress on
3551Modelling and Simulation. Modelling and Simulation Society of Australia and
3552New Zealand, December 2005, pp. 518-523. ISBN: 0-9758400-2-9.\\
3553http://www.mssanz.org.au/modsim05/papers/nielsen.pdf
3554
3555\bibitem[grid250]{grid250}
3556Australian Bathymetry and Topography Grid, June 2005.
3557Webster, M.A. and Petkovic, P.
3558Geoscience Australia Record 2005/12. ISBN: 1-920871-46-2.\\
3559http://www.ga.gov.au/meta/ANZCW0703008022.html
3560
3561
3562\end{thebibliography}{99}
3563
3564\end{document}
Note: See TracBrowser for help on using the repository browser.