source: anuga_core/documentation/user_manual/anuga_user_manual.tex @ 4673

Last change on this file since 4673 was 4673, checked in by ole, 17 years ago

Updates from Ted Rigby and Rudy van Drie

  • Property svn:keywords set to LastChangedDate LastChangedRevision LastChangedBy HeadURL Id
File size: 145.4 KB
Line 
1% Complete documentation on the extended LaTeX markup used for Python
2% documentation is available in ``Documenting Python'', which is part
3% of the standard documentation for Python.  It may be found online
4% at:
5%
6%     http://www.python.org/doc/current/doc/doc.html
7
8
9%labels
10%Sections and subsections \label{sec: }
11%Chapters \label{ch: }
12%Equations \label{eq: }
13%Figures \label{fig: }
14
15% Is latex failing with;
16% `modanuga_user_manual.ind' not found?
17% try this command-line
18%   makeindex modanuga_user_manual.idx
19% To produce the modanuga_user_manual.ind file.
20
21
22\documentclass{manual}
23
24\usepackage{graphicx}
25\usepackage{datetime}
26
27\input{definitions}
28
29\title{\anuga User Manual}
30\author{Geoscience Australia and the Australian National University}
31
32% Please at least include a long-lived email address;
33% the rest is at your discretion.
34\authoraddress{Geoscience Australia \\
35  Email: \email{ole.nielsen@ga.gov.au}
36}
37
38%Draft date
39
40% update before release!
41% Use an explicit date so that reformatting
42% doesn't cause a new date to be used.  Setting
43% the date to \today can be used during draft
44% stages to make it easier to handle versions.
45
46
47\longdate       % Make date format long using datetime.sty
48%\settimeformat{xxivtime} % 24 hour Format
49\settimeformat{oclock} % Verbose
50\date{\today, \ \currenttime}
51%\hyphenation{set\_datadir}
52
53\ifhtml
54\date{\today} % latex2html does not know about datetime
55\fi
56
57
58
59
60
61\release{1.0}   % release version; this is used to define the
62                % \version macro
63
64\makeindex          % tell \index to actually write the .idx file
65\makemodindex       % If this contains a lot of module sections.
66
67\setcounter{tocdepth}{3}
68\setcounter{secnumdepth}{3}
69
70
71\begin{document}
72\maketitle
73
74
75% This makes the contents more accessible from the front page of the HTML.
76\ifhtml
77\chapter*{Front Matter\label{front}}
78\fi
79
80%Subversion keywords:
81%
82%$LastChangedDate: 2007-08-21 08:11:32 +0000 (Tue, 21 Aug 2007) $
83%$LastChangedRevision: 4673 $
84%$LastChangedBy: ole $
85
86\input{copyright}
87
88
89\begin{abstract}
90\label{def:anuga}
91
92\noindent \anuga\index{\anuga} is a hydrodynamic modelling tool that
93allows users to model realistic flow problems in complex geometries.
94Examples include dam breaks or the effects of natural hazards such
95as riverine flooding, storm surges and tsunami.
96
97The user must specify a study area represented by a mesh of triangular
98cells, the topography and bathymetry, frictional resistance, initial
99values for water level (called \emph{stage}\index{stage} within \anuga),
100boundary
101conditions and forces such as windstress or pressure gradients if
102applicable.
103
104\anuga tracks the evolution of water depth and horizontal momentum
105within each cell over time by solving the shallow water wave equation
106governing equation using a finite-volume method.
107
108\anuga also incorporates a mesh generator %, called \code{pmesh},
109that
110allows the user to set up the geometry of the problem interactively as
111well as tools for interpolation and surface fitting, and a number of
112auxiliary tools for visualising and interrogating the model output.
113
114Most \anuga components are written in the object-oriented programming
115language Python and most users will interact with \anuga by writing
116small Python programs based on the \anuga library
117functions. Computationally intensive components are written for
118efficiency in C routines working directly with the Numerical Python
119structures.
120
121
122\end{abstract}
123
124\tableofcontents
125
126
127\chapter{Introduction}
128
129
130\section{Purpose}
131
132The purpose of this user manual is to introduce the new user to the
133inundation software, describe what it can do and give step-by-step
134instructions for setting up and running hydrodynamic simulations.
135
136\section{Scope}
137
138This manual covers only what is needed to operate the software after
139installation and configuration. It does not includes instructions
140for installing the software or detailed API documentation, both of
141which will be covered in separate publications and by documentation
142in the source code.
143
144\section{Audience}
145
146Readers are assumed to be familiar with the operating environment
147and have a general understanding of the subject matter, as well as
148enough programming experience to adapt the code to different
149requirements and to understand the basic terminology of
150object-oriented programming.
151
152\pagebreak
153\chapter{Background}
154
155
156Modelling the effects on the built environment of natural hazards such
157as riverine flooding, storm surges and tsunami is critical for
158understanding their economic and social impact on our urban
159communities.  Geoscience Australia and the Australian National
160University are developing a hydrodynamic inundation modelling tool
161called \anuga to help simulate the impact of these hazards.
162
163The core of \anuga is the fluid dynamics module, called \code{shallow\_water},
164which is based on a finite-volume method for solving the Shallow Water
165Wave Equation.  The study area is represented by a mesh of triangular
166cells.  By solving the governing equation within each cell, water
167depth and horizontal momentum are tracked over time.
168
169A major capability of \anuga is that it can model the process of
170wetting and drying as water enters and leaves an area.  This means
171that it is suitable for simulating water flow onto a beach or dry land
172and around structures such as buildings.  \anuga is also capable
173of modelling hydraulic jumps due to the ability of the finite-volume
174method to accommodate discontinuities in the solution.
175
176To set up a particular scenario the user specifies the geometry
177(bathymetry and topography), the initial water level (stage),
178boundary conditions such as tide, and any forcing terms that may
179drive the system such as wind stress or atmospheric pressure
180gradients. Gravity and frictional resistance from the different
181terrains in the model are represented by predefined forcing terms.
182
183The built-in mesh generator, called \code{graphical\_mesh\_generator},
184allows the user to set up the geometry
185of the problem interactively and to identify boundary segments and
186regions using symbolic tags.  These tags may then be used to set the
187actual boundary conditions and attributes for different regions
188(e.g.\ the Manning friction coefficient) for each simulation.
189
190Most \anuga components are written in the object-oriented programming
191language Python.  Software written in Python can be produced quickly
192and can be readily adapted to changing requirements throughout its
193lifetime.  Computationally intensive components are written for
194efficiency in C routines working directly with the Numerical Python
195structures.  The animation tool developed for \anuga is based on
196OpenSceneGraph, an Open Source Software (OSS) component allowing high
197level interaction with sophisticated graphics primitives.
198See \cite{nielsen2005} for more background on \anuga.
199
200\chapter{Restrictions and limitations on \anuga}
201\label{ch:limitations}
202
203Although a powerful and flexible tool for hydrodynamic modelling, \anuga has a
204number of limitations that any potential user need to be aware of. They are
205
206\begin{itemize}
207  \item The mathematical model is the 2D shallow water wave equation.
208  As such it cannot resolve vertical convection and consequently not breaking
209  waves or 3D turbulence (e.g.\ vorticity).
210  \item The surface is assumed to be open, e.g. \anuga cannot model
211  flow under ceilings or in pipes
212  \item All spatial coordinates are assumed to be UTM (meters). As such,
213  ANUGA is unsuitable for modelling flows in areas larger than one UTM zone
214  (6 degrees wide).
215  \item Fluid is assumed to be inviscid
216  \item The finite volume is a very robust and flexible numerical technique,
217  but it is not the fastest method around. If the geometry is sufficiently
218  simple and if there is no need for wetting or drying, a finite-difference
219  method may be able to solve the problem faster than \anuga.
220  %\item Mesh resolutions near coastlines with steep gradients need to be...
221  \item Frictional resistance is implemented using Manning's formula, but
222  \anuga has not yet been fully validated in regard to bottom roughness
223  \item ANUGA contains no tsunami-genic functionality relating to
224  earthquakes.
225\end{itemize}
226
227
228
229\chapter{Getting Started}
230\label{ch:getstarted}
231
232This section is designed to assist the reader to get started with
233\anuga by working through some examples. Two examples are discussed;
234the first is a simple example to illustrate many of the ideas, and
235the second is a more realistic example.
236
237\section{A Simple Example}
238\label{sec:simpleexample}
239
240\subsection{Overview}
241
242What follows is a discussion of the structure and operation of a
243script called \file{runup.py}.
244
245This example carries out the solution of the shallow-water wave
246equation in the simple case of a configuration comprising a flat
247bed, sloping at a fixed angle in one direction and having a
248constant depth across each line in the perpendicular direction.
249
250The example demonstrates the basic ideas involved in setting up a
251complex scenario. In general the user specifies the geometry
252(bathymetry and topography), the initial water level, boundary
253conditions such as tide, and any forcing terms that may drive the
254system such as wind stress or atmospheric pressure gradients.
255Frictional resistance from the different terrains in the model is
256represented by predefined forcing terms. In this example, the
257boundary is reflective on three sides and a time dependent wave on
258one side.
259
260The present example represents a simple scenario and does not
261include any forcing terms, nor is the data taken from a file as it
262would typically be.
263
264The conserved quantities involved in the
265problem are stage (absolute height of water surface),
266$x$-momentum and $y$-momentum. Other quantities
267involved in the computation are the friction and elevation.
268
269Water depth can be obtained through the equation
270
271\begin{tabular}{rcrcl}
272  \code{depth} &=& \code{stage} &$-$& \code{elevation}
273\end{tabular}
274
275
276\subsection{Outline of the Program}
277
278In outline, \file{runup.py} performs the following steps:
279
280\begin{enumerate}
281
282   \item Sets up a triangular mesh.
283
284   \item Sets certain parameters governing the mode of
285operation of the model-specifying, for instance, where to store the model output.
286
287   \item Inputs various quantities describing physical measurements, such
288as the elevation, to be specified at each mesh point (vertex).
289
290   \item Sets up the boundary conditions.
291
292   \item Carries out the evolution of the model through a series of time
293steps and outputs the results, providing a results file that can
294be visualised.
295
296\end{enumerate}
297
298\subsection{The Code}
299
300%FIXME: we are using the \code function here.
301%This should be used wherever possible
302For reference we include below the complete code listing for
303\file{runup.py}. Subsequent paragraphs provide a
304`commentary' that describes each step of the program and explains it
305significance.
306
307\verbatiminput{demos/runup.py}
308
309\subsection{Establishing the Mesh}\index{mesh, establishing}
310
311The first task is to set up the triangular mesh to be used for the
312scenario. This is carried out through the statement:
313
314{\small \begin{verbatim}
315    points, vertices, boundary = rectangular(10, 10)
316\end{verbatim}}
317
318The function \function{rectangular} is imported from a module
319\module{mesh\_factory} defined elsewhere. (\anuga also contains
320several other schemes that can be used for setting up meshes, but we
321shall not discuss these.) The above assignment sets up a $10 \times
32210$ rectangular mesh, triangulated in a regular way. The assignment
323
324{\small \begin{verbatim}
325    points, vertices, boundary = rectangular(m, n)
326\end{verbatim}}
327
328returns:
329
330\begin{itemize}
331
332   \item a list \code{points} giving the coordinates of each mesh point,
333
334   \item a list \code{vertices} specifying the three vertices of each triangle, and
335
336   \item a dictionary \code{boundary} that stores the edges on
337   the boundary and associates each with one of the symbolic tags \code{`left'}, \code{`right'},
338   \code{`top'} or \code{`bottom'}.
339
340\end{itemize}
341
342(For more details on symbolic tags, see page
343\pageref{ref:tagdescription}.)
344
345An example of a general unstructured mesh and the associated data
346structures \code{points}, \code{vertices} and \code{boundary} is
347given in Section \ref{sec:meshexample}.
348
349
350
351
352\subsection{Initialising the Domain}
353
354These variables are then used to set up a data structure
355\code{domain}, through the assignment:
356
357{\small \begin{verbatim}
358    domain = Domain(points, vertices, boundary)
359\end{verbatim}}
360
361This creates an instance of the \class{Domain} class, which
362represents the domain of the simulation. Specific options are set at
363this point, including the basename for the output file and the
364directory to be used for data:
365
366{\small \begin{verbatim}
367    domain.set_name('runup')
368\end{verbatim}}
369
370{\small \begin{verbatim}
371    domain.set_datadir('.')
372\end{verbatim}}
373
374In addition, the following statement now specifies that the
375quantities \code{stage}, \code{xmomentum} and \code{ymomentum} are
376to be stored:
377
378{\small \begin{verbatim}
379    domain.set_quantities_to_be_stored(['stage', 'xmomentum',
380    'ymomentum'])
381\end{verbatim}}
382
383
384\subsection{Initial Conditions}
385
386The next task is to specify a number of quantities that we wish to
387set for each mesh point. The class \class{Domain} has a method
388\method{set\_quantity}, used to specify these quantities. It is a
389flexible method that allows the user to set quantities in a variety
390of ways---using constants, functions, numeric arrays, expressions
391involving other quantities, or arbitrary data points with associated
392values, all of which can be passed as arguments. All quantities can
393be initialised using \method{set\_quantity}. For a conserved
394quantity (such as \code{stage, xmomentum, ymomentum}) this is called
395an \emph{initial condition}. However, other quantities that aren't
396updated by the equation are also assigned values using the same
397interface. The code in the present example demonstrates a number of
398forms in which we can invoke \method{set\_quantity}.
399
400
401\subsubsection{Elevation}
402
403The elevation, or height of the bed, is set using a function,
404defined through the statements below, which is specific to this
405example and specifies a particularly simple initial configuration
406for demonstration purposes:
407
408{\small \begin{verbatim}
409    def f(x,y):
410        return -x/2
411\end{verbatim}}
412
413This simply associates an elevation with each point \code{(x, y)} of
414the plane.  It specifies that the bed slopes linearly in the
415\code{x} direction, with slope $-\frac{1}{2}$,  and is constant in
416the \code{y} direction.
417
418Once the function \function{f} is specified, the quantity
419\code{elevation} is assigned through the simple statement:
420
421{\small \begin{verbatim}
422    domain.set_quantity('elevation', f)
423\end{verbatim}}
424
425
426\subsubsection{Friction}
427
428The assignment of the friction quantity (a forcing term)
429demonstrates another way we can use \method{set\_quantity} to set
430quantities---namely, assign them to a constant numerical value:
431
432{\small \begin{verbatim}
433    domain.set_quantity('friction', 0.1)
434\end{verbatim}}
435
436This specifies that the Manning friction coefficient is set to 0.1
437at every mesh point.
438
439\subsubsection{Stage}
440
441The stage (the height of the water surface) is related to the
442elevation and the depth at any time by the equation
443
444{\small \begin{verbatim}
445    stage = elevation + depth
446\end{verbatim}}
447
448
449For this example, we simply assign a constant value to \code{stage},
450using the statement
451
452{\small \begin{verbatim}
453    domain.set_quantity('stage', -.4)
454\end{verbatim}}
455
456which specifies that the surface level is set to a height of $-0.4$,
457i.e. 0.4 units (m) below the zero level.
458
459Although it is not necessary for this example, it may be useful to
460digress here and mention a variant to this requirement, which allows
461us to illustrate another way to use \method{set\_quantity}---namely,
462incorporating an expression involving other quantities. Suppose,
463instead of setting a constant value for the stage, we wished to
464specify a constant value for the \emph{depth}. For such a case we
465need to specify that \code{stage} is everywhere obtained by adding
466that value to the value already specified for \code{elevation}. We
467would do this by means of the statements:
468
469{\small \begin{verbatim}
470    h = 0.05 # Constant depth
471    domain.set_quantity('stage', expression = 'elevation + %f' %h)
472\end{verbatim}}
473
474That is, the value of \code{stage} is set to $\code{h} = 0.05$ plus
475the value of \code{elevation} already defined.
476
477The reader will probably appreciate that this capability to
478incorporate expressions into statements using \method{set\_quantity}
479greatly expands its power.) See Section \ref{sec:Initial Conditions} for more
480details.
481
482\subsection{Boundary Conditions}\index{boundary conditions}
483
484The boundary conditions are specified as follows:
485
486{\small \begin{verbatim}
487    Br = Reflective_boundary(domain)
488
489    Bt = Transmissive_boundary(domain)
490
491    Bd = Dirichlet_boundary([0.2,0.,0.])
492
493    Bw = Time_boundary(domain=domain,
494                f=lambda t: [(0.1*sin(t*2*pi)-0.3), 0.0, 0.0])
495\end{verbatim}}
496
497The effect of these statements is to set up a selection of different
498alternative boundary conditions and store them in variables that can be
499assigned as needed. Each boundary condition specifies the
500behaviour at a boundary in terms of the behaviour in neighbouring
501elements. The boundary conditions introduced here may be briefly described as
502follows:
503
504\begin{itemize}
505    \item \textbf{Reflective boundary}\label{def:reflective boundary} Returns same \code{stage} as
506      as present in its neighbour volume but momentum vector
507      reversed 180 degrees (reflected).
508      Specific to the shallow water equation as it works with the
509      momentum quantities assumed to be the second and third conserved
510      quantities. A reflective boundary condition models a solid wall.
511    \item \textbf{Transmissive boundary}\label{def:transmissive boundary} Returns same conserved quantities as
512      those present in its neighbour volume. This is one way of modelling
513      outflow from a domain, but it should be used with caution if flow is
514      not steady state as replication of momentum at the boundary
515      may cause occasional spurious effects. If this occurs,
516      consider using e.g. a Dirichlet boundary condition.
517    \item \textbf{Dirichlet boundary}\label{def:dirichlet boundary} Specifies
518      constant values for stage, $x$-momentum and $y$-momentum at the boundary.
519    \item \textbf{Time boundary}\label{def:time boundary} Like a Dirichlet
520      boundary but with behaviour varying with time.
521\end{itemize}
522
523\label{ref:tagdescription}Before describing how these boundary
524conditions are assigned, we recall that a mesh is specified using
525three variables \code{points}, \code{vertices} and \code{boundary}.
526In the code we are discussing, these three variables are returned by
527the function \code{rectangular}; however, the example given in
528Section \ref{sec:realdataexample} illustrates another way of
529assigning the values, by means of the function
530\code{create\_mesh\_from\_regions}.
531
532These variables store the data determining the mesh as follows. (You
533may find that the example given in Section \ref{sec:meshexample}
534helps to clarify the following discussion, even though that example
535is a \emph{non-rectangular} mesh.)
536
537\begin{itemize}
538\item The variable \code{points} stores a list of 2-tuples giving the
539coordinates of the mesh points.
540
541\item The variable \code{vertices} stores a list of 3-tuples of
542numbers, representing vertices of triangles in the mesh. In this
543list, the triangle whose vertices are \code{points[i]},
544\code{points[j]}, \code{points[k]} is represented by the 3-tuple
545\code{(i, j, k)}.
546
547\item The variable \code{boundary} is a Python dictionary that
548not only stores the edges that make up the boundary but also assigns
549symbolic tags to these edges to distinguish different parts of the
550boundary. An edge with endpoints \code{points[i]} and
551\code{points[j]} is represented by the 2-tuple \code{(i, j)}. The
552keys for the dictionary are the 2-tuples \code{(i, j)} corresponding
553to boundary edges in the mesh, and the values are the tags are used
554to label them. In the present example, the value \code{boundary[(i,
555j)]} assigned to \code{(i, j)]} is one of the four tags
556\code{`left'}, \code{`right'}, \code{`top'} or \code{`bottom'},
557depending on whether the boundary edge represented by \code{(i, j)}
558occurs at the left, right, top or bottom of the rectangle bounding
559the mesh. The function \code{rectangular} automatically assigns
560these tags to the boundary edges when it generates the mesh.
561\end{itemize}
562
563The tags provide the means to assign different boundary conditions
564to an edge depending on which part of the boundary it belongs to.
565(In Section \ref{sec:realdataexample} we describe an example that
566uses different boundary tags --- in general, the possible tags are entirely selectable by the user when generating the mesh and not
567limited to `left', `right', `top' and `bottom' as in this example.)
568All segments in bounding polygon must be tagged. If a tag is not supplied, the default tag name 'exterior' will be assigned by ANUGA.
569
570
571Using the boundary objects described above, we assign a boundary
572condition to each part of the boundary by means of a statement like
573
574{\small \begin{verbatim}
575    domain.set_boundary({'left': Br, 'right': Bw, 'top': Br, 'bottom': Br})
576\end{verbatim}}
577
578It is critical that all tags are assoctiated with a boundary conditing in this statement. If not the program will halt with a statement like
579
580\begin{verbatim}
581
582Traceback (most recent call last):
583  File "mesh_test.py", line 114, in ?
584    domain.set_boundary({'west': Bi, 'east': Bo, 'north': Br, 'south': Br})
585  File "X:\inundation\sandpits\onielsen\anuga_core\source\anuga\abstract_2d_finite_volumes\domain.py", line 505, in set_boundary
586    raise msg
587ERROR (domain.py): Tag "exterior" has not been bound to a boundary object.
588All boundary tags defined in domain must appear in the supplied dictionary.
589The tags are: ['ocean', 'east', 'north', 'exterior', 'south']
590\end{verbatim} 
591
592
593The command \code{set\_boundary} stipulates that, in the current example, the right
594boundary varies with time, as defined by the lambda function, while the other
595boundaries are all reflective.
596
597The reader may wish to experiment by varying the choice of boundary
598types for one or more of the boundaries. (In the case of \code{Bd}
599and \code{Bw}, the three arguments in each case represent the
600\code{stage}, $x$-momentum and $y$-momentum, respectively.)
601
602{\small \begin{verbatim}
603    Bw = Time_boundary(domain=domain,
604                       f=lambda t: [(0.1*sin(t*2*pi)-0.3), 0.0, 0.0])
605\end{verbatim}}
606
607
608
609\subsection{Evolution}\index{evolution}
610
611The final statement \nopagebreak[3]
612{\small \begin{verbatim}
613    for t in domain.evolve(yieldstep = 0.1, duration = 4.0):
614        print domain.timestepping_statistics()
615\end{verbatim}}
616
617causes the configuration of the domain to `evolve', over a series of
618steps indicated by the values of \code{yieldstep} and
619\code{duration}, which can be altered as required.  The value of
620\code{yieldstep} controls the time interval between successive model
621outputs.  Behind the scenes more time steps are generally taken.
622
623
624\subsection{Output}
625
626The output is a NetCDF file with the extension \code{.sww}. It
627contains stage and momentum information and can be used with the
628ANUGA viewer \code{animate} (see Section \ref{sec:animate})
629visualisation package
630to generate a visual display. See Section \ref{sec:file formats}
631(page \pageref{sec:file formats}) for more on NetCDF and other file
632formats.
633
634The following is a listing of the screen output seen by the user
635when this example is run:
636
637\verbatiminput{examples/runupoutput.txt}
638
639
640\section{How to Run the Code}
641
642The code can be run in various ways:
643
644\begin{itemize}
645  \item{from a Windows or Unix command line} as in\ \code{python runup.py}
646  \item{within the Python IDLE environment}
647  \item{within emacs}
648  \item{within Windows, by double-clicking the \code{runup.py}
649  file.}
650\end{itemize}
651
652
653\section{Exploring the Model Output}
654
655The following figures are screenshots from the \anuga visualisation
656tool \code{animate}. Figure \ref{fig:runupstart} shows the domain
657with water surface as specified by the initial condition, $t=0$.
658Figure \ref{fig:runup2} shows later snapshots for $t=2.3$ and
659$t=4$ where the system has been evolved and the wave is encroaching
660on the previously dry bed.  All figures are screenshots from an
661interactive animation tool called animate which is part of \anuga and
662distributed as in the package anuga\_viewer.
663Animate is described in more detail is Section \ref{sec:animate}.
664
665\begin{figure}[hbt]
666
667  \centerline{\includegraphics[width=75mm, height=75mm]
668    {graphics/bedslopestart.jpg}}
669
670  \caption{Runup example viewed with the ANUGA viewer}
671  \label{fig:runupstart}
672\end{figure}
673
674
675\begin{figure}[hbt]
676
677  \centerline{
678   \includegraphics[width=75mm, height=75mm]{graphics/bedslopeduring.jpg}
679    \includegraphics[width=75mm, height=75mm]{graphics/bedslopeend.jpg}
680   }
681
682  \caption{Runup example viewed with ANGUA viewer}
683  \label{fig:runup2}
684\end{figure}
685
686
687
688\clearpage
689
690%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
691
692\section{A slightly more complex example}
693\label{sec:channelexample}
694
695\subsection{Overview}
696
697The next example is about waterflow in a channel with varying boundary conditions and
698more complex topograhies. These examples build on the
699concepts introduced through the \file{runup.py} in Section \ref{sec:simpleexample}.
700The example will be built up through three progressively more complex scripts.
701
702\subsection{Overview}
703As in the case of \file{runup.py}, the actions carried
704out by the program can be organised according to this outline:
705
706\begin{enumerate}
707
708   \item Set up a triangular mesh.
709
710   \item Set certain parameters governing the mode of
711operation of the model---specifying, for instance, where to store the
712model output.
713
714   \item Set up initial conditions for various quantities such as the elevation, to be specified at each mesh point (vertex).
715
716   \item Set up the boundary conditions.
717
718   \item Carry out the evolution of the model through a series of time
719steps and output the results, providing a results file that can be
720visualised.
721
722\end{enumerate}
723
724
725\subsection{The Code}
726
727Here is the code for the first version of the channel flow \file{channel1.py}:
728
729\verbatiminput{demos/channel1.py}
730
731In discussing the details of this example, we follow the outline
732given above, discussing each major step of the code in turn.
733
734\subsection{Establishing the Mesh}\index{mesh, establishing}
735
736In this example we use a similar simple structured triangular mesh as in \code{runup.py}
737for simplicity, but this time we will use a symmetric one and also
738change the physical extent of the domain. The assignment
739
740{\small \begin{verbatim}
741    points, vertices, boundary = rectangular_cross(m, n,
742                                                   len1=length, len2=width)
743\end{verbatim}}
744returns a m x n mesh similar to the one used in the previous example, except that now the
745extent in the x and y directions are given by the value of \code{length} and \code{width}
746respectively.
747
748Defining m and n in terms of the extent as in this example provides a convenient way of
749controlling the resolution: By defining dx and dy to be the desired size of each hypothenuse in the mesh we can write the mesh generation as follows:
750
751{\small \begin{verbatim}
752length = 10.
753width = 5.
754dx = dy = 1           # Resolution: Length of subdivisions on both axes
755
756points, vertices, boundary = rectangular_cross(int(length/dx), int(width/dy),
757                                               len1=length, len2=width)
758\end{verbatim}}
759which yields a mesh of length=10m, width=5m with 1m spacings. To increase the resolution, as we will later in this example, one merely decrease the values of dx and dy.
760
761The rest of this script is as in the previous example.
762% except for an application of the 'expression' form of \code{set\_quantity} where we use the value of \code{elevation} to define the (dry) initial condition for \code{stage}:
763%{\small \begin{verbatim}
764%  domain.set_quantity('stage', expression='elevation')
765%\end{verbatim}}
766
767\section{Model Output}
768
769The following figure is a screenshot from the \anuga visualisation
770tool \code{animate} of output from this example.
771\begin{figure}[hbt]
772  \centerline{\includegraphics[height=75mm]
773    {graphics/channel1.png}}%
774
775  \caption{Simple channel example viewed with the ANUGA viewer.}
776  \label{fig:channel1}
777\end{figure}
778
779
780\subsection{Changing boundary conditions on the fly}
781\label{sec:change boundary}
782
783Here is the code for the second version of the channel flow \file{channel2.py}:
784\verbatiminput{demos/channel2.py}
785This example differs from the first version in that a constant outflow boundary condition has
786been defined
787{\small \begin{verbatim}
788    Bo = Dirichlet_boundary([-5, 0, 0]) # Outflow
789\end{verbatim}}
790and that it is applied to the right hand side boundary when the water level there exceeds 0m.
791{\small \begin{verbatim}
792for t in domain.evolve(yieldstep = 0.2, finaltime = 40.0):
793    domain.write_time()
794
795    if domain.get_quantity('stage').get_values(interpolation_points=[[10, 2.5]]) > 0:
796        print 'Stage > 0: Changing to outflow boundary'
797        domain.set_boundary({'right': Bo})
798\end{verbatim}}
799\label{sec:change boundary code}
800
801The if statement in the timestepping loop (evolve) gets the quantity
802\code{stage} and obtain the interpolated value at the point (10m,
8032.5m) which is on the right boundary. If the stage exceeds 0m a
804message is printed and the old boundary condition at tag 'right' is
805replaced by the outflow boundary using the method
806{\small \begin{verbatim}
807    domain.set_boundary({'right': Bo})
808\end{verbatim}}
809This type of dynamically varying boundary could for example be
810used to model the
811breakdown of a sluice door when water exceeds a certain level.
812
813\subsection{Output}
814
815The text output from this example looks like this
816{\small \begin{verbatim}
817...
818Time = 15.4000, delta t in [0.03789902, 0.03789916], steps=6 (6)
819Time = 15.6000, delta t in [0.03789896, 0.03789908], steps=6 (6)
820Time = 15.8000, delta t in [0.03789891, 0.03789903], steps=6 (6)
821Stage > 0: Changing to outflow boundary
822Time = 16.0000, delta t in [0.02709050, 0.03789898], steps=6 (6)
823Time = 16.2000, delta t in [0.03789892, 0.03789904], steps=6 (6)
824...
825\end{verbatim}}
826
827
828\subsection{Flow through more complex topograhies}
829
830Here is the code for the third version of the channel flow \file{channel3.py}:
831\verbatiminput{demos/channel3.py}
832
833This example differs from the first two versions in that the topography
834contains obstacles.
835
836This is accomplished here by defining the function \code{topography} as follows
837{\small \begin{verbatim}
838def topography(x,y):
839    """Complex topography defined by a function of vectors x and y
840    """
841
842    z = -x/10
843
844    N = len(x)
845    for i in range(N):
846
847        # Step
848        if 10 < x[i] < 12:
849            z[i] += 0.4 - 0.05*y[i]
850
851        # Constriction
852        if 27 < x[i] < 29 and y[i] > 3:
853            z[i] += 2
854
855        # Pole
856        if (x[i] - 34)**2 + (y[i] - 2)**2 < 0.4**2:
857            z[i] += 2
858
859    return z
860\end{verbatim}}
861
862In addition, changing the resolution to dx=dy=0.1 creates a finer mesh resolving the new featurse better.
863
864A screenshot of this model at time == 15s is
865\begin{figure}[hbt]
866
867  \centerline{\includegraphics[height=75mm]
868    {graphics/channel3.png}}
869
870  \caption{More complex flow in a channel}
871  \label{fig:channel3}
872\end{figure}
873
874
875
876
877\clearpage
878
879%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
880
881\section{An Example with Real Data}
882\label{sec:realdataexample} The following discussion builds on the
883concepts introduced through the \file{runup.py} example and
884introduces a second example, \file{runcairns.py}.  This refers to
885a real-life scenario, in which the domain of interest surrounds the
886Cairns region. Two scenarios are given; firstly, a
887hypothetical tsunami wave is generated by a submarine mass failure
888situated on the edge of the continental shelf, and secondly, a fixed wave
889of given amplitude and period is introduced through the boundary.
890
891\subsection{Overview}
892As in the case of \file{runup.py}, the actions carried
893out by the program can be organised according to this outline:
894
895\begin{enumerate}
896
897   \item Set up a triangular mesh.
898
899   \item Set certain parameters governing the mode of
900operation of the model---specifying, for instance, where to store the
901model output.
902
903   \item Input various quantities describing physical measurements, such
904as the elevation, to be specified at each mesh point (vertex).
905
906   \item Set up the boundary conditions.
907
908   \item Carry out the evolution of the model through a series of time
909steps and output the results, providing a results file that can be
910visualised.
911
912\end{enumerate}
913
914
915
916\subsection{The Code}
917
918Here is the code for \file{runcairns.py}:
919
920\verbatiminput{demos/cairns/runcairns.py}
921
922In discussing the details of this example, we follow the outline
923given above, discussing each major step of the code in turn.
924
925\subsection{Establishing the Mesh}\index{mesh, establishing}
926
927One obvious way that the present example differs from
928\file{runup.py} is in the use of a more complex method to
929create the mesh. Instead of imposing a mesh structure on a
930rectangular grid, the technique used for this example involves
931building mesh structures inside polygons specified by the user,
932using a mesh-generator referred to as \code{pmesh}.
933
934In its simplest form, \code{pmesh} creates the mesh within a single
935polygon whose vertices are at geographical locations specified by
936the user. The user specifies the \emph{resolution}---that is, the
937maximal area of a triangle used for triangulation---and a triangular
938mesh is created inside the polygon using a mesh generation engine.
939On any given platform, the same mesh will be returned.
940%Figure
941%\ref{fig:pentagon} shows a simple example of this, in which the
942%triangulation is carried out within a pentagon.
943
944
945%\begin{figure}[hbt]
946
947%  \caption{Mesh points are created inside the polygon}
948  %\label{fig:pentagon}
949%\end{figure}
950
951Boundary tags are not restricted to \code{`left'}, \code{`bottom'},
952\code{`right'} and \code{`top'}, as in the case of
953\file{runup.py}. Instead the user specifies a list of
954tags appropriate to the configuration being modelled.
955
956In addition, \code{pmesh} provides a way to adapt to geographic or
957other features in the landscape, whose presence may require an
958increase in resolution. This is done by allowing the user to specify
959a number of \emph{interior polygons}, each with a specified
960resolution. It is also
961possible to specify one or more `holes'---that is, areas bounded by
962polygons in which no triangulation is required.
963
964%\begin{figure}[hbt]
965%  \caption{Interior meshes with individual resolution}
966%  \label{fig:interior meshes}
967%\end{figure}
968
969In its general form, \code{pmesh} takes for its input a bounding
970polygon and (optionally) a list of interior polygons. The user
971specifies resolutions, both for the bounding polygon and for each of
972the interior polygons. Given this data, \code{pmesh} first creates a
973triangular mesh with varying resolution.
974
975The function used to implement this process is
976\function{create\_mesh\_from\_regions}. Its arguments include the
977bounding polygon and its resolution, a list of boundary tags, and a
978list of pairs \code{[polygon, resolution]}, specifying the interior
979polygons and their resolutions.
980
981The resulting mesh is output to a \emph{mesh file}\index{mesh
982file}\label{def:mesh file}. This term is used to describe a file of
983a specific format used to store the data specifying a mesh. (There
984are in fact two possible formats for such a file: it can either be a
985binary file, with extension \code{.msh}, or an ASCII file, with
986extension \code{.tsh}. In the present case, the binary file format
987\code{.msh} is used. See Section \ref{sec:file formats} (page
988\pageref{sec:file formats}) for more on file formats.)
989
990In practice, the details of the polygons used are read from a
991separate file \file{project.py}. Here is a complete listing of
992\file{project.py}:
993
994\verbatiminput{demos/cairns/project.py}
995
996Figure \ref{fig:cairns3d} illustrates the landscape of the region
997for the Cairns example. Understanding the landscape is important in
998determining the location and resolution of interior polygons. The
999supporting data is found in the ASCII grid, \code{cairns.asc}, which
1000has been sourced from the publically available Australian Bathymetry
1001and Topography Grid 2005, \cite{grid250}. The required resolution
1002for inundation modelling will depend on the underlying topography and
1003bathymetry; as the terrain becomes more complex, the desired resolution
1004would decrease to the order of tens of metres.
1005
1006\begin{figure}[hbt]
1007\centerline{\includegraphics[scale=0.5]{graphics/cairns3.jpg}}
1008\caption{Landscape of the Cairns scenario.}
1009\label{fig:cairns3d}
1010
1011\end{figure}
1012The following statements are used to read in the specific polygons
1013from \code{project.cairns} and assign a defined resolution to
1014each polygon.
1015
1016{\small \begin{verbatim}
1017    islands_res = 100000
1018    cairns_res = 100000
1019    shallow_res = 500000
1020    interior_regions = [[project.poly_cairns, cairns_res],
1021                        [project.poly_island0, islands_res],
1022                        [project.poly_island1, islands_res],
1023                        [project.poly_island2, islands_res],
1024                        [project.poly_island3, islands_res],
1025                        [project.poly_shallow, shallow_res]]
1026\end{verbatim}}
1027
1028Figure \ref{fig:cairnspolys}
1029illustrates the polygons used for the Cairns scenario.
1030
1031\begin{figure}[hbt]
1032
1033  \centerline{\includegraphics[scale=0.5]
1034      {graphics/cairnsmodel.jpg}}
1035  \caption{Interior and bounding polygons for the Cairns example.}
1036  \label{fig:cairnspolys}
1037\end{figure}
1038
1039The statement
1040
1041
1042{\small \begin{verbatim}
1043remainder_res = 10000000
1044create_mesh_from_regions(project.bounding_polygon,
1045                         boundary_tags={'top': [0],
1046                                        'ocean_east': [1],
1047                                        'bottom': [2],
1048                                        'onshore': [3]},
1049                         maximum_triangle_area=remainder_res,
1050                         filename=meshname,
1051                         interior_regions=interior_regions,
1052                         use_cache=True,
1053                         verbose=True)
1054\end{verbatim}}
1055is then used to create the mesh, taking the bounding polygon to be
1056the polygon \code{bounding\_polygon} specified in \file{project.py}.
1057The argument \code{boundary\_tags} assigns a dictionary, whose keys
1058are the names of the boundary tags used for the bounding
1059polygon---\code{`top'}, \code{`ocean\_east'}, \code{`bottom'}, and
1060\code{`onshore'}--- and whose values identify the indices of the
1061segments associated with each of these tags. (The value associated
1062with each boundary tag is a one-element list.)
1063If polygons intersect, or edges coincide the resolution may be undefined in some regions.
1064Use the underlying mesh interface for such cases. See Section \ref{sec:mesh_interface}.
1065
1066
1067
1068\subsection{Initialising the Domain}
1069
1070As with \file{runup.py}, once we have created the mesh, the next
1071step is to create the data structure \code{domain}. We did this for
1072\file{runup.py} by inputting lists of points and triangles and
1073specifying the boundary tags directly. However, in the present case,
1074we use a method that works directly with the mesh file
1075\code{meshname}, as follows:
1076
1077
1078{\small \begin{verbatim}
1079    domain = Domain(meshname, use_cache=True, verbose=True)
1080\end{verbatim}}
1081
1082Providing a filename instead of the lists used in \file{runup.py}
1083above causes \code{Domain} to convert a mesh file \code{meshname}
1084into an instance of \code{Domain}, allowing us to use methods like
1085\method{set\_quantity} to set quantities and to apply other
1086operations.
1087
1088%(In principle, the
1089%second argument of \function{pmesh\_to\_domain\_instance} can be any
1090%subclass of \class{Domain}, but for applications involving the
1091%shallow-water wave equation, the second argument of
1092%\function{pmesh\_to\_domain\_instance} can always be set simply to
1093%\class{Domain}.)
1094
1095The following statements specify a basename and data directory, and
1096identify quantities to be stored. For the first two, values are
1097taken from \file{project.py}.
1098
1099{\small \begin{verbatim}
1100    domain.set_name(project.basename)
1101    domain.set_datadir(project.outputdir)
1102    domain.set_quantities_to_be_stored(['stage', 'xmomentum',
1103        'ymomentum'])
1104\end{verbatim}}
1105
1106
1107\subsection{Initial Conditions}
1108Quantities for \file{runcairns.py} are set
1109using similar methods to those in \file{runup.py}. However,
1110in this case, many of the values are read from the auxiliary file
1111\file{project.py} or, in the case of \code{elevation}, from an
1112ancillary points file.
1113
1114
1115
1116\subsubsection{Stage}
1117
1118For the scenario we are modelling in this case, we use a callable
1119object \code{tsunami\_source}, assigned by means of a function
1120\function{slide\_tsunami}. This is similar to how we set elevation in
1121\file{runup.py} using a function---however, in this case the
1122function is both more complex and more interesting.
1123
1124The function returns the water displacement for all \code{x} and
1125\code{y} in the domain. The water displacement is a double Gaussian
1126function that depends on the characteristics of the slide (length,
1127width, thickness, slope, etc), its location (origin) and the depth at that
1128location. For this example, we choose to apply the slide function
1129at a specified time into the simulation.
1130
1131\subsubsection{Friction}
1132
1133We assign the friction exactly as we did for \file{runup.py}:
1134
1135{\small \begin{verbatim}
1136    domain.set_quantity('friction', 0.0)
1137\end{verbatim}}
1138
1139
1140\subsubsection{Elevation}
1141
1142The elevation is specified by reading data from a file:
1143
1144{\small \begin{verbatim}
1145    domain.set_quantity('elevation',
1146                        filename = project.dem_name + '.pts',
1147                        use_cache = True,
1148                        verbose = True)
1149\end{verbatim}}
1150
1151%However, before this step can be executed, some preliminary steps
1152%are needed to prepare the file from which the data is taken. Two
1153%source files are used for this data---their names are specified in
1154%the file \file{project.py}, in the variables \code{coarsedemname}
1155%and \code{finedemname}. They contain `coarse' and `fine' data,
1156%respectively---that is, data sampled at widely spaced points over a
1157%large region and data sampled at closely spaced points over a
1158%smaller subregion. The data in these files is combined through the
1159%statement
1160
1161%{\small \begin{verbatim}
1162%combine_rectangular_points_files(project.finedemname + '.pts',
1163%                                 project.coarsedemname + '.pts',
1164%                                 project.combineddemname + '.pts')
1165%\end{verbatim}}
1166%The effect of this is simply to combine the datasets by eliminating
1167%any coarse data associated with points inside the smaller region
1168%common to both datasets. The name to be assigned to the resulting
1169%dataset is also derived from the name stored in the variable
1170%\code{combinedname} in the file \file{project.py}.
1171
1172\subsection{Boundary Conditions}\index{boundary conditions}
1173
1174Setting boundaries follows a similar pattern to the one used for
1175\file{runup.py}, except that in this case we need to associate a
1176boundary type with each of the
1177boundary tag names introduced when we established the mesh. In place of the four
1178boundary types introduced for \file{runup.py}, we use the reflective
1179boundary for each of the
1180eight tagged segments defined by \code{create_mesh_from_regions}:
1181
1182{\small \begin{verbatim}
1183Bd = Dirichlet_boundary([0.0,0.0,0.0])
1184domain.set_boundary( {'ocean_east': Bd, 'bottom': Bd, 'onshore': Bd,
1185                          'top': Bd} )
1186\end{verbatim}}
1187
1188\subsection{Evolution}
1189
1190With the basics established, the running of the `evolve' step is
1191very similar to the corresponding step in \file{runup.py}. For the slide
1192scenario,
1193the simulation is run for 5000 seconds with the output stored every ten seconds.
1194For this example, we choose to apply the slide at 60 seconds into the simulation.
1195
1196{\small \begin{verbatim}
1197    import time t0 = time.time()
1198
1199
1200    for t in domain.evolve(yieldstep = 10, finaltime = 60):
1201            domain.write_time()
1202            domain.write_boundary_statistics(tags = 'ocean_east')
1203
1204        # add slide
1205        thisstagestep = domain.get_quantity('stage')
1206        if allclose(t, 60):
1207            slide = Quantity(domain)
1208            slide.set_values(tsunami_source)
1209            domain.set_quantity('stage', slide + thisstagestep)
1210
1211        for t in domain.evolve(yieldstep = 10, finaltime = 5000,
1212                               skip_initial_step = True):
1213            domain.write_time()
1214        domain.write_boundary_statistics(tags = 'ocean_east')
1215\end{verbatim}}
1216
1217For the fixed wave scenario, the simulation is run to 10000 seconds,
1218with the first half of the simulation stored at two minute intervals,
1219and the second half of the simulation stored at ten second intervals.
1220This functionality is especially convenient as it allows the detailed
1221parts of the simulation to be viewed at higher time resolution.
1222
1223
1224{\small \begin{verbatim}
1225
1226# save every two mins leading up to wave approaching land
1227    for t in domain.evolve(yieldstep = 120, finaltime = 5000):
1228        domain.write_time()
1229        domain.write_boundary_statistics(tags = 'ocean_east')
1230
1231    # save every 30 secs as wave starts inundating ashore
1232    for t in domain.evolve(yieldstep = 10, finaltime = 10000,
1233                           skip_initial_step = True):
1234        domain.write_time()
1235        domain.write_boundary_statistics(tags = 'ocean_east')
1236
1237\end{verbatim}}
1238
1239\section{Exploring the Model Output}
1240
1241Now that the scenario has been run, the user can view the output in a number of ways.
1242As described earlier, the user may run animate to view a three-dimensional representation
1243of the simulation.
1244
1245The user may also be interested in a maximum inundation map. This simply shows the
1246maximum water depth over the domain and is achieved with the function sww2dem (described in
1247Section \ref{sec:basicfileconversions}).
1248\file{ExportResults.py} demonstrates how this function can be used:
1249
1250\verbatiminput{demos/cairns/ExportResults.py}
1251
1252The script generates an maximum water depth ASCII grid at a defined
1253resolution (here 100 m$^2$) which can then be viewed in a GIS environment, for
1254example. The parameters used in the function are defined in \file{project.py}.
1255Figures \ref{fig:maxdepthcairnsslide} and \ref{fig:maxdepthcairnsfixedwave} show
1256the maximum water depth within the defined region for the slide and fixed wave scenario
1257respectively.
1258The user could develop a maximum absolute momentum or other expressions which can be
1259derived from the quantities.
1260
1261\begin{figure}[hbt]
1262\centerline{\includegraphics[scale=0.5]{graphics/slidedepth.jpg}}
1263\caption{Maximum inundation map for the Cairns side scenario.}
1264\label{fig:maxdepthcairnsslide}
1265\end{figure}
1266
1267\begin{figure}[hbt]
1268\centerline{\includegraphics[scale=0.5]{graphics/fixedwavedepth.jpg}}
1269\caption{Maximum inundation map for the Cairns fixed wave scenario.}
1270\label{fig:maxdepthcairnsfixedwave}
1271\end{figure}
1272
1273The user may also be interested in interrogating the solution at a particular spatial
1274location to understand the behaviour of the system through time. To do this, the user
1275must first define the locations of interest. A number of locations have been
1276identified for the Cairns scenario, as shown in Figure \ref{fig:cairnsgauges}.
1277
1278\begin{figure}[hbt]
1279\centerline{\includegraphics[scale=0.5]{graphics/cairnsgauges.jpg}}
1280\caption{Point locations to show time series information for the Cairns scenario.}
1281\label{fig:cairnsgauges}
1282\end{figure}
1283
1284These locations
1285must be stored in either a .csv or .txt file. The corresponding .csv file for
1286the gauges shown in Figure \ref{fig:cairnsgauges} is \file{gauges.csv}
1287
1288\verbatiminput{demos/cairns/gauges.csv}.
1289
1290Header information has been included to identify the location in terms of eastings and
1291northings, and each gauge is given a name. The elevation column can be zero here.
1292This information is then passed to the function sww2timeseries (shown in
1293\file{GetTimeseries.py} which generates figures for
1294each desired quantity for each point location.
1295
1296\verbatiminput{demos/cairns/GetTimeseries.py}
1297
1298Here, the time series for the quantities stage and speed will be generated for
1299each gauge defined in the gauge file. Typically, stage is used over depth, particularly
1300for offshore gauges. In being able to interpret the output for onshore gauges however,
1301we use depth rather than stage. As an example output,
1302Figure \ref{fig:reef} shows the time series for the quantity stage (or depth for
1303onshore gauges) for the Elford Reef location for the slide scenario.
1304
1305\begin{figure}[hbt]
1306\centerline{\includegraphics[scale=0.5]{graphics/gaugeElfordReefslide.png}}
1307\caption{Time series information of the quantity depth for the Elford Reef location for the slide scenario.}
1308\label{fig:reef}
1309\end{figure}
1310
1311Note, the user may choose to compare the output for each scenario by updating
1312the \code{production\_dirs} as required. For example,
1313
1314{\small \begin{verbatim}
1315
1316    production_dirs = {'slide': 'Slide',
1317                       'fixed_wave': 'Fixed Wave'}
1318
1319\end{verbatim}}
1320
1321In this case, the time series output for Elford Reef would be:
1322
1323\begin{figure}[hbt]
1324\centerline{\includegraphics[scale=0.5]{graphics/gaugeElfordReefboth.png}}
1325\caption{Time series information of the quantity depth for the Elford Reef location for the slide and fixed wave scenario.}
1326\label{fig:reefboth}
1327\end{figure}
1328
1329
1330%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1331%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1332
1333\chapter{\anuga Public Interface}
1334\label{ch:interface}
1335
1336This chapter gives an overview of the features of \anuga available
1337to the user at the public interface. These are grouped under the
1338following headings, which correspond to the outline of the examples
1339described in Chapter \ref{ch:getstarted}:
1340
1341\begin{itemize}
1342    \item Establishing the Mesh
1343    \item Initialising the Domain
1344    \item Specifying the Quantities
1345    \item Initial Conditions
1346    \item Boundary Conditions
1347    \item Forcing Functions
1348    \item Evolution
1349\end{itemize}
1350
1351The listings are intended merely to give the reader an idea of what
1352each feature is, where to find it and how it can be used---they do
1353not give full specifications; for these the reader
1354may consult the code. The code for every function or class contains
1355a documentation string, or `docstring', that specifies the precise
1356syntax for its use. This appears immediately after the line
1357introducing the code, between two sets of triple quotes.
1358
1359Each listing also describes the location of the module in which
1360the code for the feature being described can be found. All modules
1361are in the folder \file{inundation} or one of its subfolders, and the
1362location of each module is described relative to \file{inundation}. Rather
1363than using pathnames, whose syntax depends on the operating system,
1364we use the format adopted for importing the function or class for
1365use in Python code. For example, suppose we wish to specify that the
1366function \function{create\_mesh\_from\_regions} is in a module called
1367\module{mesh\_interface} in a subfolder of \module{inundation} called
1368\code{pmesh}. In Linux or Unix syntax, the pathname of the file
1369containing the function, relative to \file{inundation}, would be
1370
1371\begin{center}
1372%    \code{pmesh/mesh\_interface.py}
1373    \code{pmesh}$\slash$\code{mesh\_interface.py}
1374\end{center}
1375\label{sec:mesh_interface}
1376
1377while in Windows syntax it would be
1378
1379\begin{center}
1380    \code{pmesh}$\backslash$\code{mesh\_interface.py}
1381\end{center}
1382
1383Rather than using either of these forms, in this chapter we specify
1384the location simply as \code{pmesh.mesh\_interface}, in keeping with
1385the usage in the Python statement for importing the function,
1386namely:
1387\begin{center}
1388    \code{from pmesh.mesh\_interface import create\_mesh\_from\_regions}
1389\end{center}
1390
1391Each listing details the full set of parameters for the class or
1392function; however, the description is generally limited to the most
1393important parameters and the reader is again referred to the code
1394for more details.
1395
1396The following parameters are common to many functions and classes
1397and are omitted from the descriptions given below:
1398
1399%\begin{center}
1400\begin{tabular}{ll}  %\hline
1401%\textbf{Name } & \textbf{Description}\\
1402%\hline
1403\emph{use\_cache} & Specifies whether caching is to be used for improved performance. See Section \ref{sec:caching} for details on the underlying caching functionality\\
1404\emph{verbose} & If \code{True}, provides detailed terminal output
1405to the user\\  % \hline
1406\end{tabular}
1407%\end{center}
1408
1409\section{Mesh Generation}
1410
1411Before discussing the part of the interface relating to mesh
1412generation, we begin with a description of a simple example of a
1413mesh and use it to describe how mesh data is stored.
1414
1415\label{sec:meshexample} Figure \ref{fig:simplemesh} represents a
1416very simple mesh comprising just 11 points and 10 triangles.
1417
1418
1419\begin{figure}[h]
1420  \begin{center}
1421    \includegraphics[width=90mm, height=90mm]{triangularmesh.jpg}
1422  \end{center}
1423
1424  \caption{A simple mesh}
1425  \label{fig:simplemesh}
1426\end{figure}
1427
1428
1429The variables \code{points}, \code{vertices} and \code{boundary}
1430represent the data displayed in Figure \ref{fig:simplemesh} as
1431follows. The list \code{points} stores the coordinates of the
1432points, and may be displayed schematically as in Table
1433\ref{tab:points}.
1434
1435
1436\begin{table}
1437  \begin{center}
1438    \begin{tabular}[t]{|c|cc|} \hline
1439      index & \code{x} & \code{y}\\  \hline
1440      0 & 1 & 1\\
1441      1 & 4 & 2\\
1442      2 & 8 & 1\\
1443      3 & 1 & 3\\
1444      4 & 5 & 5\\
1445      5 & 8 & 6\\
1446      6 & 11 & 5\\
1447      7 & 3 & 6\\
1448      8 & 1 & 8\\
1449      9 & 4 & 9\\
1450      10 & 10 & 7\\  \hline
1451    \end{tabular}
1452  \end{center}
1453
1454  \caption{Point coordinates for mesh in
1455    Figure \protect \ref{fig:simplemesh}}
1456  \label{tab:points}
1457\end{table}
1458
1459The list \code{vertices} specifies the triangles that make up the
1460mesh. It does this by specifying, for each triangle, the indices
1461(the numbers shown in the first column above) that correspond to the
1462three points at its vertices, taken in an anti-clockwise order
1463around the triangle. Thus, in the example shown in Figure
1464\ref{fig:simplemesh}, the variable \code{vertices} contains the
1465entries shown in Table \ref{tab:vertices}. The starting point is
1466arbitrary so triangle $(0,1,3)$ is considered the same as $(1,3,0)$
1467and $(3,0,1)$.
1468
1469
1470\begin{table}
1471  \begin{center}
1472    \begin{tabular}{|c|ccc|} \hline
1473      index & \multicolumn{3}{c|}{\code{vertices}}\\ \hline
1474      0 & 0 & 1 & 3\\
1475      1 & 1 & 2 & 4\\
1476      2 & 2 & 5 & 4\\
1477      3 & 2 & 6 & 5\\
1478      4 & 4 & 5 & 9\\
1479      5 & 4 & 9 & 7\\
1480      6 & 3 & 4 & 7\\
1481      7 & 7 & 9 & 8\\
1482      8 & 1 & 4 & 3\\
1483      9 & 5 & 10 & 9\\  \hline
1484    \end{tabular}
1485  \end{center}
1486
1487  \caption{Vertices for mesh in Figure \protect \ref{fig:simplemesh}}
1488  \label{tab:vertices}
1489\end{table}
1490
1491Finally, the variable \code{boundary} identifies the boundary
1492triangles and associates a tag with each.
1493
1494\refmodindex[pmesh.meshinterface]{pmesh.mesh\_interface}\label{sec:meshgeneration}
1495
1496\begin{funcdesc}  {create\_mesh\_from\_regions}{bounding_polygon,
1497                             boundary_tags,
1498                             maximum_triangle_area,
1499                             filename=None,
1500                             interior_regions=None,
1501                             poly_geo_reference=None,
1502                             mesh_geo_reference=None,
1503                             minimum_triangle_angle=28.0}
1504Module: \module{pmesh.mesh\_interface}
1505
1506This function allows a user to initiate the automatic creation of a
1507mesh inside a specified polygon (input \code{bounding_polygon}).
1508Among the parameters that can be set are the \emph{resolution}
1509(maximal area for any triangle in the mesh) and the minimal angle
1510allowable in any triangle. The user can specify a number of internal
1511polygons within each of which a separate mesh is to be created,
1512generally with a smaller resolution. \code{interior_regions} is a
1513paired list containing the interior polygon and its resolution.
1514Additionally, the user specifies a list of boundary tags, one for
1515each edge of the bounding polygon.
1516
1517\textbf{WARNING}. Note that the dictionary structure used for the
1518parameter \code{boundary\_tags} is different from that used for the
1519variable \code{boundary} that occurs in the specification of a mesh.
1520In the case of \code{boundary}, the tags are the \emph{values} of
1521the dictionary, whereas in the case of \code{boundary_tags}, the
1522tags are the \emph{keys} and the \emph{value} corresponding to a
1523particular tag is a list of numbers identifying boundary edges
1524labelled with that tag. Because of this, it is theoretically
1525possible to assign the same edge to more than one tag. However, an
1526attempt to do this will cause an error.
1527\end{funcdesc}
1528
1529
1530
1531\subsection{Advanced mesh generation}
1532
1533For more control over the creation of the mesh outline, use the
1534methods of the class \class{Mesh}.
1535
1536
1537\begin{classdesc}  {Mesh}{userSegments=None,
1538                 userVertices=None,
1539                 holes=None,
1540                 regions=None}
1541Module: \module{pmesh.mesh}
1542
1543A class used to build a mesh outline and generate a two-dimensional
1544triangular mesh. The mesh outline is used to describe features on the
1545mesh, such as the mesh boundary. Many of this classes methods are used
1546to build a mesh outline, such as \code{add\_vertices} and
1547\code{add\_region\_from\_polygon}.
1548
1549\end{classdesc}
1550
1551
1552\subsubsection{Key Methods of Class Mesh}
1553
1554
1555\begin{methoddesc} {add\_hole}{x,y}
1556Module: \module{pmesh.mesh},  Class: \class{Mesh}
1557
1558This method is used to build the mesh outline.  It defines a hole,
1559when the boundary of the hole has already been defined, by selecting a
1560point within the boundary.
1561
1562\end{methoddesc}
1563
1564
1565\begin{methoddesc}  {add\_hole\_from\_polygon}{self, polygon, tags=None}
1566Module: \module{pmesh.mesh},  Class: \class{Mesh}
1567
1568This method is used to add a `hole' within a region ---that is, to
1569define a interior region where the triangular mesh will not be
1570generated---to a \class{Mesh} instance. The region boundary is described by
1571the polygon passed in.  Additionally, the user specifies a list of
1572boundary tags, one for each edge of the bounding polygon.
1573\end{methoddesc}
1574
1575
1576\begin{methoddesc}  {add\_points_and_segments}{self, points, segments,
1577    segment\_tags=None}
1578Module: \module{pmesh.mesh},  Class: \class{Mesh}
1579
1580This method is used to build the mesh outline. It adds points and
1581segments connecting the points.  A tag for each segment can optionally
1582be added.
1583
1584\end{methoddesc}
1585
1586\begin{methoddesc} {add\_region}{x,y}
1587Module: \module{pmesh.mesh},  Class: \class{Mesh}
1588
1589This method is used to build the mesh outline.  It defines a region,
1590when the boundary of the region has already been defined, by selecting
1591a point within the boundary.  A region instance is returned.  This can
1592be used to set the resolution.
1593
1594\end{methoddesc}
1595
1596\begin{methoddesc}  {add\_region\_from\_polygon}{self, polygon, tags=None,
1597                                max_triangle_area=None}
1598Module: \module{pmesh.mesh},  Class: \class{Mesh}
1599
1600This method is used to build the mesh outline.  It adds a region to a
1601\class{Mesh} instance.  Regions are commonly used to describe an area
1602with an increased density of triangles, by setting
1603\code{max_triangle_area}.  The
1604region boundary is described by the input \code{polygon}.  Additionally, the
1605user specifies a list of segment tags, one for each edge of the
1606bounding polygon.
1607
1608\end{methoddesc}
1609
1610
1611
1612
1613
1614\begin{methoddesc} {add\_vertices}{point_data}
1615Module: \module{pmesh.mesh},  Class: \class{Mesh}
1616
1617Add user vertices. The point_data can be a list of (x,y) values, a numeric
1618array or a geospatial_data instance.
1619\end{methoddesc}
1620
1621\begin{methoddesc} {auto\_segment}{raw_boundary=raw_boundary,
1622                    remove_holes=remove_holes,
1623                    smooth_indents=smooth_indents,
1624                    expand_pinch=expand_pinch}
1625Module: \module{pmesh.mesh},  Class: \class{Mesh}
1626
1627Add segments between some of the user vertices to give the vertices an
1628outline.  The outline is an alpha shape. This method is
1629useful since a set of user vertices need to be outlined by segments
1630before generate_mesh is called.
1631
1632\end{methoddesc}
1633
1634\begin{methoddesc}  {export\_mesh_file}{self,ofile}
1635Module: \module{pmesh.mesh},  Class: \class{Mesh}
1636
1637This method is used to save the mesh to a file. \code{ofile} is the
1638name of the mesh file to be written, including the extension.  Use
1639the extension \code{.msh} for the file to be in NetCDF format and
1640\code{.tsh} for the file to be ASCII format.
1641\end{methoddesc}
1642
1643\begin{methoddesc}  {generate\_mesh}{self,
1644                      maximum_triangle_area=None,
1645                      minimum_triangle_angle=28.0,
1646                      verbose=False}
1647Module: \module{pmesh.mesh},  Class: \class{Mesh}
1648
1649This method is used to generate the triangular mesh.  The  maximal
1650area of any triangle in the mesh can be specified, which is used to
1651control the triangle density, along with the
1652minimum angle in any triangle.
1653\end{methoddesc}
1654
1655
1656
1657\begin{methoddesc}  {import_ungenerate_file}{self,ofile, tag=None}
1658Module: \module{pmesh.mesh},  Class: \class{Mesh}
1659
1660This method is used to import a polygon file in the ungenerate
1661format, which is used by arcGIS. The polygons from the file are converted to
1662vertices and segments. \code{ofile} is the name of the polygon file.
1663\code{tag} is the tag given to all the polygon's segments.
1664
1665This function can be used to import building footprints.
1666\end{methoddesc}
1667
1668%%%%%%
1669\section{Initialising the Domain}
1670
1671%Include description of the class Domain and the module domain.
1672
1673%FIXME (Ole): This is also defined in a later chapter
1674%\declaremodule{standard}{...domain}
1675
1676\begin{classdesc} {Domain} {source=None,
1677                 triangles=None,
1678                 boundary=None,
1679                 conserved_quantities=None,
1680                 other_quantities=None,
1681                 tagged_elements=None,
1682                 use_inscribed_circle=False,
1683                 mesh_filename=None,
1684                 use_cache=False,
1685                 verbose=False,
1686                 full_send_dict=None,
1687                 ghost_recv_dict=None,
1688                 processor=0,
1689                 numproc=1}
1690Module: \refmodule{abstract_2d_finite_volumes.domain}
1691
1692This class is used to create an instance of a data structure used to
1693store and manipulate data associated with a mesh. The mesh is
1694specified either by assigning the name of a mesh file to
1695\code{source} or by specifying the points, triangle and boundary of the
1696mesh.
1697\end{classdesc}
1698
1699\subsection{Key Methods of Domain}
1700
1701\begin{methoddesc} {set\_name}{name}
1702    Module: \refmodule{abstract\_2d\_finite\_volumes.domain},
1703    page \pageref{mod:domain}
1704
1705    Assigns the name \code{name} to the domain.
1706\end{methoddesc}
1707
1708\begin{methoddesc} {get\_name}{}
1709    Module: \module{abstract\_2d\_finite\_volumes.domain}
1710
1711    Returns the name assigned to the domain by \code{set\_name}. If no name has been
1712    assigned, returns \code{`domain'}.
1713\end{methoddesc}
1714
1715\begin{methoddesc} {set\_datadir}{name}
1716    Module: \module{abstract\_2d\_finite\_volumes.domain}
1717
1718    Specifies the directory used for SWW files, assigning it to the
1719    pathname \code{name}. The default value, before
1720    \code{set\_datadir} has been run, is the value \code{default\_datadir}
1721    specified in \code{config.py}.
1722
1723    Since different operating systems use different formats for specifying pathnames,
1724    it is necessary to specify path separators using the Python code \code{os.sep}, rather than
1725    the operating-specific ones such as `$\slash$' or `$\backslash$'.
1726    For this to work you will need to include the statement \code{import os}
1727    in your code, before the first appearance of \code{set\_datadir}.
1728
1729    For example, to set the data directory to a subdirectory
1730    \code{data} of the directory \code{project}, you could use
1731    the statements:
1732
1733    {\small \begin{verbatim}
1734        import os
1735        domain.set_datadir{'project' + os.sep + 'data'}
1736    \end{verbatim}}
1737\end{methoddesc}
1738
1739\begin{methoddesc} {get\_datadir}{}
1740    Module: \module{abstract\_2d\_finite\_volumes.domain}
1741
1742    Returns the data directory set by \code{set\_datadir} or,
1743    if \code{set\_datadir} has not
1744    been run, returns the value \code{default\_datadir} specified in
1745    \code{config.py}.
1746\end{methoddesc}
1747
1748
1749\begin{methoddesc} {set\_minimum_allowed_height}{}
1750    Module: \module{shallow\_water.shallow\_water\_domain}
1751
1752    Set the minimum depth (in meters) that will be recognised in
1753    the numerical scheme (including limiters and flux computations)
1754
1755    Default value is $10^{-3}$ m, but by setting this to a greater value,
1756    e.g.\ for large scale simulations, the computation time can be
1757    significantly reduced.
1758\end{methoddesc}
1759
1760
1761\begin{methoddesc} {set\_minimum_storable_height}{}
1762    Module: \module{shallow\_water.shallow\_water\_domain}
1763
1764    Sets the minimum depth that will be recognised when writing
1765    to an sww file. This is useful for removing thin water layers
1766    that seems to be caused by friction creep.
1767\end{methoddesc}
1768
1769
1770\begin{methoddesc} {set\_maximum_allowed_speed}{}
1771    Module: \module{shallow\_water.shallow\_water\_domain}
1772
1773    Set the maximum particle speed that is allowed in water
1774    shallower than minimum_allowed_height. This is useful for
1775    controlling speeds in very thin layers of water and at the same time
1776    allow some movement avoiding pooling of water.
1777\end{methoddesc}
1778
1779
1780\begin{methoddesc} {set\_time}{time=0.0}
1781    Module: \module{abstract\_2d\_finite\_volumes.domain}
1782
1783    Sets the initial time, in seconds, for the simulation. The
1784    default is 0.0.
1785\end{methoddesc}
1786
1787\begin{methoddesc} {set\_default\_order}{n}
1788    Sets the default (spatial) order to the value specified by
1789    \code{n}, which must be either 1 or 2. (Assigning any other value
1790    to \code{n} will cause an error.)
1791\end{methoddesc}
1792
1793
1794\begin{methoddesc} {set\_store\_vertices\_uniquely}{flag}
1795Decide whether vertex values should be stored uniquely as
1796computed in the model or whether they should be reduced to one
1797value per vertex using averaging.
1798\end{methoddesc}
1799
1800
1801% Structural methods
1802\begin{methoddesc}{get\_nodes}{absolute=False}
1803    Return x,y coordinates of all nodes in mesh.
1804
1805    The nodes are ordered in an Nx2 array where N is the number of nodes.
1806    This is the same format they were provided in the constructor
1807    i.e. without any duplication.
1808
1809    Boolean keyword argument absolute determines whether coordinates
1810    are to be made absolute by taking georeference into account
1811    Default is False as many parts of ANUGA expects relative coordinates.
1812\end{methoddesc}
1813
1814
1815\begin{methoddesc}{get\_vertex_coordinates}{absolute=False}
1816
1817    Return vertex coordinates for all triangles.
1818
1819    Return all vertex coordinates for all triangles as a 3*M x 2 array
1820    where the jth vertex of the ith triangle is located in row 3*i+j and
1821    M the number of triangles in the mesh.
1822
1823    Boolean keyword argument absolute determines whether coordinates
1824    are to be made absolute by taking georeference into account
1825    Default is False as many parts of ANUGA expects relative coordinates.
1826\end{methoddesc}
1827
1828
1829\begin{methoddesc}{get\_triangles}{indices=None}
1830
1831        Return Mx3 integer array where M is the number of triangles.
1832        Each row corresponds to one triangle and the three entries are
1833        indices into the mesh nodes which can be obtained using the method
1834        get\_nodes()
1835
1836        Optional argument, indices is the set of triangle ids of interest.
1837\end{methoddesc}
1838
1839\begin{methoddesc}{get\_disconnected\_triangles}{}
1840
1841Get mesh based on nodes obtained from get_vertex_coordinates.
1842
1843        Return array Mx3 array of integers where each row corresponds to
1844        a triangle. A triangle is a triplet of indices into
1845        point coordinates obtained from get_vertex_coordinates and each
1846        index appears only once.\\
1847
1848        This provides a mesh where no triangles share nodes
1849        (hence the name disconnected triangles) and different
1850        nodes may have the same coordinates.\\
1851
1852        This version of the mesh is useful for storing meshes with
1853        discontinuities at each node and is e.g. used for storing
1854        data in sww files.\\
1855
1856        The triangles created will have the format
1857
1858    {\small \begin{verbatim}
1859        [[0,1,2],
1860         [3,4,5],
1861         [6,7,8],
1862         ...
1863         [3*M-3 3*M-2 3*M-1]]
1864     \end{verbatim}}
1865\end{methoddesc}
1866
1867
1868
1869%%%%%%
1870\section{Initial Conditions}
1871\label{sec:Initial Conditions}
1872In standard usage of partial differential equations, initial conditions
1873refers to the values associated to the system variables (the conserved
1874quantities here) for \code{time = 0}. In setting up a scenario script
1875as described in Sections \ref{sec:simpleexample} and \ref{sec:realdataexample},
1876\code{set_quantity} is used to define the initial conditions of variables
1877other than the conserved quantities, such as friction. Here, we use the terminology
1878of initial conditions to refer to initial values for variables which need
1879prescription to solve the shallow water wave equation. Further, it must be noted
1880that \code{set_quantity} does not necessarily have to be used in the initial
1881condition setting; it can be used at any time throughout the simulation.
1882
1883\begin{methoddesc}{set\_quantity}{name,
1884    numeric = None,
1885    quantity = None,
1886    function = None,
1887    geospatial_data = None,
1888    filename = None,
1889    attribute_name = None,
1890    alpha = None,
1891    location = 'vertices',
1892    indices = None,
1893    verbose = False,
1894    use_cache = False}
1895  Module: \module{abstract\_2d\_finite\_volumes.domain}
1896  (see also \module{abstract\_2d\_finite\_volumes.quantity.set\_values})
1897
1898This function is used to assign values to individual quantities for a
1899domain. It is very flexible and can be used with many data types: a
1900statement of the form \code{domain.set\_quantity(name, x)} can be used
1901to define a quantity having the name \code{name}, where the other
1902argument \code{x} can be any of the following:
1903
1904\begin{itemize}
1905\item a number, in which case all vertices in the mesh gets that for
1906the quantity in question.
1907\item a list of numbers or a Numeric array ordered the same way as the mesh vertices.
1908\item a function (e.g.\ see the samples introduced in Chapter 2)
1909\item an expression composed of other quantities and numbers, arrays, lists (for
1910example, a linear combination of quantities, such as
1911\code{domain.set\_quantity('stage','elevation'+x))}
1912\item the name of a file from which the data can be read. In this case, the optional argument attribute\_name will select which attribute to use from the file. If left out, set\_quantity will pick one. This is useful in cases where there is only one attribute.
1913\item a geospatial dataset (See Section \ref{sec:geospatial}).
1914Optional argument attribute\_name applies here as with files.
1915\end{itemize}
1916
1917
1918Exactly one of the arguments
1919  numeric, quantity, function, points, filename
1920must be present.
1921
1922
1923Set quantity will look at the type of the second argument (\code{numeric}) and
1924determine what action to take.
1925
1926Values can also be set using the appropriate keyword arguments.
1927If x is a function, for example, \code{domain.set\_quantity(name, x)}, \code{domain.set\_quantity(name, numeric=x)}, and \code{domain.set\_quantity(name, function=x)}
1928are all equivalent.
1929
1930
1931Other optional arguments are
1932\begin{itemize}
1933\item \code{indices} which is a list of ids of triangles to which set\_quantity should apply its assignment of values.
1934\item \code{location} determines which part of the triangles to assign
1935  to. Options are 'vertices' (default), 'edges', 'unique vertices', and 'centroids'.
1936\end{itemize}
1937
1938%%%
1939\anuga provides a number of predefined initial conditions to be used
1940with \code{set\_quantity}. See for example callable object
1941\code{slump\_tsunami} below.
1942
1943\end{methoddesc}
1944
1945
1946
1947
1948\begin{funcdesc}{set_region}{tag, quantity, X, location='vertices'}
1949  Module: \module{abstract\_2d\_finite\_volumes.domain}
1950
1951  (see also \module{abstract\_2d\_finite\_volumes.quantity.set\_values})
1952
1953This function is used to assign values to individual quantities given
1954a regional tag.   It is similar to \code{set\_quantity}.
1955For example, if in pmesh a regional tag of 'ditch' was
1956used, set\_region can be used to set elevation of this region to
1957-10m. X is the constant or function to be applied to the quantity,
1958over the tagged region.  Location describes how the values will be
1959applied.  Options are 'vertices' (default), 'edges', 'unique
1960vertices', and 'centroids'.
1961
1962This method can also be called with a list of region objects.  This is
1963useful for adding quantities in regions, and having one quantity
1964value based on another quantity. See  \module{abstract\_2d\_finite\_volumes.region} for
1965more details.
1966\end{funcdesc}
1967
1968
1969
1970
1971\begin{funcdesc}{slump_tsunami}{length, depth, slope, width=None, thickness=None,
1972                x0=0.0, y0=0.0, alpha=0.0,
1973                gravity=9.8, gamma=1.85,
1974                massco=1, dragco=1, frictionco=0, psi=0,
1975                dx=None, kappa=3.0, kappad=0.8, zsmall=0.01,
1976                domain=None,
1977                verbose=False}
1978Module: \module{shallow\_water.smf}
1979
1980This function returns a callable object representing an initial water
1981displacement generated by a submarine sediment failure. These failures can take the form of
1982a submarine slump or slide. In the case of a slide, use \code{slide_tsunami} instead.
1983
1984The arguments include as a minimum, the slump or slide length, the water depth to the centre of sediment
1985mass, and the bathymetric slope. Other slump or slide parameters can be included if they are known.
1986\end{funcdesc}
1987
1988
1989%%%
1990\begin{funcdesc}{file\_function}{filename,
1991    domain = None,
1992    quantities = None,
1993    interpolation_points = None,
1994    verbose = False,
1995    use_cache = False}
1996Module: \module{abstract\_2d\_finite\_volumes.util}
1997
1998Reads the time history of spatial data for
1999specified interpolation points from a NetCDF file (\code{filename})
2000and returns
2001a callable object. \code{filename} could be a \code{sww} file.
2002Returns interpolated values based on the input
2003file using the underlying \code{interpolation\_function}.
2004
2005\code{quantities} is either the name of a single quantity to be
2006interpolated or a list of such quantity names. In the second case, the resulting
2007function will return a tuple of values---one for each quantity.
2008
2009\code{interpolation\_points} is a list of absolute coordinates or a
2010geospatial object
2011for points at which values are sought.
2012
2013The model time stored within the file function can be accessed using
2014the method \code{f.get\_time()}
2015
2016
2017The underlying algorithm used is as follows:\\
2018Given a time series (i.e.\ a series of values associated with
2019different times), whose values are either just numbers or a set of
2020 numbers defined at the vertices of a triangular mesh (such as those
2021 stored in SWW files), \code{Interpolation\_function} is used to
2022 create a callable object that interpolates a value for an arbitrary
2023 time \code{t} within the model limits and possibly a point \code{(x,
2024 y)} within a mesh region.
2025
2026 The actual time series at which data is available is specified by
2027 means of an array \code{time} of monotonically increasing times. The
2028 quantities containing the values to be interpolated are specified in
2029 an array---or dictionary of arrays (used in conjunction with the
2030 optional argument \code{quantity\_names}) --- called
2031 \code{quantities}. The optional arguments \code{vertex\_coordinates}
2032 and \code{triangles} represent the spatial mesh associated with the
2033 quantity arrays. If omitted the function created by
2034 \code{Interpolation\_function} will be a function of \code{t} only.
2035
2036 Since, in practice, values need to be computed at specified points,
2037 the syntax allows the user to specify, once and for all, a list
2038 \code{interpolation\_points} of points at which values are required.
2039 In this case, the function may be called using the form \code{f(t,
2040 id)}, where \code{id} is an index for the list
2041 \code{interpolation\_points}.
2042
2043
2044\end{funcdesc}
2045
2046%%%
2047%% \begin{classdesc}{Interpolation\_function}{self,
2048%%     time,
2049%%     quantities,
2050%%     quantity_names = None,
2051%%     vertex_coordinates = None,
2052%%     triangles = None,
2053%%     interpolation_points = None,
2054%%     verbose = False}
2055%% Module: \module{abstract\_2d\_finite\_volumes.least\_squares}
2056
2057%% Given a time series (i.e.\ a series of values associated with
2058%% different times), whose values are either just numbers or a set of
2059%% numbers defined at the vertices of a triangular mesh (such as those
2060%% stored in SWW files), \code{Interpolation\_function} is used to
2061%% create a callable object that interpolates a value for an arbitrary
2062%% time \code{t} within the model limits and possibly a point \code{(x,
2063%% y)} within a mesh region.
2064
2065%% The actual time series at which data is available is specified by
2066%% means of an array \code{time} of monotonically increasing times. The
2067%% quantities containing the values to be interpolated are specified in
2068%% an array---or dictionary of arrays (used in conjunction with the
2069%% optional argument \code{quantity\_names}) --- called
2070%% \code{quantities}. The optional arguments \code{vertex\_coordinates}
2071%% and \code{triangles} represent the spatial mesh associated with the
2072%% quantity arrays. If omitted the function created by
2073%% \code{Interpolation\_function} will be a function of \code{t} only.
2074
2075%% Since, in practice, values need to be computed at specified points,
2076%% the syntax allows the user to specify, once and for all, a list
2077%% \code{interpolation\_points} of points at which values are required.
2078%% In this case, the function may be called using the form \code{f(t,
2079%% id)}, where \code{id} is an index for the list
2080%% \code{interpolation\_points}.
2081
2082%% \end{classdesc}
2083
2084%%%
2085%\begin{funcdesc}{set\_region}{functions}
2086%[Low priority. Will be merged into set\_quantity]
2087
2088%Module:\module{abstract\_2d\_finite\_volumes.domain}
2089%\end{funcdesc}
2090
2091
2092
2093%%%%%%
2094\section{Boundary Conditions}\index{boundary conditions}
2095
2096\anuga provides a large number of predefined boundary conditions,
2097represented by objects such as \code{Reflective\_boundary(domain)} and
2098\code{Dirichlet\_boundary([0.2, 0.0, 0.0])}, described in the examples
2099in Chapter 2. Alternatively, you may prefer to ``roll your own'',
2100following the method explained in Section \ref{sec:roll your own}.
2101
2102These boundary objects may be used with the function \code{set\_boundary} described below
2103to assign boundary conditions according to the tags used to label boundary segments.
2104
2105\begin{methoddesc}{set\_boundary}{boundary_map}
2106Module: \module{abstract\_2d\_finite\_volumes.domain}
2107
2108This function allows you to assign a boundary object (corresponding to a
2109pre-defined or user-specified boundary condition) to every boundary segment that
2110has been assigned a particular tag.
2111
2112This is done by specifying a dictionary \code{boundary\_map}, whose values are the boundary objects
2113and whose keys are the symbolic tags.
2114
2115\end{methoddesc}
2116
2117\begin{methoddesc} {get\_boundary\_tags}{}
2118Module: \module{abstract\_2d\_finite\_volumes.domain}
2119
2120Returns a list of the available boundary tags.
2121\end{methoddesc}
2122
2123%%%
2124\subsection{Predefined boundary conditions}
2125
2126\begin{classdesc}{Reflective\_boundary}{Boundary}
2127Module: \module{shallow\_water}
2128
2129Reflective boundary returns same conserved quantities as those present in
2130the neighbouring volume but reflected.
2131
2132This class is specific to the shallow water equation as it works with the
2133momentum quantities assumed to be the second and third conserved quantities.
2134\end{classdesc}
2135
2136%%%
2137\begin{classdesc}{Transmissive\_boundary}{domain = None}
2138Module: \module{abstract\_2d\_finite\_volumes.generic\_boundary\_conditions}
2139
2140A transmissive boundary returns the same conserved quantities as
2141those present in the neighbouring volume.
2142
2143The underlying domain must be specified when the boundary is instantiated.
2144\end{classdesc}
2145
2146%%%
2147\begin{classdesc}{Dirichlet\_boundary}{conserved_quantities=None}
2148Module: \module{abstract\_2d\_finite\_volumes.generic\_boundary\_conditions}
2149
2150A Dirichlet boundary returns constant values for each of conserved
2151quantities. In the example of \code{Dirichlet\_boundary([0.2, 0.0, 0.0])},
2152the \code{stage} value at the boundary is 0.2 and the \code{xmomentum} and
2153\code{ymomentum} at the boundary are set to 0.0. The list must contain
2154a value for each conserved quantity.
2155\end{classdesc}
2156
2157%%%
2158\begin{classdesc}{Time\_boundary}{domain = None, f = None}
2159Module: \module{abstract\_2d\_finite\_volumes.generic\_boundary\_conditions}
2160
2161A time-dependent boundary returns values for the conserved
2162quantities as a function \code{f(t)} of time. The user must specify
2163the domain to get access to the model time.
2164\end{classdesc}
2165
2166%%%
2167\begin{classdesc}{File\_boundary}{Boundary}
2168Module: \module{abstract\_2d\_finite\_volumes.generic\_boundary\_conditions}
2169
2170This method may be used if the user wishes to apply a SWW file or
2171a time series file to a boundary segment or segments.
2172The boundary values are obtained from a file and interpolated to the
2173appropriate segments for each conserved quantity.
2174\end{classdesc}
2175
2176
2177
2178%%%
2179\begin{classdesc}{Transmissive\_Momentum\_Set\_Stage\_boundary}{Boundary}
2180Module: \module{shallow\_water}
2181
2182This boundary returns same momentum conserved quantities as
2183those present in its neighbour volume but sets stage as in a Time\_boundary.
2184The underlying domain must be specified when boundary is instantiated
2185
2186This type of boundary is useful when stage is known at the boundary as a
2187function of time, but momenta (or speeds) aren't.
2188
2189This class is specific to the shallow water equation as it works with the
2190momentum quantities assumed to be the second and third conserved quantities.
2191\end{classdesc}
2192
2193
2194\begin{classdesc}{Dirichlet\_Discharge\_boundary}{Boundary}
2195Module: \module{shallow\_water}
2196
2197Sets stage (stage0)
2198Sets momentum (wh0) in the inward normal direction.
2199\end{classdesc}
2200
2201
2202
2203\subsection{User-defined boundary conditions}
2204\label{sec:roll your own}
2205
2206All boundary classes must inherit from the generic boundary class
2207\code{Boundary} and have a method called \code{evaluate} which must
2208take as inputs \code{self, vol\_id, edge\_id} where self refers to the
2209object itself and vol\_id and edge\_id are integers referring to
2210particular edges. The method must return a list of three floating point
2211numbers representing values for \code{stage},
2212\code{xmomentum} and \code{ymomentum}, respectively.
2213
2214The constructor of a particular boundary class may be used to specify
2215particular values or flags to be used by the \code{evaluate} method.
2216Please refer to the source code for the existing boundary conditions
2217for examples of how to implement boundary conditions.
2218
2219
2220
2221%\section{Forcing Functions}
2222%
2223%\anuga provides a number of predefined forcing functions to be used with .....
2224
2225
2226
2227
2228\section{Evolution}\index{evolution}
2229
2230  \begin{methoddesc}{evolve}{yieldstep = None, finaltime = None, duration = None, skip_initial_step = False}
2231
2232  Module: \module{abstract\_2d\_finite\_volumes.domain}
2233
2234  This function (a method of \class{domain}) is invoked once all the
2235  preliminaries have been completed, and causes the model to progress
2236  through successive steps in its evolution, storing results and
2237  outputting statistics whenever a user-specified period
2238  \code{yieldstep} is completed (generally during this period the
2239  model will evolve through several steps internally
2240  as the method forces the water speed to be calculated
2241  on successive new cells). The user
2242  specifies the total time period over which the evolution is to take
2243  place, by specifying values (in seconds) for either \code{duration}
2244  or \code{finaltime}, as well as the interval in seconds after which
2245  results are to be stored and statistics output.
2246
2247  You can include \method{evolve} in a statement of the type:
2248
2249  {\small \begin{verbatim}
2250      for t in domain.evolve(yieldstep, finaltime):
2251          <Do something with domain and t>
2252  \end{verbatim}}
2253
2254  \end{methoddesc}
2255
2256
2257
2258\subsection{Diagnostics}
2259\label{sec:diagnostics}
2260
2261
2262  \begin{funcdesc}{statistics}{}
2263  Module: \module{abstract\_2d\_finite\_volumes.domain}
2264
2265  \end{funcdesc}
2266
2267  \begin{funcdesc}{timestepping\_statistics}{}
2268  Module: \module{abstract\_2d\_finite\_volumes.domain}
2269
2270  Returns a string of the following type for each
2271  timestep:
2272
2273  \code{Time = 0.9000, delta t in [0.00598964, 0.01177388], steps=12
2274  (12)}
2275
2276  Here the numbers in \code{steps=12 (12)} indicate the number of steps taken and
2277  the number of first-order steps, respectively.\\
2278
2279  The optional keyword argument \code{track_speeds=True} will
2280  generate a histogram of speeds generated by each triangle. The
2281  speeds relate to the size of the timesteps used by ANUGA and
2282  this diagnostics may help pinpoint problem areas where excessive speeds
2283  are generated.
2284
2285  \end{funcdesc}
2286
2287
2288  \begin{funcdesc}{boundary\_statistics}{quantities = None, tags = None}
2289  Module: \module{abstract\_2d\_finite\_volumes.domain}
2290
2291  Returns a string of the following type when \code{quantities = 'stage'} and \code{tags = ['top', 'bottom']}:
2292
2293  {\small \begin{verbatim}
2294 Boundary values at time 0.5000:
2295    top:
2296        stage in [ -0.25821218,  -0.02499998]
2297    bottom:
2298        stage in [ -0.27098821,  -0.02499974]
2299  \end{verbatim}}
2300
2301  \end{funcdesc}
2302
2303
2304  \begin{funcdesc}{get\_quantity}{name, location='vertices', indices = None}
2305  Module: \module{abstract\_2d\_finite\_volumes.domain}
2306
2307  Allow access to individual quantities and their methods
2308
2309  \end{funcdesc}
2310
2311
2312  \begin{funcdesc}{get\_values}{location='vertices', indices = None}
2313  Module: \module{abstract\_2d\_finite\_volumes.quantity}
2314
2315  Extract values for quantity as an array
2316
2317  \end{funcdesc}
2318
2319
2320  \begin{funcdesc}{get\_integral}{}
2321  Module: \module{abstract\_2d\_finite\_volumes.quantity}
2322
2323  Return computed integral over entire domain for this quantity
2324
2325  \end{funcdesc}
2326
2327
2328
2329
2330  \begin{funcdesc}{get\_maximum\_value}{indices = None}
2331  Module: \module{abstract\_2d\_finite\_volumes.quantity}
2332
2333  Return maximum value of quantity (on centroids)
2334
2335  Optional argument indices is the set of element ids that
2336  the operation applies to. If omitted all elements are considered.
2337
2338  We do not seek the maximum at vertices as each vertex can
2339  have multiple values - one for each triangle sharing it.
2340  \end{funcdesc}
2341
2342
2343
2344  \begin{funcdesc}{get\_maximum\_location}{indices = None}
2345  Module: \module{abstract\_2d\_finite\_volumes.quantity}
2346
2347  Return location of maximum value of quantity (on centroids)
2348
2349  Optional argument indices is the set of element ids that
2350  the operation applies to.
2351
2352  We do not seek the maximum at vertices as each vertex can
2353  have multiple values - one for each triangle sharing it.
2354
2355  If there are multiple cells with same maximum value, the
2356  first cell encountered in the triangle array is returned.
2357  \end{funcdesc}
2358
2359
2360
2361  \begin{funcdesc}{get\_wet\_elements}{indices=None}
2362  Module: \module{shallow\_water.shallow\_water\_domain}
2363
2364  Return indices for elements where h $>$ minimum_allowed_height
2365  Optional argument indices is the set of element ids that the operation applies to.
2366  \end{funcdesc}
2367
2368
2369  \begin{funcdesc}{get\_maximum\_inundation\_elevation}{indices=None}
2370  Module: \module{shallow\_water.shallow\_water\_domain}
2371
2372  Return highest elevation where h $>$ 0.\\
2373  Optional argument indices is the set of element ids that the operation applies to.\\
2374
2375  Example to find maximum runup elevation:\\
2376     z = domain.get_maximum_inundation_elevation()
2377  \end{funcdesc}
2378
2379
2380  \begin{funcdesc}{get\_maximum\_inundation\_location}{indices=None}
2381  Module: \module{shallow\_water.shallow\_water\_domain}
2382
2383  Return location (x,y) of highest elevation where h $>$ 0.\\
2384  Optional argument indices is the set of element ids that the operation applies to.\\
2385
2386  Example to find maximum runup location:\\
2387     x, y = domain.get_maximum_inundation_location()
2388  \end{funcdesc}
2389
2390
2391\section{Queries of SWW model output files} 
2392After a model has been run, it is often useful to extract various information from the sww
2393output file (see Section \ref{sec:sww format}). This is typically more convenient than using the
2394diagnostics described in Section \ref{sec:diagnostics} which rely on the model running - something
2395that can be very time consuming. The sww files are easy and quick to read and offer much information
2396about the model results such as runup heights, time histories of selected quantities,
2397flow through cross sections and much more.
2398
2399\begin{funcdesc}{get\_maximum\_inundation\_elevation}{filename, polygon=None,
2400    time_interval=None, verbose=False}
2401  Module: \module{shallow\_water.data\_manager}
2402
2403  Return highest elevation where depth is positive ($h > 0$)
2404
2405  Example to find maximum runup elevation:\\   
2406  max_runup = get_maximum_inundation_elevation(filename,
2407  polygon=None,
2408  time_interval=None,
2409  verbose=False)
2410
2411   
2412  filename is a NetCDF sww file containing ANUGA model output.                                                       
2413  Optional arguments polygon and time_interval restricts the maximum runup calculation
2414  to a points that lie within the specified polygon and time interval.
2415
2416  If no inundation is found within polygon and time_interval the return value
2417  is None signifying "No Runup" or "Everything is dry".
2418
2419  See doc string for general function get_maximum_inundation_data for details.
2420\end{funcdesc}
2421
2422
2423\begin{funcdesc}{get\_maximum\_inundation\_location}{filename, polygon=None,
2424    time_interval=None, verbose=False}
2425  Module: \module{shallow\_water.data\_manager}
2426
2427  Return location (x,y) of highest elevation where depth is positive ($h > 0$)
2428
2429  Example to find maximum runup location:\\   
2430  max_runup_location = get_maximum_inundation_location(filename,
2431  polygon=None,
2432  time_interval=None,
2433  verbose=False)
2434
2435   
2436  filename is a NetCDF sww file containing ANUGA model output.                                                       
2437  Optional arguments polygon and time_interval restricts the maximum runup calculation
2438  to a points that lie within the specified polygon and time interval.
2439
2440  If no inundation is found within polygon and time_interval the return value
2441  is None signifying "No Runup" or "Everything is dry".
2442
2443  See doc string for general function get_maximum_inundation_data for details.
2444\end{funcdesc}
2445
2446
2447\begin{funcdesc}{sww2time\_series}{}
2448To appear
2449\end{funcdesc}
2450 
2451 
2452
2453\section{Other}
2454
2455  \begin{funcdesc}{domain.create\_quantity\_from\_expression}{string}
2456
2457  Handy for creating derived quantities on-the-fly as for example
2458  \begin{verbatim}
2459  Depth = domain.create_quantity_from_expression('stage-elevation')
2460
2461  exp = '(xmomentum*xmomentum + ymomentum*ymomentum)**0.5')
2462  Absolute_momentum = domain.create_quantity_from_expression(exp)
2463  \end{verbatim}
2464
2465  %See also \file{Analytical\_solution\_circular\_hydraulic\_jump.py} for an example of use.
2466  \end{funcdesc}
2467
2468
2469
2470
2471
2472%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2473%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2474
2475\chapter{\anuga System Architecture}
2476
2477
2478\section{File Formats}
2479\label{sec:file formats}
2480
2481\anuga makes use of a number of different file formats. The
2482following table lists all these formats, which are described in more
2483detail in the paragraphs below.
2484
2485\bigskip
2486
2487\begin{center}
2488
2489\begin{tabular}{|ll|}  \hline
2490
2491\textbf{Extension} & \textbf{Description} \\
2492\hline\hline
2493
2494\code{.sww} & NetCDF format for storing model output
2495\code{f(t,x,y)}\\
2496
2497\code{.tms} & NetCDF format for storing time series \code{f(t)}\\
2498
2499\code{.csv/.txt} & ASCII format called points csv for storing
2500arbitrary points and associated attributes\\
2501
2502\code{.pts} & NetCDF format for storing arbitrary points and
2503associated attributes\\
2504
2505\code{.asc} & ASCII format of regular DEMs as output from ArcView\\
2506
2507\code{.prj} & Associated ArcView file giving more metadata for
2508\code{.asc} format\\
2509
2510\code{.ers} & ERMapper header format of regular DEMs for ArcView\\
2511
2512\code{.dem} & NetCDF representation of regular DEM data\\
2513
2514\code{.tsh} & ASCII format for storing meshes and associated
2515boundary and region info\\
2516
2517\code{.msh} & NetCDF format for storing meshes and associated
2518boundary and region info\\
2519
2520\code{.nc} & Native ferret NetCDF format\\
2521
2522\code{.geo} & Houdinis ASCII geometry format (?) \\  \par \hline
2523%\caption{File formats used by \anuga}
2524\end{tabular}
2525
2526
2527\end{center}
2528
2529The above table shows the file extensions used to identify the
2530formats of files. However, typically, in referring to a format we
2531capitalise the extension and omit the initial full stop---thus, we
2532refer, for example, to `SWW files' or `PRJ files'.
2533
2534\bigskip
2535
2536A typical dataflow can be described as follows:
2537
2538\subsection{Manually Created Files}
2539
2540\begin{tabular}{ll}
2541ASC, PRJ & Digital elevation models (gridded)\\
2542NC & Model outputs for use as boundary conditions (e.g. from MOST)
2543\end{tabular}
2544
2545\subsection{Automatically Created Files}
2546
2547\begin{tabular}{ll}
2548ASC, PRJ  $\rightarrow$  DEM  $\rightarrow$  PTS & Convert
2549DEMs to native \code{.pts} file\\
2550
2551NC $\rightarrow$ SWW & Convert MOST boundary files to
2552boundary \code{.sww}\\
2553
2554PTS + TSH $\rightarrow$ TSH with elevation & Least squares fit\\
2555
2556TSH $\rightarrow$ SWW & Convert TSH to \code{.sww}-viewable using
2557\code{animate}\\
2558
2559TSH + Boundary SWW $\rightarrow$ SWW & Simulation using
2560\code{\anuga}\\
2561
2562Polygonal mesh outline $\rightarrow$ & TSH or MSH
2563\end{tabular}
2564
2565
2566
2567
2568\bigskip
2569
2570\subsection{SWW and TMS Formats}
2571\label{sec:sww format}
2572
2573The SWW and TMS formats are both NetCDF formats, and are of key
2574importance for \anuga.
2575
2576An SWW file is used for storing \anuga output and therefore pertains
2577to a set of points and a set of times at which a model is evaluated.
2578It contains, in addition to dimension information, the following
2579variables:
2580
2581\begin{itemize}
2582    \item \code{x} and \code{y}: coordinates of the points, represented as Numeric arrays
2583    \item \code{elevation}, a Numeric array storing bed-elevations
2584    \item \code{volumes}, a list specifying the points at the vertices of each of the
2585    triangles
2586    % Refer here to the example to be provided in describing the simple example
2587    \item \code{time}, a Numeric array containing times for model
2588    evaluation
2589\end{itemize}
2590
2591
2592The contents of an SWW file may be viewed using the anuga viewer
2593\code{animate}, which creates an on-screen geometric
2594representation. See section \ref{sec:animate} (page
2595\pageref{sec:animate}) in Appendix \ref{ch:supportingtools} for more
2596on \code{animate}.
2597
2598Alternatively, there are tools, such as \code{ncdump}, that allow
2599you to convert an NetCDF file into a readable format such as the
2600Class Definition Language (CDL). The following is an excerpt from a
2601CDL representation of the output file \file{runup.sww} generated
2602from running the simple example \file{runup.py} of
2603Chapter \ref{ch:getstarted}:
2604
2605\verbatiminput{examples/bedslopeexcerpt.cdl}
2606
2607The SWW format is used not only for output but also serves as input
2608for functions such as \function{file\_boundary} and
2609\function{file\_function}, described in Chapter \ref{ch:interface}.
2610
2611A TMS file is used to store time series data that is independent of
2612position.
2613
2614
2615\subsection{Mesh File Formats}
2616
2617A mesh file is a file that has a specific format suited to
2618triangular meshes and their outlines. A mesh file can have one of
2619two formats: it can be either a TSH file, which is an ASCII file, or
2620an MSH file, which is a NetCDF file. A mesh file can be generated
2621from the function \function{create\_mesh\_from\_regions} (see
2622Section \ref{sec:meshgeneration}) and used to initialise a domain.
2623
2624A mesh file can define the outline of the mesh---the vertices and
2625line segments that enclose the region in which the mesh is
2626created---and the triangular mesh itself, which is specified by
2627listing the triangles and their vertices, and the segments, which
2628are those sides of the triangles that are associated with boundary
2629conditions.
2630
2631In addition, a mesh file may contain `holes' and/or `regions'. A
2632hole represents an area where no mesh is to be created, while a
2633region is a labelled area used for defining properties of a mesh,
2634such as friction values.  A hole or region is specified by a point
2635and bounded by a number of segments that enclose that point.
2636
2637A mesh file can also contain a georeference, which describes an
2638offset to be applied to $x$ and $y$ values---eg to the vertices.
2639
2640
2641\subsection{Formats for Storing Arbitrary Points and Attributes}
2642
2643
2644A CSV/TXT file is used to store data representing
2645arbitrary numerical attributes associated with a set of points.
2646
2647The format for an CSV/TXT file is:\\
2648%\begin{verbatim}
2649
2650            first line:     \code{[column names]}\\
2651            other lines:  \code{[x value], [y value], [attributes]}\\
2652
2653            for example:\\
2654            \code{x, y, elevation, friction}\\
2655            \code{0.6, 0.7, 4.9, 0.3}\\
2656            \code{1.9, 2.8, 5, 0.3}\\
2657            \code{2.7, 2.4, 5.2, 0.3}
2658
2659        The delimiter is a comma. The first two columns are assumed to
2660        be x, y coordinates.
2661       
2662
2663A PTS file is a NetCDF representation of the data held in an points CSV
2664file. If the data is associated with a set of $N$ points, then the
2665data is stored using an $N \times 2$ Numeric array of float
2666variables for the points and an $N \times 1$ Numeric array for each
2667attribute.
2668
2669%\end{verbatim}
2670
2671\subsection{ArcView Formats}
2672
2673Files of the three formats ASC, PRJ and ERS are all associated with
2674data from ArcView.
2675
2676An ASC file is an ASCII representation of DEM output from ArcView.
2677It contains a header with the following format:
2678
2679\begin{tabular}{l l}
2680\code{ncols}      &   \code{753}\\
2681\code{nrows}      &   \code{766}\\
2682\code{xllcorner}  &   \code{314036.58727982}\\
2683\code{yllcorner}  & \code{6224951.2960092}\\
2684\code{cellsize}   & \code{100}\\
2685\code{NODATA_value} & \code{-9999}
2686\end{tabular}
2687
2688The remainder of the file contains the elevation data for each grid point
2689in the grid defined by the above information.
2690
2691A PRJ file is an ArcView file used in conjunction with an ASC file
2692to represent metadata for a DEM.
2693
2694
2695\subsection{DEM Format}
2696
2697A DEM file is a NetCDF representation of regular DEM data.
2698
2699
2700\subsection{Other Formats}
2701
2702
2703
2704
2705\subsection{Basic File Conversions}
2706\label{sec:basicfileconversions}
2707
2708  \begin{funcdesc}{sww2dem}{basename_in, basename_out = None,
2709            quantity = None,
2710            timestep = None,
2711            reduction = None,
2712            cellsize = 10,
2713            NODATA_value = -9999,
2714            easting_min = None,
2715            easting_max = None,
2716            northing_min = None,
2717            northing_max = None,
2718            expand_search = False,
2719            verbose = False,
2720            origin = None,
2721            datum = 'WGS84',
2722            format = 'ers'}
2723  Module: \module{shallow\_water.data\_manager}
2724
2725  Takes data from an SWW file \code{basename_in} and converts it to DEM format (ASC or
2726  ERS) of a desired grid size \code{cellsize} in metres.
2727  The easting and northing values are used if the user wished to clip the output
2728  file to a specified rectangular area. The \code{reduction} input refers to a function
2729  to reduce the quantities over all time step of the SWW file, example, maximum.
2730  \end{funcdesc}
2731
2732
2733  \begin{funcdesc}{dem2pts}{basename_in, basename_out=None,
2734            easting_min=None, easting_max=None,
2735            northing_min=None, northing_max=None,
2736            use_cache=False, verbose=False}
2737  Module: \module{shallow\_water.data\_manager}
2738
2739  Takes DEM data (a NetCDF file representation of data from a regular Digital
2740  Elevation Model) and converts it to PTS format.
2741  \end{funcdesc}
2742
2743
2744
2745%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2746%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2747
2748\chapter{\anuga mathematical background}
2749\label{cd:mathematical background}
2750
2751\section{Introduction}
2752
2753This chapter outlines the mathematics underpinning \anuga.
2754
2755
2756
2757\section{Model}
2758\label{sec:model}
2759
2760The shallow water wave equations are a system of differential
2761conservation equations which describe the flow of a thin layer of
2762fluid over terrain. The form of the equations are:
2763\[
2764\frac{\partial \UU}{\partial t}+\frac{\partial \EE}{\partial
2765x}+\frac{\partial \GG}{\partial y}=\SSS
2766\]
2767where $\UU=\left[ {{\begin{array}{*{20}c}
2768 h & {uh} & {vh} \\
2769\end{array} }} \right]^T$ is the vector of conserved quantities; water depth
2770$h$, $x$-momentum $uh$ and $y$-momentum $vh$. Other quantities
2771entering the system are bed elevation $z$ and stage (absolute water
2772level) $w$, where the relation $w = z + h$ holds true at all times.
2773The fluxes in the $x$ and $y$ directions, $\EE$ and $\GG$ are given
2774by
2775\[
2776\EE=\left[ {{\begin{array}{*{20}c}
2777 {uh} \hfill \\
2778 {u^2h+gh^2/2} \hfill \\
2779 {uvh} \hfill \\
2780\end{array} }} \right]\mbox{ and }\GG=\left[ {{\begin{array}{*{20}c}
2781 {vh} \hfill \\
2782 {vuh} \hfill \\
2783 {v^2h+gh^2/2} \hfill \\
2784\end{array} }} \right]
2785\]
2786and the source term (which includes gravity and friction) is given
2787by
2788\[
2789\SSS=\left[ {{\begin{array}{*{20}c}
2790 0 \hfill \\
2791 -{gh(z_{x} + S_{fx} )} \hfill \\
2792 -{gh(z_{y} + S_{fy} )} \hfill \\
2793\end{array} }} \right]
2794\]
2795where $S_f$ is the bed friction. The friction term is modelled using
2796Manning's resistance law
2797\[
2798S_{fx} =\frac{u\eta ^2\sqrt {u^2+v^2} }{h^{4/3}}\mbox{ and }S_{fy}
2799=\frac{v\eta ^2\sqrt {u^2+v^2} }{h^{4/3}}
2800\]
2801in which $\eta$ is the Manning resistance coefficient.
2802
2803As demonstrated in our papers, \cite{ZR1999,nielsen2005} these
2804equations provide an excellent model of flows associated with
2805inundation such as dam breaks and tsunamis.
2806
2807\section{Finite Volume Method}
2808\label{sec:fvm}
2809
2810We use a finite-volume method for solving the shallow water wave
2811equations \cite{ZR1999}. The study area is represented by a mesh of
2812triangular cells as in Figure~\ref{fig:mesh} in which the conserved
2813quantities of  water depth $h$, and horizontal momentum $(uh, vh)$,
2814in each volume are to be determined. The size of the triangles may
2815be varied within the mesh to allow greater resolution in regions of
2816particular interest.
2817
2818\begin{figure}
2819\begin{center}
2820\includegraphics[width=8.0cm,keepaspectratio=true]{graphics/step-five}
2821\caption{Triangular mesh used in our finite volume method. Conserved
2822quantities $h$, $uh$ and $vh$ are associated with the centroid of
2823each triangular cell.} \label{fig:mesh}
2824\end{center}
2825\end{figure}
2826
2827The equations constituting the finite-volume method are obtained by
2828integrating the differential conservation equations over each
2829triangular cell of the mesh. Introducing some notation we use $i$ to
2830refer to the $i$th triangular cell $T_i$, and ${\cal N}(i)$ to the
2831set of indices referring to the cells neighbouring the $i$th cell.
2832Then $A_i$ is the area of the $i$th triangular cell and $l_{ij}$ is
2833the length of the edge between the $i$th and $j$th cells.
2834
2835By applying the divergence theorem we obtain for each volume an
2836equation which describes the rate of change of the average of the
2837conserved quantities within each cell, in terms of the fluxes across
2838the edges of the cells and the effect of the source terms. In
2839particular, rate equations associated with each cell have the form
2840$$
2841 \frac{d\UU_i }{dt}+ \frac1{A_i}\sum\limits_{j\in{\cal N}(i)} \HH_{ij} l_{ij} = \SSS_i
2842$$
2843where
2844\begin{itemize}
2845\item $\UU_i$ the vector of conserved quantities averaged over the $i$th cell,
2846\item $\SSS_i$ is the source term associated with the $i$th cell,
2847and
2848\item $\HH_{ij}$ is the outward normal flux of
2849material across the \textit{ij}th edge.
2850\end{itemize}
2851
2852
2853%\item $l_{ij}$ is the length of the edge between the $i$th and $j$th
2854%cells
2855%\item $m_{ij}$ is the midpoint of
2856%the \textit{ij}th edge,
2857%\item
2858%$\mathbf{n}_{ij} = (n_{ij,1} , n_{ij,2})$is the outward pointing
2859%normal along the \textit{ij}th edge, and The
2860
2861The flux $\HH_{ij}$ is evaluated using a numerical flux function
2862$\HH(\cdot, \cdot ; \ \cdot)$ which is consistent with the shallow
2863water flux in the sense that for all conservation vectors $\UU$ and normal vectors $\nn$
2864$$
2865H(\UU,\UU;\ \nn) = \EE(\UU) n_1 + \GG(\UU) n_2 .
2866$$
2867
2868Then
2869$$
2870\HH_{ij}  = \HH(\UU_i(m_{ij}),
2871\UU_j(m_{ij}); \mathbf{n}_{ij})
2872$$
2873where $m_{ij}$ is the midpoint of the \textit{ij}th edge and
2874$\mathbf{n}_{ij}$ is the outward pointing normal, with respect to the $i$th cell, on the
2875\textit{ij}th edge. The function $\UU_i(x)$ for $x \in
2876T_i$ is obtained from the vector $\UU_k$ of conserved average values for the $i$th and
2877neighbouring  cells.
2878
2879We use a second order reconstruction to produce a piece-wise linear
2880function construction of the conserved quantities for  all $x \in
2881T_i$ for each cell (see Figure~\ref{fig:mesh:reconstruct}. This
2882function is allowed to be discontinuous across the edges of the
2883cells, but the slope of this function is limited to avoid
2884artificially introduced oscillations.
2885
2886Godunov's method (see \cite{Toro1992}) involves calculating the
2887numerical flux function $\HH(\cdot, \cdot ; \ \cdot)$ by exactly
2888solving the corresponding one dimensional Riemann problem normal to
2889the edge. We use the central-upwind scheme of \cite{KurNP2001} to
2890calculate an approximation of the flux across each edge.
2891
2892\begin{figure}
2893\begin{center}
2894\includegraphics[width=8.0cm,keepaspectratio=true]{graphics/step-reconstruct}
2895\caption{From the values of the conserved quantities at the centroid
2896of the cell and its neighbouring cells, a discontinuous piecewise
2897linear reconstruction of the conserved quantities is obtained.}
2898\label{fig:mesh:reconstruct}
2899\end{center}
2900\end{figure}
2901
2902In the computations presented in this paper we use an explicit Euler
2903time stepping method with variable timestepping adapted to the
2904observed CFL condition.
2905
2906
2907\section{Flux limiting}
2908
2909The shallow water equations are solved numerically using a
2910finite volume method on unstructured triangular grid.
2911The upwind central scheme due to Kurganov and Petrova is used as an
2912approximate Riemann solver for the computation of inviscid flux functions.
2913This makes it possible to handle discontinuous solutions.
2914
2915To alleviate the problems associated with numerical instabilities due to
2916small water depths near a wet/dry boundary we employ a new flux limiter that
2917ensures that unphysical fluxes are never encounted.
2918
2919
2920Let $u$ and $v$ be the velocity components in the $x$ and $y$ direction,
2921$w$ the absolute water level (stage) and
2922$z$ the bed elevation. The latter are assumed to be relative to the
2923same height datum.
2924The conserved quantities tracked by ANUGA are momentum in the
2925$x$-direction ($\mu = uh$), momentum in the $y$-direction ($\nu = vh$)
2926and depth ($h = w-z$).
2927
2928The flux calculation requires access to the velocity vector $(u, v)$
2929where each component is obtained as $u = \mu/h$ and $v = \nu/h$ respectively.
2930In the presence of very small water depths, these calculations become
2931numerically unreliable and will typically cause unphysical speeds.
2932
2933We have employed a flux limiter which replaces the calculations above with
2934the limited approximations.
2935\begin{equation}
2936  \hat{u} = \frac{\mu}{h + h_0/h}, \bigskip \hat{v} = \frac{\nu}{h + h_0/h},
2937\end{equation}
2938where $h_0$ is a regularisation parameter that controls the minimal
2939magnitude of the denominator. Taking the limits we have for $\hat{u}$
2940\[
2941  \lim_{h \rightarrow 0} \hat{u} =
2942  \lim_{h \rightarrow 0} \frac{\mu}{h + h_0/h} = 0
2943\]
2944and
2945\[
2946  \lim_{h \rightarrow \infty} \hat{u} =
2947  \lim_{h \rightarrow \infty} \frac{\mu}{h + h_0/h} = \frac{\mu}{h} = u
2948\]
2949with similar results for $\hat{v}$.
2950
2951The maximal value of $\hat{u}$ is attained when $h+h_0/h$ is minimal or (by differentiating the denominator)
2952\[
2953  1 - h_0/h^2 = 0
2954\]
2955or
2956\[
2957  h_0 = h^2
2958\]
2959
2960
2961ANUGA has a global parameter $H_0$ that controls the minimal depth which
2962is considered in the various equations. This parameter is typically set to
2963$10^{-3}$. Setting
2964\[
2965  h_0 = H_0^2
2966\]
2967provides a reasonable balance between accurracy and stability. In fact,
2968setting $h=H_0$ will scale the predicted speed by a factor of $0.5$:
2969\[
2970  \left[ \frac{\mu}{h + h_0/h} \right]_{h = H_0} = \frac{\mu}{2 H_0}
2971\]
2972In general, for multiples of the minimal depth $N H_0$ one obtains
2973\[
2974  \left[ \frac{\mu}{h + h_0/h} \right]_{h = N H_0} =
2975  \frac{\mu}{H_0 (1 + 1/N^2)}
2976\]
2977which converges quadratically to the true value with the multiple N.
2978
2979
2980%The developed numerical model has been applied to several test cases as well as to real flows. Numerical tests prove the robustness and accuracy of the model.
2981
2982
2983
2984
2985
2986\section{Slope limiting}
2987A multidimensional slope-limiting technique is employed to achieve second-order spatial accuracy and to prevent spurious oscillations. This is using the MinMod limiter and is documented elsewhere.
2988
2989However close to the bed, the limiter must ensure that no negative depths occur. On the other hand, in deep water, the bed topography should be ignored for the purpose of the limiter.
2990
2991
2992Let $w, z, h$  be the stage, bed elevation and depth at the centroid and
2993let $w_i, z_i, h_i$ be the stage, bed elevation and depth at vertex $i$.
2994Define the minimal depth across all vertices as $\hmin$ as
2995\[
2996  \hmin = \min_i h_i
2997\]
2998
2999Let $\tilde{w_i}$ be the stage obtained from a gradient limiter
3000limiting on stage only. The corresponding depth is then defined as
3001\[
3002  \tilde{h_i} = \tilde{w_i} - z_i
3003\]
3004We would use this limiter in deep water which we will define (somewhat boldly)
3005as
3006\[
3007  \hmin \ge \epsilon
3008\]
3009
3010
3011Similarly, let $\bar{w_i}$ be the stage obtained from a gradient
3012limiter limiting on depth respecting the bed slope.
3013The corresponding depth is defined as
3014\[
3015  \bar{h_i} = \bar{w_i} - z_i
3016\]
3017
3018
3019We introduce the concept of a balanced stage $w_i$ which is obtained as
3020the linear combination
3021
3022\[
3023  w_i = \alpha \tilde{w_i} + (1-\alpha) \bar{w_i}
3024\]
3025or
3026\[
3027  w_i = z_i + \alpha \tilde{h_i} + (1-\alpha) \bar{h_i}
3028\]
3029where $\alpha \in [0, 1]$.
3030
3031Since $\tilde{w_i}$ is obtained in 'deep' water where the bedslope
3032is ignored we have immediately that
3033\[
3034  \alpha = 1 \mbox{ for } \hmin \ge \epsilon %or dz=0
3035\]
3036%where the maximal bed elevation range $dz$ is defined as
3037%\[
3038%  dz = \max_i |z_i - z|
3039%\]
3040
3041If $\hmin < \epsilon$ we want to use the 'shallow' limiter just enough that
3042no negative depths occur. Formally, we will require that
3043\[
3044  \alpha \tilde{h_i} + (1-\alpha) \bar{h_i} > \epsilon, \forall i
3045\]
3046or
3047\begin{equation}
3048  \alpha(\tilde{h_i} - \bar{h_i}) > \epsilon - \bar{h_i}, \forall i
3049  \label{eq:limiter bound}
3050\end{equation}
3051
3052There are two cases:
3053\begin{enumerate}
3054  \item $\bar{h_i} \le \tilde{h_i}$: The deep water (limited using stage)
3055  vertex is at least as far away from the bed than the shallow water
3056  (limited using depth). In this case we won't need any contribution from
3057  $\bar{h_i}$ and can accept any $\alpha$.
3058
3059  E.g.\ $\alpha=1$ reduces Equation \ref{eq:limiter bound} to
3060  \[
3061    \tilde{h_i} > \epsilon
3062  \]
3063  whereas $\alpha=0$ yields
3064  \[
3065    \bar{h_i} > \epsilon
3066  \]
3067  all well and good.
3068  \item $\bar{h_i} > \tilde{h_i}$: In this case the the deep water vertex is
3069  closer to the bed than the shallow water vertex or even below the bed.
3070  In this case we need to find an $\alpha$ that will ensure a positive depth.
3071  Rearranging Equation \ref{eq:limiter bound} and solving for $\alpha$ one
3072  obtains the bound
3073  \[
3074    \alpha < \frac{\epsilon - \bar{h_i}}{\tilde{h_i} - \bar{h_i}}, \forall i
3075  \]
3076\end{enumerate}
3077
3078Ensuring Equation \ref{eq:limiter bound} holds true for all vertices one
3079arrives at the definition
3080\[
3081  \alpha = \min_{i} \frac{\bar{h_i} - \epsilon}{\bar{h_i} - \tilde{h_i}}
3082\]
3083which will guarantee that no vertex 'cuts' through the bed. Finally, should
3084$\bar{h_i} < \epsilon$ and therefore $\alpha < 0$, we suggest setting
3085$\alpha=0$ and similarly capping $\alpha$ at 1 just in case.
3086
3087%Furthermore,
3088%dropping the $\epsilon$ ensures that alpha is always positive and also
3089%provides a numerical safety {??)
3090
3091
3092
3093
3094
3095%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3096%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3097
3098\chapter{Basic \anuga Assumptions}
3099
3100
3101Physical model time cannot be earlier than 1 Jan 1970 00:00:00.
3102If one wished to recreate scenarios prior to that date it must be done
3103using some relative time (e.g. 0).
3104
3105
3106All spatial data relates to the WGS84 datum (or GDA94) and has been
3107projected into UTM with false easting of 500000 and false northing of
31081000000 on the southern hemisphere (0 on the northern).
3109
3110It is assumed that all computations take place within one UTM zone and
3111all locations must consequently be specified in Cartesian coordinates
3112(eastings, northings) or (x,y) where the unit is metres.
3113
3114DEMs, meshes and boundary conditions can have different origins within
3115one UTM zone. However, the computation will use that of the mesh for
3116numerical stability.
3117
3118When generating a mesh it is assumed that polygons do not cross.
3119Having polygons tht cross can cause the mesh generation to fail or bad
3120meshes being produced.
3121
3122
3123%OLD
3124%The dataflow is: (See data_manager.py and from scenarios)
3125%
3126%
3127%Simulation scenarios
3128%--------------------%
3129%%
3130%
3131%Sub directories contain scrips and derived files for each simulation.
3132%The directory ../source_data contains large source files such as
3133%DEMs provided externally as well as MOST tsunami simulations to be used
3134%as boundary conditions.
3135%
3136%Manual steps are:
3137%  Creation of DEMs from argcview (.asc + .prj)
3138%  Creation of mesh from pmesh (.tsh)
3139%  Creation of tsunami simulations from MOST (.nc)
3140%%
3141%
3142%Typical scripted steps are%
3143%
3144%  prepare_dem.py:  Convert asc and prj files supplied by arcview to
3145%                   native dem and pts formats%
3146%
3147%  prepare_pts.py: Convert netcdf output from MOST to an sww file suitable
3148%                  as boundary condition%
3149%
3150%  prepare_mesh.py: Merge DEM (pts) and mesh (tsh) using least squares
3151%                   smoothing. The outputs are tsh files with elevation data.%
3152%
3153%  run_simulation.py: Use the above together with various parameters to
3154%                     run inundation simulation.
3155
3156
3157%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3158%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3159
3160\appendix
3161
3162\chapter{Supporting Tools}
3163\label{ch:supportingtools}
3164
3165This section describes a number of supporting tools, supplied with \anuga, that offer a
3166variety of types of functionality and enhance the basic capabilities of \anuga.
3167
3168\section{caching}
3169\label{sec:caching}
3170
3171The \code{cache} function is used to provide supervised caching of function
3172results. A Python function call of the form
3173
3174      {\small \begin{verbatim}
3175      result = func(arg1,...,argn)
3176      \end{verbatim}}
3177
3178  can be replaced by
3179
3180      {\small \begin{verbatim}
3181      from caching import cache
3182      result = cache(func,(arg1,...,argn))
3183      \end{verbatim}}
3184
3185  which returns the same output but reuses cached
3186  results if the function has been computed previously in the same context.
3187  \code{result} and the arguments can be simple types, tuples, list, dictionaries or
3188  objects, but not unhashable types such as functions or open file objects.
3189  The function \code{func} may be a member function of an object or a module.
3190
3191  This type of caching is particularly useful for computationally intensive
3192  functions with few frequently used combinations of input arguments. Note that
3193  if the inputs or output are very large caching may not save time because
3194  disc access may dominate the execution time.
3195
3196  If the function definition changes after a result has been cached, this will be
3197  detected by examining the functions \code{bytecode (co\_code, co\_consts,
3198  func\_defaults, co\_argcount)} and the function will be recomputed.
3199  However, caching will not detect changes in modules used by \code{func}.
3200  In this case cache must be cleared manually.
3201
3202  Options are set by means of the function \code{set\_option(key, value)},
3203  where \code{key} is a key associated with a
3204  Python dictionary \code{options}. This dictionary stores settings such as the name of
3205  the directory used, the maximum
3206  number of cached files allowed, and so on.
3207
3208  The \code{cache} function allows the user also to specify a list of dependent files. If any of these
3209  have been changed, the function is recomputed and the results stored again.
3210
3211  %Other features include support for compression and a capability to \ldots
3212
3213
3214   \textbf{USAGE:} \nopagebreak
3215
3216    {\small \begin{verbatim}
3217    result = cache(func, args, kwargs, dependencies, cachedir, verbose,
3218                   compression, evaluate, test, return_filename)
3219    \end{verbatim}}
3220
3221
3222\section{ANUGA viewer - animate}
3223\label{sec:animate}
3224 The output generated by \anuga may be viewed by
3225means of the visualisation tool \code{animate}, which takes the
3226\code{SWW} file output by \anuga and creates a visual representation
3227of the data. Examples may be seen in Figures \ref{fig:runupstart}
3228and \ref{fig:runup2}. To view an \code{SWW} file with
3229\code{animate} in the Windows environment, you can simply drag the
3230icon representing the file over an icon on the desktop for the
3231\code{animate} executable file (or a shortcut to it), or set up a
3232file association to make files with the extension \code{.sww} open
3233with \code{animate}. Alternatively, you can operate \code{animate}
3234from the command line, in both Windows and Linux environments.
3235
3236On successful operation, you will see an interactive moving-picture
3237display. You can use keys and the mouse to slow down, speed up or
3238stop the display, change the viewing position or carry out a number
3239of other simple operations. Help is also displayed when you press
3240the \code{h} key.
3241
3242The main keys operating the interactive screen are:\\
3243
3244\begin{center}
3245\begin{tabular}{|ll|}   \hline
3246
3247\code{w} & toggle wireframe \\
3248
3249space bar & start/stop\\
3250
3251up/down arrows & increase/decrease speed\\
3252
3253left/right arrows & direction in time \emph{(when running)}\\
3254& step through simulation \emph{(when stopped)}\\
3255
3256left mouse button & rotate\\
3257
3258middle mouse button & pan\\
3259
3260right mouse button & zoom\\  \hline
3261
3262\end{tabular}
3263\end{center}
3264
3265\vfill
3266
3267The following table describes how to operate animate from the command line:
3268
3269Usage: \code{animate [options] swwfile \ldots}\\  \nopagebreak
3270Options:\\  \nopagebreak
3271\begin{tabular}{ll}
3272  \code{--display <type>} & \code{MONITOR | POWERWALL | REALITY\_CENTER |}\\
3273                                    & \code{HEAD\_MOUNTED\_DISPLAY}\\
3274  \code{--rgba} & Request a RGBA colour buffer visual\\
3275  \code{--stencil} & Request a stencil buffer visual\\
3276  \code{--stereo} & Use default stereo mode which is \code{ANAGLYPHIC} if not \\
3277                                    & overridden by environmental variable\\
3278  \code{--stereo <mode>} & \code{ANAGLYPHIC | QUAD\_BUFFER | HORIZONTAL\_SPLIT |}\\
3279                                    & \code{VERTICAL\_SPLIT | LEFT\_EYE | RIGHT\_EYE |}\\
3280                                     & \code{ON | OFF} \\
3281  \code{-alphamax <float 0-1>} & Maximum transparency clamp value\\
3282  \code{-alphamin <float 0-1>} & Transparency value at \code{hmin}\\
3283\end{tabular}
3284
3285\begin{tabular}{ll}
3286  \code{-cullangle <float angle 0-90>} & Cull triangles steeper than this value\\
3287  \code{-help} & Display this information\\
3288  \code{-hmax <float>} & Height above which transparency is set to
3289                                     \code{alphamax}\\
3290\end{tabular}
3291
3292\begin{tabular}{ll}
3293
3294  \code{-hmin <float>} & Height below which transparency is set to
3295                                     zero\\
3296\end{tabular}
3297
3298\begin{tabular}{ll}
3299  \code{-lightpos <float>,<float>,<float>} & $x,y,z$ of bedslope directional light ($z$ is
3300                                     up, default is overhead)\\
3301\end{tabular}
3302
3303\begin{tabular}{ll}
3304  \code{-loop}  & Repeated (looped) playback of \code{.swm} files\\
3305
3306\end{tabular}
3307
3308\begin{tabular}{ll}
3309  \code{-movie <dirname>} & Save numbered images to named directory and
3310                                     quit\\
3311
3312  \code{-nosky} & Omit background sky\\
3313
3314
3315  \code{-scale <float>} & Vertical scale factor\\
3316  \code{-texture <file>} & Image to use for bedslope topography\\
3317  \code{-tps <rate>} & Timesteps per second\\
3318  \code{-version} & Revision number and creation (not compile)
3319                                     date\\
3320\end{tabular}
3321
3322\section{utilities/polygons}
3323
3324  \declaremodule{standard}{utilities.polygon}
3325  \refmodindex{utilities.polygon}
3326
3327  \begin{classdesc}{Polygon\_function}{regions, default = 0.0, geo_reference = None}
3328  Module: \code{utilities.polygon}
3329
3330  Creates a callable object that returns one of a specified list of values when
3331  evaluated at a point \code{x, y}, depending on which polygon, from a specified list of polygons, the
3332  point belongs to. The parameter \code{regions} is a list of pairs
3333  \code{(P, v)}, where each \code{P} is a polygon and each \code{v}
3334  is either a constant value or a function of coordinates \code{x}
3335  and \code{y}, specifying the return value for a point inside \code{P}. The
3336  optional parameter \code{default} may be used to specify a value
3337  for a point not lying inside any of the specified polygons. When a
3338  point lies in more than one polygon, the return value is taken to
3339  be the value for whichever of these polygon appears later in the
3340  list.
3341  %FIXME (Howard): CAN x, y BE VECTORS?
3342
3343  \end{classdesc}
3344
3345  \begin{funcdesc}{read\_polygon}{filename}
3346  Module: \code{utilities.polygon}
3347
3348  Reads the specified file and returns a polygon. Each
3349  line of the file must contain exactly two numbers, separated by a comma, which are interpreted
3350  as coordinates of one vertex of the polygon.
3351  \end{funcdesc}
3352
3353  \begin{funcdesc}{populate\_polygon}{polygon, number_of_points, seed = None, exclude = None}
3354  Module: \code{utilities.polygon}
3355
3356  Populates the interior of the specified polygon with the specified number of points,
3357  selected by means of a uniform distribution function.
3358  \end{funcdesc}
3359
3360  \begin{funcdesc}{point\_in\_polygon}{polygon, delta=1e-8}
3361  Module: \code{utilities.polygon}
3362
3363  Returns a point inside the specified polygon and close to the edge. The distance between
3364  the returned point and the nearest point of the polygon is less than $\sqrt{2}$ times the
3365  second argument \code{delta}, which is taken as $10^{-8}$ by default.
3366  \end{funcdesc}
3367
3368  \begin{funcdesc}{inside\_polygon}{points, polygon, closed = True, verbose = False}
3369  Module: \code{utilities.polygon}
3370
3371  Used to test whether the members of a list of points
3372  are inside the specified polygon. Returns a Numeric
3373  array comprising the indices of the points in the list that lie inside the polygon.
3374  (If none of the points are inside, returns \code{zeros((0,), 'l')}.)
3375  Points on the edges of the polygon are regarded as inside if
3376  \code{closed} is set to \code{True} or omitted; otherwise they are regarded as outside.
3377  \end{funcdesc}
3378
3379  \begin{funcdesc}{outside\_polygon}{points, polygon, closed = True, verbose = False}
3380  Module: \code{utilities.polygon}
3381
3382  Exactly like \code{inside\_polygon}, but with the words `inside' and `outside' interchanged.
3383  \end{funcdesc}
3384
3385  \begin{funcdesc}{is\_inside\_polygon}{point, polygon, closed=True, verbose=False}
3386  Module: \code{utilities.polygon}
3387
3388  Returns \code{True} if \code{point} is inside \code{polygon} or
3389  \code{False} otherwise. Points on the edges of the polygon are regarded as inside if
3390  \code{closed} is set to \code{True} or omitted; otherwise they are regarded as outside.
3391  \end{funcdesc}
3392
3393  \begin{funcdesc}{is\_outside\_polygon}{point, polygon, closed=True, verbose=False}
3394  Module: \code{utilities.polygon}
3395
3396  Exactly like \code{is\_outside\_polygon}, but with the words `inside' and `outside' interchanged.
3397  \end{funcdesc}
3398
3399  \begin{funcdesc}{point\_on\_line}{x, y, x0, y0, x1, y1}
3400  Module: \code{utilities.polygon}
3401
3402  Returns \code{True} or \code{False}, depending on whether the point with coordinates
3403  \code{x, y} is on the line passing through the points with coordinates \code{x0, y0}
3404  and \code{x1, y1} (extended if necessary at either end).
3405  \end{funcdesc}
3406
3407  \begin{funcdesc}{separate\_points\_by\_polygon}{points, polygon, closed = True, verbose = False}
3408    \indexedcode{separate\_points\_by\_polygon}
3409  Module: \code{utilities.polygon}
3410
3411  \end{funcdesc}
3412
3413  \begin{funcdesc}{polygon\_area}{polygon}
3414  Module: \code{utilities.polygon}
3415
3416  Returns area of arbitrary polygon (reference http://mathworld.wolfram.com/PolygonArea.html)
3417  \end{funcdesc}
3418
3419  \begin{funcdesc}{plot\_polygons}{polygons, figname, verbose = False}
3420  Module: \code{utilities.polygon}
3421
3422  Plots each polygon contained in input polygon list, e.g.
3423 \code{polygons = [poly1, poly2, poly3]} where \code{poly1 = [[x11,y11],[x12,y12],[x13,y13]]}
3424 etc.  Each polygon is closed for plotting purposes and subsequent plot saved to \code{figname}.
3425  Returns list containing the minimum and maximum of \code{x} and \code{y},
3426  i.e. \code{[x_{min}, x_{max}, y_{min}, y_{max}]}.
3427  \end{funcdesc}
3428
3429\section{coordinate\_transforms}
3430
3431\section{geospatial\_data}
3432\label{sec:geospatial}
3433
3434This describes a class that represents arbitrary point data in UTM
3435coordinates along with named attribute values.
3436
3437%FIXME (Ole): This gives a LaTeX error
3438%\declaremodule{standard}{geospatial_data}
3439%\refmodindex{geospatial_data}
3440
3441
3442
3443\begin{classdesc}{Geospatial\_data}
3444  {data_points = None,
3445    attributes = None,
3446    geo_reference = None,
3447    default_attribute_name = None,
3448    file_name = None}
3449Module: \code{geospatial\_data}
3450
3451This class is used to store a set of data points and associated
3452attributes, allowing these to be manipulated by methods defined for
3453the class.
3454
3455The data points are specified either by reading them from a NetCDF
3456or CSV file, identified through the parameter \code{file\_name}, or
3457by providing their \code{x}- and \code{y}-coordinates in metres,
3458either as a sequence of 2-tuples of floats or as an $M \times 2$
3459Numeric array of floats, where $M$ is the number of points.
3460Coordinates are interpreted relative to the origin specified by the
3461object \code{geo\_reference}, which contains data indicating the UTM
3462zone, easting and northing. If \code{geo\_reference} is not
3463specified, a default is used.
3464
3465Attributes are specified through the parameter \code{attributes},
3466set either to a list or array of length $M$ or to a dictionary whose
3467keys are the attribute names and whose values are lists or arrays of
3468length $M$. One of the attributes may be specified as the default
3469attribute, by assigning its name to \code{default\_attribute\_name}.
3470If no value is specified, the default attribute is taken to be the
3471first one.
3472\end{classdesc}
3473
3474
3475\begin{methoddesc}{import\_points\_file}{delimiter = None, verbose = False}
3476
3477\end{methoddesc}
3478
3479
3480\begin{methoddesc}{export\_points\_file}{ofile, absolute=False}
3481
3482\end{methoddesc}
3483
3484
3485\begin{methoddesc}{get\_data\_points}{absolute = True, as\_lat\_long =
3486    False}
3487    If \code{as\_lat\_long} is\code{True} the point information
3488    returned will be in Latitudes and Longitudes.
3489
3490\end{methoddesc}
3491
3492
3493\begin{methoddesc}{set\_attributes}{attributes}
3494
3495\end{methoddesc}
3496
3497
3498\begin{methoddesc}{get\_attributes}{attribute_name = None}
3499
3500\end{methoddesc}
3501
3502
3503\begin{methoddesc}{get\_all\_attributes}{}
3504
3505\end{methoddesc}
3506
3507
3508\begin{methoddesc}{set\_default\_attribute\_name}{default_attribute_name}
3509
3510\end{methoddesc}
3511
3512
3513\begin{methoddesc}{set\_geo\_reference}{geo_reference}
3514
3515\end{methoddesc}
3516
3517
3518\begin{methoddesc}{add}{}
3519
3520\end{methoddesc}
3521
3522
3523\begin{methoddesc}{clip}{}
3524Clip geospatial data by a polygon
3525
3526Inputs are \code{polygon} which is either a list of points, an Nx2 array or
3527a Geospatial data object and \code{closed}(optional) which determines
3528whether points on boundary should be regarded as belonging to the polygon
3529(\code{closed=True}) or not (\code{closed=False}).
3530Default is \code{closed=True}.
3531
3532Returns new Geospatial data object representing points
3533inside specified polygon.
3534\end{methoddesc}
3535
3536
3537\begin{methoddesc}{clip_outside}{}
3538Clip geospatial data by a polygon
3539
3540Inputs are \code{polygon} which is either a list of points, an Nx2 array or
3541a Geospatial data object and \code{closed}(optional) which determines
3542whether points on boundary should be regarded as belonging to the polygon
3543(\code{closed=True}) or not (\code{closed=False}).
3544Default is \code{closed=True}.
3545
3546Returns new Geospatial data object representing points
3547\emph{out}side specified polygon.
3548\end{methoddesc}
3549
3550
3551\section{pmesh GUI}
3552The program \code{graphical\_mesh\_generator.py} in the pmesh module
3553allows the user to set up the mesh of the problem interactively.
3554It can be used to build the outline of a mesh or to visualise a mesh
3555automatically generated.
3556
3557Pmesh will let the user select various modes. The current allowable
3558modes are vertex, segment, hole or region.  The mode describes what
3559sort of object is added or selected in response to mouse clicks.  When
3560changing modes any prior selected objects become deselected.
3561
3562In general the left mouse button will add an object and the right
3563mouse button will select an object.  A selected object can de deleted
3564by pressing the the middle mouse button (scroll bar).
3565
3566\section{alpha\_shape}
3567\emph{Alpha shapes} are used to generate close-fitting boundaries
3568around sets of points. The alpha shape algorithm produces a shape
3569that approximates to the `shape formed by the points'---or the shape
3570that would be seen by viewing the points from a coarse enough
3571resolution. For the simplest types of point sets, the alpha shape
3572reduces to the more precise notion of the convex hull. However, for
3573many sets of points the convex hull does not provide a close fit and
3574the alpha shape usually fits more closely to the original point set,
3575offering a better approximation to the shape being sought.
3576
3577In \anuga, an alpha shape is used to generate a polygonal boundary
3578around a set of points before mesh generation. The algorithm uses a
3579parameter $\alpha$ that can be adjusted to make the resultant shape
3580resemble the shape suggested by intuition more closely. An alpha
3581shape can serve as an initial boundary approximation that the user
3582can adjust as needed.
3583
3584The following paragraphs describe the class used to model an alpha
3585shape and some of the important methods and attributes associated
3586with instances of this class.
3587
3588\begin{classdesc}{Alpha\_Shape}{points, alpha = None}
3589Module: \code{alpha\_shape}
3590
3591To instantiate this class the user supplies the points from which
3592the alpha shape is to be created (in the form of a list of 2-tuples
3593\code{[[x1, y1],[x2, y2]}\ldots\code{]}, assigned to the parameter
3594\code{points}) and, optionally, a value for the parameter
3595\code{alpha}. The alpha shape is then computed and the user can then
3596retrieve details of the boundary through the attributes defined for
3597the class.
3598\end{classdesc}
3599
3600
3601\begin{funcdesc}{alpha\_shape\_via\_files}{point_file, boundary_file, alpha= None}
3602Module: \code{alpha\_shape}
3603
3604This function reads points from the specified point file
3605\code{point\_file}, computes the associated alpha shape (either
3606using the specified value for \code{alpha} or, if no value is
3607specified, automatically setting it to an optimal value) and outputs
3608the boundary to a file named \code{boundary\_file}. This output file
3609lists the coordinates \code{x, y} of each point in the boundary,
3610using one line per point.
3611\end{funcdesc}
3612
3613
3614\begin{methoddesc}{set\_boundary\_type}{self,raw_boundary=True,
3615                          remove_holes=False,
3616                          smooth_indents=False,
3617                          expand_pinch=False,
3618                          boundary_points_fraction=0.2}
3619Module: \code{alpha\_shape},  Class: \class{Alpha\_Shape}
3620
3621This function sets flags that govern the operation of the algorithm
3622that computes the boundary, as follows:
3623
3624\code{raw\_boundary = True} returns raw boundary, i.e. the regular edges of the
3625                alpha shape.\\
3626\code{remove\_holes = True} removes small holes (`small' is defined by
3627\code{boundary\_points\_fraction})\\
3628\code{smooth\_indents = True} removes sharp triangular indents in
3629boundary\\
3630\code{expand\_pinch = True} tests for pinch-off and
3631corrects---preventing a boundary vertex from having more than two edges.
3632\end{methoddesc}
3633
3634
3635\begin{methoddesc}{get\_boundary}{}
3636Module: \code{alpha\_shape},  Class: \class{Alpha\_Shape}
3637
3638Returns a list of tuples representing the boundary of the alpha
3639shape. Each tuple represents a segment in the boundary by providing
3640the indices of its two endpoints.
3641\end{methoddesc}
3642
3643
3644\begin{methoddesc}{write\_boundary}{file_name}
3645Module: \code{alpha\_shape},  Class: \class{Alpha\_Shape}
3646
3647Writes the list of 2-tuples returned by \code{get\_boundary} to the
3648file \code{file\_name}, using one line per tuple.
3649\end{methoddesc}
3650
3651\section{Numerical Tools}
3652
3653The following table describes some useful numerical functions that
3654may be found in the module \module{utilities.numerical\_tools}:
3655
3656\begin{tabular}{|p{8cm} p{8cm}|}  \hline
3657\code{angle(v1, v2=None)} & Angle between two-dimensional vectors
3658\code{v1} and \code{v2}, or between \code{v1} and the $x$-axis if
3659\code{v2} is \code{None}. Value is in range $0$ to $2\pi$. \\
3660
3661\code{normal\_vector(v)} & Normal vector to \code{v}.\\
3662
3663\code{mean(x)} & Mean value of a vector \code{x}.\\
3664
3665\code{cov(x, y=None)} & Covariance of vectors \code{x} and \code{y}.
3666If \code{y} is \code{None}, returns \code{cov(x, x)}.\\
3667
3668\code{err(x, y=0, n=2, relative=True)} & Relative error of
3669$\parallel$\code{x}$-$\code{y}$\parallel$ to
3670$\parallel$\code{y}$\parallel$ (2-norm if \code{n} = 2 or Max norm
3671if \code{n} = \code{None}). If denominator evaluates to zero or if
3672\code{y}
3673is omitted or if \code{relative = False}, absolute error is returned.\\
3674
3675\code{norm(x)} & 2-norm of \code{x}.\\
3676
3677\code{corr(x, y=None)} & Correlation of \code{x} and \code{y}. If
3678\code{y} is \code{None} returns autocorrelation of \code{x}.\\
3679
3680\code{ensure\_numeric(A, typecode = None)} & Returns a Numeric array
3681for any sequence \code{A}. If \code{A} is already a Numeric array it
3682will be returned unaltered. Otherwise, an attempt is made to convert
3683it to a Numeric array. (Needed because \code{array(A)} can
3684cause memory overflow.)\\
3685
3686\code{histogram(a, bins, relative=False)} & Standard histogram. If
3687\code{relative} is \code{True}, values will be normalised against
3688the total and thus represent frequencies rather than counts.\\
3689
3690\code{create\_bins(data, number\_of\_bins = None)} & Safely create
3691bins for use with histogram. If \code{data} contains only one point
3692or is constant, one bin will be created. If \code{number\_of\_bins}
3693is omitted, 10 bins will be created.\\  \hline
3694
3695\end{tabular}
3696
3697
3698\chapter{Modules available in \anuga}
3699
3700
3701\section{\module{abstract\_2d\_finite\_volumes.general\_mesh} }
3702\declaremodule[generalmesh]{}{general\_mesh}
3703\label{mod:generalmesh}
3704
3705\section{\module{abstract\_2d\_finite\_volumes.neighbour\_mesh} }
3706\declaremodule[neighbourmesh]{}{neighbour\_mesh}
3707\label{mod:neighbourmesh}
3708
3709\section{\module{abstract\_2d\_finite\_volumes.domain} --- Generic module for 2D triangular domains for finite-volume computations of conservation laws}
3710\declaremodule{}{domain}
3711\label{mod:domain}
3712
3713
3714\section{\module{abstract\_2d\_finite\_volumes.quantity}}
3715\declaremodule{}{quantity}
3716\label{mod:quantity}
3717
3718\begin{verbatim}
3719Class Quantity - Implements values at each triangular element
3720
3721To create:
3722
3723   Quantity(domain, vertex_values)
3724
3725   domain: Associated domain structure. Required.
3726
3727   vertex_values: N x 3 array of values at each vertex for each element.
3728                  Default None
3729
3730   If vertex_values are None Create array of zeros compatible with domain.
3731   Otherwise check that it is compatible with dimenions of domain.
3732   Otherwise raise an exception
3733
3734\end{verbatim}
3735
3736
3737
3738
3739\section{\module{shallow\_water} --- 2D triangular domains for finite-volume
3740computations of the shallow water wave equation. This module contains a specialisation
3741of class Domain from module domain.py consisting of methods specific to the Shallow Water
3742Wave Equation
3743}
3744\declaremodule[shallowwater]{}{shallow\_water}
3745\label{mod:shallowwater}
3746
3747
3748
3749
3750%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3751
3752\chapter{Frequently Asked Questions}
3753
3754
3755\section{General Questions}
3756
3757\subsubsection{What is \anuga?}
3758It is a software package suitable for simulating 2D water flows in
3759complex geometries.
3760
3761\subsubsection{Why is it called \anuga?}
3762The software was developed in collaboration between the
3763Australian National University (ANU) and Geoscience Australia (GA).
3764
3765\subsubsection{How do I obtain a copy of \anuga?}
3766See \url{https://datamining.anu.edu.au/anuga} for all things ANUGA.
3767
3768%\subsubsection{What developments are expected for \anuga in the future?}
3769%This
3770
3771\subsubsection{Are there any published articles about \anuga that I can reference?}
3772See \url{https://datamining.anu.edu.au/anuga} for links.
3773
3774
3775\section{Modelling Questions}
3776
3777\subsubsection{Which type of problems are \anuga good for?}
3778General 2D waterflows in complex geometries such as
3779dam breaks, flows amoung structurs, coastal inundation etc.
3780
3781\subsubsection{Which type of problems are beyond the scope of \anuga?}
3782See Chapter \ref{ch:limitations}.
3783
3784\subsubsection{Can I start the simulation at an arbitrary time?}
3785Yes, using \code{domain.set\_time()} you can specify an arbitrary
3786starting time. This is for example useful in conjunction with a
3787file\_boundary, which may start hours before anything hits the model
3788boundary. By assigning a later time for the model to start,
3789computational resources aren't wasted.
3790
3791\subsubsection{Can I change values for any quantity during the simulation?}
3792Yes, using \code{domain.set\_quantity()} inside the domain.evolve
3793loop you can change values of any quantity. This is for example
3794useful if you wish to let the system settle for a while before
3795assigning an initial condition. Another example would be changing
3796the values for elevation to model e.g. erosion.
3797
3798\subsubsection{Can I change boundary conditions during the simulation?}
3799Yes - see example on page \pageref{sec:change boundary code} in Section
3800\ref{sec:change boundary}.
3801
3802\subsubsection{How do I access model time during the simulation?}
3803The variable \code{t} in the evolve for loop is the model time.
3804For example to change the boundary at a particular time (instead of basing this on the state of the system as in Section \ref{sec:change boundary})
3805one would write something like
3806{\small \begin{verbatim}
3807    for t in domain.evolve(yieldstep = 0.2, duration = 40.0):
3808
3809        if Numeric.allclose(t, 15):
3810            print 'Changing boundary to outflow'
3811            domain.set_boundary({'right': Bo})
3812
3813\end{verbatim}}
3814The model time can also be accessed through the public interface \code{domain.get\_time()}, or changed (at your own peril) through \code{domain.set\_time()}.
3815
3816
3817\subsubsection{Why does a file\_function return a list of numbers when evaluated?}
3818Currently, file\_function works by returning values for the conserved
3819quantities \code{stage}, \code{xmomentum} and \code{ymomentum} at a given point in time
3820and space as a triplet. To access e.g.\ \code{stage} one must specify element 0 of the
3821triplet returned by file\_function.
3822
3823\subsubsection{Which diagnostics are available to troubleshoot a simulation?}
3824
3825\subsubsection{How do I use a DEM in my simulation?}
3826You use \code{dem2pts} to convert your DEM to the required .pts format. This .pts file is then called
3827when setting the elevation data to the mesh in \code{domain.set_quantity}
3828
3829\subsubsection{What sort of DEM resolution should I use?}
3830Try and work with the \emph{best} you have available. Onshore DEMs
3831are typically available in 25m, 100m and 250m grids. Note, offshore
3832data is often sparse, or non-existent.
3833
3834\subsubsection{What sort of mesh resolution should I use?}
3835The mesh resolution should be commensurate with your DEM - it does not make sense to put in place a mesh which is finer than your DEM. As an example,
3836if your DEM is on a 25m grid, then the cell resolution should be of the order of 315$m^2$ (this represents half the area of the square grid). Ideally,
3837you need a fine mesh over regions where the DEM changes rapidly, and other areas of significant interest, such as the coast.
3838If meshes are too coarse, discretisation errors in both stage and momentum may lead to unphysical results. All studies should include sensitivity and convergence studies based on different resolutions.
3839
3840
3841\subsubsection{How do I tag interior polygons?}
3842At the moment create_mesh_from_regions does not allow interior
3843polygons with symbolic tags. If tags are needed, the interior
3844polygons must be created subsequently. For example, given a filename
3845of polygons representing solid walls (in Arc Ungenerate format) can
3846be tagged as such using the code snippet:
3847\begin{verbatim}
3848  # Create mesh outline with tags
3849  mesh = create_mesh_from_regions(bounding_polygon,
3850                                  boundary_tags=boundary_tags)
3851  # Add buildings outlines with tags set to 'wall'. This would typically
3852  # bind to a Reflective boundary
3853  mesh.import_ungenerate_file(buildings_filename, tag='wall')
3854
3855  # Generate and write mesh to file
3856  mesh.generate_mesh(maximum_triangle_area=max_area)
3857  mesh.export_mesh_file(mesh_filename)
3858\end{verbatim}
3859
3860Note that a mesh object is returned from \code{create_mesh_from_regions}
3861when file name is omitted.
3862
3863\subsubsection{How often should I store the output?}
3864This will depend on what you are trying to answer with your model and how much memory you have available on your machine. If you need
3865to look in detail at the evolution, then you will need to balance your storage requirements and the duration of the simulation.
3866If the SWW file exceeds 1Gb, another SWW file will be created until the end of the simulation. As an example, to store all the conserved
3867quantities on a mesh with approximately 300000 triangles on a 2 min interval for 5 hours will result in approximately 350Mb SWW file
3868(as for the \file{run\_sydney\_smf.py} example).
3869
3870\subsection{Boundary Conditions}
3871
3872\subsubsection{How do I create a Dirichlet boundary condition?}
3873
3874A Dirichlet boundary condition sets a constant value for the
3875conserved quantities at the boundaries. A list containing
3876the constant values for stage, xmomentum and ymomentum is constructed
3877and used in the function call, e.g. \code{Dirichlet_boundary([0.2,0.,0.])}
3878
3879\subsubsection{How do I know which boundary tags are available?}
3880The method \code{domain.get\_boundary\_tags()} will return a list of
3881available tags for use with
3882\code{domain.set\_boundary\_condition()}.
3883
3884
3885
3886
3887
3888\chapter{Glossary}
3889
3890\begin{tabular}{|lp{10cm}|c|}  \hline
3891%\begin{tabular}{|llll|}  \hline
3892    \emph{Term} & \emph{Definition} & \emph{Page}\\  \hline
3893
3894    \indexedbold{\anuga} & Name of software (joint development between ANU and
3895    GA) & \pageref{def:anuga}\\
3896
3897    \indexedbold{bathymetry} & offshore elevation &\\
3898
3899    \indexedbold{conserved quantity} & conserved (stage, x and y
3900    momentum) & \\
3901
3902%    \indexedbold{domain} & The domain of a function is the set of all input values to the
3903%    function.&\\
3904
3905    \indexedbold{Digital Elevation Model (DEM)} & DEMs are digital files consisting of points of elevations,
3906sampled systematically at equally spaced intervals.& \\
3907
3908    \indexedbold{Dirichlet boundary} & A boundary condition imposed on a differential equation
3909 that specifies the values the solution is to take on the boundary of the
3910 domain. & \pageref{def:dirichlet boundary}\\
3911
3912    \indexedbold{edge} & A triangular cell within the computational mesh can be depicted
3913    as a set of vertices joined by lines (the edges). & \\
3914
3915    \indexedbold{elevation} & refers to bathymetry and topography &\\
3916
3917    \indexedbold{evolution} & integration of the shallow water wave equations
3918    over time &\\
3919
3920    \indexedbold{finite volume method} & The method evaluates the terms in the shallow water
3921    wave equation as fluxes at the surfaces of each finite volume. Because the
3922    flux entering a given volume is identical to that leaving the adjacent volume,
3923    these methods are conservative. Another advantage of the finite volume method is
3924    that it is easily formulated to allow for unstructured meshes. The method is used
3925    in many computational fluid dynamics packages. & \\
3926
3927    \indexedbold{forcing term} & &\\
3928
3929    \indexedbold{flux} & the amount of flow through the volume per unit
3930    time & \\
3931
3932    \indexedbold{grid} & Evenly spaced mesh & \\
3933
3934    \indexedbold{latitude} & The angular distance on a mericlear north and south of the
3935    equator, expressed in degrees and minutes. & \\
3936
3937    \indexedbold{longitude} & The angular distance east or west, between the meridian
3938    of a particular place on Earth and that of the Prime Meridian (located in Greenwich,
3939    England) expressed in degrees or time.& \\
3940
3941    \indexedbold{Manning friction coefficient} & &\\
3942
3943    \indexedbold{mesh} & Triangulation of domain &\\
3944
3945    \indexedbold{mesh file} & A TSH or MSH file & \pageref{def:mesh file}\\
3946
3947    \indexedbold{NetCDF} & &\\
3948
3949    \indexedbold{node} & A point at which edges meet & \\
3950
3951    \indexedbold{northing} & A rectangular (x,y) coordinate measurement of distance
3952    north from a north-south reference line, usually a meridian used as the axis of
3953    origin within a map zone or projection. Northing is a UTM (Universal Transverse
3954    Mercator) coordinate. & \\
3955
3956    \indexedbold{points file} & A PTS or CSV file & \\  \hline
3957
3958    \end{tabular}
3959
3960    \begin{tabular}{|lp{10cm}|c|}  \hline
3961
3962    \indexedbold{polygon} & A sequence of points in the plane. \anuga represents a polygon
3963    either as a list consisting of Python tuples or lists of length 2 or as an $N \times 2$
3964    Numeric array, where $N$ is the number of points.
3965
3966    The unit square, for example, would be represented either as
3967    \code{[ [0,0], [1,0], [1,1], [0,1] ]} or as \code{array( [0,0], [1,0], [1,1],
3968    [0,1] )}.
3969
3970    NOTE: For details refer to the module \module{utilities/polygon.py}. &
3971    \\     \indexedbold{resolution} &  The maximal area of a triangular cell in a
3972    mesh & \\
3973
3974
3975    \indexedbold{reflective boundary} & Models a solid wall. Returns same conserved
3976    quantities as those present in the neighbouring volume but reflected. Specific to the
3977    shallow water equation as it works with the momentum quantities assumed to be the
3978    second and third conserved quantities. & \pageref{def:reflective boundary}\\
3979
3980    \indexedbold{stage} & &\\
3981
3982%    \indexedbold{try this}
3983
3984    \indexedbold{animate} & visualisation tool used with \anuga &
3985    \pageref{sec:animate}\\
3986
3987    \indexedbold{time boundary} & Returns values for the conserved
3988quantities as a function of time. The user must specify
3989the domain to get access to the model time. & \pageref{def:time boundary}\\
3990
3991    \indexedbold{topography} & onshore elevation &\\
3992
3993    \indexedbold{transmissive boundary} & & \pageref{def:transmissive boundary}\\
3994
3995    \indexedbold{vertex} & A point at which edges meet. & \\
3996
3997    \indexedbold{xmomentum} & conserved quantity (note, two-dimensional SWW equations say
3998    only \code{x} and \code{y} and NOT \code{z}) &\\
3999
4000    \indexedbold{ymomentum}  & conserved quantity & \\  \hline
4001
4002    \end{tabular}
4003
4004
4005%The \code{\e appendix} markup need not be repeated for additional
4006%appendices.
4007
4008
4009%
4010%  The ugly "%begin{latexonly}" pseudo-environments are really just to
4011%  keep LaTeX2HTML quiet during the \renewcommand{} macros; they're
4012%  not really valuable.
4013%
4014%  If you don't want the Module Index, you can remove all of this up
4015%  until the second \input line.
4016%
4017
4018%begin{latexonly}
4019%\renewcommand{\indexname}{Module Index}
4020%end{latexonly}
4021\input{mod\jobname.ind}        % Module Index
4022%
4023%begin{latexonly}
4024%\renewcommand{\indexname}{Index}
4025%end{latexonly}
4026\input{\jobname.ind}            % Index
4027
4028
4029
4030\begin{thebibliography}{99}
4031\bibitem[nielsen2005]{nielsen2005}
4032{\it Hydrodynamic modelling of coastal inundation}.
4033Nielsen, O., S. Roberts, D. Gray, A. McPherson and A. Hitchman.
4034In Zerger, A. and Argent, R.M. (eds) MODSIM 2005 International Congress on
4035Modelling and Simulation. Modelling and Simulation Society of Australia and
4036New Zealand, December 2005, pp. 518-523. ISBN: 0-9758400-2-9.\\
4037http://www.mssanz.org.au/modsim05/papers/nielsen.pdf
4038
4039\bibitem[grid250]{grid250}
4040Australian Bathymetry and Topography Grid, June 2005.
4041Webster, M.A. and Petkovic, P.
4042Geoscience Australia Record 2005/12. ISBN: 1-920871-46-2.\\
4043http://www.ga.gov.au/meta/ANZCW0703008022.html
4044
4045\bibitem[ZR1999]{ZR1999}
4046\newblock {Catastrophic Collapse of Water Supply Reservoirs in Urban Areas}.
4047\newblock C.~Zoppou and S.~Roberts.
4048\newblock {\em ASCE J. Hydraulic Engineering}, 125(7):686--695, 1999.
4049
4050\bibitem[Toro1999]{Toro1992}
4051\newblock Riemann problems and the waf method for solving the two-dimensional
4052  shallow water equations.
4053\newblock E.~F. Toro.
4054\newblock {\em Philosophical Transactions of the Royal Society, Series A},
4055  338:43--68, 1992.
4056 
4057\bibitem{KurNP2001}
4058\newblock Semidiscrete central-upwind schemes for hyperbolic conservation laws
4059  and hamilton-jacobi equations.
4060\newblock A.~Kurganov, S.~Noelle, and G.~Petrova.
4061\newblock {\em SIAM Journal of Scientific Computing}, 23(3):707--740, 2001.
4062\end{thebibliography}{99}
4063
4064\end{document}
Note: See TracBrowser for help on using the repository browser.