1 | """Simple water flow example using ANUGA |
---|
2 | |
---|
3 | Water flowing down a channel with more complex topography |
---|
4 | """ |
---|
5 | |
---|
6 | #------------------------------------------------------------------------------ |
---|
7 | # Import necessary modules |
---|
8 | #------------------------------------------------------------------------------ |
---|
9 | from anuga.abstract_2d_finite_volumes.mesh_factory import rectangular_cross |
---|
10 | from anuga.shallow_water import Domain |
---|
11 | from anuga.shallow_water import Reflective_boundary |
---|
12 | from anuga.shallow_water import Dirichlet_boundary |
---|
13 | from anuga.shallow_water import Time_boundary |
---|
14 | |
---|
15 | |
---|
16 | #------------------------------------------------------------------------------ |
---|
17 | # Setup computational domain |
---|
18 | #------------------------------------------------------------------------------ |
---|
19 | length = 40. |
---|
20 | width = 5. |
---|
21 | dx = dy = 1 # Resolution: Length of subdivisions on both axes |
---|
22 | #dx = dy = .1 # Resolution: Length of subdivisions on both axes |
---|
23 | |
---|
24 | points, vertices, boundary = rectangular_cross(int(length/dx), int(width/dy), |
---|
25 | len1=length, len2=width) |
---|
26 | domain = Domain(points, vertices, boundary) |
---|
27 | domain.set_name('channel_3') # Output name |
---|
28 | |
---|
29 | |
---|
30 | #------------------------------------------------------------------------------ |
---|
31 | # Setup initial conditions |
---|
32 | #------------------------------------------------------------------------------ |
---|
33 | def topography(x,y): |
---|
34 | """Complex topography defined by a function of vectors x and y |
---|
35 | """ |
---|
36 | |
---|
37 | z = -x/10 |
---|
38 | |
---|
39 | N = len(x) |
---|
40 | for i in range(N): |
---|
41 | |
---|
42 | #Step |
---|
43 | if 10 < x[i] < 12: |
---|
44 | z[i] += 0.4 - 0.05*y[i] |
---|
45 | |
---|
46 | #Constriction |
---|
47 | if 27 < x[i] < 29 and y[i] > 3: |
---|
48 | z[i] += 2 |
---|
49 | |
---|
50 | # Pole |
---|
51 | if (x[i] - 34)**2 + (y[i] - 2)**2 < 0.4**2: |
---|
52 | z[i] += 2 |
---|
53 | |
---|
54 | return z |
---|
55 | |
---|
56 | |
---|
57 | domain.set_quantity('elevation', topography) # Use function for elevation |
---|
58 | domain.set_quantity('friction', 0.01) # Constant friction |
---|
59 | domain.set_quantity('stage', |
---|
60 | expression='elevation') # Dry initial condition |
---|
61 | |
---|
62 | |
---|
63 | #------------------------------------------------------------------------------ |
---|
64 | # Setup boundary conditions |
---|
65 | #------------------------------------------------------------------------------ |
---|
66 | Bi = Dirichlet_boundary([0.4, 0, 0]) # Inflow |
---|
67 | Br = Reflective_boundary(domain) # Solid reflective wall |
---|
68 | Bo = Dirichlet_boundary([-5, 0, 0]) # Outflow |
---|
69 | |
---|
70 | domain.set_boundary({'left': Bi, 'right': Bo, 'top': Br, 'bottom': Br}) |
---|
71 | |
---|
72 | |
---|
73 | #------------------------------------------------------------------------------ |
---|
74 | # Evolve system through time |
---|
75 | #------------------------------------------------------------------------------ |
---|
76 | for t in domain.evolve(yieldstep = 0.2, finaltime = 16.0): |
---|
77 | domain.write_time() |
---|
78 | |
---|
79 | |
---|