1 | |
---|
2 | from Numeric import concatenate, reshape, take, allclose |
---|
3 | from Numeric import array, zeros, Int, Float, sqrt, sum, arange |
---|
4 | |
---|
5 | from anuga.coordinate_transforms.geo_reference import Geo_reference |
---|
6 | |
---|
7 | class General_mesh: |
---|
8 | """Collection of 2D triangular elements |
---|
9 | |
---|
10 | A triangular element is defined in terms of three vertex ids, |
---|
11 | ordered counter clock-wise, each corresponding to a given node |
---|
12 | which is represented as a coordinate set (x,y). |
---|
13 | Vertices from different triangles can point to the same node. |
---|
14 | The nodes are implemented as an Nx2 Numeric array containing the |
---|
15 | x and y coordinates. |
---|
16 | |
---|
17 | |
---|
18 | To instantiate: |
---|
19 | Mesh(nodes, triangles) |
---|
20 | |
---|
21 | where |
---|
22 | |
---|
23 | nodes is either a list of 2-tuples or an Nx2 Numeric array of |
---|
24 | floats representing all x, y coordinates in the mesh. |
---|
25 | |
---|
26 | triangles is either a list of 3-tuples or an Mx3 Numeric array of |
---|
27 | integers representing indices of all vertices in the mesh. |
---|
28 | Each vertex is identified by its index i in [0, N-1]. |
---|
29 | |
---|
30 | |
---|
31 | Example: |
---|
32 | |
---|
33 | a = [0.0, 0.0] |
---|
34 | b = [0.0, 2.0] |
---|
35 | c = [2.0,0.0] |
---|
36 | e = [2.0, 2.0] |
---|
37 | |
---|
38 | nodes = [a, b, c, e] |
---|
39 | triangles = [ [1,0,2], [1,2,3] ] # bac, bce |
---|
40 | |
---|
41 | # Create mesh with two triangles: bac and bce |
---|
42 | mesh = Mesh(nodes, triangles) |
---|
43 | |
---|
44 | |
---|
45 | |
---|
46 | Other: |
---|
47 | |
---|
48 | In addition mesh computes an Mx6 array called vertex_coordinates. |
---|
49 | This structure is derived from coordinates and contains for each |
---|
50 | triangle the three x,y coordinates at the vertices. |
---|
51 | |
---|
52 | See neighbourmesh.py for a specialisation of the general mesh class |
---|
53 | which includes information about neighbours and the mesh boundary. |
---|
54 | |
---|
55 | The mesh object is purely geometrical and contains no information |
---|
56 | about quantities defined on the mesh. |
---|
57 | |
---|
58 | """ |
---|
59 | |
---|
60 | #FIXME: It would be a good idea to use geospatial data as an alternative |
---|
61 | #input |
---|
62 | def __init__(self, nodes, triangles, |
---|
63 | geo_reference=None, |
---|
64 | number_of_full_nodes=None, |
---|
65 | number_of_full_triangles=None, |
---|
66 | verbose=False): |
---|
67 | """Build triangular 2d mesh from nodes and triangle information |
---|
68 | |
---|
69 | Input: |
---|
70 | |
---|
71 | nodes: x,y coordinates represented as a sequence of 2-tuples or |
---|
72 | a Nx2 Numeric array of floats. |
---|
73 | |
---|
74 | triangles: sequence of 3-tuples or Mx3 Numeric array of |
---|
75 | non-negative integers representing indices into |
---|
76 | the nodes array. |
---|
77 | |
---|
78 | georeference (optional): If specified coordinates are |
---|
79 | assumed to be relative to this origin. |
---|
80 | |
---|
81 | |
---|
82 | number_of_full_nodes and number_of_full_triangles relate to |
---|
83 | parallelism when each mesh has an extra layer of ghost points and |
---|
84 | ghost triangles attached to the end of the two arrays. |
---|
85 | In this case it is usefull to specify the number of real (called full) |
---|
86 | nodes and triangles. If omitted they will default to all. |
---|
87 | |
---|
88 | """ |
---|
89 | |
---|
90 | if verbose: print 'General_mesh: Building basic mesh structure' |
---|
91 | |
---|
92 | self.triangles = array(triangles, Int) |
---|
93 | self.nodes = array(nodes, Float) |
---|
94 | |
---|
95 | |
---|
96 | # Register number of elements and nodes |
---|
97 | self.number_of_triangles = N = self.triangles.shape[0] |
---|
98 | self.number_of_nodes = self.nodes.shape[0] |
---|
99 | |
---|
100 | |
---|
101 | |
---|
102 | if number_of_full_nodes is None: |
---|
103 | self.number_of_full_nodes = self.number_of_nodes |
---|
104 | else: |
---|
105 | assert int(number_of_full_nodes) |
---|
106 | self.number_of_full_nodes = number_of_full_nodes |
---|
107 | |
---|
108 | |
---|
109 | if number_of_full_triangles is None: |
---|
110 | self.number_of_full_triangles = self.number_of_triangles |
---|
111 | else: |
---|
112 | assert int(number_of_full_triangles) |
---|
113 | self.number_of_full_triangles = number_of_full_triangles |
---|
114 | |
---|
115 | |
---|
116 | #print self.number_of_full_nodes, self.number_of_nodes |
---|
117 | #print self.number_of_full_triangles, self.number_of_triangles |
---|
118 | |
---|
119 | |
---|
120 | |
---|
121 | # FIXME: this stores a geo_reference, but when coords are returned |
---|
122 | # This geo_ref is not taken into account! |
---|
123 | if geo_reference is None: |
---|
124 | self.geo_reference = Geo_reference() #Use defaults |
---|
125 | else: |
---|
126 | self.geo_reference = geo_reference |
---|
127 | |
---|
128 | # Input checks |
---|
129 | msg = 'Triangles must an Mx3 Numeric array or a sequence of 3-tuples. ' |
---|
130 | msg += 'The supplied array has the shape: %s'\ |
---|
131 | %str(self.triangles.shape) |
---|
132 | assert len(self.triangles.shape) == 2, msg |
---|
133 | |
---|
134 | msg = 'Nodes must an Nx2 Numeric array or a sequence of 2-tuples' |
---|
135 | msg += 'The supplied array has the shape: %s'\ |
---|
136 | %str(self.nodes.shape) |
---|
137 | assert len(self.nodes.shape) == 2, msg |
---|
138 | |
---|
139 | msg = 'Vertex indices reference non-existing coordinate sets' |
---|
140 | assert max(max(self.triangles)) <= self.nodes.shape[0], msg |
---|
141 | |
---|
142 | |
---|
143 | # FIXME: Maybe move to statistics? |
---|
144 | # Or use with get_extent |
---|
145 | xy_extent = [ min(self.nodes[:,0]), min(self.nodes[:,1]) , |
---|
146 | max(self.nodes[:,0]), max(self.nodes[:,1]) ] |
---|
147 | |
---|
148 | self.xy_extent = array(xy_extent, Float) |
---|
149 | |
---|
150 | |
---|
151 | # Allocate space for geometric quantities |
---|
152 | self.normals = zeros((N, 6), Float) |
---|
153 | self.areas = zeros(N, Float) |
---|
154 | self.edgelengths = zeros((N, 3), Float) |
---|
155 | |
---|
156 | # Get x,y coordinates for all triangles and store |
---|
157 | self.vertex_coordinates = V = self.compute_vertex_coordinates() |
---|
158 | |
---|
159 | |
---|
160 | # Initialise each triangle |
---|
161 | if verbose: |
---|
162 | print 'General_mesh: Computing areas, normals and edgelenghts' |
---|
163 | |
---|
164 | for i in range(N): |
---|
165 | if verbose and i % ((N+10)/10) == 0: print '(%d/%d)' %(i, N) |
---|
166 | |
---|
167 | x0, y0 = V[3*i, :] |
---|
168 | x1, y1 = V[3*i+1, :] |
---|
169 | x2, y2 = V[3*i+2, :] |
---|
170 | |
---|
171 | # Area |
---|
172 | self.areas[i] = abs((x1*y0-x0*y1)+(x2*y1-x1*y2)+(x0*y2-x2*y0))/2 |
---|
173 | |
---|
174 | msg = 'Triangle (%f,%f), (%f,%f), (%f, %f)' %(x0,y0,x1,y1,x2,y2) |
---|
175 | msg += ' is degenerate: area == %f' %self.areas[i] |
---|
176 | assert self.areas[i] > 0.0, msg |
---|
177 | |
---|
178 | |
---|
179 | # Normals |
---|
180 | # The normal vectors |
---|
181 | # - point outward from each edge |
---|
182 | # - are orthogonal to the edge |
---|
183 | # - have unit length |
---|
184 | # - Are enumerated according to the opposite corner: |
---|
185 | # (First normal is associated with the edge opposite |
---|
186 | # the first vertex, etc) |
---|
187 | # - Stored as six floats n0x,n0y,n1x,n1y,n2x,n2y per triangle |
---|
188 | |
---|
189 | n0 = array([x2 - x1, y2 - y1]) |
---|
190 | l0 = sqrt(sum(n0**2)) |
---|
191 | |
---|
192 | n1 = array([x0 - x2, y0 - y2]) |
---|
193 | l1 = sqrt(sum(n1**2)) |
---|
194 | |
---|
195 | n2 = array([x1 - x0, y1 - y0]) |
---|
196 | l2 = sqrt(sum(n2**2)) |
---|
197 | |
---|
198 | # Normalise |
---|
199 | n0 /= l0 |
---|
200 | n1 /= l1 |
---|
201 | n2 /= l2 |
---|
202 | |
---|
203 | # Compute and store |
---|
204 | self.normals[i, :] = [n0[1], -n0[0], |
---|
205 | n1[1], -n1[0], |
---|
206 | n2[1], -n2[0]] |
---|
207 | |
---|
208 | # Edgelengths |
---|
209 | self.edgelengths[i, :] = [l0, l1, l2] |
---|
210 | |
---|
211 | |
---|
212 | # Build structure listing which trianglse belong to which nodet. |
---|
213 | if verbose: print 'Building inverted triangle structure' |
---|
214 | self.build_inverted_triangle_structure() |
---|
215 | |
---|
216 | |
---|
217 | |
---|
218 | def __len__(self): |
---|
219 | return self.number_of_triangles |
---|
220 | |
---|
221 | |
---|
222 | def __repr__(self): |
---|
223 | return 'Mesh: %d vertices, %d triangles'\ |
---|
224 | %(self.nodes.shape[0], len(self)) |
---|
225 | |
---|
226 | def get_normals(self): |
---|
227 | """Return all normal vectors. |
---|
228 | Return normal vectors for all triangles as an Nx6 array |
---|
229 | (ordered as x0, y0, x1, y1, x2, y2 for each triangle) |
---|
230 | """ |
---|
231 | return self.normals |
---|
232 | |
---|
233 | |
---|
234 | def get_normal(self, i, j): |
---|
235 | """Return normal vector j of the i'th triangle. |
---|
236 | Return value is the numeric array slice [x, y] |
---|
237 | """ |
---|
238 | return self.normals[i, 2*j:2*j+2] |
---|
239 | |
---|
240 | |
---|
241 | def get_nodes(self, absolute=False): |
---|
242 | """Return all nodes in mesh. |
---|
243 | |
---|
244 | The nodes are ordered in an Nx2 array where N is the number of nodes. |
---|
245 | This is the same format they were provided in the constructor |
---|
246 | i.e. without any duplication. |
---|
247 | |
---|
248 | Boolean keyword argument absolute determines whether coordinates |
---|
249 | are to be made absolute by taking georeference into account |
---|
250 | Default is False as many parts of ANUGA expects relative coordinates. |
---|
251 | (To see which, switch to default absolute=True and run tests). |
---|
252 | """ |
---|
253 | |
---|
254 | N = self.number_of_full_nodes |
---|
255 | V = self.nodes[:N,:] |
---|
256 | if absolute is True: |
---|
257 | if not self.geo_reference.is_absolute(): |
---|
258 | V = self.geo_reference.get_absolute(V) |
---|
259 | |
---|
260 | return V |
---|
261 | |
---|
262 | def get_node(self, i, |
---|
263 | absolute=False): |
---|
264 | """Return node coordinates. |
---|
265 | |
---|
266 | The nodes are ordered in an Nx2 array where N is the number of nodes. |
---|
267 | This is the same format they were provided in the constructor |
---|
268 | i.e. without any duplication. |
---|
269 | |
---|
270 | Boolean keyword argument absolute determines whether coordinates |
---|
271 | are to be made absolute by taking georeference into account |
---|
272 | Default is False as many parts of ANUGA expects relative coordinates. |
---|
273 | (To see which, switch to default absolute=True and run tests). |
---|
274 | """ |
---|
275 | |
---|
276 | |
---|
277 | V = self.nodes[i,:] |
---|
278 | if absolute is True: |
---|
279 | if not self.geo_reference.is_absolute(): |
---|
280 | return V + array([self.geo_reference.get_xllcorner(), |
---|
281 | self.geo_reference.get_yllcorner()]) |
---|
282 | else: |
---|
283 | return V |
---|
284 | else: |
---|
285 | return V |
---|
286 | |
---|
287 | |
---|
288 | |
---|
289 | def get_vertex_coordinates(self, |
---|
290 | triangle_id=None, |
---|
291 | absolute=False): |
---|
292 | """Return vertex coordinates for all triangles. |
---|
293 | |
---|
294 | Return all vertex coordinates for all triangles as a 3*M x 2 array |
---|
295 | where the jth vertex of the ith triangle is located in row 3*i+j and |
---|
296 | M the number of triangles in the mesh. |
---|
297 | |
---|
298 | if triangle_id is specified (an integer) the 3 vertex coordinates |
---|
299 | for triangle_id are returned. |
---|
300 | |
---|
301 | Boolean keyword argument absolute determines whether coordinates |
---|
302 | are to be made absolute by taking georeference into account |
---|
303 | Default is False as many parts of ANUGA expects relative coordinates. |
---|
304 | """ |
---|
305 | |
---|
306 | V = self.vertex_coordinates |
---|
307 | if absolute is True: |
---|
308 | if not self.geo_reference.is_absolute(): |
---|
309 | V = self.geo_reference.get_absolute(V) |
---|
310 | |
---|
311 | if triangle_id is None: |
---|
312 | return V |
---|
313 | else: |
---|
314 | i = triangle_id |
---|
315 | msg = 'triangle_id must be an integer' |
---|
316 | assert int(i) == i, msg |
---|
317 | assert 0 <= i < self.number_of_triangles |
---|
318 | |
---|
319 | i3 = 3*i |
---|
320 | return array([V[i3,:], V[i3+1,:], V[i3+2,:]]) |
---|
321 | |
---|
322 | |
---|
323 | |
---|
324 | def get_vertex_coordinate(self, i, j, absolute=False): |
---|
325 | """Return coordinates for vertex j of the i'th triangle. |
---|
326 | Return value is the numeric array slice [x, y] |
---|
327 | """ |
---|
328 | |
---|
329 | msg = 'vertex id j must be an integer in [0,1,2]' |
---|
330 | assert j in [0,1,2], msg |
---|
331 | |
---|
332 | V = self.get_vertex_coordinates(triangle_id=i, |
---|
333 | absolute=absolute) |
---|
334 | return V[j,:] |
---|
335 | |
---|
336 | |
---|
337 | |
---|
338 | def compute_vertex_coordinates(self): |
---|
339 | """Return all vertex coordinates for all triangles as a 3*M x 2 array |
---|
340 | where the jth vertex of the ith triangle is located in row 3*i+j. |
---|
341 | |
---|
342 | This function is used to precompute this important structure. Use |
---|
343 | get_vertex coordinates to retrieve the points. |
---|
344 | """ |
---|
345 | |
---|
346 | M = self.number_of_triangles |
---|
347 | vertex_coordinates = zeros((3*M, 2), Float) |
---|
348 | |
---|
349 | for i in range(M): |
---|
350 | for j in range(3): |
---|
351 | k = self.triangles[i,j] # Index of vertex j in triangle i |
---|
352 | vertex_coordinates[3*i+j,:] = self.nodes[k] |
---|
353 | |
---|
354 | return vertex_coordinates |
---|
355 | |
---|
356 | |
---|
357 | |
---|
358 | def get_triangles(self, indices=None): |
---|
359 | """Get mesh triangles. |
---|
360 | |
---|
361 | Return Mx3 integer array where M is the number of triangles. |
---|
362 | Each row corresponds to one triangle and the three entries are |
---|
363 | indices into the mesh nodes which can be obtained using the method |
---|
364 | get_nodes() |
---|
365 | |
---|
366 | Optional argument, indices is the set of triangle ids of interest. |
---|
367 | """ |
---|
368 | |
---|
369 | M = self.number_of_full_triangles |
---|
370 | |
---|
371 | if indices is None: |
---|
372 | indices = range(M) |
---|
373 | |
---|
374 | return take(self.triangles, indices) |
---|
375 | |
---|
376 | |
---|
377 | |
---|
378 | def get_disconnected_triangles(self): |
---|
379 | """Get mesh based on nodes obtained from get_vertex_coordinates. |
---|
380 | |
---|
381 | Return array Mx3 array of integers where each row corresponds to |
---|
382 | a triangle. A triangle is a triplet of indices into |
---|
383 | point coordinates obtained from get_vertex_coordinates and each |
---|
384 | index appears only once |
---|
385 | |
---|
386 | This provides a mesh where no triangles share nodes |
---|
387 | (hence the name disconnected triangles) and different |
---|
388 | nodes may have the same coordinates. |
---|
389 | |
---|
390 | This version of the mesh is useful for storing meshes with |
---|
391 | discontinuities at each node and is e.g. used for storing |
---|
392 | data in sww files. |
---|
393 | |
---|
394 | The triangles created will have the format |
---|
395 | |
---|
396 | [[0,1,2], |
---|
397 | [3,4,5], |
---|
398 | [6,7,8], |
---|
399 | ... |
---|
400 | [3*M-3 3*M-2 3*M-1]] |
---|
401 | """ |
---|
402 | |
---|
403 | M = len(self) # Number of triangles |
---|
404 | K = 3*M # Total number of unique vertices |
---|
405 | |
---|
406 | #T = reshape(array(range(K)).astype(Int), (M,3)) |
---|
407 | T = reshape(arange(K).astype(Int), (M,3)) # Faster |
---|
408 | |
---|
409 | return T |
---|
410 | |
---|
411 | |
---|
412 | |
---|
413 | def get_unique_vertices(self, indices=None): |
---|
414 | """FIXME(Ole): This function needs a docstring |
---|
415 | """ |
---|
416 | triangles = self.get_triangles(indices=indices) |
---|
417 | unique_verts = {} |
---|
418 | for triangle in triangles: |
---|
419 | unique_verts[triangle[0]] = 0 |
---|
420 | unique_verts[triangle[1]] = 0 |
---|
421 | unique_verts[triangle[2]] = 0 |
---|
422 | return unique_verts.keys() |
---|
423 | |
---|
424 | |
---|
425 | def get_triangles_and_vertices_per_node(self, node=None): |
---|
426 | """Get triangles associated with given node. |
---|
427 | |
---|
428 | Return list of triangle_ids, vertex_ids for specified node. |
---|
429 | If node in None or absent, this information will be returned |
---|
430 | for all (full) nodes in a list L where L[v] is the triangle |
---|
431 | list for node v. |
---|
432 | """ |
---|
433 | |
---|
434 | triangle_list = [] |
---|
435 | if node is not None: |
---|
436 | # Get index for this node |
---|
437 | first = sum(self.number_of_triangles_per_node[:node]) |
---|
438 | |
---|
439 | # Get number of triangles for this node |
---|
440 | count = self.number_of_triangles_per_node[node] |
---|
441 | |
---|
442 | for i in range(count): |
---|
443 | index = self.vertex_value_indices[first+i] |
---|
444 | |
---|
445 | volume_id = index / 3 |
---|
446 | vertex_id = index % 3 |
---|
447 | |
---|
448 | triangle_list.append( (volume_id, vertex_id) ) |
---|
449 | |
---|
450 | triangle_list = array(triangle_list) |
---|
451 | else: |
---|
452 | # Get info for all nodes recursively. |
---|
453 | # If need be, we can speed this up by |
---|
454 | # working directly with the inverted triangle structure |
---|
455 | for i in range(self.number_of_full_nodes): |
---|
456 | |
---|
457 | L = self.get_triangles_and_vertices_per_node(node=i) |
---|
458 | |
---|
459 | triangle_list.append(L) |
---|
460 | |
---|
461 | return triangle_list |
---|
462 | |
---|
463 | |
---|
464 | def build_inverted_triangle_structure(self): |
---|
465 | """Build structure listing triangles belonging to each node |
---|
466 | |
---|
467 | Two arrays are created and store as mesh attributes |
---|
468 | |
---|
469 | number_of_triangles_per_node: An integer array of length N |
---|
470 | listing for each node how many triangles use it. N is the number of |
---|
471 | nodes in mesh. |
---|
472 | |
---|
473 | vertex_value_indices: An array of length M listing indices into |
---|
474 | triangles ordered by node number. The (triangle_id, vertex_id) |
---|
475 | pairs are obtained from each index as (index/3, index%3) or each |
---|
476 | index can be used directly into a flattened triangles array. This |
---|
477 | is for example the case in the quantity.c where this structure is |
---|
478 | used to average vertex values efficiently. |
---|
479 | |
---|
480 | |
---|
481 | Example: |
---|
482 | |
---|
483 | a = [0.0, 0.0] # node 0 |
---|
484 | b = [0.0, 2.0] # node 1 |
---|
485 | c = [2.0, 0.0] # node 2 |
---|
486 | d = [0.0, 4.0] # node 3 |
---|
487 | e = [2.0, 2.0] # node 4 |
---|
488 | f = [4.0, 0.0] # node 5 |
---|
489 | |
---|
490 | nodes = array([a, b, c, d, e, f]) |
---|
491 | |
---|
492 | #bac, bce, ecf, dbe, daf, dae |
---|
493 | triangles = array([[1,0,2], [1,2,4], [4,2,5], [3,1,4]]) |
---|
494 | |
---|
495 | |
---|
496 | For this structure |
---|
497 | |
---|
498 | number_of_triangles_per_node = [1 3 3 1 3 1] |
---|
499 | which means that node a has 1 triangle associated with it, node b |
---|
500 | has 3, node has 3 and so on. |
---|
501 | |
---|
502 | vertex_value_indices = [ 1 0 3 10 2 4 7 9 5 6 11 8] |
---|
503 | which reflects the fact that |
---|
504 | node 0 is used by triangle 0, vertex 1 (index = 1) |
---|
505 | node 1 is used by triangle 0, vertex 0 (index = 0) |
---|
506 | and by triangle 1, vertex 0 (index = 3) |
---|
507 | and by triangle 3, vertex 1 (index = 10) |
---|
508 | node 2 is used by triangle 0, vertex 2 (index = 2) |
---|
509 | and by triangle 1, vertex 1 (index = 4) |
---|
510 | and by triangle 2, vertex 1 (index = 7) |
---|
511 | node 3 is used by triangle 3, vertex 0 (index = 9) |
---|
512 | node 4 is used by triangle 1, vertex 2 (index = 5) |
---|
513 | and by triangle 2, vertex 0 (index = 6) |
---|
514 | and by triangle 3, vertex 2 (index = 11) |
---|
515 | node 5 is used by triangle 2, vertex 2 (index = 8) |
---|
516 | |
---|
517 | |
---|
518 | Preconditions: |
---|
519 | self.nodes and self.triangles are defined |
---|
520 | |
---|
521 | Postcondition: |
---|
522 | self.number_of_triangles_per_node is built |
---|
523 | self.vertex_value_indices is built |
---|
524 | """ |
---|
525 | |
---|
526 | # Count number of triangles per node |
---|
527 | number_of_triangles_per_node = zeros(self.number_of_full_nodes) |
---|
528 | for volume_id, triangle in enumerate(self.get_triangles()): |
---|
529 | for vertex_id in triangle: |
---|
530 | number_of_triangles_per_node[vertex_id] += 1 |
---|
531 | |
---|
532 | # Allocate space for inverted structure |
---|
533 | number_of_entries = sum(number_of_triangles_per_node) |
---|
534 | vertex_value_indices = zeros(number_of_entries) |
---|
535 | |
---|
536 | # Register (triangle, vertex) indices for each node |
---|
537 | vertexlist = [None]*self.number_of_full_nodes |
---|
538 | for volume_id in range(self.number_of_full_triangles): |
---|
539 | |
---|
540 | a = self.triangles[volume_id, 0] |
---|
541 | b = self.triangles[volume_id, 1] |
---|
542 | c = self.triangles[volume_id, 2] |
---|
543 | |
---|
544 | for vertex_id, node_id in enumerate([a,b,c]): |
---|
545 | if vertexlist[node_id] is None: |
---|
546 | vertexlist[node_id] = [] |
---|
547 | |
---|
548 | vertexlist[node_id].append( (volume_id, vertex_id) ) |
---|
549 | |
---|
550 | |
---|
551 | # Build inverted triangle index array |
---|
552 | k = 0 |
---|
553 | for vertices in vertexlist: |
---|
554 | if vertices is not None: |
---|
555 | for volume_id, vertex_id in vertices: |
---|
556 | vertex_value_indices[k] = 3*volume_id + vertex_id |
---|
557 | |
---|
558 | k += 1 |
---|
559 | |
---|
560 | # Save structure |
---|
561 | self.number_of_triangles_per_node = number_of_triangles_per_node |
---|
562 | self.vertex_value_indices = vertex_value_indices |
---|
563 | |
---|
564 | |
---|
565 | |
---|
566 | |
---|
567 | def get_extent(self, absolute=False): |
---|
568 | """Return min and max of all x and y coordinates |
---|
569 | |
---|
570 | Boolean keyword argument absolute determines whether coordinates |
---|
571 | are to be made absolute by taking georeference into account |
---|
572 | """ |
---|
573 | |
---|
574 | |
---|
575 | |
---|
576 | C = self.get_vertex_coordinates(absolute=absolute) |
---|
577 | X = C[:,0:6:2].copy() |
---|
578 | Y = C[:,1:6:2].copy() |
---|
579 | |
---|
580 | xmin = min(X.flat) |
---|
581 | xmax = max(X.flat) |
---|
582 | ymin = min(Y.flat) |
---|
583 | ymax = max(Y.flat) |
---|
584 | #print "C",C |
---|
585 | return xmin, xmax, ymin, ymax |
---|
586 | |
---|
587 | def get_areas(self): |
---|
588 | """Get areas of all individual triangles. |
---|
589 | """ |
---|
590 | return self.areas |
---|
591 | |
---|
592 | def get_area(self): |
---|
593 | """Return total area of mesh |
---|
594 | """ |
---|
595 | |
---|
596 | return sum(self.areas) |
---|
597 | |
---|
598 | |
---|