[4127] | 1 | """Class Quantity - Implements values at each triangular element |
---|
| 2 | |
---|
| 3 | To create: |
---|
| 4 | |
---|
| 5 | Quantity(domain, vertex_values) |
---|
| 6 | |
---|
| 7 | domain: Associated domain structure. Required. |
---|
| 8 | |
---|
| 9 | vertex_values: N x 3 array of values at each vertex for each element. |
---|
| 10 | Default None |
---|
| 11 | |
---|
| 12 | If vertex_values are None Create array of zeros compatible with domain. |
---|
| 13 | Otherwise check that it is compatible with dimenions of domain. |
---|
| 14 | Otherwise raise an exception |
---|
| 15 | """ |
---|
| 16 | |
---|
| 17 | from Numeric import array, zeros, Float, less, concatenate, NewAxis,\ |
---|
[4704] | 18 | argmax, argmin, allclose, take, reshape |
---|
[4130] | 19 | |
---|
[4127] | 20 | from anuga.utilities.numerical_tools import ensure_numeric, is_scalar |
---|
[4583] | 21 | from anuga.utilities.polygon import inside_polygon |
---|
| 22 | |
---|
[4127] | 23 | from anuga.geospatial_data.geospatial_data import Geospatial_data |
---|
[4130] | 24 | from anuga.fit_interpolate.fit import fit_to_mesh |
---|
[4254] | 25 | from anuga.config import points_file_block_line_size as default_block_line_size |
---|
[4127] | 26 | |
---|
| 27 | class Quantity: |
---|
| 28 | |
---|
| 29 | def __init__(self, domain, vertex_values=None): |
---|
| 30 | |
---|
| 31 | from anuga.abstract_2d_finite_volumes.neighbour_mesh import Mesh |
---|
| 32 | |
---|
| 33 | msg = 'First argument in Quantity.__init__ ' |
---|
| 34 | msg += 'must be of class Mesh (or a subclass thereof)' |
---|
| 35 | assert isinstance(domain, Mesh), msg |
---|
| 36 | |
---|
| 37 | if vertex_values is None: |
---|
| 38 | N = len(domain) # number_of_elements |
---|
| 39 | self.vertex_values = zeros((N, 3), Float) |
---|
| 40 | else: |
---|
| 41 | self.vertex_values = array(vertex_values).astype(Float) |
---|
| 42 | |
---|
| 43 | N, V = self.vertex_values.shape |
---|
| 44 | assert V == 3,\ |
---|
| 45 | 'Three vertex values per element must be specified' |
---|
| 46 | |
---|
| 47 | |
---|
| 48 | msg = 'Number of vertex values (%d) must be consistent with'\ |
---|
| 49 | %N |
---|
| 50 | msg += 'number of elements in specified domain (%d).'\ |
---|
| 51 | %len(domain) |
---|
| 52 | |
---|
| 53 | assert N == len(domain), msg |
---|
| 54 | |
---|
| 55 | self.domain = domain |
---|
| 56 | |
---|
| 57 | #Allocate space for other quantities |
---|
| 58 | self.centroid_values = zeros(N, Float) |
---|
| 59 | self.edge_values = zeros((N, 3), Float) |
---|
| 60 | |
---|
| 61 | #Intialise centroid and edge_values |
---|
| 62 | self.interpolate() |
---|
| 63 | |
---|
| 64 | |
---|
| 65 | |
---|
| 66 | #Methods for operator overloading |
---|
| 67 | def __len__(self): |
---|
| 68 | return self.centroid_values.shape[0] |
---|
| 69 | |
---|
| 70 | |
---|
| 71 | def __neg__(self): |
---|
| 72 | """Negate all values in this quantity giving meaning to the |
---|
| 73 | expression -Q where Q is an instance of class Quantity |
---|
| 74 | """ |
---|
| 75 | |
---|
| 76 | Q = Quantity(self.domain) |
---|
| 77 | Q.set_values(-self.vertex_values) |
---|
| 78 | return Q |
---|
| 79 | |
---|
| 80 | |
---|
| 81 | def __add__(self, other): |
---|
| 82 | """Add to self anything that could populate a quantity |
---|
| 83 | |
---|
| 84 | E.g other can be a constant, an array, a function, another quantity |
---|
| 85 | (except for a filename or points, attributes (for now)) |
---|
| 86 | - see set_values for details |
---|
| 87 | """ |
---|
| 88 | |
---|
| 89 | Q = Quantity(self.domain) |
---|
| 90 | Q.set_values(other) |
---|
| 91 | |
---|
| 92 | result = Quantity(self.domain) |
---|
| 93 | result.set_values(self.vertex_values + Q.vertex_values) |
---|
| 94 | return result |
---|
| 95 | |
---|
| 96 | def __radd__(self, other): |
---|
| 97 | """Handle cases like 7+Q, where Q is an instance of class Quantity |
---|
| 98 | """ |
---|
| 99 | return self + other |
---|
| 100 | |
---|
| 101 | |
---|
| 102 | def __sub__(self, other): |
---|
| 103 | return self + -other #Invoke __neg__ |
---|
| 104 | |
---|
| 105 | def __mul__(self, other): |
---|
| 106 | """Multiply self with anything that could populate a quantity |
---|
| 107 | |
---|
| 108 | E.g other can be a constant, an array, a function, another quantity |
---|
| 109 | (except for a filename or points, attributes (for now)) |
---|
| 110 | - see set_values for details |
---|
| 111 | |
---|
| 112 | Note that if two quantitites q1 and q2 are multiplied, |
---|
| 113 | vertex values are multiplied entry by entry |
---|
| 114 | while centroid and edge values are re-interpolated. |
---|
| 115 | Hence they won't be the product of centroid or edge values |
---|
| 116 | from q1 and q2. |
---|
| 117 | """ |
---|
| 118 | |
---|
| 119 | Q = Quantity(self.domain) |
---|
| 120 | Q.set_values(other) |
---|
| 121 | |
---|
| 122 | result = Quantity(self.domain) |
---|
| 123 | result.set_values(self.vertex_values * Q.vertex_values) |
---|
| 124 | return result |
---|
| 125 | |
---|
| 126 | def __rmul__(self, other): |
---|
| 127 | """Handle cases like 3*Q, where Q is an instance of class Quantity |
---|
| 128 | """ |
---|
| 129 | return self * other |
---|
| 130 | |
---|
| 131 | def __pow__(self, other): |
---|
| 132 | """Raise quantity to (numerical) power |
---|
| 133 | |
---|
| 134 | As with __mul__ vertex values are processed entry by entry |
---|
| 135 | while centroid and edge values are re-interpolated. |
---|
| 136 | |
---|
| 137 | Example using __pow__: |
---|
| 138 | Q = (Q1**2 + Q2**2)**0.5 |
---|
| 139 | |
---|
| 140 | """ |
---|
| 141 | |
---|
| 142 | result = Quantity(self.domain) |
---|
| 143 | result.set_values(self.vertex_values**other) |
---|
| 144 | return result |
---|
| 145 | |
---|
| 146 | |
---|
| 147 | |
---|
| 148 | def interpolate(self): |
---|
| 149 | """Compute interpolated values at edges and centroid |
---|
| 150 | Pre-condition: vertex_values have been set |
---|
| 151 | """ |
---|
| 152 | |
---|
| 153 | N = self.vertex_values.shape[0] |
---|
| 154 | for i in range(N): |
---|
| 155 | v0 = self.vertex_values[i, 0] |
---|
| 156 | v1 = self.vertex_values[i, 1] |
---|
| 157 | v2 = self.vertex_values[i, 2] |
---|
| 158 | |
---|
| 159 | self.centroid_values[i] = (v0 + v1 + v2)/3 |
---|
| 160 | |
---|
| 161 | self.interpolate_from_vertices_to_edges() |
---|
| 162 | |
---|
| 163 | |
---|
| 164 | def interpolate_from_vertices_to_edges(self): |
---|
| 165 | #Call correct module function |
---|
| 166 | #(either from this module or C-extension) |
---|
| 167 | interpolate_from_vertices_to_edges(self) |
---|
| 168 | |
---|
| 169 | |
---|
| 170 | |
---|
| 171 | |
---|
| 172 | #New leaner interface to setting values |
---|
| 173 | def set_values(self, |
---|
| 174 | numeric = None, # List, numeric array or constant |
---|
| 175 | quantity = None, # Another quantity |
---|
| 176 | function = None, # Callable object: f(x,y) |
---|
| 177 | geospatial_data = None, # Arbitrary dataset |
---|
| 178 | points = None, values = None, data_georef = None, #Input |
---|
| 179 | # for fit (obsoleted by use of geo_spatial object) |
---|
| 180 | filename = None, attribute_name = None, #Input from file |
---|
| 181 | alpha = None, |
---|
| 182 | location = 'vertices', |
---|
[4579] | 183 | polygon = None, |
---|
[4127] | 184 | indices = None, |
---|
| 185 | verbose = False, |
---|
| 186 | use_cache = False): |
---|
| 187 | |
---|
| 188 | """Set values for quantity based on different sources. |
---|
| 189 | |
---|
| 190 | numeric: |
---|
| 191 | Compatible list, Numeric array (see below) or constant. |
---|
| 192 | If callable it will treated as a function (see below) |
---|
| 193 | If instance of another Quantity it will be treated as such. |
---|
| 194 | If geo_spatial object it will be treated as such |
---|
| 195 | |
---|
| 196 | quantity: |
---|
| 197 | Another quantity (compatible quantity, e.g. obtained as a |
---|
| 198 | linear combination of quantities) |
---|
| 199 | |
---|
| 200 | function: |
---|
| 201 | Any callable object that takes two 1d arrays x and y |
---|
| 202 | each of length N and returns an array also of length N. |
---|
| 203 | The function will be evaluated at points determined by |
---|
| 204 | location and indices in the underlying mesh. |
---|
| 205 | |
---|
| 206 | geospatial_data: |
---|
| 207 | Arbitrary geo spatial dataset in the form of the class |
---|
| 208 | Geospatial_data. Mesh points are populated using |
---|
| 209 | fit_interpolate.fit fitting |
---|
| 210 | |
---|
| 211 | points: |
---|
| 212 | Nx2 array of data points for use with fit_interpolate.fit |
---|
| 213 | If points are present, an N array of attribute |
---|
| 214 | values corresponding to |
---|
| 215 | each data point must be present. |
---|
| 216 | (Obsoleted by geospatial_data) |
---|
| 217 | |
---|
| 218 | values: |
---|
| 219 | If points is specified, values is an array of length N containing |
---|
| 220 | attribute values for each point. |
---|
| 221 | (Obsoleted by geospatial_data) |
---|
| 222 | |
---|
| 223 | data_georef: |
---|
| 224 | If points is specified, geo_reference applies to each point. |
---|
| 225 | (Obsoleted by geospatial_data) |
---|
| 226 | |
---|
| 227 | filename: |
---|
| 228 | Name of a points file containing data points and attributes for |
---|
| 229 | use with fit_interpolate.fit. |
---|
| 230 | |
---|
| 231 | attribute_name: |
---|
| 232 | If specified, any array matching that name |
---|
| 233 | will be used. from file or geospatial_data. |
---|
| 234 | Otherwise a default will be used. |
---|
| 235 | |
---|
| 236 | alpha: |
---|
| 237 | Smoothing parameter to be used with fit_interpolate.fit. |
---|
| 238 | See module fit_interpolate.fit for further details about alpha. |
---|
| 239 | Alpha will only be used with points, values or filename. |
---|
| 240 | Otherwise it will be ignored. |
---|
| 241 | |
---|
| 242 | |
---|
| 243 | location: Where values are to be stored. |
---|
| 244 | Permissible options are: vertices, edges, centroids |
---|
| 245 | Default is 'vertices' |
---|
| 246 | |
---|
| 247 | In case of location == 'centroids' the dimension values must |
---|
| 248 | be a list of a Numerical array of length N, |
---|
| 249 | N being the number of elements. |
---|
| 250 | Otherwise it must be of dimension Nx3 |
---|
| 251 | |
---|
| 252 | |
---|
| 253 | The values will be stored in elements following their |
---|
| 254 | internal ordering. |
---|
| 255 | |
---|
| 256 | If location is not 'unique vertices' Indices is the |
---|
| 257 | set of element ids that the operation applies to. |
---|
| 258 | If location is 'unique vertices' Indices is the set |
---|
| 259 | of vertex ids that the operation applies to. |
---|
| 260 | |
---|
| 261 | If selected location is vertices, values for |
---|
| 262 | centroid and edges will be assigned interpolated |
---|
| 263 | values. In any other case, only values for the |
---|
| 264 | specified locations will be assigned and the others |
---|
| 265 | will be left undefined. |
---|
| 266 | |
---|
[4579] | 267 | |
---|
| 268 | polygon: Restrict update of quantity to locations that fall |
---|
| 269 | inside polygon. Polygon works by selecting indices |
---|
| 270 | and calling set_values recursively. |
---|
[4583] | 271 | Polygon mode has only been implemented for |
---|
| 272 | constant values so far. |
---|
[4579] | 273 | |
---|
| 274 | indices: Restrict update of quantity to locations that are |
---|
| 275 | identified by indices (e.g. node ids if location |
---|
| 276 | is 'vertices') |
---|
| 277 | |
---|
[4127] | 278 | verbose: True means that output to stdout is generated |
---|
| 279 | |
---|
| 280 | use_cache: True means that caching of intermediate results is |
---|
| 281 | attempted for fit_interpolate.fit. |
---|
| 282 | |
---|
| 283 | |
---|
| 284 | |
---|
| 285 | |
---|
| 286 | Exactly one of the arguments |
---|
| 287 | numeric, quantity, function, points, filename |
---|
| 288 | must be present. |
---|
| 289 | """ |
---|
| 290 | |
---|
| 291 | from anuga.geospatial_data.geospatial_data import Geospatial_data |
---|
| 292 | from types import FloatType, IntType, LongType, ListType, NoneType |
---|
| 293 | from Numeric import ArrayType |
---|
| 294 | |
---|
[4579] | 295 | |
---|
[4583] | 296 | # Treat special case: Polygon situation |
---|
[4584] | 297 | # Location will be ignored and set to 'centroids' |
---|
[4583] | 298 | # FIXME (Ole): This needs to be generalised and |
---|
| 299 | # perhaps the notion of location and indices simplified |
---|
[4584] | 300 | |
---|
[4583] | 301 | if polygon is not None: |
---|
| 302 | if indices is not None: |
---|
| 303 | msg = 'Only one of polygon and indices can be specified' |
---|
| 304 | raise Exception, msg |
---|
[4579] | 305 | |
---|
[4583] | 306 | msg = 'With polygon selected, set_quantity must provide ' |
---|
| 307 | msg += 'the keyword numeric and it must (currently) be ' |
---|
| 308 | msg += 'a constant.' |
---|
| 309 | if numeric is None: |
---|
| 310 | raise Exception, msg |
---|
| 311 | else: |
---|
| 312 | # Check that numeric is as constant |
---|
| 313 | assert type(numeric) in [FloatType, IntType, LongType], msg |
---|
[4579] | 314 | |
---|
[4583] | 315 | |
---|
| 316 | location = 'centroids' |
---|
| 317 | |
---|
| 318 | |
---|
[4592] | 319 | points = self.domain.get_centroid_coordinates(absolute=True) |
---|
[4583] | 320 | indices = inside_polygon(points, polygon) |
---|
| 321 | |
---|
| 322 | self.set_values_from_constant(numeric, |
---|
| 323 | location, indices, verbose) |
---|
| 324 | |
---|
| 325 | self.extrapolate_first_order() |
---|
| 326 | return |
---|
| 327 | |
---|
| 328 | |
---|
| 329 | |
---|
| 330 | |
---|
| 331 | |
---|
| 332 | |
---|
[4127] | 333 | #General input checks |
---|
| 334 | L = [numeric, quantity, function, geospatial_data, points, filename] |
---|
| 335 | msg = 'Exactly one of the arguments '+\ |
---|
| 336 | 'numeric, quantity, function, geospatial_data, points, '+\ |
---|
| 337 | 'or filename must be present.' |
---|
| 338 | assert L.count(None) == len(L)-1, msg |
---|
| 339 | |
---|
| 340 | |
---|
| 341 | if location not in ['vertices', 'centroids', 'edges', |
---|
| 342 | 'unique vertices']: |
---|
| 343 | msg = 'Invalid location: %s' %location |
---|
[4166] | 344 | raise Exception, msg |
---|
[4127] | 345 | |
---|
| 346 | |
---|
| 347 | msg = 'Indices must be a list or None' |
---|
| 348 | assert type(indices) in [ListType, NoneType, ArrayType], msg |
---|
| 349 | |
---|
| 350 | |
---|
| 351 | if not(points is None and values is None and data_georef is None): |
---|
| 352 | from warnings import warn |
---|
| 353 | |
---|
| 354 | msg = 'Using points, values or data_georef with set_quantity ' |
---|
| 355 | msg += 'is obsolete. Please use a Geospatial_data object instead.' |
---|
| 356 | warn(msg, DeprecationWarning) |
---|
| 357 | |
---|
| 358 | |
---|
| 359 | |
---|
| 360 | #Determine which 'set_values_from_...' to use |
---|
| 361 | |
---|
| 362 | if numeric is not None: |
---|
| 363 | if type(numeric) in [FloatType, IntType, LongType]: |
---|
| 364 | self.set_values_from_constant(numeric, |
---|
| 365 | location, indices, verbose) |
---|
| 366 | elif type(numeric) in [ArrayType, ListType]: |
---|
| 367 | self.set_values_from_array(numeric, |
---|
| 368 | location, indices, verbose) |
---|
| 369 | elif callable(numeric): |
---|
| 370 | self.set_values_from_function(numeric, |
---|
| 371 | location, indices, verbose) |
---|
| 372 | elif isinstance(numeric, Quantity): |
---|
| 373 | self.set_values_from_quantity(numeric, |
---|
| 374 | location, indices, verbose) |
---|
| 375 | elif isinstance(numeric, Geospatial_data): |
---|
| 376 | self.set_values_from_geospatial_data(numeric, |
---|
| 377 | alpha, |
---|
| 378 | location, indices, |
---|
| 379 | verbose = verbose, |
---|
| 380 | use_cache = use_cache) |
---|
| 381 | else: |
---|
| 382 | msg = 'Illegal type for argument numeric: %s' %str(numeric) |
---|
| 383 | raise msg |
---|
| 384 | |
---|
| 385 | elif quantity is not None: |
---|
| 386 | self.set_values_from_quantity(quantity, |
---|
| 387 | location, indices, verbose) |
---|
| 388 | elif function is not None: |
---|
| 389 | msg = 'Argument function must be callable' |
---|
| 390 | assert callable(function), msg |
---|
| 391 | self.set_values_from_function(function, |
---|
| 392 | location, indices, verbose) |
---|
| 393 | elif geospatial_data is not None: |
---|
| 394 | self.set_values_from_geospatial_data(geospatial_data, |
---|
| 395 | alpha, |
---|
| 396 | location, indices, |
---|
| 397 | verbose = verbose, |
---|
| 398 | use_cache = use_cache) |
---|
| 399 | elif points is not None: |
---|
| 400 | print 'The usage of points in set_values will be deprecated.' +\ |
---|
| 401 | 'Please use the geospatial_data object.' |
---|
| 402 | |
---|
| 403 | msg = 'When points are specified, associated values must also be.' |
---|
| 404 | assert values is not None, msg |
---|
| 405 | self.set_values_from_points(points, values, alpha, |
---|
| 406 | location, indices, |
---|
| 407 | data_georef = data_georef, |
---|
| 408 | verbose = verbose, |
---|
| 409 | use_cache = use_cache) |
---|
| 410 | elif filename is not None: |
---|
[4254] | 411 | if hasattr(self.domain, 'points_file_block_line_size'): |
---|
| 412 | max_read_lines = self.domain.points_file_block_line_size |
---|
| 413 | else: |
---|
| 414 | max_read_lines = default_block_line_size |
---|
[4127] | 415 | self.set_values_from_file(filename, attribute_name, alpha, |
---|
| 416 | location, indices, |
---|
| 417 | verbose = verbose, |
---|
[4254] | 418 | max_read_lines=max_read_lines, |
---|
[4127] | 419 | use_cache = use_cache) |
---|
| 420 | else: |
---|
| 421 | raise Exception, 'This can\'t happen :-)' |
---|
| 422 | |
---|
| 423 | |
---|
| 424 | |
---|
| 425 | # Update all locations in triangles |
---|
| 426 | if location == 'vertices' or location == 'unique vertices': |
---|
| 427 | # Intialise centroid and edge_values |
---|
| 428 | self.interpolate() |
---|
| 429 | |
---|
| 430 | if location == 'centroids': |
---|
| 431 | # Extrapolate 1st order - to capture notion of area being specified |
---|
| 432 | self.extrapolate_first_order() |
---|
| 433 | |
---|
| 434 | |
---|
| 435 | |
---|
| 436 | #Specific functions for setting values |
---|
| 437 | def set_values_from_constant(self, X, |
---|
| 438 | location, indices, verbose): |
---|
| 439 | """Set quantity values from specified constant X |
---|
| 440 | """ |
---|
| 441 | |
---|
[4579] | 442 | # FIXME (Ole): Somehow indices refer to centroids |
---|
| 443 | # rather than vertices as default. See unit test |
---|
| 444 | # test_set_vertex_values_using_general_interface_with_subset(self): |
---|
| 445 | |
---|
[4127] | 446 | |
---|
| 447 | if location == 'centroids': |
---|
| 448 | if indices is None: |
---|
| 449 | self.centroid_values[:] = X |
---|
| 450 | else: |
---|
| 451 | #Brute force |
---|
| 452 | for i in indices: |
---|
| 453 | self.centroid_values[i] = X |
---|
| 454 | |
---|
| 455 | elif location == 'edges': |
---|
| 456 | if indices is None: |
---|
| 457 | self.edge_values[:] = X |
---|
| 458 | else: |
---|
| 459 | #Brute force |
---|
| 460 | for i in indices: |
---|
| 461 | self.edge_values[i] = X |
---|
| 462 | |
---|
| 463 | elif location == 'unique vertices': |
---|
| 464 | if indices is None: |
---|
[4478] | 465 | self.edge_values[:] = X #FIXME (Ole): Shouldn't this be vertex_values? |
---|
[4127] | 466 | else: |
---|
| 467 | |
---|
| 468 | #Go through list of unique vertices |
---|
| 469 | for unique_vert_id in indices: |
---|
| 470 | |
---|
[4478] | 471 | triangles = self.domain.get_triangles_and_vertices_per_node(node=unique_vert_id) |
---|
| 472 | |
---|
[4127] | 473 | #In case there are unused points |
---|
[4478] | 474 | if len(triangles) == 0: |
---|
| 475 | continue |
---|
| 476 | |
---|
[4127] | 477 | #Go through all triangle, vertex pairs |
---|
| 478 | #and set corresponding vertex value |
---|
| 479 | for triangle_id, vertex_id in triangles: |
---|
| 480 | self.vertex_values[triangle_id, vertex_id] = X |
---|
| 481 | |
---|
| 482 | #Intialise centroid and edge_values |
---|
| 483 | self.interpolate() |
---|
| 484 | else: |
---|
| 485 | if indices is None: |
---|
| 486 | self.vertex_values[:] = X |
---|
| 487 | else: |
---|
| 488 | #Brute force |
---|
| 489 | for i_vertex in indices: |
---|
| 490 | self.vertex_values[i_vertex] = X |
---|
| 491 | |
---|
| 492 | |
---|
| 493 | |
---|
| 494 | |
---|
| 495 | def set_values_from_array(self, values, |
---|
| 496 | location='vertices', |
---|
| 497 | indices=None, |
---|
| 498 | verbose=False): |
---|
| 499 | """Set values for quantity |
---|
| 500 | |
---|
| 501 | values: Numeric array |
---|
| 502 | location: Where values are to be stored. |
---|
| 503 | Permissible options are: vertices, edges, centroid, unique vertices |
---|
| 504 | Default is 'vertices' |
---|
| 505 | |
---|
| 506 | indices - if this action is carried out on a subset of |
---|
| 507 | elements or unique vertices |
---|
| 508 | The element/unique vertex indices are specified here. |
---|
| 509 | |
---|
| 510 | In case of location == 'centroid' the dimension values must |
---|
| 511 | be a list of a Numerical array of length N, N being the number |
---|
| 512 | of elements. |
---|
| 513 | |
---|
| 514 | Otherwise it must be of dimension Nx3 |
---|
| 515 | |
---|
| 516 | The values will be stored in elements following their |
---|
| 517 | internal ordering. |
---|
| 518 | |
---|
| 519 | If selected location is vertices, values for centroid and edges |
---|
| 520 | will be assigned interpolated values. |
---|
| 521 | In any other case, only values for the specified locations |
---|
| 522 | will be assigned and the others will be left undefined. |
---|
| 523 | """ |
---|
| 524 | |
---|
| 525 | from Numeric import array, Float, Int, allclose |
---|
| 526 | |
---|
| 527 | values = array(values).astype(Float) |
---|
| 528 | |
---|
| 529 | if indices is not None: |
---|
| 530 | indices = array(indices).astype(Int) |
---|
| 531 | msg = 'Number of values must match number of indices' |
---|
| 532 | assert values.shape[0] == indices.shape[0], msg |
---|
| 533 | |
---|
| 534 | N = self.centroid_values.shape[0] |
---|
| 535 | |
---|
| 536 | if location == 'centroids': |
---|
| 537 | assert len(values.shape) == 1, 'Values array must be 1d' |
---|
| 538 | |
---|
| 539 | if indices is None: |
---|
| 540 | msg = 'Number of values must match number of elements' |
---|
| 541 | assert values.shape[0] == N, msg |
---|
| 542 | |
---|
| 543 | self.centroid_values = values |
---|
| 544 | else: |
---|
| 545 | msg = 'Number of values must match number of indices' |
---|
| 546 | assert values.shape[0] == indices.shape[0], msg |
---|
| 547 | |
---|
| 548 | #Brute force |
---|
| 549 | for i in range(len(indices)): |
---|
| 550 | self.centroid_values[indices[i]] = values[i] |
---|
| 551 | |
---|
| 552 | elif location == 'edges': |
---|
| 553 | # FIXME (Ole): No mention of indices here. However, I don't |
---|
| 554 | # think we ever need to set values at edges anyway |
---|
| 555 | assert len(values.shape) == 2, 'Values array must be 2d' |
---|
| 556 | |
---|
| 557 | msg = 'Number of values must match number of elements' |
---|
| 558 | assert values.shape[0] == N, msg |
---|
| 559 | |
---|
| 560 | msg = 'Array must be N x 3' |
---|
| 561 | assert values.shape[1] == 3, msg |
---|
| 562 | |
---|
| 563 | self.edge_values = values |
---|
| 564 | |
---|
| 565 | elif location == 'unique vertices': |
---|
| 566 | assert len(values.shape) == 1 or allclose(values.shape[1:], 1),\ |
---|
| 567 | 'Values array must be 1d' |
---|
| 568 | |
---|
| 569 | self.set_vertex_values(values.flat, indices=indices) |
---|
| 570 | |
---|
| 571 | else: |
---|
| 572 | # Location vertices |
---|
| 573 | if len(values.shape) == 1: |
---|
| 574 | self.set_vertex_values(values, indices=indices) |
---|
| 575 | |
---|
| 576 | elif len(values.shape) == 2: |
---|
| 577 | #Vertex values are given as a triplet for each triangle |
---|
| 578 | |
---|
| 579 | msg = 'Array must be N x 3' |
---|
| 580 | assert values.shape[1] == 3, msg |
---|
| 581 | |
---|
| 582 | if indices is None: |
---|
| 583 | self.vertex_values = values |
---|
| 584 | else: |
---|
| 585 | for element_index, value in map(None, indices, values): |
---|
| 586 | self.vertex_values[element_index] = value |
---|
| 587 | else: |
---|
| 588 | msg = 'Values array must be 1d or 2d' |
---|
| 589 | raise msg |
---|
| 590 | |
---|
| 591 | |
---|
| 592 | def set_values_from_quantity(self, q, |
---|
| 593 | location, indices, verbose): |
---|
| 594 | """Set quantity values from specified quantity instance q |
---|
| 595 | |
---|
| 596 | Location is ignored - vertices will always be used here. |
---|
| 597 | """ |
---|
| 598 | |
---|
| 599 | |
---|
| 600 | A = q.vertex_values |
---|
| 601 | |
---|
| 602 | from Numeric import allclose |
---|
| 603 | msg = 'Quantities are defined on different meshes. '+\ |
---|
| 604 | 'This might be a case for implementing interpolation '+\ |
---|
| 605 | 'between different meshes.' |
---|
| 606 | assert allclose(A.shape, self.vertex_values.shape), msg |
---|
| 607 | |
---|
| 608 | self.set_values(A, location='vertices', |
---|
| 609 | indices=indices, |
---|
| 610 | verbose=verbose) |
---|
| 611 | |
---|
| 612 | |
---|
| 613 | def set_values_from_function(self, f, |
---|
| 614 | location='vertices', |
---|
| 615 | indices=None, |
---|
| 616 | verbose=False): |
---|
| 617 | """Set values for quantity using specified function |
---|
| 618 | |
---|
| 619 | Input |
---|
| 620 | |
---|
| 621 | f: x, y -> z Function where x, y and z are arrays |
---|
| 622 | location: Where values are to be stored. |
---|
| 623 | Permissible options are: vertices, centroid, edges, |
---|
| 624 | unique vertices |
---|
| 625 | Default is "vertices" |
---|
| 626 | indices: |
---|
| 627 | |
---|
| 628 | |
---|
| 629 | """ |
---|
| 630 | |
---|
| 631 | #FIXME: Should check that function returns something sensible and |
---|
| 632 | #raise a meaningfull exception if it returns None for example |
---|
| 633 | |
---|
| 634 | #FIXME: Should supply absolute coordinates |
---|
| 635 | |
---|
| 636 | |
---|
| 637 | # Compute the function values and call set_values again |
---|
| 638 | if location == 'centroids': |
---|
| 639 | if indices is None: |
---|
| 640 | indices = range(len(self)) |
---|
| 641 | |
---|
| 642 | V = take(self.domain.get_centroid_coordinates(), indices) |
---|
| 643 | self.set_values(f(V[:,0], V[:,1]), |
---|
| 644 | location=location, |
---|
| 645 | indices=indices) |
---|
| 646 | |
---|
| 647 | elif location == 'vertices': |
---|
| 648 | |
---|
| 649 | M = self.domain.number_of_triangles |
---|
| 650 | V = self.domain.get_vertex_coordinates() |
---|
| 651 | |
---|
| 652 | x = V[:,0]; y = V[:,1]; |
---|
| 653 | values = f(x, y) |
---|
| 654 | |
---|
| 655 | |
---|
| 656 | # FIXME (Ole): This code should replace all the |
---|
| 657 | # rest of this function and it would work, except |
---|
| 658 | # one unit test in test_region fails. |
---|
| 659 | # If that could be resolved this one will be |
---|
| 660 | # more robust and simple. |
---|
| 661 | |
---|
| 662 | #values = reshape(values, (M,3)) |
---|
| 663 | #self.set_values(values, |
---|
| 664 | # location='vertices', |
---|
| 665 | # indices=indices) |
---|
| 666 | |
---|
| 667 | |
---|
| 668 | # This should be removed |
---|
| 669 | if is_scalar(values): |
---|
| 670 | # Function returned a constant value |
---|
| 671 | self.set_values_from_constant(values, |
---|
| 672 | location, indices, verbose) |
---|
| 673 | return |
---|
| 674 | |
---|
| 675 | # This should be removed |
---|
| 676 | if indices is None: |
---|
| 677 | for j in range(3): |
---|
| 678 | self.vertex_values[:,j] = values[j::3] |
---|
| 679 | else: |
---|
| 680 | #Brute force |
---|
| 681 | for i in indices: |
---|
| 682 | for j in range(3): |
---|
| 683 | self.vertex_values[i,j] = values[3*i+j] |
---|
| 684 | |
---|
| 685 | |
---|
| 686 | else: |
---|
| 687 | raise 'Not implemented: %s' %location |
---|
| 688 | |
---|
| 689 | |
---|
| 690 | |
---|
| 691 | def set_values_from_geospatial_data(self, geospatial_data, alpha, |
---|
| 692 | location, indices, |
---|
| 693 | verbose = False, |
---|
| 694 | use_cache = False): |
---|
| 695 | |
---|
| 696 | #FIXME: Use this function for the time being. Later move code in here |
---|
| 697 | |
---|
| 698 | points = geospatial_data.get_data_points(absolute = False) |
---|
| 699 | values = geospatial_data.get_attributes() |
---|
| 700 | data_georef = geospatial_data.get_geo_reference() |
---|
| 701 | |
---|
| 702 | |
---|
| 703 | |
---|
| 704 | self.set_values_from_points(points, values, alpha, |
---|
| 705 | location, indices, |
---|
| 706 | data_georef = data_georef, |
---|
| 707 | verbose = verbose, |
---|
| 708 | use_cache = use_cache) |
---|
| 709 | |
---|
| 710 | |
---|
| 711 | |
---|
| 712 | def set_values_from_points(self, points, values, alpha, |
---|
| 713 | location, indices, |
---|
| 714 | data_georef = None, |
---|
| 715 | verbose = False, |
---|
| 716 | use_cache = False): |
---|
| 717 | """ |
---|
| 718 | Set quantity values from arbitray data points using |
---|
| 719 | fit_interpolate.fit |
---|
| 720 | """ |
---|
| 721 | |
---|
| 722 | |
---|
| 723 | from anuga.coordinate_transforms.geo_reference import Geo_reference |
---|
| 724 | |
---|
| 725 | |
---|
| 726 | points = ensure_numeric(points, Float) |
---|
| 727 | values = ensure_numeric(values, Float) |
---|
| 728 | |
---|
| 729 | if location != 'vertices': |
---|
| 730 | msg = 'set_values_from_points is only defined for '+\ |
---|
| 731 | 'location=\'vertices\'' |
---|
| 732 | raise ms |
---|
| 733 | |
---|
| 734 | coordinates = self.domain.get_nodes() |
---|
| 735 | triangles = self.domain.triangles #FIXME |
---|
| 736 | |
---|
| 737 | |
---|
| 738 | #Take care of georeferencing |
---|
| 739 | if data_georef is None: |
---|
| 740 | data_georef = Geo_reference() |
---|
| 741 | |
---|
| 742 | |
---|
| 743 | mesh_georef = self.domain.geo_reference |
---|
| 744 | |
---|
| 745 | #print mesh_georef |
---|
| 746 | #print data_georef |
---|
| 747 | #print points |
---|
| 748 | |
---|
| 749 | |
---|
[4569] | 750 | # Call fit_interpolate.fit function |
---|
[4127] | 751 | args = (coordinates, triangles, points, values) |
---|
| 752 | kwargs = {'data_origin': data_georef.get_origin(), |
---|
| 753 | 'mesh_origin': mesh_georef.get_origin(), |
---|
| 754 | 'alpha': alpha, |
---|
| 755 | 'verbose': verbose} |
---|
| 756 | |
---|
[4569] | 757 | vertex_attributes = apply(fit_to_mesh, |
---|
| 758 | args, kwargs) |
---|
[4127] | 759 | |
---|
[4569] | 760 | # Call underlying method using array values |
---|
[4127] | 761 | self.set_values_from_array(vertex_attributes, |
---|
| 762 | location, indices, verbose) |
---|
| 763 | |
---|
| 764 | def set_values_from_file(self, filename, attribute_name, alpha, |
---|
| 765 | location, indices, |
---|
| 766 | verbose = False, |
---|
[4252] | 767 | use_cache = False, |
---|
| 768 | max_read_lines=None): |
---|
[4127] | 769 | """Set quantity based on arbitrary points in a points file |
---|
| 770 | using attribute_name selects name of attribute |
---|
| 771 | present in file. |
---|
| 772 | If attribute_name is not specified, use first available attribute |
---|
| 773 | as defined in geospatial_data. |
---|
| 774 | """ |
---|
| 775 | |
---|
| 776 | from types import StringType |
---|
| 777 | msg = 'Filename must be a text string' |
---|
| 778 | assert type(filename) == StringType, msg |
---|
| 779 | |
---|
[4130] | 780 | |
---|
| 781 | if location != 'vertices': |
---|
| 782 | msg = 'set_values_from_points is only defined for '+\ |
---|
| 783 | 'location=\'vertices\'' |
---|
[4149] | 784 | raise msg |
---|
[4130] | 785 | |
---|
| 786 | coordinates = self.domain.get_nodes(absolute=True) |
---|
| 787 | triangles = self.domain.triangles #FIXME |
---|
[4254] | 788 | |
---|
[4569] | 789 | vertex_attributes = fit_to_mesh(coordinates, triangles, filename, |
---|
[4253] | 790 | alpha=alpha, |
---|
| 791 | attribute_name=attribute_name, |
---|
| 792 | use_cache=use_cache, |
---|
| 793 | verbose=verbose, |
---|
| 794 | max_read_lines=max_read_lines) |
---|
| 795 | |
---|
[4569] | 796 | # Call underlying method using array values |
---|
[4130] | 797 | self.set_values_from_array(vertex_attributes, |
---|
| 798 | location, indices, verbose) |
---|
[4127] | 799 | |
---|
| 800 | |
---|
[4704] | 801 | def get_extremum_index(self, mode=None, indices=None): |
---|
| 802 | """Return index for maximum or minimum value of quantity (on centroids) |
---|
[4127] | 803 | |
---|
[4704] | 804 | Optional arguments: |
---|
| 805 | mode is either 'max'(default) or 'min'. |
---|
[4127] | 806 | indices is the set of element ids that the operation applies to. |
---|
| 807 | |
---|
| 808 | Usage: |
---|
[4704] | 809 | i = get_extreme_index() |
---|
[4127] | 810 | |
---|
| 811 | Notes: |
---|
[4704] | 812 | We do not seek the extremum at vertices as each vertex can |
---|
[4127] | 813 | have multiple values - one for each triangle sharing it. |
---|
| 814 | |
---|
| 815 | If there are multiple cells with same maximum value, the |
---|
| 816 | first cell encountered in the triangle array is returned. |
---|
| 817 | """ |
---|
| 818 | |
---|
| 819 | V = self.get_values(location='centroids', indices=indices) |
---|
| 820 | |
---|
| 821 | # Always return absolute indices |
---|
[4704] | 822 | if mode is None or mode == 'max': |
---|
| 823 | i = argmax(V) |
---|
| 824 | elif mode == 'min': |
---|
| 825 | i = argmin(V) |
---|
[4127] | 826 | |
---|
[4704] | 827 | |
---|
[4127] | 828 | if indices is None: |
---|
| 829 | return i |
---|
| 830 | else: |
---|
| 831 | return indices[i] |
---|
| 832 | |
---|
[4704] | 833 | |
---|
| 834 | def get_maximum_index(self, indices=None): |
---|
| 835 | """See get extreme index for details |
---|
| 836 | """ |
---|
| 837 | |
---|
| 838 | return self.get_extremum_index(mode='max', |
---|
| 839 | indices=indices) |
---|
| 840 | |
---|
| 841 | |
---|
[4127] | 842 | |
---|
| 843 | def get_maximum_value(self, indices=None): |
---|
| 844 | """Return maximum value of quantity (on centroids) |
---|
| 845 | |
---|
| 846 | Optional argument: |
---|
| 847 | indices is the set of element ids that the operation applies to. |
---|
| 848 | |
---|
| 849 | Usage: |
---|
| 850 | v = get_maximum_value() |
---|
| 851 | |
---|
| 852 | Note, we do not seek the maximum at vertices as each vertex can |
---|
| 853 | have multiple values - one for each triangle sharing it |
---|
| 854 | """ |
---|
| 855 | |
---|
| 856 | |
---|
| 857 | i = self.get_maximum_index(indices) |
---|
| 858 | V = self.get_values(location='centroids') #, indices=indices) |
---|
| 859 | |
---|
| 860 | return V[i] |
---|
| 861 | |
---|
| 862 | |
---|
| 863 | def get_maximum_location(self, indices=None): |
---|
| 864 | """Return location of maximum value of quantity (on centroids) |
---|
| 865 | |
---|
| 866 | Optional argument: |
---|
| 867 | indices is the set of element ids that the operation applies to. |
---|
| 868 | |
---|
| 869 | Usage: |
---|
| 870 | x, y = get_maximum_location() |
---|
| 871 | |
---|
| 872 | |
---|
| 873 | Notes: |
---|
| 874 | We do not seek the maximum at vertices as each vertex can |
---|
| 875 | have multiple values - one for each triangle sharing it. |
---|
| 876 | |
---|
| 877 | If there are multiple cells with same maximum value, the |
---|
| 878 | first cell encountered in the triangle array is returned. |
---|
| 879 | """ |
---|
| 880 | |
---|
| 881 | i = self.get_maximum_index(indices) |
---|
| 882 | x, y = self.domain.get_centroid_coordinates()[i] |
---|
| 883 | |
---|
| 884 | return x, y |
---|
| 885 | |
---|
| 886 | |
---|
[4704] | 887 | def get_minimum_index(self, indices=None): |
---|
| 888 | """See get extreme index for details |
---|
| 889 | """ |
---|
[4127] | 890 | |
---|
[4704] | 891 | return self.get_extremum_index(mode='min', |
---|
| 892 | indices=indices) |
---|
[4127] | 893 | |
---|
[4704] | 894 | |
---|
| 895 | def get_minimum_value(self, indices=None): |
---|
| 896 | """Return minimum value of quantity (on centroids) |
---|
| 897 | |
---|
| 898 | Optional argument: |
---|
| 899 | indices is the set of element ids that the operation applies to. |
---|
| 900 | |
---|
| 901 | Usage: |
---|
| 902 | v = get_minimum_value() |
---|
| 903 | |
---|
| 904 | See get_maximum_value for more details. |
---|
| 905 | """ |
---|
| 906 | |
---|
| 907 | |
---|
| 908 | i = self.get_minimum_index(indices) |
---|
| 909 | V = self.get_values(location='centroids') |
---|
| 910 | |
---|
| 911 | return V[i] |
---|
| 912 | |
---|
| 913 | |
---|
| 914 | def get_minimum_location(self, indices=None): |
---|
| 915 | """Return location of minimum value of quantity (on centroids) |
---|
| 916 | |
---|
| 917 | Optional argument: |
---|
| 918 | indices is the set of element ids that the operation applies to. |
---|
| 919 | |
---|
| 920 | Usage: |
---|
| 921 | x, y = get_minimum_location() |
---|
| 922 | |
---|
| 923 | |
---|
| 924 | Notes: |
---|
| 925 | We do not seek the maximum at vertices as each vertex can |
---|
| 926 | have multiple values - one for each triangle sharing it. |
---|
| 927 | |
---|
| 928 | If there are multiple cells with same maximum value, the |
---|
| 929 | first cell encountered in the triangle array is returned. |
---|
| 930 | """ |
---|
| 931 | |
---|
| 932 | i = self.get_minimum_index(indices) |
---|
| 933 | x, y = self.domain.get_centroid_coordinates()[i] |
---|
| 934 | |
---|
| 935 | return x, y |
---|
| 936 | |
---|
| 937 | |
---|
| 938 | |
---|
| 939 | |
---|
[4127] | 940 | def get_interpolated_values(self, interpolation_points): |
---|
| 941 | |
---|
| 942 | # Interpolation object based on internal (discontinuous triangles) |
---|
| 943 | x, y, vertex_values, triangles = self.get_vertex_values(xy=True, |
---|
| 944 | smooth=False) |
---|
| 945 | # FIXME: This concat should roll into get_vertex_values |
---|
| 946 | vertex_coordinates = concatenate((x[:, NewAxis], y[:, NewAxis]), |
---|
| 947 | axis=1) |
---|
| 948 | |
---|
| 949 | can_reuse = False |
---|
| 950 | if hasattr(self, 'interpolation_object'): |
---|
| 951 | # Reuse to save time |
---|
| 952 | I = self.interpolation_object |
---|
| 953 | |
---|
| 954 | if allclose(interpolation_points, I._point_coordinates): |
---|
| 955 | can_reuse = True |
---|
| 956 | |
---|
| 957 | |
---|
| 958 | if can_reuse is True: |
---|
| 959 | # Use absence of points to indicate reuse in I.interpolate |
---|
| 960 | result = I.interpolate(vertex_values) |
---|
| 961 | else: |
---|
| 962 | from anuga.fit_interpolate.interpolate import Interpolate |
---|
| 963 | |
---|
| 964 | # Create interpolation object with matrix |
---|
| 965 | I = Interpolate(vertex_coordinates, triangles) |
---|
| 966 | self.interpolation_object = I |
---|
| 967 | |
---|
| 968 | # Call interpolate with points the first time |
---|
| 969 | interpolation_points = ensure_numeric(interpolation_points, Float) |
---|
| 970 | result = I.interpolate(vertex_values, interpolation_points) |
---|
| 971 | |
---|
| 972 | return result |
---|
| 973 | |
---|
| 974 | |
---|
| 975 | def get_values(self, interpolation_points=None, |
---|
| 976 | location='vertices', |
---|
| 977 | indices = None): |
---|
| 978 | """get values for quantity |
---|
| 979 | |
---|
| 980 | return X, Compatible list, Numeric array (see below) |
---|
| 981 | interpolation_points: List of x, y coordinates where value is |
---|
| 982 | sought (using interpolation). If points are given, values of |
---|
| 983 | location and indices are ignored |
---|
| 984 | |
---|
| 985 | location: Where values are to be stored. |
---|
[4679] | 986 | Permissible options are: vertices, edges, centroids |
---|
[4127] | 987 | and unique vertices. Default is 'vertices' |
---|
| 988 | |
---|
| 989 | |
---|
| 990 | The returned values with be a list the length of indices |
---|
| 991 | (N if indices = None). |
---|
| 992 | |
---|
| 993 | In case of location == 'centroids' the dimension of returned |
---|
| 994 | values will be a list or a Numerical array of length N, N being |
---|
| 995 | the number of elements. |
---|
| 996 | |
---|
| 997 | In case of location == 'vertices' or 'edges' the dimension of |
---|
| 998 | returned values will be of dimension Nx3 |
---|
| 999 | |
---|
| 1000 | In case of location == 'unique vertices' the average value at |
---|
| 1001 | each vertex will be returned and the dimension of returned values |
---|
| 1002 | will be a 1d array of length "number of vertices" |
---|
| 1003 | |
---|
| 1004 | Indices is the set of element ids that the operation applies to. |
---|
| 1005 | |
---|
| 1006 | The values will be stored in elements following their |
---|
| 1007 | internal ordering. |
---|
| 1008 | |
---|
| 1009 | """ |
---|
| 1010 | from Numeric import take |
---|
| 1011 | |
---|
| 1012 | if interpolation_points is not None: |
---|
| 1013 | return self.get_interpolated_values(interpolation_points) |
---|
| 1014 | |
---|
| 1015 | |
---|
| 1016 | |
---|
| 1017 | if location not in ['vertices', 'centroids', 'edges', |
---|
| 1018 | 'unique vertices']: |
---|
| 1019 | msg = 'Invalid location: %s' %location |
---|
| 1020 | raise msg |
---|
| 1021 | |
---|
| 1022 | import types, Numeric |
---|
| 1023 | assert type(indices) in [types.ListType, types.NoneType, |
---|
| 1024 | Numeric.ArrayType],\ |
---|
| 1025 | 'Indices must be a list or None' |
---|
| 1026 | |
---|
| 1027 | if location == 'centroids': |
---|
| 1028 | if (indices == None): |
---|
| 1029 | indices = range(len(self)) |
---|
| 1030 | return take(self.centroid_values,indices) |
---|
| 1031 | elif location == 'edges': |
---|
| 1032 | if (indices == None): |
---|
| 1033 | indices = range(len(self)) |
---|
| 1034 | return take(self.edge_values,indices) |
---|
| 1035 | elif location == 'unique vertices': |
---|
| 1036 | if (indices == None): |
---|
| 1037 | indices=range(self.domain.number_of_nodes) |
---|
| 1038 | vert_values = [] |
---|
| 1039 | #Go through list of unique vertices |
---|
| 1040 | for unique_vert_id in indices: |
---|
[4478] | 1041 | triangles = self.domain.get_triangles_and_vertices_per_node(node=unique_vert_id) |
---|
| 1042 | |
---|
[4127] | 1043 | #In case there are unused points |
---|
[4478] | 1044 | if len(triangles) == 0: |
---|
[4127] | 1045 | msg = 'Unique vertex not associated with triangles' |
---|
| 1046 | raise msg |
---|
| 1047 | |
---|
| 1048 | # Go through all triangle, vertex pairs |
---|
| 1049 | # Average the values |
---|
| 1050 | |
---|
| 1051 | # FIXME (Ole): Should we merge this with get_vertex_values |
---|
| 1052 | sum = 0 |
---|
| 1053 | for triangle_id, vertex_id in triangles: |
---|
| 1054 | sum += self.vertex_values[triangle_id, vertex_id] |
---|
| 1055 | vert_values.append(sum/len(triangles)) |
---|
| 1056 | return Numeric.array(vert_values) |
---|
| 1057 | else: |
---|
[4677] | 1058 | if (indices is None): |
---|
[4127] | 1059 | indices = range(len(self)) |
---|
[4677] | 1060 | return take(self.vertex_values, indices) |
---|
[4127] | 1061 | |
---|
| 1062 | |
---|
| 1063 | |
---|
| 1064 | def set_vertex_values(self, A, indices = None): |
---|
| 1065 | """Set vertex values for all unique vertices based on input array A |
---|
| 1066 | which has one entry per unique vertex, i.e. |
---|
[4478] | 1067 | one value for each row in array self.domain.nodes. |
---|
[4127] | 1068 | |
---|
| 1069 | indices is the list of vertex_id's that will be set. |
---|
| 1070 | |
---|
| 1071 | This function is used by set_values_from_array |
---|
| 1072 | """ |
---|
| 1073 | |
---|
| 1074 | from Numeric import array, Float |
---|
| 1075 | |
---|
| 1076 | #Assert that A can be converted to a Numeric array of appropriate dim |
---|
| 1077 | A = array(A, Float) |
---|
| 1078 | |
---|
| 1079 | #print 'SHAPE A', A.shape |
---|
| 1080 | assert len(A.shape) == 1 |
---|
| 1081 | |
---|
| 1082 | if indices is None: |
---|
| 1083 | assert A.shape[0] == self.domain.get_nodes().shape[0] |
---|
| 1084 | vertex_list = range(A.shape[0]) |
---|
| 1085 | else: |
---|
| 1086 | assert A.shape[0] == len(indices) |
---|
| 1087 | vertex_list = indices |
---|
| 1088 | |
---|
| 1089 | #Go through list of unique vertices |
---|
[4478] | 1090 | |
---|
[4127] | 1091 | for i_index, unique_vert_id in enumerate(vertex_list): |
---|
| 1092 | |
---|
| 1093 | |
---|
[4478] | 1094 | triangles = self.domain.get_triangles_and_vertices_per_node(node=unique_vert_id) |
---|
| 1095 | |
---|
| 1096 | #In case there are unused points |
---|
| 1097 | if len(triangles) == 0: continue |
---|
| 1098 | |
---|
[4127] | 1099 | #Go through all triangle, vertex pairs |
---|
| 1100 | #touching vertex unique_vert_id and set corresponding vertex value |
---|
| 1101 | for triangle_id, vertex_id in triangles: |
---|
| 1102 | self.vertex_values[triangle_id, vertex_id] = A[i_index] |
---|
| 1103 | |
---|
| 1104 | #Intialise centroid and edge_values |
---|
| 1105 | self.interpolate() |
---|
| 1106 | |
---|
| 1107 | |
---|
| 1108 | def smooth_vertex_values(self, value_array='field_values', |
---|
| 1109 | precision = None): |
---|
| 1110 | """ Smooths field_values or conserved_quantities data. |
---|
| 1111 | TODO: be able to smooth individual fields |
---|
| 1112 | NOTE: This function does not have a test. |
---|
| 1113 | FIXME: NOT DONE - do we need it? |
---|
| 1114 | FIXME: this function isn't called by anything. |
---|
| 1115 | Maybe it should be removed..-DSG |
---|
| 1116 | """ |
---|
| 1117 | |
---|
| 1118 | from Numeric import concatenate, zeros, Float, Int, array, reshape |
---|
| 1119 | |
---|
| 1120 | |
---|
| 1121 | A,V = self.get_vertex_values(xy=False, |
---|
| 1122 | value_array=value_array, |
---|
| 1123 | smooth = True, |
---|
| 1124 | precision = precision) |
---|
| 1125 | |
---|
| 1126 | #Set some field values |
---|
| 1127 | for volume in self: |
---|
| 1128 | for i,v in enumerate(volume.vertices): |
---|
| 1129 | if value_array == 'field_values': |
---|
| 1130 | volume.set_field_values('vertex', i, A[v,:]) |
---|
| 1131 | elif value_array == 'conserved_quantities': |
---|
| 1132 | volume.set_conserved_quantities('vertex', i, A[v,:]) |
---|
| 1133 | |
---|
| 1134 | if value_array == 'field_values': |
---|
| 1135 | self.precompute() |
---|
| 1136 | elif value_array == 'conserved_quantities': |
---|
| 1137 | Volume.interpolate_conserved_quantities() |
---|
| 1138 | |
---|
| 1139 | |
---|
| 1140 | # Methods for outputting model results |
---|
| 1141 | def get_vertex_values(self, |
---|
| 1142 | xy=True, |
---|
| 1143 | smooth=None, |
---|
[4471] | 1144 | precision=None): |
---|
[4127] | 1145 | """Return vertex values like an OBJ format i.e. one value per node. |
---|
| 1146 | |
---|
| 1147 | The vertex values are returned as one sequence in the 1D float array A. |
---|
| 1148 | If requested the coordinates will be returned in 1D arrays X and Y. |
---|
| 1149 | |
---|
| 1150 | The connectivity is represented as an integer array, V, of dimension |
---|
| 1151 | Mx3, where M is the number of triangles. Each row has three indices |
---|
| 1152 | defining the triangle and they correspond to elements in the arrays |
---|
| 1153 | X, Y and A. |
---|
| 1154 | |
---|
| 1155 | if smooth is True, vertex values corresponding to one common |
---|
[4471] | 1156 | coordinate set will be smoothed by taking the average of vertex values for each node. |
---|
| 1157 | In this case vertex coordinates will be |
---|
[4127] | 1158 | de-duplicated corresponding to the original nodes as obtained from |
---|
| 1159 | the method general_mesh.get_nodes() |
---|
| 1160 | |
---|
| 1161 | If no smoothings is required, vertex coordinates and values will |
---|
| 1162 | be aggregated as a concatenation of values at |
---|
| 1163 | vertices 0, vertices 1 and vertices 2. This corresponds to |
---|
| 1164 | the node coordinates obtained from the method |
---|
| 1165 | general_mesh.get_vertex_coordinates() |
---|
| 1166 | |
---|
| 1167 | |
---|
| 1168 | Calling convention |
---|
| 1169 | if xy is True: |
---|
| 1170 | X,Y,A,V = get_vertex_values |
---|
| 1171 | else: |
---|
| 1172 | A,V = get_vertex_values |
---|
| 1173 | |
---|
| 1174 | """ |
---|
| 1175 | |
---|
| 1176 | from Numeric import concatenate, zeros, Float, Int, array, reshape |
---|
| 1177 | |
---|
| 1178 | |
---|
| 1179 | if smooth is None: |
---|
| 1180 | # Take default from domain |
---|
| 1181 | smooth = self.domain.smooth |
---|
| 1182 | |
---|
| 1183 | if precision is None: |
---|
| 1184 | precision = Float |
---|
| 1185 | |
---|
| 1186 | |
---|
| 1187 | if smooth is True: |
---|
[4471] | 1188 | # Ensure continuous vertex values by averaging |
---|
| 1189 | # values at each node |
---|
[4127] | 1190 | |
---|
| 1191 | V = self.domain.get_triangles() |
---|
| 1192 | N = self.domain.number_of_full_nodes # Ignore ghost nodes if any |
---|
[4471] | 1193 | A = zeros(N, Float) |
---|
[4127] | 1194 | points = self.domain.get_nodes() |
---|
[4471] | 1195 | |
---|
| 1196 | if 1: |
---|
| 1197 | # Fast C version |
---|
| 1198 | average_vertex_values(ensure_numeric(self.domain.vertex_value_indices), |
---|
| 1199 | ensure_numeric(self.domain.number_of_triangles_per_node), |
---|
| 1200 | ensure_numeric(self.vertex_values), |
---|
| 1201 | A) |
---|
| 1202 | A = A.astype(precision) |
---|
| 1203 | else: |
---|
[4127] | 1204 | |
---|
[4471] | 1205 | # Slow Python version |
---|
| 1206 | |
---|
| 1207 | current_node = 0 |
---|
| 1208 | k = 0 # Track triangles touching on node |
---|
| 1209 | total = 0.0 |
---|
| 1210 | for index in self.domain.vertex_value_indices: |
---|
[4536] | 1211 | if current_node == N: |
---|
| 1212 | msg = 'Current node exceeding number of nodes (%d) ' %(N) |
---|
| 1213 | raise msg |
---|
| 1214 | |
---|
| 1215 | |
---|
| 1216 | |
---|
[4471] | 1217 | k += 1 |
---|
| 1218 | |
---|
| 1219 | volume_id = index / 3 |
---|
| 1220 | vertex_id = index % 3 |
---|
| 1221 | |
---|
| 1222 | #assert V[volume_id, vertex_id] == current_node |
---|
| 1223 | |
---|
[4127] | 1224 | v = self.vertex_values[volume_id, vertex_id] |
---|
[4471] | 1225 | total += v |
---|
[4127] | 1226 | |
---|
[4471] | 1227 | #print 'current_node=%d, index=%d, k=%d, total=%f' %(current_node, index, k, total) |
---|
| 1228 | if self.domain.number_of_triangles_per_node[current_node] == k: |
---|
| 1229 | A[current_node] = total/k |
---|
| 1230 | |
---|
| 1231 | |
---|
| 1232 | # Move on to next node |
---|
| 1233 | total = 0.0 |
---|
| 1234 | k = 0 |
---|
| 1235 | current_node += 1 |
---|
[4127] | 1236 | |
---|
[4471] | 1237 | |
---|
| 1238 | |
---|
[4127] | 1239 | else: |
---|
| 1240 | # Allow discontinuous vertex values |
---|
| 1241 | V = self.domain.get_disconnected_triangles() |
---|
| 1242 | points = self.domain.get_vertex_coordinates() |
---|
| 1243 | A = self.vertex_values.flat.astype(precision) |
---|
| 1244 | |
---|
| 1245 | |
---|
| 1246 | # Return |
---|
| 1247 | if xy is True: |
---|
| 1248 | X = points[:,0].astype(precision) |
---|
| 1249 | Y = points[:,1].astype(precision) |
---|
| 1250 | |
---|
| 1251 | return X, Y, A, V |
---|
| 1252 | else: |
---|
| 1253 | return A, V |
---|
| 1254 | |
---|
| 1255 | |
---|
| 1256 | |
---|
| 1257 | def extrapolate_first_order(self): |
---|
| 1258 | """Extrapolate conserved quantities from centroid to |
---|
| 1259 | vertices for each volume using |
---|
| 1260 | first order scheme. |
---|
| 1261 | """ |
---|
| 1262 | |
---|
| 1263 | qc = self.centroid_values |
---|
| 1264 | qv = self.vertex_values |
---|
| 1265 | |
---|
| 1266 | for i in range(3): |
---|
| 1267 | qv[:,i] = qc |
---|
| 1268 | |
---|
| 1269 | |
---|
| 1270 | def get_integral(self): |
---|
| 1271 | """Compute the integral of quantity across entire domain |
---|
| 1272 | """ |
---|
| 1273 | integral = 0 |
---|
| 1274 | for k in range(len(self.domain)): |
---|
| 1275 | area = self.domain.areas[k] |
---|
| 1276 | qc = self.centroid_values[k] |
---|
| 1277 | integral += qc*area |
---|
| 1278 | |
---|
| 1279 | return integral |
---|
| 1280 | |
---|
| 1281 | |
---|
| 1282 | |
---|
| 1283 | |
---|
| 1284 | class Conserved_quantity(Quantity): |
---|
| 1285 | """Class conserved quantity adds to Quantity: |
---|
| 1286 | |
---|
| 1287 | boundary values, storage and method for updating, and |
---|
| 1288 | methods for (second order) extrapolation from centroid to vertices inluding |
---|
| 1289 | gradients and limiters |
---|
| 1290 | """ |
---|
| 1291 | |
---|
| 1292 | def __init__(self, domain, vertex_values=None): |
---|
| 1293 | Quantity.__init__(self, domain, vertex_values) |
---|
| 1294 | |
---|
| 1295 | from Numeric import zeros, Float |
---|
| 1296 | |
---|
| 1297 | #Allocate space for boundary values |
---|
| 1298 | L = len(domain.boundary) |
---|
| 1299 | self.boundary_values = zeros(L, Float) |
---|
| 1300 | |
---|
| 1301 | #Allocate space for updates of conserved quantities by |
---|
| 1302 | #flux calculations and forcing functions |
---|
| 1303 | |
---|
| 1304 | N = len(domain) # number_of_triangles |
---|
| 1305 | self.explicit_update = zeros(N, Float ) |
---|
| 1306 | self.semi_implicit_update = zeros(N, Float ) |
---|
| 1307 | |
---|
| 1308 | |
---|
| 1309 | def update(self, timestep): |
---|
| 1310 | #Call correct module function |
---|
| 1311 | #(either from this module or C-extension) |
---|
| 1312 | return update(self, timestep) |
---|
| 1313 | |
---|
| 1314 | |
---|
| 1315 | def compute_gradients(self): |
---|
| 1316 | #Call correct module function |
---|
| 1317 | #(either from this module or C-extension) |
---|
| 1318 | return compute_gradients(self) |
---|
| 1319 | |
---|
| 1320 | |
---|
| 1321 | def limit(self): |
---|
| 1322 | #Call correct module function |
---|
| 1323 | #(either from this module or C-extension) |
---|
| 1324 | limit(self) |
---|
| 1325 | |
---|
| 1326 | |
---|
| 1327 | def extrapolate_second_order(self): |
---|
| 1328 | #Call correct module function |
---|
| 1329 | #(either from this module or C-extension) |
---|
| 1330 | extrapolate_second_order(self) |
---|
| 1331 | |
---|
| 1332 | |
---|
| 1333 | def update(quantity, timestep): |
---|
| 1334 | """Update centroid values based on values stored in |
---|
| 1335 | explicit_update and semi_implicit_update as well as given timestep |
---|
| 1336 | |
---|
| 1337 | Function implementing forcing terms must take on argument |
---|
| 1338 | which is the domain and they must update either explicit |
---|
| 1339 | or implicit updates, e,g,: |
---|
| 1340 | |
---|
| 1341 | def gravity(domain): |
---|
| 1342 | .... |
---|
| 1343 | domain.quantities['xmomentum'].explicit_update = ... |
---|
| 1344 | domain.quantities['ymomentum'].explicit_update = ... |
---|
| 1345 | |
---|
| 1346 | |
---|
| 1347 | |
---|
| 1348 | Explicit terms must have the form |
---|
| 1349 | |
---|
| 1350 | G(q, t) |
---|
| 1351 | |
---|
| 1352 | and explicit scheme is |
---|
| 1353 | |
---|
| 1354 | q^{(n+1}) = q^{(n)} + delta_t G(q^{n}, n delta_t) |
---|
| 1355 | |
---|
| 1356 | |
---|
| 1357 | Semi implicit forcing terms are assumed to have the form |
---|
| 1358 | |
---|
| 1359 | G(q, t) = H(q, t) q |
---|
| 1360 | |
---|
| 1361 | and the semi implicit scheme will then be |
---|
| 1362 | |
---|
| 1363 | q^{(n+1}) = q^{(n)} + delta_t H(q^{n}, n delta_t) q^{(n+1}) |
---|
| 1364 | |
---|
| 1365 | |
---|
| 1366 | """ |
---|
| 1367 | |
---|
| 1368 | from Numeric import sum, equal, ones, exp, Float |
---|
| 1369 | |
---|
| 1370 | N = quantity.centroid_values.shape[0] |
---|
| 1371 | |
---|
| 1372 | |
---|
| 1373 | #Divide H by conserved quantity to obtain G (see docstring above) |
---|
| 1374 | |
---|
| 1375 | |
---|
| 1376 | for k in range(N): |
---|
| 1377 | x = quantity.centroid_values[k] |
---|
| 1378 | if x == 0.0: |
---|
| 1379 | #FIXME: Is this right |
---|
| 1380 | quantity.semi_implicit_update[k] = 0.0 |
---|
| 1381 | else: |
---|
| 1382 | quantity.semi_implicit_update[k] /= x |
---|
| 1383 | |
---|
| 1384 | |
---|
| 1385 | #Semi implicit updates |
---|
| 1386 | denominator = ones(N, Float)-timestep*quantity.semi_implicit_update |
---|
| 1387 | |
---|
| 1388 | if sum(less(denominator, 1.0)) > 0.0: |
---|
| 1389 | msg = 'denominator < 1.0 in semi implicit update. Call Stephen :-)' |
---|
| 1390 | raise msg |
---|
| 1391 | |
---|
| 1392 | if sum(equal(denominator, 0.0)) > 0.0: |
---|
| 1393 | msg = 'Zero division in semi implicit update. Call Stephen :-)' |
---|
| 1394 | raise msg |
---|
| 1395 | else: |
---|
| 1396 | #Update conserved_quantities from semi implicit updates |
---|
| 1397 | quantity.centroid_values /= denominator |
---|
| 1398 | |
---|
| 1399 | # quantity.centroid_values = exp(timestep*quantity.semi_implicit_update)*quantity.centroid_values |
---|
| 1400 | |
---|
| 1401 | #Explicit updates |
---|
| 1402 | quantity.centroid_values += timestep*quantity.explicit_update |
---|
| 1403 | |
---|
| 1404 | def interpolate_from_vertices_to_edges(quantity): |
---|
| 1405 | """Compute edge values from vertex values using linear interpolation |
---|
| 1406 | """ |
---|
| 1407 | |
---|
| 1408 | for k in range(quantity.vertex_values.shape[0]): |
---|
| 1409 | q0 = quantity.vertex_values[k, 0] |
---|
| 1410 | q1 = quantity.vertex_values[k, 1] |
---|
| 1411 | q2 = quantity.vertex_values[k, 2] |
---|
| 1412 | |
---|
| 1413 | quantity.edge_values[k, 0] = 0.5*(q1+q2) |
---|
| 1414 | quantity.edge_values[k, 1] = 0.5*(q0+q2) |
---|
| 1415 | quantity.edge_values[k, 2] = 0.5*(q0+q1) |
---|
| 1416 | |
---|
| 1417 | |
---|
| 1418 | |
---|
| 1419 | def extrapolate_second_order(quantity): |
---|
| 1420 | """Extrapolate conserved quantities from centroid to |
---|
| 1421 | vertices for each volume using |
---|
| 1422 | second order scheme. |
---|
| 1423 | """ |
---|
| 1424 | |
---|
| 1425 | a, b = quantity.compute_gradients() |
---|
| 1426 | |
---|
| 1427 | X = quantity.domain.get_vertex_coordinates() |
---|
| 1428 | qc = quantity.centroid_values |
---|
| 1429 | qv = quantity.vertex_values |
---|
| 1430 | |
---|
| 1431 | #Check each triangle |
---|
| 1432 | for k in range(len(quantity.domain)): |
---|
| 1433 | #Centroid coordinates |
---|
| 1434 | x, y = quantity.domain.centroid_coordinates[k] |
---|
| 1435 | |
---|
| 1436 | #vertex coordinates |
---|
| 1437 | x0, y0, x1, y1, x2, y2 = X[k,:] |
---|
| 1438 | |
---|
| 1439 | #Extrapolate |
---|
| 1440 | qv[k,0] = qc[k] + a[k]*(x0-x) + b[k]*(y0-y) |
---|
| 1441 | qv[k,1] = qc[k] + a[k]*(x1-x) + b[k]*(y1-y) |
---|
| 1442 | qv[k,2] = qc[k] + a[k]*(x2-x) + b[k]*(y2-y) |
---|
| 1443 | |
---|
| 1444 | |
---|
| 1445 | def compute_gradients(quantity): |
---|
| 1446 | """Compute gradients of triangle surfaces defined by centroids of |
---|
| 1447 | neighbouring volumes. |
---|
| 1448 | If one edge is on the boundary, use own centroid as neighbour centroid. |
---|
| 1449 | If two or more are on the boundary, fall back to first order scheme. |
---|
| 1450 | """ |
---|
| 1451 | |
---|
| 1452 | from Numeric import zeros, Float |
---|
| 1453 | from utilitites.numerical_tools import gradient |
---|
| 1454 | |
---|
| 1455 | centroid_coordinates = quantity.domain.centroid_coordinates |
---|
| 1456 | surrogate_neighbours = quantity.domain.surrogate_neighbours |
---|
| 1457 | centroid_values = quantity.centroid_values |
---|
| 1458 | number_of_boundaries = quantity.domain.number_of_boundaries |
---|
| 1459 | |
---|
| 1460 | N = centroid_values.shape[0] |
---|
| 1461 | |
---|
| 1462 | a = zeros(N, Float) |
---|
| 1463 | b = zeros(N, Float) |
---|
| 1464 | |
---|
| 1465 | for k in range(N): |
---|
| 1466 | if number_of_boundaries[k] < 2: |
---|
| 1467 | #Two or three true neighbours |
---|
| 1468 | |
---|
| 1469 | #Get indices of neighbours (or self when used as surrogate) |
---|
| 1470 | k0, k1, k2 = surrogate_neighbours[k,:] |
---|
| 1471 | |
---|
| 1472 | #Get data |
---|
| 1473 | q0 = centroid_values[k0] |
---|
| 1474 | q1 = centroid_values[k1] |
---|
| 1475 | q2 = centroid_values[k2] |
---|
| 1476 | |
---|
| 1477 | x0, y0 = centroid_coordinates[k0] #V0 centroid |
---|
| 1478 | x1, y1 = centroid_coordinates[k1] #V1 centroid |
---|
| 1479 | x2, y2 = centroid_coordinates[k2] #V2 centroid |
---|
| 1480 | |
---|
| 1481 | #Gradient |
---|
| 1482 | a[k], b[k] = gradient(x0, y0, x1, y1, x2, y2, q0, q1, q2) |
---|
| 1483 | |
---|
| 1484 | elif number_of_boundaries[k] == 2: |
---|
| 1485 | #One true neighbour |
---|
| 1486 | |
---|
| 1487 | #Get index of the one neighbour |
---|
| 1488 | for k0 in surrogate_neighbours[k,:]: |
---|
| 1489 | if k0 != k: break |
---|
| 1490 | assert k0 != k |
---|
| 1491 | |
---|
| 1492 | k1 = k #self |
---|
| 1493 | |
---|
| 1494 | #Get data |
---|
| 1495 | q0 = centroid_values[k0] |
---|
| 1496 | q1 = centroid_values[k1] |
---|
| 1497 | |
---|
| 1498 | x0, y0 = centroid_coordinates[k0] #V0 centroid |
---|
| 1499 | x1, y1 = centroid_coordinates[k1] #V1 centroid |
---|
| 1500 | |
---|
| 1501 | #Gradient |
---|
| 1502 | a[k], b[k] = gradient2(x0, y0, x1, y1, q0, q1) |
---|
| 1503 | else: |
---|
| 1504 | #No true neighbours - |
---|
| 1505 | #Fall back to first order scheme |
---|
| 1506 | pass |
---|
| 1507 | |
---|
| 1508 | |
---|
| 1509 | return a, b |
---|
| 1510 | |
---|
| 1511 | |
---|
| 1512 | |
---|
| 1513 | def limit(quantity): |
---|
| 1514 | """Limit slopes for each volume to eliminate artificial variance |
---|
| 1515 | introduced by e.g. second order extrapolator |
---|
| 1516 | |
---|
| 1517 | This is an unsophisticated limiter as it does not take into |
---|
| 1518 | account dependencies among quantities. |
---|
| 1519 | |
---|
| 1520 | precondition: |
---|
| 1521 | vertex values are estimated from gradient |
---|
| 1522 | postcondition: |
---|
| 1523 | vertex values are updated |
---|
| 1524 | """ |
---|
| 1525 | |
---|
| 1526 | from Numeric import zeros, Float |
---|
| 1527 | |
---|
| 1528 | N = quantity.domain.number_of_nodes |
---|
| 1529 | |
---|
| 1530 | beta_w = quantity.domain.beta_w |
---|
| 1531 | |
---|
| 1532 | qc = quantity.centroid_values |
---|
| 1533 | qv = quantity.vertex_values |
---|
| 1534 | |
---|
| 1535 | #Find min and max of this and neighbour's centroid values |
---|
| 1536 | qmax = zeros(qc.shape, Float) |
---|
| 1537 | qmin = zeros(qc.shape, Float) |
---|
| 1538 | |
---|
| 1539 | for k in range(N): |
---|
| 1540 | qmax[k] = qc[k] |
---|
| 1541 | qmin[k] = qc[k] |
---|
| 1542 | for i in range(3): |
---|
| 1543 | n = quantity.domain.neighbours[k,i] |
---|
| 1544 | if n >= 0: |
---|
| 1545 | qn = qc[n] #Neighbour's centroid value |
---|
| 1546 | |
---|
| 1547 | qmin[k] = min(qmin[k], qn) |
---|
| 1548 | qmax[k] = max(qmax[k], qn) |
---|
| 1549 | qmax[k] = min(qmax[k], 2.0*qc[k]) |
---|
| 1550 | qmin[k] = max(qmin[k], 0.5*qc[k]) |
---|
| 1551 | |
---|
| 1552 | |
---|
| 1553 | #Diffences between centroids and maxima/minima |
---|
| 1554 | dqmax = qmax - qc |
---|
| 1555 | dqmin = qmin - qc |
---|
| 1556 | |
---|
| 1557 | #Deltas between vertex and centroid values |
---|
| 1558 | dq = zeros(qv.shape, Float) |
---|
| 1559 | for i in range(3): |
---|
| 1560 | dq[:,i] = qv[:,i] - qc |
---|
| 1561 | |
---|
| 1562 | #Phi limiter |
---|
| 1563 | for k in range(N): |
---|
| 1564 | |
---|
| 1565 | #Find the gradient limiter (phi) across vertices |
---|
| 1566 | phi = 1.0 |
---|
| 1567 | for i in range(3): |
---|
| 1568 | r = 1.0 |
---|
| 1569 | if (dq[k,i] > 0): r = dqmax[k]/dq[k,i] |
---|
| 1570 | if (dq[k,i] < 0): r = dqmin[k]/dq[k,i] |
---|
| 1571 | |
---|
| 1572 | phi = min( min(r*beta_w, 1), phi ) |
---|
| 1573 | |
---|
| 1574 | #Then update using phi limiter |
---|
| 1575 | for i in range(3): |
---|
| 1576 | qv[k,i] = qc[k] + phi*dq[k,i] |
---|
| 1577 | |
---|
| 1578 | |
---|
| 1579 | |
---|
| 1580 | from anuga.utilities import compile |
---|
| 1581 | if compile.can_use_C_extension('quantity_ext.c'): |
---|
| 1582 | #Replace python version with c implementations |
---|
| 1583 | |
---|
[4541] | 1584 | from quantity_ext import average_vertex_values |
---|
| 1585 | |
---|
[4127] | 1586 | from quantity_ext import compute_gradients, limit,\ |
---|
[4541] | 1587 | extrapolate_second_order, interpolate_from_vertices_to_edges, update |
---|