1 | """Class Quantity - Implements values at each triangular element |
---|
2 | |
---|
3 | To create: |
---|
4 | |
---|
5 | Quantity(domain, vertex_values) |
---|
6 | |
---|
7 | domain: Associated domain structure. Required. |
---|
8 | |
---|
9 | vertex_values: N x 3 array of values at each vertex for each element. |
---|
10 | Default None |
---|
11 | |
---|
12 | If vertex_values are None Create array of zeros compatible with domain. |
---|
13 | Otherwise check that it is compatible with dimenions of domain. |
---|
14 | Otherwise raise an exception |
---|
15 | """ |
---|
16 | |
---|
17 | from types import FloatType, IntType, LongType, NoneType |
---|
18 | |
---|
19 | from anuga.utilities.numerical_tools import ensure_numeric, is_scalar |
---|
20 | from anuga.utilities.polygon import inside_polygon |
---|
21 | from anuga.geospatial_data.geospatial_data import Geospatial_data |
---|
22 | from anuga.fit_interpolate.fit import fit_to_mesh |
---|
23 | from anuga.config import points_file_block_line_size as default_block_line_size |
---|
24 | from anuga.config import epsilon |
---|
25 | from anuga.caching import cache |
---|
26 | import anuga.utilities.log as log |
---|
27 | |
---|
28 | import anuga.utilities.numerical_tools as aunt |
---|
29 | |
---|
30 | import numpy as num |
---|
31 | |
---|
32 | |
---|
33 | ## |
---|
34 | # @brief Implement values at each triangular element. |
---|
35 | class Quantity: |
---|
36 | |
---|
37 | ## |
---|
38 | # @brief Construct values art each triangular element. |
---|
39 | # @param domain ?? |
---|
40 | # @param vertex_values ?? |
---|
41 | def __init__(self, domain, vertex_values=None): |
---|
42 | from anuga.abstract_2d_finite_volumes.domain import Domain |
---|
43 | |
---|
44 | msg = ('First argument in Quantity.__init__() must be of class Domain ' |
---|
45 | '(or a subclass thereof). I got %s.' % str(domain.__class__)) |
---|
46 | assert isinstance(domain, Domain), msg |
---|
47 | |
---|
48 | if vertex_values is None: |
---|
49 | N = len(domain) # number_of_elements |
---|
50 | self.vertex_values = num.zeros((N, 3), num.float) |
---|
51 | else: |
---|
52 | self.vertex_values = num.array(vertex_values, num.float) |
---|
53 | |
---|
54 | N, V = self.vertex_values.shape |
---|
55 | assert V == 3, 'Three vertex values per element must be specified' |
---|
56 | |
---|
57 | msg = 'Number of vertex values (%d) must be consistent with' % N |
---|
58 | msg += 'number of elements in specified domain (%d).' % len(domain) |
---|
59 | assert N == len(domain), msg |
---|
60 | |
---|
61 | self.domain = domain |
---|
62 | |
---|
63 | # Allocate space for other quantities |
---|
64 | self.centroid_values = num.zeros(N, num.float) |
---|
65 | self.edge_values = num.zeros((N, 3), num.float) |
---|
66 | |
---|
67 | # Allocate space for Gradient |
---|
68 | self.x_gradient = num.zeros(N, num.float) |
---|
69 | self.y_gradient = num.zeros(N, num.float) |
---|
70 | |
---|
71 | # Allocate space for Limiter Phi |
---|
72 | self.phi = num.zeros(N, num.float) |
---|
73 | |
---|
74 | # Intialise centroid and edge_values |
---|
75 | self.interpolate() |
---|
76 | |
---|
77 | # Allocate space for boundary values |
---|
78 | L = len(domain.boundary) |
---|
79 | self.boundary_values = num.zeros(L, num.float) |
---|
80 | |
---|
81 | # Allocate space for updates of conserved quantities by |
---|
82 | # flux calculations and forcing functions |
---|
83 | |
---|
84 | # Allocate space for update fields |
---|
85 | self.explicit_update = num.zeros(N, num.float ) |
---|
86 | self.semi_implicit_update = num.zeros(N, num.float ) |
---|
87 | self.centroid_backup_values = num.zeros(N, num.float) |
---|
88 | |
---|
89 | self.set_beta(1.0) |
---|
90 | |
---|
91 | ############################################################################ |
---|
92 | # Methods for operator overloading |
---|
93 | ############################################################################ |
---|
94 | |
---|
95 | def __len__(self): |
---|
96 | return self.centroid_values.shape[0] |
---|
97 | |
---|
98 | def __neg__(self): |
---|
99 | """Negate all values in this quantity giving meaning to the |
---|
100 | expression -Q where Q is an instance of class Quantity |
---|
101 | """ |
---|
102 | |
---|
103 | Q = Quantity(self.domain) |
---|
104 | Q.set_values(-self.vertex_values) |
---|
105 | return Q |
---|
106 | |
---|
107 | def __add__(self, other): |
---|
108 | """Add to self anything that could populate a quantity |
---|
109 | |
---|
110 | E.g other can be a constant, an array, a function, another quantity |
---|
111 | (except for a filename or points, attributes (for now)) |
---|
112 | - see set_values for details |
---|
113 | """ |
---|
114 | |
---|
115 | Q = Quantity(self.domain) |
---|
116 | Q.set_values(other) |
---|
117 | |
---|
118 | result = Quantity(self.domain) |
---|
119 | result.set_values(self.vertex_values + Q.vertex_values) |
---|
120 | return result |
---|
121 | |
---|
122 | def __radd__(self, other): |
---|
123 | """Handle cases like 7+Q, where Q is an instance of class Quantity |
---|
124 | """ |
---|
125 | |
---|
126 | return self + other |
---|
127 | |
---|
128 | def __sub__(self, other): |
---|
129 | return self + -other # Invoke self.__neg__() |
---|
130 | |
---|
131 | def __mul__(self, other): |
---|
132 | """Multiply self with anything that could populate a quantity |
---|
133 | |
---|
134 | E.g other can be a constant, an array, a function, another quantity |
---|
135 | (except for a filename or points, attributes (for now)) |
---|
136 | - see set_values for details |
---|
137 | """ |
---|
138 | |
---|
139 | if isinstance(other, Quantity): |
---|
140 | Q = other |
---|
141 | else: |
---|
142 | Q = Quantity(self.domain) |
---|
143 | Q.set_values(other) |
---|
144 | |
---|
145 | result = Quantity(self.domain) |
---|
146 | |
---|
147 | # The product of vertex_values, edge_values and centroid_values |
---|
148 | # are calculated and assigned directly without using |
---|
149 | # set_values (which calls interpolate). Otherwise |
---|
150 | # edge and centroid values wouldn't be products from q1 and q2 |
---|
151 | result.vertex_values = self.vertex_values * Q.vertex_values |
---|
152 | result.edge_values = self.edge_values * Q.edge_values |
---|
153 | result.centroid_values = self.centroid_values * Q.centroid_values |
---|
154 | |
---|
155 | return result |
---|
156 | |
---|
157 | def __rmul__(self, other): |
---|
158 | """Handle cases like 3*Q, where Q is an instance of class Quantity |
---|
159 | """ |
---|
160 | |
---|
161 | return self * other |
---|
162 | |
---|
163 | def __div__(self, other): |
---|
164 | """Divide self with anything that could populate a quantity |
---|
165 | |
---|
166 | E.g other can be a constant, an array, a function, another quantity |
---|
167 | (except for a filename or points, attributes (for now)) |
---|
168 | - see set_values for details |
---|
169 | |
---|
170 | Zero division is dealt with by adding an epsilon to the divisore |
---|
171 | FIXME (Ole): Replace this with native INF once we migrate to NumPy |
---|
172 | """ |
---|
173 | |
---|
174 | if isinstance(other, Quantity): |
---|
175 | Q = other |
---|
176 | else: |
---|
177 | Q = Quantity(self.domain) |
---|
178 | Q.set_values(other) |
---|
179 | |
---|
180 | result = Quantity(self.domain) |
---|
181 | |
---|
182 | # The quotient of vertex_values, edge_values and centroid_values |
---|
183 | # are calculated and assigned directly without using |
---|
184 | # set_values (which calls interpolate). Otherwise |
---|
185 | # edge and centroid values wouldn't be quotient of q1 and q2 |
---|
186 | result.vertex_values = self.vertex_values/(Q.vertex_values + epsilon) |
---|
187 | result.edge_values = self.edge_values/(Q.edge_values + epsilon) |
---|
188 | result.centroid_values = self.centroid_values/(Q.centroid_values + epsilon) |
---|
189 | |
---|
190 | return result |
---|
191 | |
---|
192 | def __rdiv__(self, other): |
---|
193 | """Handle cases like 3/Q, where Q is an instance of class Quantity |
---|
194 | """ |
---|
195 | |
---|
196 | return self / other |
---|
197 | |
---|
198 | def __pow__(self, other): |
---|
199 | """Raise quantity to (numerical) power |
---|
200 | |
---|
201 | As with __mul__ vertex values are processed entry by entry |
---|
202 | while centroid and edge values are re-interpolated. |
---|
203 | |
---|
204 | Example using __pow__: |
---|
205 | Q = (Q1**2 + Q2**2)**0.5 |
---|
206 | """ |
---|
207 | |
---|
208 | if isinstance(other, Quantity): |
---|
209 | Q = other |
---|
210 | else: |
---|
211 | Q = Quantity(self.domain) |
---|
212 | Q.set_values(other) |
---|
213 | |
---|
214 | result = Quantity(self.domain) |
---|
215 | |
---|
216 | # The power of vertex_values, edge_values and centroid_values |
---|
217 | # are calculated and assigned directly without using |
---|
218 | # set_values (which calls interpolate). Otherwise |
---|
219 | # edge and centroid values wouldn't be correct |
---|
220 | result.vertex_values = self.vertex_values ** other |
---|
221 | result.edge_values = self.edge_values ** other |
---|
222 | result.centroid_values = self.centroid_values ** other |
---|
223 | |
---|
224 | return result |
---|
225 | |
---|
226 | ############################################################################ |
---|
227 | # Setters/Getters |
---|
228 | ############################################################################ |
---|
229 | |
---|
230 | ## |
---|
231 | # @brief Set default beta value for limiting. |
---|
232 | # @param beta ?? |
---|
233 | def set_beta(self, beta): |
---|
234 | """Set default beta value for limiting """ |
---|
235 | |
---|
236 | if beta < 0.0: |
---|
237 | log.critical('WARNING: setting beta < 0.0') |
---|
238 | if beta > 2.0: |
---|
239 | log.critical('WARNING: setting beta > 2.0') |
---|
240 | |
---|
241 | self.beta = beta |
---|
242 | |
---|
243 | ## |
---|
244 | # @brief Get the current beta value. |
---|
245 | # @return The current beta value. |
---|
246 | def get_beta(self): |
---|
247 | """Get default beta value for limiting""" |
---|
248 | |
---|
249 | return self.beta |
---|
250 | |
---|
251 | ## |
---|
252 | # @brief Compute interpolated values at edges and centroid. |
---|
253 | # @note vertex_values must be set before calling this. |
---|
254 | def interpolate(self): |
---|
255 | """Compute interpolated values at edges and centroid |
---|
256 | Pre-condition: vertex_values have been set |
---|
257 | """ |
---|
258 | |
---|
259 | # FIXME (Ole): Maybe this function |
---|
260 | # should move to the C-interface? |
---|
261 | # However, it isn't called by validate_all.py, so it |
---|
262 | # may not be that important to optimise it? |
---|
263 | |
---|
264 | N = self.vertex_values.shape[0] |
---|
265 | for i in range(N): |
---|
266 | v0 = self.vertex_values[i, 0] |
---|
267 | v1 = self.vertex_values[i, 1] |
---|
268 | v2 = self.vertex_values[i, 2] |
---|
269 | |
---|
270 | self.centroid_values[i] = (v0 + v1 + v2)/3 |
---|
271 | |
---|
272 | self.interpolate_from_vertices_to_edges() |
---|
273 | |
---|
274 | ## |
---|
275 | # @brief ?? |
---|
276 | def interpolate_from_vertices_to_edges(self): |
---|
277 | # Call correct module function (either from this module or C-extension) |
---|
278 | interpolate_from_vertices_to_edges(self) |
---|
279 | |
---|
280 | ## |
---|
281 | # @brief ?? |
---|
282 | def interpolate_from_edges_to_vertices(self): |
---|
283 | # Call correct module function (either from this module or C-extension) |
---|
284 | interpolate_from_edges_to_vertices(self) |
---|
285 | |
---|
286 | #--------------------------------------------- |
---|
287 | # Public interface for setting quantity values |
---|
288 | #--------------------------------------------- |
---|
289 | |
---|
290 | ## |
---|
291 | # @brief Set values for quantity based on different sources. |
---|
292 | # @param numeric A num array, list or constant value. |
---|
293 | # @param quantity Another Quantity. |
---|
294 | # @param function Any callable object that takes two 1d arrays. |
---|
295 | # @param geospatial_data Arbitrary instance of class Geospatial_data |
---|
296 | # @param filename Path to a points file. |
---|
297 | # @param attribute_name If specified any array using that name will be used. |
---|
298 | # @param alpha Smoothing parameter to be used with fit_interpolate.fit. |
---|
299 | # @param location Where to store values (vertices, edges, centroids). |
---|
300 | # @param polygon Restrict update to locations that fall inside polygon. |
---|
301 | # @param indices Restrict update to locations specified by this. |
---|
302 | # @param smooth If True, smooth vertex values. |
---|
303 | # @param verbose True if this method is to be verbose. |
---|
304 | # @param use_cache If True cache results for fit_interpolate.fit. |
---|
305 | # @note Exactly one of 'numeric', 'quantity', 'function', 'filename' |
---|
306 | # must be present. |
---|
307 | def set_values(self, numeric=None, # List, numeric array or constant |
---|
308 | quantity=None, # Another quantity |
---|
309 | function=None, # Callable object: f(x,y) |
---|
310 | geospatial_data=None, # Arbitrary dataset |
---|
311 | filename=None, |
---|
312 | attribute_name=None, # Input from file |
---|
313 | alpha=None, |
---|
314 | location='vertices', |
---|
315 | polygon=None, |
---|
316 | indices=None, |
---|
317 | smooth=False, |
---|
318 | verbose=False, |
---|
319 | use_cache=False): |
---|
320 | """Set values for quantity based on different sources. |
---|
321 | |
---|
322 | numeric: |
---|
323 | Compatible list, numeric array (see below) or constant. |
---|
324 | If callable it will treated as a function (see below) |
---|
325 | If instance of another Quantity it will be treated as such. |
---|
326 | If geo_spatial object it will be treated as such |
---|
327 | |
---|
328 | quantity: |
---|
329 | Another quantity (compatible quantity, e.g. obtained as a |
---|
330 | linear combination of quantities) |
---|
331 | |
---|
332 | function: |
---|
333 | Any callable object that takes two 1d arrays x and y |
---|
334 | each of length N and returns an array also of length N. |
---|
335 | The function will be evaluated at points determined by |
---|
336 | location and indices in the underlying mesh. |
---|
337 | |
---|
338 | geospatial_data: |
---|
339 | Arbitrary geo spatial dataset in the form of the class |
---|
340 | Geospatial_data. Mesh points are populated using |
---|
341 | fit_interpolate.fit fitting |
---|
342 | |
---|
343 | filename: |
---|
344 | Name of a points file containing data points and attributes for |
---|
345 | use with fit_interpolate.fit. |
---|
346 | |
---|
347 | attribute_name: |
---|
348 | If specified, any array matching that name |
---|
349 | will be used. from file or geospatial_data. |
---|
350 | Otherwise a default will be used. |
---|
351 | |
---|
352 | alpha: |
---|
353 | Smoothing parameter to be used with fit_interpolate.fit. |
---|
354 | See module fit_interpolate.fit for further details about alpha. |
---|
355 | Alpha will only be used with points, values or filename. |
---|
356 | Otherwise it will be ignored. |
---|
357 | |
---|
358 | |
---|
359 | location: Where values are to be stored. |
---|
360 | Permissible options are: vertices, edges, centroids |
---|
361 | Default is 'vertices' |
---|
362 | |
---|
363 | In case of location == 'centroids' the dimension values must |
---|
364 | be a list of a numerical array of length N, |
---|
365 | N being the number of elements. |
---|
366 | Otherwise it must be of dimension Nx3 |
---|
367 | |
---|
368 | |
---|
369 | The values will be stored in elements following their |
---|
370 | internal ordering. |
---|
371 | |
---|
372 | If location is 'unique vertices' indices refers the set |
---|
373 | of node ids that the operation applies to. |
---|
374 | If location is not 'unique vertices' indices refers the |
---|
375 | set of triangle ids that the operation applies to. |
---|
376 | |
---|
377 | |
---|
378 | If selected location is vertices, values for |
---|
379 | centroid and edges will be assigned interpolated |
---|
380 | values. In any other case, only values for the |
---|
381 | specified locations will be assigned and the others |
---|
382 | will be left undefined. |
---|
383 | |
---|
384 | |
---|
385 | polygon: Restrict update of quantity to locations that fall |
---|
386 | inside polygon. Polygon works by selecting indices |
---|
387 | and calling set_values recursively. |
---|
388 | Polygon mode has only been implemented for |
---|
389 | constant values so far. |
---|
390 | |
---|
391 | indices: Restrict update of quantity to locations that are |
---|
392 | identified by indices (e.g. node ids if location |
---|
393 | is 'unique vertices' or triangle ids otherwise). |
---|
394 | |
---|
395 | verbose: True means that output to stdout is generated |
---|
396 | |
---|
397 | use_cache: True means that caching of intermediate results is |
---|
398 | attempted for fit_interpolate.fit. |
---|
399 | |
---|
400 | |
---|
401 | |
---|
402 | |
---|
403 | Exactly one of the arguments |
---|
404 | numeric, quantity, function, filename |
---|
405 | must be present. |
---|
406 | """ |
---|
407 | |
---|
408 | from anuga.geospatial_data.geospatial_data import Geospatial_data |
---|
409 | |
---|
410 | # Treat special case: Polygon situation |
---|
411 | # Location will be ignored and set to 'centroids' |
---|
412 | # FIXME (Ole): This needs to be generalised and |
---|
413 | # perhaps the notion of location and indices simplified |
---|
414 | |
---|
415 | # FIXME (Ole): Need to compute indices based on polygon |
---|
416 | # (and location) and use existing code after that. |
---|
417 | |
---|
418 | # See ticket:275, ticket:250, ticeket:254 for refactoring plan |
---|
419 | |
---|
420 | if polygon is not None: |
---|
421 | if indices is not None: |
---|
422 | msg = 'Only one of polygon and indices can be specified' |
---|
423 | raise Exception, msg |
---|
424 | |
---|
425 | msg = 'With polygon selected, set_quantity must provide ' |
---|
426 | msg += 'the keyword numeric and it must (currently) be ' |
---|
427 | msg += 'a constant.' |
---|
428 | if numeric is None: |
---|
429 | raise Exception, msg |
---|
430 | else: |
---|
431 | # Check that numeric is as constant |
---|
432 | assert type(numeric) in [FloatType, IntType, LongType], msg |
---|
433 | |
---|
434 | location = 'centroids' |
---|
435 | |
---|
436 | points = self.domain.get_centroid_coordinates(absolute=True) |
---|
437 | indices = inside_polygon(points, polygon) |
---|
438 | |
---|
439 | self.set_values_from_constant(numeric, location, indices, verbose) |
---|
440 | |
---|
441 | self.extrapolate_first_order() |
---|
442 | |
---|
443 | if smooth: |
---|
444 | self.smooth_vertex_values(use_cache=use_cache, |
---|
445 | verbose=verbose) |
---|
446 | |
---|
447 | return |
---|
448 | |
---|
449 | # General input checks |
---|
450 | L = [numeric, quantity, function, geospatial_data, filename] |
---|
451 | msg = ('Exactly one of the arguments numeric, quantity, function, ' |
---|
452 | 'geospatial_data, or filename must be present.') |
---|
453 | assert L.count(None) == len(L)-1, msg |
---|
454 | |
---|
455 | if location == 'edges': |
---|
456 | msg = 'edges has been deprecated as valid location' |
---|
457 | raise Exception, msg |
---|
458 | |
---|
459 | if location not in ['vertices', 'centroids', 'unique vertices']: |
---|
460 | msg = 'Invalid location: %s' % location |
---|
461 | raise Exception, msg |
---|
462 | |
---|
463 | msg = 'Indices must be a list, array or None' |
---|
464 | assert isinstance(indices, (NoneType, list, num.ndarray)), msg |
---|
465 | |
---|
466 | # Determine which 'set_values_from_...' to use |
---|
467 | if numeric is not None: |
---|
468 | if isinstance(numeric, (list, num.ndarray)): |
---|
469 | self.set_values_from_array(numeric, location, indices, |
---|
470 | use_cache=use_cache, verbose=verbose) |
---|
471 | elif callable(numeric): |
---|
472 | self.set_values_from_function(numeric, location, indices, |
---|
473 | use_cache=use_cache, |
---|
474 | verbose=verbose) |
---|
475 | elif isinstance(numeric, Quantity): |
---|
476 | self.set_values_from_quantity(numeric, location, indices, |
---|
477 | verbose=verbose) |
---|
478 | elif isinstance(numeric, Geospatial_data): |
---|
479 | self.set_values_from_geospatial_data(numeric, alpha, location, |
---|
480 | indices, verbose=verbose, |
---|
481 | use_cache=use_cache) |
---|
482 | else: # see if it's coercible to a float (float, int or long, etc) |
---|
483 | try: |
---|
484 | numeric = float(numeric) |
---|
485 | except ValueError: |
---|
486 | msg = ("Illegal type for variable 'numeric': %s" |
---|
487 | % type(numeric)) |
---|
488 | raise Exception, msg |
---|
489 | self.set_values_from_constant(numeric, location, |
---|
490 | indices, verbose) |
---|
491 | elif quantity is not None: |
---|
492 | self.set_values_from_quantity(quantity, location, indices, verbose) |
---|
493 | elif function is not None: |
---|
494 | msg = 'Argument function must be callable' |
---|
495 | assert callable(function), msg |
---|
496 | self.set_values_from_function(function, location, indices, |
---|
497 | use_cache=use_cache, verbose=verbose) |
---|
498 | elif geospatial_data is not None: |
---|
499 | self.set_values_from_geospatial_data(geospatial_data, alpha, |
---|
500 | location, indices, |
---|
501 | verbose=verbose, |
---|
502 | use_cache=use_cache) |
---|
503 | elif filename is not None: |
---|
504 | if hasattr(self.domain, 'points_file_block_line_size'): |
---|
505 | max_read_lines = self.domain.points_file_block_line_size |
---|
506 | else: |
---|
507 | max_read_lines = default_block_line_size |
---|
508 | self.set_values_from_file(filename, attribute_name, alpha, location, |
---|
509 | indices, verbose=verbose, |
---|
510 | max_read_lines=max_read_lines, |
---|
511 | use_cache=use_cache) |
---|
512 | else: |
---|
513 | raise Exception, "This can't happen :-)" |
---|
514 | |
---|
515 | # Update all locations in triangles |
---|
516 | if location == 'vertices' or location == 'unique vertices': |
---|
517 | # Intialise centroid and edge_values |
---|
518 | self.interpolate() |
---|
519 | |
---|
520 | if location == 'centroids': |
---|
521 | # Extrapolate 1st order - to capture notion of area being specified |
---|
522 | self.extrapolate_first_order() |
---|
523 | |
---|
524 | ############################################################################ |
---|
525 | # Specific internal functions for setting values based on type |
---|
526 | ############################################################################ |
---|
527 | |
---|
528 | ## |
---|
529 | # @brief Set quantity values from specified constant. |
---|
530 | # @param X The constant to set quantity values to. |
---|
531 | # @param location |
---|
532 | # @param indices |
---|
533 | # @param verbose |
---|
534 | def set_values_from_constant(self, X, location, indices, verbose): |
---|
535 | """Set quantity values from specified constant X""" |
---|
536 | |
---|
537 | # FIXME (Ole): Somehow indices refer to centroids |
---|
538 | # rather than vertices as default. See unit test |
---|
539 | # test_set_vertex_values_using_general_interface_with_subset(self): |
---|
540 | |
---|
541 | if location == 'centroids': |
---|
542 | if indices is None: |
---|
543 | self.centroid_values[:] = X |
---|
544 | else: |
---|
545 | # Brute force |
---|
546 | for i in indices: |
---|
547 | self.centroid_values[i] = X |
---|
548 | elif location == 'unique vertices': |
---|
549 | if indices is None: |
---|
550 | self.edge_values[:] = X #FIXME (Ole): Shouldn't this be vertex_values? |
---|
551 | else: |
---|
552 | # Go through list of unique vertices |
---|
553 | for unique_vert_id in indices: |
---|
554 | triangles = \ |
---|
555 | self.domain.get_triangles_and_vertices_per_node(node=unique_vert_id) |
---|
556 | |
---|
557 | # In case there are unused points |
---|
558 | if len(triangles) == 0: |
---|
559 | continue |
---|
560 | |
---|
561 | # Go through all triangle, vertex pairs |
---|
562 | # and set corresponding vertex value |
---|
563 | for triangle_id, vertex_id in triangles: |
---|
564 | self.vertex_values[triangle_id, vertex_id] = X |
---|
565 | |
---|
566 | # Intialise centroid and edge_values |
---|
567 | self.interpolate() |
---|
568 | else: |
---|
569 | if indices is None: |
---|
570 | self.vertex_values[:] = X |
---|
571 | else: |
---|
572 | # Brute force |
---|
573 | for i_vertex in indices: |
---|
574 | self.vertex_values[i_vertex] = X |
---|
575 | |
---|
576 | ## |
---|
577 | # @brief Set values for a quantity. |
---|
578 | # @param values Array of values. |
---|
579 | # @param location Where values are to be stored. |
---|
580 | # @param indices Limit update to these indices. |
---|
581 | # @param use_cache ?? |
---|
582 | # @param verbose True if this method is to be verbose. |
---|
583 | def set_values_from_array(self, values, |
---|
584 | location='vertices', |
---|
585 | indices=None, |
---|
586 | use_cache=False, |
---|
587 | verbose=False): |
---|
588 | """Set values for quantity |
---|
589 | |
---|
590 | values: numeric array |
---|
591 | location: Where values are to be stored. |
---|
592 | Permissible options are: vertices, centroid, unique vertices |
---|
593 | Default is 'vertices' |
---|
594 | |
---|
595 | indices - if this action is carried out on a subset of |
---|
596 | elements or unique vertices |
---|
597 | The element/unique vertex indices are specified here. |
---|
598 | |
---|
599 | In case of location == 'centroid' the dimension values must |
---|
600 | be a list of a numerical array of length N, N being the number |
---|
601 | of elements. |
---|
602 | |
---|
603 | Otherwise it must be of dimension Nx3 |
---|
604 | |
---|
605 | The values will be stored in elements following their |
---|
606 | internal ordering. |
---|
607 | |
---|
608 | If selected location is vertices, values for centroid and edges |
---|
609 | will be assigned interpolated values. |
---|
610 | In any other case, only values for the specified locations |
---|
611 | will be assigned and the others will be left undefined. |
---|
612 | """ |
---|
613 | |
---|
614 | values = num.array(values, num.float) |
---|
615 | |
---|
616 | if indices is not None: |
---|
617 | indices = num.array(indices, num.int) |
---|
618 | msg = ('Number of values must match number of indices: You ' |
---|
619 | 'specified %d values and %d indices' |
---|
620 | % (values.shape[0], indices.shape[0])) |
---|
621 | assert values.shape[0] == indices.shape[0], msg |
---|
622 | |
---|
623 | N = self.centroid_values.shape[0] |
---|
624 | |
---|
625 | if location == 'centroids': |
---|
626 | assert len(values.shape) == 1, 'Values array must be 1d' |
---|
627 | |
---|
628 | if indices is None: |
---|
629 | msg = 'Number of values must match number of elements' |
---|
630 | assert values.shape[0] == N, msg |
---|
631 | |
---|
632 | self.centroid_values = values |
---|
633 | else: |
---|
634 | msg = 'Number of values must match number of indices' |
---|
635 | assert values.shape[0] == indices.shape[0], msg |
---|
636 | |
---|
637 | # Brute force |
---|
638 | for i in range(len(indices)): |
---|
639 | self.centroid_values[indices[i]] = values[i] |
---|
640 | elif location == 'unique vertices': |
---|
641 | assert (len(values.shape) == 1 or num.allclose(values.shape[1:], 1), |
---|
642 | 'Values array must be 1d') |
---|
643 | |
---|
644 | self.set_vertex_values(values.flatten(), indices=indices, |
---|
645 | use_cache=use_cache, verbose=verbose) |
---|
646 | else: |
---|
647 | # Location vertices |
---|
648 | if len(values.shape) == 1: |
---|
649 | # This is the common case arising from fitted |
---|
650 | # values (e.g. from pts file). |
---|
651 | self.set_vertex_values(values, indices=indices, |
---|
652 | use_cache=use_cache, verbose=verbose) |
---|
653 | elif len(values.shape) == 2: |
---|
654 | # Vertex values are given as a triplet for each triangle |
---|
655 | msg = 'Array must be N x 3' |
---|
656 | assert values.shape[1] == 3, msg |
---|
657 | |
---|
658 | if indices is None: |
---|
659 | self.vertex_values = values |
---|
660 | else: |
---|
661 | for element_index, value in map(None, indices, values): |
---|
662 | self.vertex_values[element_index] = value |
---|
663 | else: |
---|
664 | msg = 'Values array must be 1d or 2d' |
---|
665 | raise Exception, msg |
---|
666 | |
---|
667 | ## |
---|
668 | # @brief Set quantity values from a specified quantity instance. |
---|
669 | # @param q The quantity instance to take values from. |
---|
670 | # @param location IGNORED, 'vertices' ALWAYS USED! |
---|
671 | # @param indices ?? |
---|
672 | # @param verbose True if this method is to be verbose. |
---|
673 | def set_values_from_quantity(self, q, location, indices, verbose): |
---|
674 | """Set quantity values from specified quantity instance q |
---|
675 | |
---|
676 | Location is ignored - vertices will always be used here. |
---|
677 | """ |
---|
678 | |
---|
679 | |
---|
680 | A = q.vertex_values |
---|
681 | |
---|
682 | msg = 'Quantities are defined on different meshes. '+\ |
---|
683 | 'This might be a case for implementing interpolation '+\ |
---|
684 | 'between different meshes.' |
---|
685 | assert num.allclose(A.shape, self.vertex_values.shape), msg |
---|
686 | |
---|
687 | self.set_values(A, location='vertices', |
---|
688 | indices=indices, verbose=verbose) |
---|
689 | |
---|
690 | ## |
---|
691 | # @brief Set quantity values from a specified quantity instance. |
---|
692 | # @param f Callable that takes two 1d array -> 1d array. |
---|
693 | # @param location Where values are to be stored. |
---|
694 | # @param indices ?? |
---|
695 | # @param use_cache ?? |
---|
696 | # @param verbose True if this method is to be verbose. |
---|
697 | def set_values_from_function(self, |
---|
698 | f, |
---|
699 | location='vertices', |
---|
700 | indices=None, |
---|
701 | use_cache=False, |
---|
702 | verbose=False): |
---|
703 | """Set values for quantity using specified function |
---|
704 | |
---|
705 | Input |
---|
706 | f: x, y -> z Function where x, y and z are arrays |
---|
707 | location: Where values are to be stored. |
---|
708 | Permissible options are: vertices, centroid, |
---|
709 | unique vertices |
---|
710 | Default is "vertices" |
---|
711 | indices: |
---|
712 | """ |
---|
713 | |
---|
714 | # FIXME: Should check that function returns something sensible and |
---|
715 | # raise a meaningful exception if it returns None for example |
---|
716 | |
---|
717 | # FIXME: Should supply absolute coordinates |
---|
718 | |
---|
719 | # Compute the function values and call set_values again |
---|
720 | if location == 'centroids': |
---|
721 | if indices is None: |
---|
722 | indices = range(len(self)) |
---|
723 | |
---|
724 | V = num.take(self.domain.get_centroid_coordinates(), indices, axis=0) |
---|
725 | x = V[:,0]; y = V[:,1] |
---|
726 | if use_cache is True: |
---|
727 | res = cache(f, (x, y), verbose=verbose) |
---|
728 | else: |
---|
729 | res = f(x, y) |
---|
730 | |
---|
731 | self.set_values(res, location=location, indices=indices) |
---|
732 | elif location == 'vertices': |
---|
733 | # This is the default branch taken by set_quantity |
---|
734 | M = self.domain.number_of_triangles |
---|
735 | V = self.domain.get_vertex_coordinates() |
---|
736 | |
---|
737 | x = V[:,0]; |
---|
738 | y = V[:,1] |
---|
739 | if use_cache is True: |
---|
740 | values = cache(f, (x, y), verbose=verbose) |
---|
741 | else: |
---|
742 | if verbose is True: |
---|
743 | log.critical('Evaluating function in set_values') |
---|
744 | values = f(x, y) |
---|
745 | |
---|
746 | # FIXME (Ole): This code should replace all the |
---|
747 | # rest of this function and it would work, except |
---|
748 | # one unit test in test_region fails. |
---|
749 | # If that could be resolved this one will be |
---|
750 | # more robust and simple. |
---|
751 | |
---|
752 | # This should be removed |
---|
753 | if is_scalar(values): |
---|
754 | # Function returned a constant value |
---|
755 | self.set_values_from_constant(values, location, |
---|
756 | indices, verbose) |
---|
757 | return |
---|
758 | |
---|
759 | # This should be removed |
---|
760 | if indices is None: |
---|
761 | for j in range(3): |
---|
762 | self.vertex_values[:, j] = values[j::3] |
---|
763 | else: |
---|
764 | # Brute force |
---|
765 | for i in indices: |
---|
766 | for j in range(3): |
---|
767 | self.vertex_values[i, j] = values[3*i + j] |
---|
768 | else: |
---|
769 | raise Exception, 'Not implemented: %s' % location |
---|
770 | |
---|
771 | ## |
---|
772 | # @brief Set values based on geo referenced geospatial data object. |
---|
773 | # @param geospatial_data ?? |
---|
774 | # @param alpha ?? |
---|
775 | # @param location ?? |
---|
776 | # @param indices ?? |
---|
777 | # @param verbose ?? |
---|
778 | # @param use_cache ?? |
---|
779 | def set_values_from_geospatial_data(self, |
---|
780 | geospatial_data, |
---|
781 | alpha, |
---|
782 | location, |
---|
783 | indices, |
---|
784 | verbose=False, |
---|
785 | use_cache=False): |
---|
786 | """Set values based on geo referenced geospatial data object.""" |
---|
787 | |
---|
788 | from anuga.coordinate_transforms.geo_reference import Geo_reference |
---|
789 | |
---|
790 | points = geospatial_data.get_data_points(absolute=False) |
---|
791 | values = geospatial_data.get_attributes() |
---|
792 | data_georef = geospatial_data.get_geo_reference() |
---|
793 | |
---|
794 | from anuga.coordinate_transforms.geo_reference import Geo_reference |
---|
795 | |
---|
796 | points = ensure_numeric(points, num.float) |
---|
797 | values = ensure_numeric(values, num.float) |
---|
798 | |
---|
799 | if location != 'vertices': |
---|
800 | msg = ("set_values_from_points is only defined for " |
---|
801 | "location='vertices'") |
---|
802 | raise Exception, msg |
---|
803 | |
---|
804 | # Take care of georeferencing |
---|
805 | if data_georef is None: |
---|
806 | data_georef = Geo_reference() |
---|
807 | |
---|
808 | mesh_georef = self.domain.geo_reference |
---|
809 | |
---|
810 | # Call fit_interpolate.fit function |
---|
811 | args = (points, ) |
---|
812 | kwargs = {'vertex_coordinates': None, |
---|
813 | 'triangles': None, |
---|
814 | 'mesh': self.domain.mesh, |
---|
815 | 'point_attributes': values, |
---|
816 | 'data_origin': data_georef.get_origin(), |
---|
817 | 'mesh_origin': mesh_georef.get_origin(), |
---|
818 | 'alpha': alpha, |
---|
819 | 'verbose': verbose} |
---|
820 | |
---|
821 | vertex_attributes = apply(fit_to_mesh, args, kwargs) |
---|
822 | |
---|
823 | # Call underlying method using array values |
---|
824 | self.set_values_from_array(vertex_attributes, location, indices, |
---|
825 | use_cache=use_cache, verbose=verbose) |
---|
826 | |
---|
827 | ## |
---|
828 | # @brief Set quantity values from arbitray data points. |
---|
829 | # @param points ?? |
---|
830 | # @param values ?? |
---|
831 | # @param alpha ?? |
---|
832 | # @param location ?? |
---|
833 | # @param indices ?? |
---|
834 | # @param data_georef ?? |
---|
835 | # @param verbose True if this method is to be verbose. |
---|
836 | # @param use_cache ?? |
---|
837 | def set_values_from_points(self, |
---|
838 | points, |
---|
839 | values, |
---|
840 | alpha, |
---|
841 | location, |
---|
842 | indices, |
---|
843 | data_georef=None, |
---|
844 | verbose=False, |
---|
845 | use_cache=False): |
---|
846 | """Set quantity values from arbitray data points using fit_interpolate.fit""" |
---|
847 | |
---|
848 | raise Exception, 'set_values_from_points is obsolete, use geospatial data object instead' |
---|
849 | |
---|
850 | ## |
---|
851 | # @brief Set quantity based on arbitrary points in a points file. |
---|
852 | # @param filename Path to the points file. |
---|
853 | # @param attribute_name |
---|
854 | # @param alpha |
---|
855 | # @param location |
---|
856 | # @param indices |
---|
857 | # @param verbose True if this method is to be verbose. |
---|
858 | # @param use_cache |
---|
859 | # @param max_read_lines |
---|
860 | def set_values_from_file(self, |
---|
861 | filename, |
---|
862 | attribute_name, |
---|
863 | alpha, |
---|
864 | location, |
---|
865 | indices, |
---|
866 | verbose=False, |
---|
867 | use_cache=False, |
---|
868 | max_read_lines=None): |
---|
869 | """Set quantity based on arbitrary points in a points file using |
---|
870 | attribute_name selects name of attribute present in file. |
---|
871 | If attribute_name is not specified, use first available attribute |
---|
872 | as defined in geospatial_data. |
---|
873 | """ |
---|
874 | |
---|
875 | from types import StringType |
---|
876 | |
---|
877 | msg = 'Filename must be a text string' |
---|
878 | assert type(filename) == StringType, msg |
---|
879 | |
---|
880 | if location != 'vertices': |
---|
881 | msg = "set_values_from_file is only defined for location='vertices'" |
---|
882 | raise Exception, msg |
---|
883 | |
---|
884 | |
---|
885 | if True: |
---|
886 | # Use mesh as defined by domain |
---|
887 | # This used to cause problems for caching due to quantities |
---|
888 | # changing, but it now works using the appropriate Mesh object. |
---|
889 | # This addressed ticket:242 and was made to work when bug |
---|
890 | # in ticket:314 was fixed 18 March 2009. |
---|
891 | vertex_attributes = fit_to_mesh(filename, |
---|
892 | mesh=self.domain.mesh, |
---|
893 | alpha=alpha, |
---|
894 | attribute_name=attribute_name, |
---|
895 | use_cache=use_cache, |
---|
896 | verbose=verbose, |
---|
897 | max_read_lines=max_read_lines) |
---|
898 | else: |
---|
899 | # This variant will cause Mesh object to be recreated |
---|
900 | # in fit_to_mesh thus doubling up on the neighbour structure |
---|
901 | # FIXME(Ole): This is now obsolete 19 Jan 2009 except for bug |
---|
902 | # (ticket:314) which was fixed 18 March 2009. |
---|
903 | nodes = self.domain.get_nodes(absolute=True) |
---|
904 | triangles = self.domain.get_triangles() |
---|
905 | vertex_attributes = fit_to_mesh(filename, |
---|
906 | nodes, triangles, |
---|
907 | mesh=None, |
---|
908 | alpha=alpha, |
---|
909 | attribute_name=attribute_name, |
---|
910 | use_cache=use_cache, |
---|
911 | verbose=verbose, |
---|
912 | max_read_lines=max_read_lines) |
---|
913 | |
---|
914 | # Call underlying method using array values |
---|
915 | if verbose: |
---|
916 | log.critical('Applying fitted data to domain') |
---|
917 | self.set_values_from_array(vertex_attributes, location, |
---|
918 | indices, use_cache=use_cache, |
---|
919 | verbose=verbose) |
---|
920 | |
---|
921 | ## |
---|
922 | # @brief Get index for maximum or minimum value of quantity. |
---|
923 | # @param mode Either 'max' or 'min'. |
---|
924 | # @param indices Set of IDs of elements to work on. |
---|
925 | def get_extremum_index(self, mode=None, indices=None): |
---|
926 | """Return index for maximum or minimum value of quantity (on centroids) |
---|
927 | |
---|
928 | Optional arguments: |
---|
929 | mode is either 'max'(default) or 'min'. |
---|
930 | indices is the set of element ids that the operation applies to. |
---|
931 | |
---|
932 | Usage: |
---|
933 | i = get_extreme_index() |
---|
934 | |
---|
935 | Notes: |
---|
936 | We do not seek the extremum at vertices as each vertex can |
---|
937 | have multiple values - one for each triangle sharing it. |
---|
938 | |
---|
939 | If there are multiple cells with same maximum value, the |
---|
940 | first cell encountered in the triangle array is returned. |
---|
941 | """ |
---|
942 | |
---|
943 | V = self.get_values(location='centroids', indices=indices) |
---|
944 | |
---|
945 | # Always return absolute indices |
---|
946 | if mode is None or mode == 'max': |
---|
947 | i = num.argmax(V) |
---|
948 | elif mode == 'min': |
---|
949 | i = num.argmin(V) |
---|
950 | else: |
---|
951 | raise ValueError, 'Bad mode value, got: %s' % str(mode) |
---|
952 | |
---|
953 | if indices is None: |
---|
954 | return i |
---|
955 | else: |
---|
956 | return indices[i] |
---|
957 | |
---|
958 | ## |
---|
959 | # @brief Get index for maximum value of quantity. |
---|
960 | # @param indices Set of IDs of elements to work on. |
---|
961 | def get_maximum_index(self, indices=None): |
---|
962 | """See get extreme index for details""" |
---|
963 | |
---|
964 | return self.get_extremum_index(mode='max', indices=indices) |
---|
965 | |
---|
966 | ## |
---|
967 | # @brief Return maximum value of quantity (on centroids). |
---|
968 | # @param indices Set of IDs of elements to work on. |
---|
969 | def get_maximum_value(self, indices=None): |
---|
970 | """Return maximum value of quantity (on centroids) |
---|
971 | |
---|
972 | Optional argument: |
---|
973 | indices is the set of element ids that the operation applies to. |
---|
974 | |
---|
975 | Usage: |
---|
976 | v = get_maximum_value() |
---|
977 | |
---|
978 | Note, we do not seek the maximum at vertices as each vertex can |
---|
979 | have multiple values - one for each triangle sharing it |
---|
980 | """ |
---|
981 | |
---|
982 | i = self.get_maximum_index(indices) |
---|
983 | V = self.get_values(location='centroids') #, indices=indices) |
---|
984 | |
---|
985 | return V[i] |
---|
986 | |
---|
987 | ## |
---|
988 | # @brief Get location of maximum value of quantity (on centroids). |
---|
989 | # @param indices Set of IDs of elements to work on. |
---|
990 | def get_maximum_location(self, indices=None): |
---|
991 | """Return location of maximum value of quantity (on centroids) |
---|
992 | |
---|
993 | Optional argument: |
---|
994 | indices is the set of element ids that the operation applies to. |
---|
995 | |
---|
996 | Usage: |
---|
997 | x, y = get_maximum_location() |
---|
998 | |
---|
999 | Notes: |
---|
1000 | We do not seek the maximum at vertices as each vertex can |
---|
1001 | have multiple values - one for each triangle sharing it. |
---|
1002 | |
---|
1003 | If there are multiple cells with same maximum value, the |
---|
1004 | first cell encountered in the triangle array is returned. |
---|
1005 | """ |
---|
1006 | |
---|
1007 | i = self.get_maximum_index(indices) |
---|
1008 | x, y = self.domain.get_centroid_coordinates()[i] |
---|
1009 | |
---|
1010 | return x, y |
---|
1011 | |
---|
1012 | ## |
---|
1013 | # @brief Get index for minimum value of quantity. |
---|
1014 | # @param indices Set of IDs of elements to work on. |
---|
1015 | def get_minimum_index(self, indices=None): |
---|
1016 | """See get extreme index for details""" |
---|
1017 | |
---|
1018 | return self.get_extremum_index(mode='min', indices=indices) |
---|
1019 | |
---|
1020 | ## |
---|
1021 | # @brief Return minimum value of quantity (on centroids). |
---|
1022 | # @param indices Set of IDs of elements to work on. |
---|
1023 | def get_minimum_value(self, indices=None): |
---|
1024 | """Return minimum value of quantity (on centroids) |
---|
1025 | |
---|
1026 | Optional argument: |
---|
1027 | indices is the set of element ids that the operation applies to. |
---|
1028 | |
---|
1029 | Usage: |
---|
1030 | v = get_minimum_value() |
---|
1031 | |
---|
1032 | See get_maximum_value for more details. |
---|
1033 | """ |
---|
1034 | |
---|
1035 | i = self.get_minimum_index(indices) |
---|
1036 | V = self.get_values(location='centroids') |
---|
1037 | |
---|
1038 | return V[i] |
---|
1039 | |
---|
1040 | |
---|
1041 | ## |
---|
1042 | # @brief Get location of minimum value of quantity (on centroids). |
---|
1043 | # @param indices Set of IDs of elements to work on. |
---|
1044 | def get_minimum_location(self, indices=None): |
---|
1045 | """Return location of minimum value of quantity (on centroids) |
---|
1046 | |
---|
1047 | Optional argument: |
---|
1048 | indices is the set of element ids that the operation applies to. |
---|
1049 | |
---|
1050 | Usage: |
---|
1051 | x, y = get_minimum_location() |
---|
1052 | |
---|
1053 | Notes: |
---|
1054 | We do not seek the maximum at vertices as each vertex can |
---|
1055 | have multiple values - one for each triangle sharing it. |
---|
1056 | |
---|
1057 | If there are multiple cells with same maximum value, the |
---|
1058 | first cell encountered in the triangle array is returned. |
---|
1059 | """ |
---|
1060 | |
---|
1061 | i = self.get_minimum_index(indices) |
---|
1062 | x, y = self.domain.get_centroid_coordinates()[i] |
---|
1063 | |
---|
1064 | return x, y |
---|
1065 | |
---|
1066 | ## |
---|
1067 | # @brief Get values at interpolation points. |
---|
1068 | # @param interpolation_points List of UTM coords or geospatial data object. |
---|
1069 | # @param use_cache ?? |
---|
1070 | # @param verbose True if this method is to be verbose. |
---|
1071 | def get_interpolated_values(self, |
---|
1072 | interpolation_points, |
---|
1073 | use_cache=False, |
---|
1074 | verbose=False): |
---|
1075 | """Get values at interpolation points |
---|
1076 | |
---|
1077 | The argument interpolation points must be given as either a |
---|
1078 | list of absolute UTM coordinates or a geospatial data object. |
---|
1079 | """ |
---|
1080 | |
---|
1081 | # FIXME (Ole): Points might be converted to coordinates relative to mesh origin |
---|
1082 | # This could all be refactored using the |
---|
1083 | # 'change_points_geo_ref' method of Class geo_reference. |
---|
1084 | # The purpose is to make interpolation points relative |
---|
1085 | # to the mesh origin. |
---|
1086 | # |
---|
1087 | # Speed is also a consideration here. |
---|
1088 | |
---|
1089 | # Ensure that interpolation points is either a list of |
---|
1090 | # points, Nx2 array, or geospatial and convert to numeric array |
---|
1091 | if isinstance(interpolation_points, Geospatial_data): |
---|
1092 | # Ensure interpolation points are in absolute UTM coordinates |
---|
1093 | interpolation_points = \ |
---|
1094 | interpolation_points.get_data_points(absolute=True) |
---|
1095 | |
---|
1096 | # Reconcile interpolation points with georeference of domain |
---|
1097 | interpolation_points = \ |
---|
1098 | self.domain.geo_reference.get_relative(interpolation_points) |
---|
1099 | interpolation_points = ensure_numeric(interpolation_points) |
---|
1100 | |
---|
1101 | |
---|
1102 | # Get internal representation (disconnected) of vertex values |
---|
1103 | vertex_values, triangles = self.get_vertex_values(xy=False, |
---|
1104 | smooth=False) |
---|
1105 | |
---|
1106 | # Get possibly precomputed interpolation object |
---|
1107 | I = self.domain.get_interpolation_object() |
---|
1108 | |
---|
1109 | # Call interpolate method with interpolation points |
---|
1110 | result = I.interpolate_block(vertex_values, interpolation_points, |
---|
1111 | use_cache=use_cache, verbose=verbose) |
---|
1112 | |
---|
1113 | return result |
---|
1114 | |
---|
1115 | ## |
---|
1116 | # @brief Get values as an array. |
---|
1117 | # @param interpolation_points List of coords to get values at. |
---|
1118 | # @param location Where to store results. |
---|
1119 | # @param indices Set of IDs of elements to work on. |
---|
1120 | # @param use_cache |
---|
1121 | # @param verbose True if this method is to be verbose. |
---|
1122 | def get_values(self, |
---|
1123 | interpolation_points=None, |
---|
1124 | location='vertices', |
---|
1125 | indices=None, |
---|
1126 | use_cache=False, |
---|
1127 | verbose=False): |
---|
1128 | """Get values for quantity |
---|
1129 | |
---|
1130 | Extract values for quantity as a numeric array. |
---|
1131 | |
---|
1132 | Inputs: |
---|
1133 | interpolation_points: List of x, y coordinates where value is |
---|
1134 | sought (using interpolation). If points |
---|
1135 | are given, values of location and indices |
---|
1136 | are ignored. Assume either absolute UTM |
---|
1137 | coordinates or geospatial data object. |
---|
1138 | |
---|
1139 | location: Where values are to be stored. |
---|
1140 | Permissible options are: vertices, edges, centroids |
---|
1141 | and unique vertices. Default is 'vertices' |
---|
1142 | |
---|
1143 | |
---|
1144 | The returned values will have the leading dimension equal to length of the indices list or |
---|
1145 | N (all values) if indices is None. |
---|
1146 | |
---|
1147 | In case of location == 'centroids' the dimension of returned |
---|
1148 | values will be a list or a numerical array of length N, N being |
---|
1149 | the number of elements. |
---|
1150 | |
---|
1151 | In case of location == 'vertices' or 'edges' the dimension of |
---|
1152 | returned values will be of dimension Nx3 |
---|
1153 | |
---|
1154 | In case of location == 'unique vertices' the average value at |
---|
1155 | each vertex will be returned and the dimension of returned values |
---|
1156 | will be a 1d array of length "number of vertices" |
---|
1157 | |
---|
1158 | Indices is the set of element ids that the operation applies to. |
---|
1159 | |
---|
1160 | The values will be stored in elements following their |
---|
1161 | internal ordering. |
---|
1162 | """ |
---|
1163 | |
---|
1164 | # FIXME (Ole): I reckon we should have the option of passing a |
---|
1165 | # polygon into get_values. The question becomes how |
---|
1166 | # resulting values should be ordered. |
---|
1167 | |
---|
1168 | if verbose is True: |
---|
1169 | log.critical('Getting values from %s' % location) |
---|
1170 | |
---|
1171 | if interpolation_points is not None: |
---|
1172 | return self.get_interpolated_values(interpolation_points, |
---|
1173 | use_cache=use_cache, |
---|
1174 | verbose=verbose) |
---|
1175 | |
---|
1176 | # FIXME (Ole): Consider deprecating 'edges' - but not if it is used |
---|
1177 | # elsewhere in ANUGA. |
---|
1178 | # Edges have already been deprecated in set_values, see changeset:5521, |
---|
1179 | # but *might* be useful in get_values. Any thoughts anyone? |
---|
1180 | # YES (Ole): Edge values are necessary for volumetric balance check and inflow boundary. Keep them. |
---|
1181 | |
---|
1182 | if location not in ['vertices', 'centroids', |
---|
1183 | 'edges', 'unique vertices']: |
---|
1184 | msg = 'Invalid location: %s' % location |
---|
1185 | raise Exception, msg |
---|
1186 | |
---|
1187 | import types |
---|
1188 | |
---|
1189 | msg = "'indices' must be a list, array or None" |
---|
1190 | assert isinstance(indices, (NoneType, list, num.ndarray)), msg |
---|
1191 | |
---|
1192 | if location == 'centroids': |
---|
1193 | if (indices == None): |
---|
1194 | indices = range(len(self)) |
---|
1195 | return num.take(self.centroid_values, indices, axis=0) |
---|
1196 | elif location == 'edges': |
---|
1197 | if (indices == None): |
---|
1198 | indices = range(len(self)) |
---|
1199 | return num.take(self.edge_values, indices, axis=0) |
---|
1200 | elif location == 'unique vertices': |
---|
1201 | if (indices == None): |
---|
1202 | indices=range(self.domain.get_number_of_nodes()) |
---|
1203 | vert_values = [] |
---|
1204 | |
---|
1205 | # Go through list of unique vertices |
---|
1206 | for unique_vert_id in indices: |
---|
1207 | triangles = self.domain.get_triangles_and_vertices_per_node(node=unique_vert_id) |
---|
1208 | |
---|
1209 | # In case there are unused points |
---|
1210 | if len(triangles) == 0: |
---|
1211 | msg = 'Unique vertex not associated with triangles' |
---|
1212 | raise Exception, msg |
---|
1213 | |
---|
1214 | # Go through all triangle, vertex pairs |
---|
1215 | # Average the values |
---|
1216 | # FIXME (Ole): Should we merge this with get_vertex_values |
---|
1217 | sum = 0 |
---|
1218 | for triangle_id, vertex_id in triangles: |
---|
1219 | sum += self.vertex_values[triangle_id, vertex_id] |
---|
1220 | vert_values.append(sum / len(triangles)) |
---|
1221 | return num.array(vert_values, num.float) |
---|
1222 | else: |
---|
1223 | if (indices is None): |
---|
1224 | indices = range(len(self)) |
---|
1225 | return num.take(self.vertex_values, indices, axis=0) |
---|
1226 | |
---|
1227 | ## |
---|
1228 | # @brief Set vertex values for all unique vertices based on array. |
---|
1229 | # @param A Array to set values with. |
---|
1230 | # @param indices Set of IDs of elements to work on. |
---|
1231 | # @param use_cache ?? |
---|
1232 | # @param verbose?? |
---|
1233 | def set_vertex_values(self, |
---|
1234 | A, |
---|
1235 | indices=None, |
---|
1236 | use_cache=False, |
---|
1237 | verbose=False): |
---|
1238 | """Set vertex values for all unique vertices based on input array A |
---|
1239 | which has one entry per unique vertex, i.e. one value for each row in |
---|
1240 | array self.domain.nodes. |
---|
1241 | |
---|
1242 | indices is the list of vertex_id's that will be set. |
---|
1243 | |
---|
1244 | This function is used by set_values_from_array |
---|
1245 | """ |
---|
1246 | |
---|
1247 | # Check that A can be converted to array and is of appropriate dim |
---|
1248 | A = ensure_numeric(A, num.float) |
---|
1249 | assert len(A.shape) == 1 |
---|
1250 | |
---|
1251 | if indices is None: |
---|
1252 | assert A.shape[0] == self.domain.get_nodes().shape[0] |
---|
1253 | vertex_list = range(A.shape[0]) |
---|
1254 | else: |
---|
1255 | assert A.shape[0] == len(indices) |
---|
1256 | vertex_list = indices |
---|
1257 | |
---|
1258 | #FIXME(Ole): This function ought to be faster. |
---|
1259 | # We need to get the triangles_and_vertices list |
---|
1260 | # from domain in one hit, then cache the computation of the |
---|
1261 | # Nx3 array of vertex values that can then be assigned using |
---|
1262 | # set_values_from_array. |
---|
1263 | # |
---|
1264 | # Alternatively, some C code would be handy |
---|
1265 | # |
---|
1266 | self._set_vertex_values(vertex_list, A) |
---|
1267 | |
---|
1268 | ## |
---|
1269 | # @brief Go through list of unique vertices. |
---|
1270 | # @param vertex_list ?? |
---|
1271 | # @param A ?? |
---|
1272 | def _set_vertex_values(self, vertex_list, A): |
---|
1273 | """Go through list of unique vertices |
---|
1274 | This is the common case e.g. when values |
---|
1275 | are obtained from a pts file through fitting |
---|
1276 | """ |
---|
1277 | |
---|
1278 | # Go through list of unique vertices |
---|
1279 | for i_index, unique_vert_id in enumerate(vertex_list): |
---|
1280 | triangles = self.domain.get_triangles_and_vertices_per_node(node=unique_vert_id) |
---|
1281 | |
---|
1282 | # In case there are unused points |
---|
1283 | if len(triangles) == 0: |
---|
1284 | continue |
---|
1285 | |
---|
1286 | # Go through all triangle, vertex pairs |
---|
1287 | # touching vertex unique_vert_id and set corresponding vertex value |
---|
1288 | for triangle_id, vertex_id in triangles: |
---|
1289 | self.vertex_values[triangle_id, vertex_id] = A[i_index] |
---|
1290 | |
---|
1291 | # Intialise centroid and edge_values |
---|
1292 | self.interpolate() |
---|
1293 | |
---|
1294 | ## |
---|
1295 | # @brief Smooth vertex values. |
---|
1296 | def smooth_vertex_values(self, use_cache=False, verbose=False): |
---|
1297 | """Smooths vertex values.""" |
---|
1298 | |
---|
1299 | A, V = self.get_vertex_values(xy=False, smooth=True) |
---|
1300 | self.set_vertex_values(A, use_cache=use_cache, verbose=verbose) |
---|
1301 | |
---|
1302 | ############################################################################ |
---|
1303 | # Methods for outputting model results |
---|
1304 | ############################################################################ |
---|
1305 | |
---|
1306 | ## |
---|
1307 | # @brief Get vertex values like an OBJ format i.e. one value per node. |
---|
1308 | # @param xy True if we return X and Y as well as A and V. |
---|
1309 | # @param smooth True if vertex values are to be smoothed. |
---|
1310 | # @param precision The type of the result values (default float). |
---|
1311 | def get_vertex_values(self, xy=True, smooth=None, precision=None): |
---|
1312 | """Return vertex values like an OBJ format i.e. one value per node. |
---|
1313 | |
---|
1314 | The vertex values are returned as one sequence in the 1D float array A. |
---|
1315 | If requested the coordinates will be returned in 1D arrays X and Y. |
---|
1316 | |
---|
1317 | The connectivity is represented as an integer array, V, of dimension |
---|
1318 | Mx3, where M is the number of triangles. Each row has three indices |
---|
1319 | defining the triangle and they correspond to elements in the arrays |
---|
1320 | X, Y and A. |
---|
1321 | |
---|
1322 | If smooth is True, vertex values corresponding to one common coordinate |
---|
1323 | set will be smoothed by taking the average of vertex values for each |
---|
1324 | node. In this case vertex coordinates will be de-duplicated |
---|
1325 | corresponding to the original nodes as obtained from the method |
---|
1326 | general_mesh.get_nodes() |
---|
1327 | |
---|
1328 | If no smoothings is required, vertex coordinates and values will be |
---|
1329 | aggregated as a concatenation of values at vertices 0, vertices 1 and |
---|
1330 | vertices 2. This corresponds to the node coordinates obtained from the |
---|
1331 | method general_mesh.get_vertex_coordinates() |
---|
1332 | |
---|
1333 | Calling convention |
---|
1334 | if xy is True: |
---|
1335 | X, Y, A, V = get_vertex_values |
---|
1336 | else: |
---|
1337 | A, V = get_vertex_values |
---|
1338 | """ |
---|
1339 | |
---|
1340 | if smooth is None: |
---|
1341 | # Take default from domain |
---|
1342 | try: |
---|
1343 | smooth = self.domain.smooth |
---|
1344 | except: |
---|
1345 | smooth = False |
---|
1346 | |
---|
1347 | if precision is None: |
---|
1348 | precision = num.float |
---|
1349 | |
---|
1350 | if smooth is True: |
---|
1351 | # Ensure continuous vertex values by averaging values at each node |
---|
1352 | V = self.domain.get_triangles() |
---|
1353 | N = self.domain.number_of_full_nodes # Ignore ghost nodes if any |
---|
1354 | A = num.zeros(N, num.float) |
---|
1355 | points = self.domain.get_nodes() |
---|
1356 | |
---|
1357 | if 1: |
---|
1358 | # Fast C version |
---|
1359 | average_vertex_values(ensure_numeric(self.domain.vertex_value_indices), |
---|
1360 | ensure_numeric(self.domain.number_of_triangles_per_node), |
---|
1361 | ensure_numeric(self.vertex_values), |
---|
1362 | A) |
---|
1363 | A = A.astype(precision) |
---|
1364 | else: |
---|
1365 | # Slow Python version |
---|
1366 | current_node = 0 |
---|
1367 | k = 0 # Track triangles touching on node |
---|
1368 | total = 0.0 |
---|
1369 | for index in self.domain.vertex_value_indices: |
---|
1370 | if current_node == N: |
---|
1371 | msg = 'Current node exceeding number of nodes (%d) ' % N |
---|
1372 | raise Exception, msg |
---|
1373 | |
---|
1374 | k += 1 |
---|
1375 | |
---|
1376 | volume_id = index / 3 |
---|
1377 | vertex_id = index % 3 |
---|
1378 | |
---|
1379 | v = self.vertex_values[volume_id, vertex_id] |
---|
1380 | total += v |
---|
1381 | |
---|
1382 | if self.domain.number_of_triangles_per_node[current_node] == k: |
---|
1383 | A[current_node] = total/k |
---|
1384 | |
---|
1385 | # Move on to next node |
---|
1386 | total = 0.0 |
---|
1387 | k = 0 |
---|
1388 | current_node += 1 |
---|
1389 | else: |
---|
1390 | # Return disconnected internal vertex values |
---|
1391 | V = self.domain.get_disconnected_triangles() |
---|
1392 | points = self.domain.get_vertex_coordinates() |
---|
1393 | A = self.vertex_values.flatten().astype(precision) |
---|
1394 | |
---|
1395 | # Return |
---|
1396 | if xy is True: |
---|
1397 | X = points[:,0].astype(precision) |
---|
1398 | Y = points[:,1].astype(precision) |
---|
1399 | |
---|
1400 | return X, Y, A, V |
---|
1401 | else: |
---|
1402 | return A, V |
---|
1403 | |
---|
1404 | ## |
---|
1405 | # @brief Extrapolate conserved quantities from centroid. |
---|
1406 | def extrapolate_first_order(self): |
---|
1407 | """Extrapolate conserved quantities from centroid to vertices and edges |
---|
1408 | for each volume using first order scheme. |
---|
1409 | """ |
---|
1410 | |
---|
1411 | qc = self.centroid_values |
---|
1412 | qv = self.vertex_values |
---|
1413 | qe = self.edge_values |
---|
1414 | |
---|
1415 | for i in range(3): |
---|
1416 | qv[:,i] = qc |
---|
1417 | qe[:,i] = qc |
---|
1418 | |
---|
1419 | self.x_gradient *= 0.0 |
---|
1420 | self.y_gradient *= 0.0 |
---|
1421 | |
---|
1422 | ## |
---|
1423 | # @brief Compute the integral of quantity across entire domain. |
---|
1424 | # @return The integral. |
---|
1425 | def get_integral(self): |
---|
1426 | """Compute the integral of quantity across entire domain.""" |
---|
1427 | |
---|
1428 | areas = self.domain.get_areas() |
---|
1429 | integral = 0 |
---|
1430 | for k in range(len(self.domain)): |
---|
1431 | area = areas[k] |
---|
1432 | qc = self.centroid_values[k] |
---|
1433 | integral += qc*area |
---|
1434 | |
---|
1435 | return integral |
---|
1436 | |
---|
1437 | ## |
---|
1438 | # @brief get the gradients. |
---|
1439 | def get_gradients(self): |
---|
1440 | """Provide gradients. Use compute_gradients first.""" |
---|
1441 | |
---|
1442 | return self.x_gradient, self.y_gradient |
---|
1443 | |
---|
1444 | ## |
---|
1445 | # @brief ?? |
---|
1446 | # @param timestep ?? |
---|
1447 | def update(self, timestep): |
---|
1448 | # Call correct module function |
---|
1449 | # (either from this module or C-extension) |
---|
1450 | return update(self, timestep) |
---|
1451 | |
---|
1452 | ## |
---|
1453 | # @brief ?? |
---|
1454 | def compute_gradients(self): |
---|
1455 | # Call correct module function |
---|
1456 | # (either from this module or C-extension) |
---|
1457 | return compute_gradients(self) |
---|
1458 | |
---|
1459 | ## |
---|
1460 | # @brief ?? |
---|
1461 | def limit(self): |
---|
1462 | # Call correct module depending on whether |
---|
1463 | # basing limit calculations on edges or vertices |
---|
1464 | limit_old(self) |
---|
1465 | |
---|
1466 | ## |
---|
1467 | # @brief ?? |
---|
1468 | def limit_vertices_by_all_neighbours(self): |
---|
1469 | # Call correct module function |
---|
1470 | # (either from this module or C-extension) |
---|
1471 | limit_vertices_by_all_neighbours(self) |
---|
1472 | |
---|
1473 | ## |
---|
1474 | # @brief ?? |
---|
1475 | def limit_edges_by_all_neighbours(self): |
---|
1476 | # Call correct module function |
---|
1477 | # (either from this module or C-extension) |
---|
1478 | limit_edges_by_all_neighbours(self) |
---|
1479 | |
---|
1480 | ## |
---|
1481 | # @brief ?? |
---|
1482 | def limit_edges_by_neighbour(self): |
---|
1483 | # Call correct module function |
---|
1484 | # (either from this module or C-extension) |
---|
1485 | limit_edges_by_neighbour(self) |
---|
1486 | |
---|
1487 | ## |
---|
1488 | # @brief ?? |
---|
1489 | def extrapolate_second_order(self): |
---|
1490 | # Call correct module function |
---|
1491 | # (either from this module or C-extension) |
---|
1492 | compute_gradients(self) |
---|
1493 | extrapolate_from_gradient(self) |
---|
1494 | |
---|
1495 | ## |
---|
1496 | # @brief ?? |
---|
1497 | def extrapolate_second_order_and_limit_by_edge(self): |
---|
1498 | # Call correct module function |
---|
1499 | # (either from this module or C-extension) |
---|
1500 | extrapolate_second_order_and_limit_by_edge(self) |
---|
1501 | |
---|
1502 | ## |
---|
1503 | # @brief ?? |
---|
1504 | def extrapolate_second_order_and_limit_by_vertex(self): |
---|
1505 | # Call correct module function |
---|
1506 | # (either from this module or C-extension) |
---|
1507 | extrapolate_second_order_and_limit_by_vertex(self) |
---|
1508 | |
---|
1509 | ## |
---|
1510 | # @brief ?? |
---|
1511 | # @param bound ?? |
---|
1512 | def bound_vertices_below_by_constant(self, bound): |
---|
1513 | # Call correct module function |
---|
1514 | # (either from this module or C-extension) |
---|
1515 | bound_vertices_below_by_constant(self, bound) |
---|
1516 | |
---|
1517 | ## |
---|
1518 | # @brief ?? |
---|
1519 | # @param quantity ?? |
---|
1520 | def bound_vertices_below_by_quantity(self, quantity): |
---|
1521 | # Call correct module function |
---|
1522 | # (either from this module or C-extension) |
---|
1523 | |
---|
1524 | # check consistency |
---|
1525 | assert self.domain == quantity.domain |
---|
1526 | bound_vertices_below_by_quantity(self, quantity) |
---|
1527 | |
---|
1528 | ## |
---|
1529 | # @brief ?? |
---|
1530 | def backup_centroid_values(self): |
---|
1531 | # Call correct module function |
---|
1532 | # (either from this module or C-extension) |
---|
1533 | backup_centroid_values(self) |
---|
1534 | |
---|
1535 | ## |
---|
1536 | # @brief ?? |
---|
1537 | # @param a ?? |
---|
1538 | # @param b ?? |
---|
1539 | def saxpy_centroid_values(self, a, b): |
---|
1540 | # Call correct module function |
---|
1541 | # (either from this module or C-extension) |
---|
1542 | saxpy_centroid_values(self, a, b) |
---|
1543 | |
---|
1544 | |
---|
1545 | ## |
---|
1546 | # @brief OBSOLETE! |
---|
1547 | class Conserved_quantity(Quantity): |
---|
1548 | """Class conserved quantity being removed, use Quantity.""" |
---|
1549 | |
---|
1550 | def __init__(self, domain, vertex_values=None): |
---|
1551 | msg = 'ERROR: Use Quantity instead of Conserved_quantity' |
---|
1552 | raise Exception, msg |
---|
1553 | |
---|
1554 | |
---|
1555 | ###### |
---|
1556 | # Prepare the C extensions. |
---|
1557 | ###### |
---|
1558 | |
---|
1559 | from anuga.utilities import compile |
---|
1560 | |
---|
1561 | if compile.can_use_C_extension('quantity_ext.c'): |
---|
1562 | # Underlying C implementations can be accessed |
---|
1563 | |
---|
1564 | from quantity_ext import \ |
---|
1565 | average_vertex_values,\ |
---|
1566 | backup_centroid_values,\ |
---|
1567 | saxpy_centroid_values,\ |
---|
1568 | compute_gradients,\ |
---|
1569 | limit_old,\ |
---|
1570 | limit_vertices_by_all_neighbours,\ |
---|
1571 | limit_edges_by_all_neighbours,\ |
---|
1572 | limit_edges_by_neighbour,\ |
---|
1573 | limit_gradient_by_neighbour,\ |
---|
1574 | extrapolate_from_gradient,\ |
---|
1575 | extrapolate_second_order_and_limit_by_edge,\ |
---|
1576 | extrapolate_second_order_and_limit_by_vertex,\ |
---|
1577 | bound_vertices_below_by_constant,\ |
---|
1578 | bound_vertices_below_by_quantity,\ |
---|
1579 | interpolate_from_vertices_to_edges,\ |
---|
1580 | interpolate_from_edges_to_vertices,\ |
---|
1581 | update |
---|
1582 | else: |
---|
1583 | msg = 'C implementations could not be accessed by %s.\n ' % __file__ |
---|
1584 | msg += 'Make sure compile_all.py has been run as described in ' |
---|
1585 | msg += 'the ANUGA installation guide.' |
---|
1586 | raise Exception, msg |
---|