1 | #!/usr/bin/env python |
---|
2 | |
---|
3 | |
---|
4 | |
---|
5 | #FIXME: Seperate the tests for mesh and general_mesh |
---|
6 | |
---|
7 | #FIXME (Ole): Maxe this test independent of anything that inherits from General_mesh (namely shallow_water) |
---|
8 | |
---|
9 | import unittest |
---|
10 | from math import sqrt |
---|
11 | |
---|
12 | from neighbour_mesh import * |
---|
13 | from mesh_factory import rectangular |
---|
14 | from anuga.config import epsilon |
---|
15 | from Numeric import allclose, array, Int |
---|
16 | |
---|
17 | from anuga.coordinate_transforms.geo_reference import Geo_reference |
---|
18 | from anuga.utilities.polygon import is_inside_polygon |
---|
19 | from anuga.utilities.numerical_tools import ensure_numeric |
---|
20 | |
---|
21 | def distance(x, y): |
---|
22 | return sqrt( sum( (array(x)-array(y))**2 )) |
---|
23 | |
---|
24 | class Test_Mesh(unittest.TestCase): |
---|
25 | def setUp(self): |
---|
26 | pass |
---|
27 | |
---|
28 | def tearDown(self): |
---|
29 | pass |
---|
30 | |
---|
31 | def test_triangle_inputs(self): |
---|
32 | points = [[0.0, 0.0], [4.0, 0.0], [0.0, 3.0]] |
---|
33 | vertices = [0,1,2] #Wrong |
---|
34 | |
---|
35 | try: |
---|
36 | mesh = Mesh(points, vertices) |
---|
37 | except: |
---|
38 | pass |
---|
39 | else: |
---|
40 | msg = 'Should have raised exception' |
---|
41 | raise msg |
---|
42 | |
---|
43 | |
---|
44 | def test_basic_triangle(self): |
---|
45 | |
---|
46 | a = [0.0, 0.0] |
---|
47 | b = [4.0, 0.0] |
---|
48 | c = [0.0, 3.0] |
---|
49 | |
---|
50 | points = [a, b, c] |
---|
51 | vertices = [[0,1,2]] |
---|
52 | mesh = Mesh(points, vertices) |
---|
53 | |
---|
54 | #Centroid |
---|
55 | centroid = mesh.centroid_coordinates[0] |
---|
56 | assert centroid[0] == 4.0/3 |
---|
57 | assert centroid[1] == 1.0 |
---|
58 | |
---|
59 | #Area |
---|
60 | assert mesh.areas[0] == 6.0,\ |
---|
61 | 'Area was %f, should have been 6.0' %mesh.areas[0] |
---|
62 | |
---|
63 | #Normals |
---|
64 | normals = mesh.get_normals() |
---|
65 | assert allclose(normals[0, 0:2], [3.0/5, 4.0/5]) |
---|
66 | assert allclose(normals[0, 2:4], [-1.0, 0.0]) |
---|
67 | assert allclose(normals[0, 4:6], [0.0, -1.0]) |
---|
68 | |
---|
69 | assert allclose(mesh.get_normal(0,0), [3.0/5, 4.0/5]) |
---|
70 | assert allclose(mesh.get_normal(0,1), [-1.0, 0.0]) |
---|
71 | assert allclose(mesh.get_normal(0,2), [0.0, -1.0]) |
---|
72 | |
---|
73 | #Edge lengths |
---|
74 | assert allclose(mesh.edgelengths[0], [5.0, 3.0, 4.0]) |
---|
75 | |
---|
76 | |
---|
77 | #Vertex coordinates |
---|
78 | #V = mesh.get_vertex_coordinates() |
---|
79 | #assert allclose(V[0], [0.0, 0.0, 4.0, 0.0, 0.0, 3.0]) |
---|
80 | |
---|
81 | |
---|
82 | V = mesh.get_vertex_coordinates() |
---|
83 | assert allclose(V, [ [0.0, 0.0], |
---|
84 | [4.0, 0.0], |
---|
85 | [0.0, 3.0] ]) |
---|
86 | |
---|
87 | V0 = mesh.get_vertex_coordinate(0, 0) |
---|
88 | assert allclose(V0, [0.0, 0.0]) |
---|
89 | |
---|
90 | V1 = mesh.get_vertex_coordinate(0, 1) |
---|
91 | assert allclose(V1, [4.0, 0.0]) |
---|
92 | |
---|
93 | V2 = mesh.get_vertex_coordinate(0, 2) |
---|
94 | assert allclose(V2, [0.0, 3.0]) |
---|
95 | |
---|
96 | |
---|
97 | #General tests: |
---|
98 | |
---|
99 | #Test that points are arranged in a counter clock wise order etc |
---|
100 | mesh.check_integrity() |
---|
101 | |
---|
102 | |
---|
103 | #Test that the centroid is located 2/3 of the way |
---|
104 | #from each vertex to the midpoint of the opposite side |
---|
105 | |
---|
106 | V = mesh.get_vertex_coordinates() |
---|
107 | x0 = V[0, 0]; y0 = V[0, 1] |
---|
108 | x1 = V[1, 0]; y1 = V[1, 1] |
---|
109 | x2 = V[2, 0]; y2 = V[2, 1] |
---|
110 | #x0 = V[0,0] |
---|
111 | #y0 = V[0,1] |
---|
112 | #x1 = V[0,2] |
---|
113 | #y1 = V[0,3] |
---|
114 | #x2 = V[0,4] |
---|
115 | #y2 = V[0,5] |
---|
116 | |
---|
117 | m0 = [(x1 + x2)/2, (y1 + y2)/2] |
---|
118 | m1 = [(x0 + x2)/2, (y0 + y2)/2] |
---|
119 | m2 = [(x1 + x0)/2, (y1 + y0)/2] |
---|
120 | |
---|
121 | d0 = distance(centroid, [x0, y0]) |
---|
122 | d1 = distance(m0, [x0, y0]) |
---|
123 | assert d0 == 2*d1/3 |
---|
124 | # |
---|
125 | d0 = distance(centroid, [x1, y1]) |
---|
126 | d1 = distance(m1, [x1, y1]) |
---|
127 | assert abs(d0 - 2*d1/3) < epsilon, '%e, %e' %(d0, 2*d1/3) |
---|
128 | |
---|
129 | d0 = distance(centroid, [x2, y2]) |
---|
130 | d1 = distance(m2, [x2, y2]) |
---|
131 | assert abs(d0 - 2*d1/3) < epsilon, '%e, %e' %(d0, 2*d1/3) |
---|
132 | |
---|
133 | #Radius |
---|
134 | d0 = distance(centroid, m0) |
---|
135 | assert d0 == 5.0/6 |
---|
136 | |
---|
137 | d1 = distance(centroid, m1) |
---|
138 | assert d1 == sqrt(73.0/36) |
---|
139 | |
---|
140 | d2 = distance(centroid, m2) |
---|
141 | assert d2 == sqrt(13.0/9) |
---|
142 | |
---|
143 | assert mesh.radii[0] == min(d0, d1, d2) |
---|
144 | assert mesh.radii[0] == 5.0/6 |
---|
145 | |
---|
146 | |
---|
147 | #Let x be the centroid of triangle abc. |
---|
148 | #Test that areas of the three triangles axc, cxb, and bxa are equal. |
---|
149 | points = [a, b, c, centroid] |
---|
150 | vertices = [[0,3,2], [2,3,1], [1,3,0]] |
---|
151 | new_mesh = Mesh(points, vertices) |
---|
152 | |
---|
153 | assert new_mesh.areas[0] == new_mesh.areas[1] |
---|
154 | assert new_mesh.areas[1] == new_mesh.areas[2] |
---|
155 | assert new_mesh.areas[1] == new_mesh.areas[2] |
---|
156 | |
---|
157 | assert new_mesh.areas[1] == mesh.areas[0]/3 |
---|
158 | |
---|
159 | |
---|
160 | |
---|
161 | def test_general_triangle(self): |
---|
162 | a = [2.0, 1.0] |
---|
163 | b = [6.0, 2.0] |
---|
164 | c = [1.0, 3.0] |
---|
165 | |
---|
166 | points = [a, b, c] |
---|
167 | vertices = [[0,1,2]] |
---|
168 | |
---|
169 | mesh = Mesh(points, vertices) |
---|
170 | centroid = mesh.centroid_coordinates[0] |
---|
171 | |
---|
172 | |
---|
173 | #Test that the centroid is located 2/3 of the way |
---|
174 | #from each vertex to the midpoint of the opposite side |
---|
175 | |
---|
176 | V = mesh.get_vertex_coordinates() |
---|
177 | x0 = V[0, 0]; y0 = V[0, 1] |
---|
178 | x1 = V[1, 0]; y1 = V[1, 1] |
---|
179 | x2 = V[2, 0]; y2 = V[2, 1] |
---|
180 | |
---|
181 | #x0 = V[0,0] |
---|
182 | #y0 = V[0,1] |
---|
183 | #x1 = V[0,2] |
---|
184 | #y1 = V[0,3] |
---|
185 | #x2 = V[0,4] |
---|
186 | #y2 = V[0,5] |
---|
187 | |
---|
188 | m0 = [(x1 + x2)/2, (y1 + y2)/2] |
---|
189 | m1 = [(x0 + x2)/2, (y0 + y2)/2] |
---|
190 | m2 = [(x1 + x0)/2, (y1 + y0)/2] |
---|
191 | |
---|
192 | d0 = distance(centroid, [x0, y0]) |
---|
193 | d1 = distance(m0, [x0, y0]) |
---|
194 | assert abs(d0 - 2*d1/3) < epsilon, '%e, %e' %(d0, 2*d1/3) |
---|
195 | # |
---|
196 | d0 = distance(centroid, [x1, y1]) |
---|
197 | d1 = distance(m1, [x1, y1]) |
---|
198 | assert abs(d0 - 2*d1/3) < epsilon, '%e, %e' %(d0, 2*d1/3) |
---|
199 | |
---|
200 | d0 = distance(centroid, [x2, y2]) |
---|
201 | d1 = distance(m2, [x2, y2]) |
---|
202 | assert abs(d0 - 2*d1/3) < epsilon, '%e, %e' %(d0, 2*d1/3) |
---|
203 | |
---|
204 | #Radius |
---|
205 | d0 = distance(centroid, m0) |
---|
206 | d1 = distance(centroid, m1) |
---|
207 | d2 = distance(centroid, m2) |
---|
208 | assert mesh.radii[0] == min(d0, d1, d2) |
---|
209 | |
---|
210 | |
---|
211 | |
---|
212 | #Let x be the centroid of triangle abc. |
---|
213 | #Test that areas of the three triangles axc, cxb, and bxa are equal. |
---|
214 | |
---|
215 | points = [a, b, c, centroid] |
---|
216 | vertices = [[0,3,2], [2,3,1], [1,3,0]] |
---|
217 | new_mesh = Mesh(points, vertices) |
---|
218 | |
---|
219 | assert new_mesh.areas[0] == new_mesh.areas[1] |
---|
220 | assert new_mesh.areas[1] == new_mesh.areas[2] |
---|
221 | assert new_mesh.areas[1] == new_mesh.areas[2] |
---|
222 | |
---|
223 | assert new_mesh.areas[1] == mesh.areas[0]/3 |
---|
224 | |
---|
225 | |
---|
226 | #Test that points are arranged in a counter clock wise order |
---|
227 | mesh.check_integrity() |
---|
228 | |
---|
229 | def test_inscribed_circle_equilateral(self): |
---|
230 | """test that the radius is calculated correctly by mesh in the case of an equilateral triangle""" |
---|
231 | a = [0.0, 0.0] |
---|
232 | b = [2.0, 0.0] |
---|
233 | c = [1.0, sqrt(3.0)] |
---|
234 | |
---|
235 | points = [a, b, c] |
---|
236 | vertices = [[0,1,2]] |
---|
237 | |
---|
238 | mesh = Mesh(points, vertices,use_inscribed_circle=False) |
---|
239 | assert allclose(mesh.radii[0],sqrt(3.0)/3),'Steve''s doesn''t work' |
---|
240 | |
---|
241 | mesh = Mesh(points, vertices,use_inscribed_circle=True) |
---|
242 | assert allclose(mesh.radii[0],sqrt(3.0)/3),'inscribed circle doesn''t work' |
---|
243 | |
---|
244 | def test_inscribed_circle_rightangle_triangle(self): |
---|
245 | """test that the radius is calculated correctly by mesh in the case of a right-angled triangle""" |
---|
246 | a = [0.0, 0.0] |
---|
247 | b = [4.0, 0.0] |
---|
248 | c = [0.0, 3.0] |
---|
249 | |
---|
250 | points = [a, b, c] |
---|
251 | vertices = [[0,1,2]] |
---|
252 | |
---|
253 | mesh = Mesh(points, vertices,use_inscribed_circle=False) |
---|
254 | assert allclose(mesh.radii[0],5.0/6),'Steve''s doesn''t work' |
---|
255 | |
---|
256 | mesh = Mesh(points, vertices,use_inscribed_circle=True) |
---|
257 | assert allclose(mesh.radii[0],1.0),'inscribed circle doesn''t work' |
---|
258 | |
---|
259 | |
---|
260 | def test_two_triangles(self): |
---|
261 | a = [0.0, 0.0] |
---|
262 | b = [0.0, 2.0] |
---|
263 | c = [2.0,0.0] |
---|
264 | e = [2.0, 2.0] |
---|
265 | points = [a, b, c, e] |
---|
266 | vertices = [ [1,0,2], [1,2,3] ] #bac, bce |
---|
267 | mesh = Mesh(points, vertices) |
---|
268 | |
---|
269 | assert mesh.areas[0] == 2.0 |
---|
270 | |
---|
271 | assert allclose(mesh.centroid_coordinates[0], [2.0/3, 2.0/3]) |
---|
272 | |
---|
273 | |
---|
274 | #Test that points are arranged in a counter clock wise order |
---|
275 | mesh.check_integrity() |
---|
276 | |
---|
277 | |
---|
278 | |
---|
279 | def test_more_triangles(self): |
---|
280 | |
---|
281 | a = [0.0, 0.0] |
---|
282 | b = [0.0, 2.0] |
---|
283 | c = [2.0, 0.0] |
---|
284 | d = [0.0, 4.0] |
---|
285 | e = [2.0, 2.0] |
---|
286 | f = [4.0, 0.0] |
---|
287 | |
---|
288 | points = [a, b, c, d, e, f] |
---|
289 | #bac, bce, ecf, dbe, daf, dae |
---|
290 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
291 | mesh = Mesh(points, vertices) |
---|
292 | |
---|
293 | #Test that points are arranged in a counter clock wise order |
---|
294 | mesh.check_integrity() |
---|
295 | |
---|
296 | assert mesh.areas[0] == 2.0 |
---|
297 | assert mesh.areas[1] == 2.0 |
---|
298 | assert mesh.areas[2] == 2.0 |
---|
299 | assert mesh.areas[3] == 2.0 |
---|
300 | |
---|
301 | assert mesh.edgelengths[1,0] == 2.0 |
---|
302 | assert mesh.edgelengths[1,1] == 2.0 |
---|
303 | assert mesh.edgelengths[1,2] == sqrt(8.0) |
---|
304 | |
---|
305 | assert allclose(mesh.centroid_coordinates[0], [2.0/3, 2.0/3]) |
---|
306 | assert allclose(mesh.centroid_coordinates[1], [4.0/3, 4.0/3]) |
---|
307 | assert allclose(mesh.centroid_coordinates[2], [8.0/3, 2.0/3]) |
---|
308 | assert allclose(mesh.centroid_coordinates[3], [2.0/3, 8.0/3]) |
---|
309 | |
---|
310 | def test_mesh_and_neighbours(self): |
---|
311 | a = [0.0, 0.0] |
---|
312 | b = [0.0, 2.0] |
---|
313 | c = [2.0,0.0] |
---|
314 | d = [0.0, 4.0] |
---|
315 | e = [2.0, 2.0] |
---|
316 | f = [4.0,0.0] |
---|
317 | |
---|
318 | |
---|
319 | points = [a, b, c, d, e, f] |
---|
320 | |
---|
321 | #bac, bce, ecf, dbe |
---|
322 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4] ] |
---|
323 | mesh = Mesh(points, vertices) |
---|
324 | |
---|
325 | mesh.check_integrity() |
---|
326 | |
---|
327 | |
---|
328 | T = mesh |
---|
329 | tid = 0 |
---|
330 | assert T.number_of_boundaries[tid] == 2 |
---|
331 | assert T.neighbours[tid, 0] < 0 #Opposite point b (0,2) |
---|
332 | assert T.neighbours[tid, 1] == 1 #Opposite point a (0,0) |
---|
333 | assert T.neighbours[tid, 2] < 0 #Opposite point c (2,0) |
---|
334 | |
---|
335 | tid = 1 |
---|
336 | assert T.number_of_boundaries[tid] == 0 |
---|
337 | assert T.neighbours[tid, 0] == 2 #Opposite point b (0,2) |
---|
338 | assert T.neighbours[tid, 1] == 3 #Opposite point c (2,0) |
---|
339 | assert T.neighbours[tid, 2] == 0 #Opposite point e (2,2) |
---|
340 | |
---|
341 | tid = 2 |
---|
342 | assert T.number_of_boundaries[tid] == 2 |
---|
343 | assert T.neighbours[tid, 0] < 0 #Opposite point e (2,2) |
---|
344 | assert T.neighbours[tid, 1] < 0 #Opposite point c (2,0) |
---|
345 | assert T.neighbours[tid, 2] == 1 #Opposite point f (4,0) |
---|
346 | |
---|
347 | tid = 3 |
---|
348 | assert T.number_of_boundaries[tid] == 2 |
---|
349 | assert T.neighbours[tid, 0] == 1 #Opposite point d (0,4) |
---|
350 | assert T.neighbours[tid, 1] < 0 #Opposite point b (0,3) |
---|
351 | assert T.neighbours[tid, 2] < 0 #Opposite point e (2,2) |
---|
352 | |
---|
353 | #Neighbouring edges |
---|
354 | tid = 0 |
---|
355 | assert T.neighbour_edges[tid, 0] < 0 #Opposite point b (0,2) |
---|
356 | assert T.neighbour_edges[tid, 1] == 2 #Opposite point a (0,0) |
---|
357 | assert T.neighbour_edges[tid, 2] < 0 #Opposite point c (2,0) |
---|
358 | |
---|
359 | tid = 1 |
---|
360 | assert T.neighbour_edges[tid, 0] == 2 #Opposite point b (0,2) |
---|
361 | assert T.neighbour_edges[tid, 1] == 0 #Opposite point c (2,0) |
---|
362 | assert T.neighbour_edges[tid, 2] == 1 #Opposite point e (2,2) |
---|
363 | |
---|
364 | tid = 2 |
---|
365 | assert T.neighbour_edges[tid, 0] < 0 #Opposite point e (2,2) |
---|
366 | assert T.neighbour_edges[tid, 1] < 0 #Opposite point c (2,0) |
---|
367 | assert T.neighbour_edges[tid, 2] == 0 #Opposite point f (4,0) |
---|
368 | |
---|
369 | tid = 3 |
---|
370 | assert T.neighbour_edges[tid, 0] == 1 #Opposite point d (0,4) |
---|
371 | assert T.neighbour_edges[tid, 1] < 0 #Opposite point b (0,3) |
---|
372 | assert T.neighbour_edges[tid, 2] < 0 #Opposite point e (2,2) |
---|
373 | |
---|
374 | |
---|
375 | def test_build_neighbour_structure_duplicates(self): |
---|
376 | p0 = [-66.0, 14.0] |
---|
377 | p1 = [14.0, -66.0] |
---|
378 | p2 = [14.0, 14.0] |
---|
379 | p3 = [60.0, 20.0] |
---|
380 | p4 = [10.0, 60.0] |
---|
381 | p5 = [60.0, 60.0] |
---|
382 | |
---|
383 | points = [p0, p1, p2, p3, p4, p5] |
---|
384 | triangles = [ [0, 1, 2], |
---|
385 | [3, 2, 1], |
---|
386 | [0, 2, 4], |
---|
387 | [0, 2, 4], |
---|
388 | [4, 2, 5], |
---|
389 | [5, 2, 3]] |
---|
390 | try: |
---|
391 | mesh = Mesh(points, triangles) |
---|
392 | except: |
---|
393 | pass |
---|
394 | else: |
---|
395 | raise "triangle edge duplicates not caught" |
---|
396 | |
---|
397 | def test_rectangular_mesh_basic(self): |
---|
398 | M=1 |
---|
399 | N=1 |
---|
400 | |
---|
401 | points, vertices, boundary = rectangular(M, N) |
---|
402 | mesh = Mesh(points, vertices, boundary) |
---|
403 | |
---|
404 | #Test that points are arranged in a counter clock wise order |
---|
405 | mesh.check_integrity() |
---|
406 | |
---|
407 | M=2 |
---|
408 | N=2 |
---|
409 | points, vertices, boundary = rectangular(M, N) |
---|
410 | mesh = Mesh(points, vertices, boundary) |
---|
411 | |
---|
412 | #Test that points are arranged in a counter clock wise order |
---|
413 | mesh.check_integrity() |
---|
414 | |
---|
415 | #assert mesh.boundary[(7,1)] == 2 # top |
---|
416 | assert mesh.boundary[(7,1)] == 'top' # top |
---|
417 | assert mesh.boundary[(3,1)] == 'top' # top |
---|
418 | |
---|
419 | |
---|
420 | def test_boundary_tags(self): |
---|
421 | |
---|
422 | |
---|
423 | points, vertices, boundary = rectangular(4, 4) |
---|
424 | mesh = Mesh(points, vertices, boundary) |
---|
425 | |
---|
426 | |
---|
427 | #Test that points are arranged in a counter clock wise order |
---|
428 | mesh.check_integrity() |
---|
429 | |
---|
430 | #print mesh.get_boundary_tags() |
---|
431 | #print mesh.boundary |
---|
432 | |
---|
433 | for k in [1, 3, 5, 7]: |
---|
434 | assert mesh.boundary[(k,2)] == 'left' |
---|
435 | |
---|
436 | for k in [24, 26, 28, 30]: |
---|
437 | assert mesh.boundary[(k,2)] == 'right' |
---|
438 | |
---|
439 | for k in [7, 15, 23, 31]: |
---|
440 | assert mesh.boundary[(k,1)] == 'top' |
---|
441 | for k in [0, 8, 16, 24]: |
---|
442 | assert mesh.boundary[(k,1)] == 'bottom' |
---|
443 | |
---|
444 | |
---|
445 | |
---|
446 | def test_rectangular_mesh(self): |
---|
447 | M=4 |
---|
448 | N=16 |
---|
449 | len1 = 100.0 |
---|
450 | len2 = 17.0 |
---|
451 | |
---|
452 | points, vertices, boundary = rectangular(M, N, len1, len2) |
---|
453 | mesh = Mesh(points, vertices, boundary) |
---|
454 | |
---|
455 | assert len(mesh) == 2*M*N |
---|
456 | |
---|
457 | for i in range(len(mesh)): |
---|
458 | assert mesh.areas[i] == len1*len2/(2*M*N) |
---|
459 | |
---|
460 | hypo = sqrt((len1/M)**2 + (len2/N)**2) #hypothenuse |
---|
461 | assert mesh.edgelengths[i, 0] == hypo |
---|
462 | assert mesh.edgelengths[i, 1] == len1/M #x direction |
---|
463 | assert mesh.edgelengths[i, 2] == len2/N #y direction |
---|
464 | |
---|
465 | #Test that points are arranged in a counter clock wise order |
---|
466 | mesh.check_integrity() |
---|
467 | |
---|
468 | |
---|
469 | def test_rectangular_mesh2(self): |
---|
470 | #Check that integers don't cause trouble |
---|
471 | N = 16 |
---|
472 | |
---|
473 | points, vertices, boundary = rectangular(2*N, N, len1=10, len2=10) |
---|
474 | mesh = Mesh(points, vertices, boundary) |
---|
475 | |
---|
476 | |
---|
477 | |
---|
478 | def test_surrogate_neighbours(self): |
---|
479 | a = [0.0, 0.0] |
---|
480 | b = [0.0, 2.0] |
---|
481 | c = [2.0,0.0] |
---|
482 | d = [0.0, 4.0] |
---|
483 | e = [2.0, 2.0] |
---|
484 | f = [4.0,0.0] |
---|
485 | |
---|
486 | points = [a, b, c, d, e, f] |
---|
487 | |
---|
488 | #bac, bce, ecf, dbe |
---|
489 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4] ] |
---|
490 | mesh = Mesh(points, vertices) |
---|
491 | mesh.check_integrity() |
---|
492 | |
---|
493 | |
---|
494 | T = mesh |
---|
495 | tid = 0 |
---|
496 | assert T.number_of_boundaries[tid] == 2 |
---|
497 | assert T.surrogate_neighbours[tid, 0] == tid |
---|
498 | assert T.surrogate_neighbours[tid, 1] == 1 |
---|
499 | assert T.surrogate_neighbours[tid, 2] == tid |
---|
500 | |
---|
501 | tid = 1 |
---|
502 | assert T.number_of_boundaries[tid] == 0 |
---|
503 | assert T.surrogate_neighbours[tid, 0] == 2 |
---|
504 | assert T.surrogate_neighbours[tid, 1] == 3 |
---|
505 | assert T.surrogate_neighbours[tid, 2] == 0 |
---|
506 | |
---|
507 | tid = 2 |
---|
508 | assert T.number_of_boundaries[tid] == 2 |
---|
509 | assert T.surrogate_neighbours[tid, 0] == tid |
---|
510 | assert T.surrogate_neighbours[tid, 1] == tid |
---|
511 | assert T.surrogate_neighbours[tid, 2] == 1 |
---|
512 | |
---|
513 | tid = 3 |
---|
514 | assert T.number_of_boundaries[tid] == 2 |
---|
515 | assert T.surrogate_neighbours[tid, 0] == 1 |
---|
516 | assert T.surrogate_neighbours[tid, 1] == tid |
---|
517 | assert T.surrogate_neighbours[tid, 2] == tid |
---|
518 | |
---|
519 | |
---|
520 | def test_boundary_inputs(self): |
---|
521 | a = [0.0, 0.0] |
---|
522 | b = [0.0, 2.0] |
---|
523 | c = [2.0,0.0] |
---|
524 | d = [0.0, 4.0] |
---|
525 | e = [2.0, 2.0] |
---|
526 | f = [4.0,0.0] |
---|
527 | |
---|
528 | points = [a, b, c, d, e, f] |
---|
529 | |
---|
530 | #bac, bce, ecf, dbe |
---|
531 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4] ] |
---|
532 | |
---|
533 | boundary = { (0, 0): 'First', |
---|
534 | (0, 2): 'Second', |
---|
535 | (2, 0): 'Third', |
---|
536 | (2, 1): 'Fourth', |
---|
537 | (3, 1): 'Fifth', |
---|
538 | (3, 2): 'Sixth'} |
---|
539 | |
---|
540 | |
---|
541 | mesh = Mesh(points, vertices, boundary) |
---|
542 | mesh.check_integrity() |
---|
543 | |
---|
544 | |
---|
545 | #Check enumeration |
---|
546 | #for k, (vol_id, edge_id) in enumerate(mesh.boundary_segments): |
---|
547 | # b = -k-1 |
---|
548 | # assert mesh.neighbours[vol_id, edge_id] == b |
---|
549 | |
---|
550 | |
---|
551 | |
---|
552 | def test_boundary_inputs_using_one_default(self): |
---|
553 | a = [0.0, 0.0] |
---|
554 | b = [0.0, 2.0] |
---|
555 | c = [2.0,0.0] |
---|
556 | d = [0.0, 4.0] |
---|
557 | e = [2.0, 2.0] |
---|
558 | f = [4.0,0.0] |
---|
559 | |
---|
560 | points = [a, b, c, d, e, f] |
---|
561 | |
---|
562 | #bac, bce, ecf, dbe |
---|
563 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4] ] |
---|
564 | |
---|
565 | boundary = { (0, 0): 'First', |
---|
566 | (0, 2): 'Second', |
---|
567 | (2, 0): 'Third', |
---|
568 | (2, 1): 'Fourth', |
---|
569 | #(3, 1): 'Fifth', #Skip this |
---|
570 | (3, 2): 'Sixth'} |
---|
571 | |
---|
572 | |
---|
573 | mesh = Mesh(points, vertices, boundary) |
---|
574 | mesh.check_integrity() |
---|
575 | |
---|
576 | from anuga.config import default_boundary_tag |
---|
577 | assert mesh.boundary[ (3, 1) ] == default_boundary_tag |
---|
578 | |
---|
579 | |
---|
580 | #Check enumeration |
---|
581 | #for k, (vol_id, edge_id) in enumerate(mesh.boundary_segments): |
---|
582 | # b = -k-1 |
---|
583 | # assert mesh.neighbours[vol_id, edge_id] == b |
---|
584 | |
---|
585 | def test_boundary_inputs_using_all_defaults(self): |
---|
586 | a = [0.0, 0.0] |
---|
587 | b = [0.0, 2.0] |
---|
588 | c = [2.0,0.0] |
---|
589 | d = [0.0, 4.0] |
---|
590 | e = [2.0, 2.0] |
---|
591 | f = [4.0,0.0] |
---|
592 | |
---|
593 | points = [a, b, c, d, e, f] |
---|
594 | |
---|
595 | #bac, bce, ecf, dbe |
---|
596 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4] ] |
---|
597 | |
---|
598 | boundary = { (0, 0): 'First', |
---|
599 | (0, 2): 'Second', |
---|
600 | (2, 0): 'Third', |
---|
601 | (2, 1): 'Fourth', |
---|
602 | #(3, 1): 'Fifth', #Skip this |
---|
603 | (3, 2): 'Sixth'} |
---|
604 | |
---|
605 | |
---|
606 | mesh = Mesh(points, vertices) #, boundary) |
---|
607 | mesh.check_integrity() |
---|
608 | |
---|
609 | from anuga.config import default_boundary_tag |
---|
610 | assert mesh.boundary[ (0, 0) ] == default_boundary_tag |
---|
611 | assert mesh.boundary[ (0, 2) ] == default_boundary_tag |
---|
612 | assert mesh.boundary[ (2, 0) ] == default_boundary_tag |
---|
613 | assert mesh.boundary[ (2, 1) ] == default_boundary_tag |
---|
614 | assert mesh.boundary[ (3, 1) ] == default_boundary_tag |
---|
615 | assert mesh.boundary[ (3, 2) ] == default_boundary_tag |
---|
616 | |
---|
617 | |
---|
618 | #Check enumeration |
---|
619 | #for k, (vol_id, edge_id) in enumerate(mesh.boundary_segments): |
---|
620 | # b = -k-1 |
---|
621 | # assert mesh.neighbours[vol_id, edge_id] == b |
---|
622 | |
---|
623 | |
---|
624 | |
---|
625 | |
---|
626 | |
---|
627 | |
---|
628 | def test_inputs(self): |
---|
629 | a = [0.0, 0.0] |
---|
630 | b = [0.0, 2.0] |
---|
631 | c = [2.0,0.0] |
---|
632 | d = [0.0, 4.0] |
---|
633 | e = [2.0, 2.0] |
---|
634 | f = [4.0,0.0] |
---|
635 | |
---|
636 | points = [a, b, c, d, e, f] |
---|
637 | |
---|
638 | #bac, bce, ecf, dbe |
---|
639 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4] ] |
---|
640 | |
---|
641 | #Too few points |
---|
642 | try: |
---|
643 | mesh = Mesh([points[0]], vertices) |
---|
644 | except AssertionError: |
---|
645 | pass |
---|
646 | else: |
---|
647 | raise 'Should have raised an exception' |
---|
648 | |
---|
649 | #Too few points - 1 element |
---|
650 | try: |
---|
651 | mesh = Mesh([points[0]], [vertices[0]]) |
---|
652 | except AssertionError: |
---|
653 | pass |
---|
654 | else: |
---|
655 | raise 'Should have raised an exception' |
---|
656 | |
---|
657 | #Wrong dimension of vertices |
---|
658 | try: |
---|
659 | mesh = Mesh(points, vertices[0]) |
---|
660 | except AssertionError: |
---|
661 | pass |
---|
662 | else: |
---|
663 | raise 'Should have raised an exception' |
---|
664 | |
---|
665 | #Unsubscriptable coordinates object raises exception |
---|
666 | try: |
---|
667 | mesh = Mesh(points[0], [vertices[0]]) |
---|
668 | except AssertionError: |
---|
669 | pass |
---|
670 | else: |
---|
671 | raise 'Should have raised an exception' |
---|
672 | |
---|
673 | #FIXME: This has been commented out pending a decision |
---|
674 | #whether to allow partial boundary tags or not |
---|
675 | # |
---|
676 | #Not specifying all boundary tags |
---|
677 | #try: |
---|
678 | # mesh = Mesh(points, vertices, {(3,0): 'x'}) |
---|
679 | #except AssertionError: |
---|
680 | # pass |
---|
681 | #else: |
---|
682 | # raise 'Should have raised an exception' |
---|
683 | |
---|
684 | #Specifying wrong non existing segment |
---|
685 | try: |
---|
686 | mesh = Mesh(points, vertices, {(5,0): 'x'}) |
---|
687 | except AssertionError: |
---|
688 | pass |
---|
689 | else: |
---|
690 | raise 'Should have raised an exception' |
---|
691 | |
---|
692 | |
---|
693 | |
---|
694 | |
---|
695 | def test_internal_boundaries(self): |
---|
696 | """ |
---|
697 | get values based on triangle lists. |
---|
698 | """ |
---|
699 | from mesh_factory import rectangular |
---|
700 | from Numeric import zeros, Float |
---|
701 | |
---|
702 | #Create basic mesh |
---|
703 | points, vertices, boundary = rectangular(1, 3) |
---|
704 | |
---|
705 | # Add an internal boundary |
---|
706 | boundary[(2,0)] = 'internal' |
---|
707 | boundary[(1,0)] = 'internal' |
---|
708 | |
---|
709 | #Create shallow water domain |
---|
710 | domain = Mesh(points, vertices, boundary) |
---|
711 | domain.build_tagged_elements_dictionary({'bottom':[0,1], |
---|
712 | 'top':[4,5], |
---|
713 | 'all':[0,1,2,3,4,5]}) |
---|
714 | |
---|
715 | |
---|
716 | def test_boundary_polygon(self): |
---|
717 | from mesh_factory import rectangular |
---|
718 | #from mesh import Mesh |
---|
719 | from Numeric import zeros, Float |
---|
720 | |
---|
721 | #Create basic mesh |
---|
722 | points, vertices, boundary = rectangular(2, 2) |
---|
723 | mesh = Mesh(points, vertices, boundary) |
---|
724 | |
---|
725 | |
---|
726 | P = mesh.get_boundary_polygon() |
---|
727 | |
---|
728 | assert len(P) == 8 |
---|
729 | assert allclose(P, [[0.0, 0.0], [0.5, 0.0], [1.0, 0.0], |
---|
730 | [1.0, 0.5], [1.0, 1.0], [0.5, 1.0], |
---|
731 | [0.0, 1.0], [0.0, 0.5]]) |
---|
732 | for p in points: |
---|
733 | #print p, P |
---|
734 | assert is_inside_polygon(p, P) |
---|
735 | |
---|
736 | |
---|
737 | def test_boundary_polygon_II(self): |
---|
738 | from Numeric import zeros, Float |
---|
739 | |
---|
740 | |
---|
741 | #Points |
---|
742 | a = [0.0, 0.0] #0 |
---|
743 | b = [0.0, 0.5] #1 |
---|
744 | c = [0.0, 1.0] #2 |
---|
745 | d = [0.5, 0.0] #3 |
---|
746 | e = [0.5, 0.5] #4 |
---|
747 | f = [1.0, 0.0] #5 |
---|
748 | g = [1.0, 0.5] #6 |
---|
749 | h = [1.0, 1.0] #7 |
---|
750 | i = [1.5, 0.5] #8 |
---|
751 | |
---|
752 | points = [a, b, c, d, e, f, g, h, i] |
---|
753 | |
---|
754 | #dea, bae, bec, fgd, |
---|
755 | #edg, ghe, gfi, gih |
---|
756 | vertices = [ [3,4,0], [1,0,4], [1,4,2], [5,6,3], |
---|
757 | [4,3,6], [6,7,4], [6,5,8], [6,8,7]] |
---|
758 | |
---|
759 | mesh = Mesh(points, vertices) |
---|
760 | |
---|
761 | mesh.check_integrity() |
---|
762 | |
---|
763 | P = mesh.get_boundary_polygon() |
---|
764 | |
---|
765 | assert len(P) == 8 |
---|
766 | assert allclose(P, [a, d, f, i, h, e, c, b]) |
---|
767 | |
---|
768 | for p in points: |
---|
769 | #print p, P |
---|
770 | assert is_inside_polygon(p, P) |
---|
771 | |
---|
772 | |
---|
773 | def test_boundary_polygon_III(self): |
---|
774 | """Same as II but vertices ordered differently |
---|
775 | """ |
---|
776 | |
---|
777 | from Numeric import zeros, Float |
---|
778 | |
---|
779 | |
---|
780 | #Points |
---|
781 | a = [0.0, 0.0] #0 |
---|
782 | b = [0.0, 0.5] #1 |
---|
783 | c = [0.0, 1.0] #2 |
---|
784 | d = [0.5, 0.0] #3 |
---|
785 | e = [0.5, 0.5] #4 |
---|
786 | f = [1.0, 0.0] #5 |
---|
787 | g = [1.0, 0.5] #6 |
---|
788 | h = [1.0, 1.0] #7 |
---|
789 | i = [1.5, 0.5] #8 |
---|
790 | |
---|
791 | points = [a, b, c, d, e, f, g, h, i] |
---|
792 | |
---|
793 | #edg, ghe, gfi, gih |
---|
794 | #dea, bae, bec, fgd, |
---|
795 | vertices = [[4,3,6], [6,7,4], [6,5,8], [6,8,7], |
---|
796 | [3,4,0], [1,0,4], [1,4,2], [5,6,3]] |
---|
797 | |
---|
798 | |
---|
799 | mesh = Mesh(points, vertices) |
---|
800 | mesh.check_integrity() |
---|
801 | |
---|
802 | |
---|
803 | P = mesh.get_boundary_polygon() |
---|
804 | |
---|
805 | assert len(P) == 8 |
---|
806 | assert allclose(P, [a, d, f, i, h, e, c, b]) |
---|
807 | |
---|
808 | for p in points: |
---|
809 | assert is_inside_polygon(p, P) |
---|
810 | |
---|
811 | |
---|
812 | def test_boundary_polygon_IIIa(self): |
---|
813 | """test_boundary_polygon_IIIa - Check pathological situation where |
---|
814 | one triangle has no neighbours. This may be the case if a mesh |
---|
815 | is partitioned using pymetis. |
---|
816 | """ |
---|
817 | |
---|
818 | from Numeric import zeros, Float |
---|
819 | |
---|
820 | |
---|
821 | #Points |
---|
822 | a = [0.0, 0.0] #0 |
---|
823 | b = [0.0, 0.5] #1 |
---|
824 | c = [0.0, 1.0] #2 |
---|
825 | d = [0.5, 0.0] #3 |
---|
826 | e = [0.5, 0.5] #4 |
---|
827 | f = [1.0, 0.0] #5 |
---|
828 | g = [1.0, 0.5] #6 |
---|
829 | h = [1.0, 1.0] #7 |
---|
830 | |
---|
831 | # Add pathological triangle with no neighbours to an otherwise |
---|
832 | # trivial mesh |
---|
833 | |
---|
834 | points = [a, b, c, d, e, f, g, h] |
---|
835 | |
---|
836 | #cbe, aeb, dea, fed, ghe (pathological triangle) |
---|
837 | vertices = [[2,1,4], [0,4,1], [3,4,0], [5,4,3], |
---|
838 | [6,7,4]] |
---|
839 | |
---|
840 | mesh = Mesh(points, vertices) |
---|
841 | mesh.check_integrity() |
---|
842 | |
---|
843 | P = mesh.get_boundary_polygon(verbose=False) |
---|
844 | |
---|
845 | |
---|
846 | assert len(P) == 9 |
---|
847 | |
---|
848 | # Note that point e appears twice! |
---|
849 | assert allclose(P, [a, d, f, e, g, h, e, c, b]) |
---|
850 | |
---|
851 | for p in points: |
---|
852 | msg = 'Point %s is not inside polygon %s'\ |
---|
853 | %(p, P) |
---|
854 | assert is_inside_polygon(p, P), msg |
---|
855 | |
---|
856 | |
---|
857 | |
---|
858 | |
---|
859 | |
---|
860 | |
---|
861 | def test_boundary_polygon_IV(self): |
---|
862 | """Reproduce test test_spatio_temporal_file_function_time |
---|
863 | from test_util.py that looked as if it produced the wrong boundary |
---|
864 | """ |
---|
865 | |
---|
866 | from Numeric import zeros, Float |
---|
867 | from mesh_factory import rectangular |
---|
868 | |
---|
869 | #Create a domain to hold test grid |
---|
870 | #(0:15, -20:10) |
---|
871 | points, vertices, boundary =\ |
---|
872 | rectangular(4, 4, 15, 30, origin = (0, -20)) |
---|
873 | |
---|
874 | ##### |
---|
875 | mesh = Mesh(points, vertices) |
---|
876 | mesh.check_integrity() |
---|
877 | |
---|
878 | P = mesh.get_boundary_polygon() |
---|
879 | |
---|
880 | #print P |
---|
881 | assert len(P) == 16 |
---|
882 | for p in points: |
---|
883 | assert is_inside_polygon(p, P) |
---|
884 | |
---|
885 | |
---|
886 | |
---|
887 | ##### |
---|
888 | mesh = Mesh(points, vertices, boundary) |
---|
889 | mesh.check_integrity() |
---|
890 | |
---|
891 | P = mesh.get_boundary_polygon() |
---|
892 | |
---|
893 | |
---|
894 | #print P, len(P) |
---|
895 | assert len(P) == 16 |
---|
896 | |
---|
897 | for p in points: |
---|
898 | assert is_inside_polygon(p, P) |
---|
899 | |
---|
900 | #print mesh.statistics() |
---|
901 | |
---|
902 | |
---|
903 | |
---|
904 | def test_boundary_polygon_V(self): |
---|
905 | """Create a discontinuous mesh (duplicate vertices) |
---|
906 | and check that boundary is as expected |
---|
907 | |
---|
908 | """ |
---|
909 | from Numeric import zeros, Float |
---|
910 | |
---|
911 | |
---|
912 | #Points |
---|
913 | a = [0.0, 0.0] #0 |
---|
914 | b = [0.0, 0.5] #1 |
---|
915 | c = [0.0, 1.0] #2 |
---|
916 | d = [0.5, 0.0] #3 |
---|
917 | e = [0.5, 0.5] #4 |
---|
918 | f = [1.0, 0.0] #5 |
---|
919 | g = [1.0, 0.5] #6 |
---|
920 | h = [1.0, 1.0] #7 |
---|
921 | i = [1.5, 0.5] #8 |
---|
922 | |
---|
923 | #Duplicate points for triangles edg [4,3,6] (central) and |
---|
924 | #gid [6,8,7] (top right boundary) to them disconnected |
---|
925 | #from the others |
---|
926 | |
---|
927 | e0 = [0.5, 0.5] #9 |
---|
928 | d0 = [0.5, 0.0] #10 |
---|
929 | g0 = [1.0, 0.5] #11 |
---|
930 | i0 = [1.5, 0.5] #12 |
---|
931 | |
---|
932 | |
---|
933 | points = [a, b, c, d, e, f, g, h, i, e0, d0, g0, i0] |
---|
934 | |
---|
935 | |
---|
936 | |
---|
937 | #dea, bae, bec, fgd, |
---|
938 | #edg, ghe, gfi, gih |
---|
939 | #vertices = [ [3,4,0], [1,0,4], [1,4,2], [5,6,3], |
---|
940 | # [4,3,6], [6,7,4], [6,5,8], [6,8,7]] |
---|
941 | |
---|
942 | |
---|
943 | #dea, bae, bec, fgd, |
---|
944 | #e0d0g0, ghe, gfi, g0i0h |
---|
945 | vertices = [[3,4,0], [1,0,4], [1,4,2], [5,6,3], |
---|
946 | [9,10,11], [6,7,4], [6,5,8], [11,12,7]] |
---|
947 | |
---|
948 | mesh = Mesh(points, vertices) |
---|
949 | |
---|
950 | mesh.check_integrity() |
---|
951 | |
---|
952 | P = mesh.get_boundary_polygon() |
---|
953 | |
---|
954 | #print P |
---|
955 | |
---|
956 | assert len(P) == 8 |
---|
957 | assert allclose(P, [a, d, f, i, h, e, c, b]) |
---|
958 | assert allclose(P, [(0.0, 0.0), (0.5, 0.0), (1.0, 0.0), (1.5, 0.5), (1.0, 1.0), (0.5, 0.5), (0.0, 1.0), (0.0, 0.5)]) |
---|
959 | |
---|
960 | |
---|
961 | for p in points: |
---|
962 | #print p, P |
---|
963 | assert is_inside_polygon(p, P) |
---|
964 | |
---|
965 | |
---|
966 | |
---|
967 | def test_boundary_polygon_VI(self): |
---|
968 | """test_boundary_polygon_VI(self) |
---|
969 | |
---|
970 | Create a discontinuous mesh (duplicate vertices) from a real situation that failed |
---|
971 | and check that boundary is as expected |
---|
972 | """ |
---|
973 | |
---|
974 | |
---|
975 | from anuga.utilities.polygon import plot_polygons_points |
---|
976 | |
---|
977 | # First do the continuous version of mesh |
---|
978 | |
---|
979 | points = [[ 6626.85400391, 0. ], |
---|
980 | [ 0. , 38246.4140625 ], |
---|
981 | [ 9656.2734375 , 68351.265625 ], |
---|
982 | [ 20827.25585938, 77818.203125 ], |
---|
983 | [ 32755.59375 , 58126.9765625 ], |
---|
984 | [ 35406.3359375 , 79332.9140625 ], |
---|
985 | [ 31998.23828125, 88799.84375 ], |
---|
986 | [ 23288.65820313, 104704.296875 ], |
---|
987 | [ 32187.57617188, 109816.4375 ], |
---|
988 | [ 50364.08984375, 110763.1328125 ], |
---|
989 | [ 80468.9453125 , 96184.0546875 ], |
---|
990 | [ 86149.1015625 , 129886.34375 ], |
---|
991 | [ 118715.359375 , 129886.34375 ], |
---|
992 | [ 117768.6640625 , 85770.4296875 ], |
---|
993 | [ 101485.5390625 , 45251.9453125 ], |
---|
994 | [ 49985.4140625 , 2272.06396484], |
---|
995 | [ 51737.94140625, 90559.2109375 ], |
---|
996 | [ 56659.0703125 , 65907.6796875 ], |
---|
997 | [ 75735.4765625 , 23762.00585938], |
---|
998 | [ 52341.70703125, 38563.39453125]] |
---|
999 | |
---|
1000 | ##points = ensure_numeric(points, Int)/1000 # Simplify for ease of interpretation |
---|
1001 | |
---|
1002 | triangles = [[19, 0,15], |
---|
1003 | [ 2, 4, 3], |
---|
1004 | [ 4, 2, 1], |
---|
1005 | [ 1,19, 4], |
---|
1006 | [15,18,19], |
---|
1007 | [18,14,17], |
---|
1008 | [19, 1, 0], |
---|
1009 | [ 6, 8, 7], |
---|
1010 | [ 8, 6,16], |
---|
1011 | [10, 9,16], |
---|
1012 | [17, 5, 4], |
---|
1013 | [16,17,10], |
---|
1014 | [17,19,18], |
---|
1015 | [ 5,17,16], |
---|
1016 | [10,14,13], |
---|
1017 | [10,17,14], |
---|
1018 | [ 8,16, 9], |
---|
1019 | [12,11,10], |
---|
1020 | [10,13,12], |
---|
1021 | [19,17, 4], |
---|
1022 | [16, 6, 5]] |
---|
1023 | |
---|
1024 | mesh = Mesh(points, triangles) |
---|
1025 | mesh.check_integrity() |
---|
1026 | Pref = mesh.get_boundary_polygon() |
---|
1027 | |
---|
1028 | #plot_polygons([ensure_numeric(Pref)], 'goodP') |
---|
1029 | |
---|
1030 | for p in points: |
---|
1031 | assert is_inside_polygon(p, Pref) |
---|
1032 | |
---|
1033 | |
---|
1034 | # Then do the discontinuous version |
---|
1035 | import warnings |
---|
1036 | warnings.filterwarnings('ignore') |
---|
1037 | |
---|
1038 | |
---|
1039 | points = [[ 52341.70703125, 38563.39453125], |
---|
1040 | [ 6626.85400391, 0. ], |
---|
1041 | [ 49985.4140625 , 2272.06396484], |
---|
1042 | [ 9656.2734375 , 68351.265625 ], |
---|
1043 | [ 32755.59375 , 58126.9765625 ], |
---|
1044 | [ 20827.25585938, 77818.203125 ], |
---|
1045 | [ 32755.59375 , 58126.9765625 ], |
---|
1046 | [ 9656.2734375 , 68351.265625 ], |
---|
1047 | [ 0. , 38246.4140625 ], |
---|
1048 | [ 0. , 38246.4140625 ], |
---|
1049 | [ 52341.70703125, 38563.39453125], |
---|
1050 | [ 32755.59375 , 58126.9765625 ], |
---|
1051 | [ 49985.4140625 , 2272.06396484], |
---|
1052 | [ 75735.4765625 , 23762.00585938], |
---|
1053 | [ 52341.70703125, 38563.39453125], |
---|
1054 | [ 75735.4765625 , 23762.00585938], |
---|
1055 | [ 101485.5390625 , 45251.9453125 ], |
---|
1056 | [ 56659.0703125 , 65907.6796875 ], |
---|
1057 | [ 52341.70703125, 38563.39453125], |
---|
1058 | [ 0. , 38246.4140625 ], |
---|
1059 | [ 6626.85400391, 0. ], |
---|
1060 | [ 31998.23828125, 88799.84375 ], |
---|
1061 | [ 32187.57617188, 109816.4375 ], |
---|
1062 | [ 23288.65820313, 104704.296875 ], |
---|
1063 | [ 32187.57617188, 109816.4375 ], |
---|
1064 | [ 31998.23828125, 88799.84375 ], |
---|
1065 | [ 51737.94140625, 90559.2109375 ], |
---|
1066 | [ 80468.9453125 , 96184.0546875 ], |
---|
1067 | [ 50364.08984375, 110763.1328125 ], |
---|
1068 | [ 51737.94140625, 90559.2109375 ], |
---|
1069 | [ 56659.0703125 , 65907.6796875 ], |
---|
1070 | [ 35406.3359375 , 79332.9140625 ], |
---|
1071 | [ 32755.59375 , 58126.9765625 ], |
---|
1072 | [ 51737.94140625, 90559.2109375 ], |
---|
1073 | [ 56659.0703125 , 65907.6796875 ], |
---|
1074 | [ 80468.9453125 , 96184.0546875 ], |
---|
1075 | [ 56659.0703125 , 65907.6796875 ], |
---|
1076 | [ 52341.70703125, 38563.39453125], |
---|
1077 | [ 75735.4765625 , 23762.00585938], |
---|
1078 | [ 35406.3359375 , 79332.9140625 ], |
---|
1079 | [ 56659.0703125 , 65907.6796875 ], |
---|
1080 | [ 51737.94140625, 90559.2109375 ], |
---|
1081 | [ 80468.9453125 , 96184.0546875 ], |
---|
1082 | [ 101485.5390625 , 45251.9453125 ], |
---|
1083 | [ 117768.6640625 , 85770.4296875 ], |
---|
1084 | [ 80468.9453125 , 96184.0546875 ], |
---|
1085 | [ 56659.0703125 , 65907.6796875 ], |
---|
1086 | [ 101485.5390625 , 45251.9453125 ], |
---|
1087 | [ 32187.57617188, 109816.4375 ], |
---|
1088 | [ 51737.94140625, 90559.2109375 ], |
---|
1089 | [ 50364.08984375, 110763.1328125 ], |
---|
1090 | [ 118715.359375 , 129886.34375 ], |
---|
1091 | [ 86149.1015625 , 129886.34375 ], |
---|
1092 | [ 80468.9453125 , 96184.0546875 ], |
---|
1093 | [ 80468.9453125 , 96184.0546875 ], |
---|
1094 | [ 117768.6640625 , 85770.4296875 ], |
---|
1095 | [ 118715.359375 , 129886.34375 ], |
---|
1096 | [ 52341.70703125, 38563.39453125], |
---|
1097 | [ 56659.0703125 , 65907.6796875 ], |
---|
1098 | [ 32755.59375 , 58126.9765625 ], |
---|
1099 | [ 51737.94140625, 90559.2109375 ], |
---|
1100 | [ 31998.23828125, 88799.84375 ], |
---|
1101 | [ 35406.3359375 , 79332.9140625 ]] |
---|
1102 | |
---|
1103 | scaled_points = ensure_numeric(points, Int)/1000 # Simplify for ease of interpretation |
---|
1104 | |
---|
1105 | triangles = [[ 0, 1, 2], |
---|
1106 | [ 3, 4, 5], |
---|
1107 | [ 6, 7, 8], |
---|
1108 | [ 9,10,11], |
---|
1109 | [12,13,14], |
---|
1110 | [15,16,17], |
---|
1111 | [18,19,20], |
---|
1112 | [21,22,23], |
---|
1113 | [24,25,26], |
---|
1114 | [27,28,29], |
---|
1115 | [30,31,32], |
---|
1116 | [33,34,35], |
---|
1117 | [36,37,38], |
---|
1118 | [39,40,41], |
---|
1119 | [42,43,44], |
---|
1120 | [45,46,47], |
---|
1121 | [48,49,50], |
---|
1122 | [51,52,53], |
---|
1123 | [54,55,56], |
---|
1124 | [57,58,59], |
---|
1125 | [60,61,62]] |
---|
1126 | |
---|
1127 | |
---|
1128 | # First use scaled points for ease of debugging |
---|
1129 | mesh = Mesh(scaled_points, triangles) |
---|
1130 | mesh.check_integrity() |
---|
1131 | P = mesh.get_boundary_polygon() |
---|
1132 | |
---|
1133 | for p in scaled_points: |
---|
1134 | assert is_inside_polygon(p, P) |
---|
1135 | |
---|
1136 | # Then use original points and test |
---|
1137 | mesh = Mesh(points, triangles) |
---|
1138 | mesh.check_integrity() |
---|
1139 | P = mesh.get_boundary_polygon() |
---|
1140 | |
---|
1141 | for p in points: |
---|
1142 | assert is_inside_polygon(p, P) |
---|
1143 | |
---|
1144 | assert allclose(P, Pref) |
---|
1145 | |
---|
1146 | def test_lone_vertices(self): |
---|
1147 | a = [2.0, 1.0] |
---|
1148 | b = [6.0, 2.0] |
---|
1149 | c = [1.0, 3.0] |
---|
1150 | d = [2.0, 4.0] |
---|
1151 | |
---|
1152 | points = [a, b, c, d] |
---|
1153 | vertices = [[0,1,2]] |
---|
1154 | |
---|
1155 | mesh = Mesh(points, vertices) |
---|
1156 | mesh.check_integrity() |
---|
1157 | loners = mesh.get_lone_vertices() |
---|
1158 | self.failUnless(loners==[3], |
---|
1159 | 'FAILED!') |
---|
1160 | |
---|
1161 | |
---|
1162 | a = [2.0, 1.0] |
---|
1163 | b = [6.0, 2.0] |
---|
1164 | c = [1.0, 3.0] |
---|
1165 | d = [2.0, 4.0] |
---|
1166 | |
---|
1167 | points = [d, a, b, c] |
---|
1168 | vertices = [[3,1,2]] |
---|
1169 | |
---|
1170 | mesh = Mesh(points, vertices) |
---|
1171 | mesh.check_integrity() |
---|
1172 | loners = mesh.get_lone_vertices() |
---|
1173 | self.failUnless(loners==[0], |
---|
1174 | 'FAILED!') |
---|
1175 | |
---|
1176 | def test_mesh_get_boundary_polygon_with_georeferencing(self): |
---|
1177 | |
---|
1178 | # test |
---|
1179 | a = [0.0, 0.0] |
---|
1180 | b = [4.0, 0.0] |
---|
1181 | c = [0.0, 4.0] |
---|
1182 | |
---|
1183 | absolute_points = [a, b, c] |
---|
1184 | vertices = [[0,1,2]] |
---|
1185 | |
---|
1186 | geo = Geo_reference(56,67,-56) |
---|
1187 | |
---|
1188 | relative_points = geo.change_points_geo_ref(absolute_points) |
---|
1189 | |
---|
1190 | #print 'Relative', relative_points |
---|
1191 | #print 'Absolute', absolute_points |
---|
1192 | |
---|
1193 | mesh = Mesh(relative_points, vertices, geo_reference=geo) |
---|
1194 | boundary_polygon = mesh.get_boundary_polygon() |
---|
1195 | |
---|
1196 | assert allclose(absolute_points, boundary_polygon) |
---|
1197 | |
---|
1198 | def test_get_triangle_containing_point(self): |
---|
1199 | |
---|
1200 | a = [0.0, 0.0] |
---|
1201 | b = [0.0, 2.0] |
---|
1202 | c = [2.0, 0.0] |
---|
1203 | d = [0.0, 4.0] |
---|
1204 | e = [2.0, 2.0] |
---|
1205 | f = [4.0, 0.0] |
---|
1206 | |
---|
1207 | points = [a, b, c, d, e, f] |
---|
1208 | #bac, bce, ecf, dbe |
---|
1209 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
1210 | mesh = Mesh(points, vertices) |
---|
1211 | |
---|
1212 | mesh.check_integrity() |
---|
1213 | |
---|
1214 | |
---|
1215 | try: |
---|
1216 | id = mesh.get_triangle_containing_point([3.0, 5.0]) |
---|
1217 | except: |
---|
1218 | pass |
---|
1219 | else: |
---|
1220 | msg = 'Should have caught point outside polygon (Non)' |
---|
1221 | raise Exception, msg |
---|
1222 | |
---|
1223 | id = mesh.get_triangle_containing_point([0.5, 1.0]) |
---|
1224 | assert id == 0 |
---|
1225 | |
---|
1226 | id = mesh.get_triangle_containing_point([1.0, 3.0]) |
---|
1227 | assert id == 3 |
---|
1228 | |
---|
1229 | for i, point in enumerate(mesh.get_centroid_coordinates()): |
---|
1230 | id = mesh.get_triangle_containing_point(point) |
---|
1231 | assert id == i |
---|
1232 | |
---|
1233 | #------------------------------------------------------------- |
---|
1234 | if __name__ == "__main__": |
---|
1235 | #suite = unittest.makeSuite(Test_Mesh,'test_get_triangle_containing_point') |
---|
1236 | suite = unittest.makeSuite(Test_Mesh,'test') |
---|
1237 | runner = unittest.TextTestRunner() |
---|
1238 | runner.run(suite) |
---|
1239 | |
---|
1240 | |
---|
1241 | |
---|
1242 | |
---|