[1093] | 1 | #!/usr/bin/env python |
---|
| 2 | |
---|
| 3 | |
---|
| 4 | import unittest |
---|
[2314] | 5 | from Numeric import zeros, array, allclose, Float |
---|
[1093] | 6 | from math import sqrt, pi |
---|
[3983] | 7 | import tempfile, os |
---|
[4634] | 8 | from os import access, F_OK,sep, removedirs,remove,mkdir,getcwd |
---|
[1093] | 9 | |
---|
[3560] | 10 | from anuga.abstract_2d_finite_volumes.util import * |
---|
[3514] | 11 | from anuga.config import epsilon |
---|
[4634] | 12 | from anuga.shallow_water.data_manager import timefile2netcdf,del_dir |
---|
[1093] | 13 | |
---|
[3514] | 14 | from anuga.utilities.numerical_tools import NAN |
---|
[1093] | 15 | |
---|
[4148] | 16 | from sys import platform |
---|
| 17 | |
---|
[4876] | 18 | from anuga.pmesh.mesh import Mesh |
---|
| 19 | from anuga.shallow_water import Domain, Transmissive_boundary |
---|
| 20 | from anuga.shallow_water.data_manager import get_dataobject |
---|
| 21 | from csv import reader,writer |
---|
| 22 | import time |
---|
| 23 | import string |
---|
| 24 | |
---|
[1093] | 25 | def test_function(x, y): |
---|
| 26 | return x+y |
---|
| 27 | |
---|
| 28 | class Test_Util(unittest.TestCase): |
---|
| 29 | def setUp(self): |
---|
| 30 | pass |
---|
| 31 | |
---|
| 32 | def tearDown(self): |
---|
| 33 | pass |
---|
| 34 | |
---|
| 35 | |
---|
| 36 | |
---|
| 37 | |
---|
| 38 | #Geometric |
---|
| 39 | #def test_distance(self): |
---|
[3560] | 40 | # from anuga.abstract_2d_finite_volumes.util import distance# |
---|
[1093] | 41 | # |
---|
| 42 | # self.failUnless( distance([4,2],[7,6]) == 5.0, |
---|
| 43 | # 'Distance is wrong!') |
---|
| 44 | # self.failUnless( allclose(distance([7,6],[9,8]), 2.82842712475), |
---|
| 45 | # 'distance is wrong!') |
---|
| 46 | # self.failUnless( allclose(distance([9,8],[4,2]), 7.81024967591), |
---|
| 47 | # 'distance is wrong!') |
---|
| 48 | # |
---|
| 49 | # self.failUnless( distance([9,8],[4,2]) == distance([4,2],[9,8]), |
---|
| 50 | # 'distance is wrong!') |
---|
| 51 | |
---|
| 52 | |
---|
[1671] | 53 | def test_file_function_time1(self): |
---|
[1093] | 54 | """Test that File function interpolates correctly |
---|
| 55 | between given times. No x,y dependency here. |
---|
| 56 | """ |
---|
| 57 | |
---|
| 58 | #Write file |
---|
| 59 | import os, time |
---|
[3514] | 60 | from anuga.config import time_format |
---|
[1093] | 61 | from math import sin, pi |
---|
| 62 | |
---|
[1671] | 63 | #Typical ASCII file |
---|
[1093] | 64 | finaltime = 1200 |
---|
[1671] | 65 | filename = 'test_file_function' |
---|
| 66 | fid = open(filename + '.txt', 'w') |
---|
[1093] | 67 | start = time.mktime(time.strptime('2000', '%Y')) |
---|
| 68 | dt = 60 #One minute intervals |
---|
| 69 | t = 0.0 |
---|
| 70 | while t <= finaltime: |
---|
| 71 | t_string = time.strftime(time_format, time.gmtime(t+start)) |
---|
| 72 | fid.write('%s, %f %f %f\n' %(t_string, 2*t, t**2, sin(t*pi/600))) |
---|
| 73 | t += dt |
---|
| 74 | |
---|
| 75 | fid.close() |
---|
| 76 | |
---|
[1671] | 77 | #Convert ASCII file to NetCDF (Which is what we really like!) |
---|
[1835] | 78 | timefile2netcdf(filename) |
---|
[1093] | 79 | |
---|
[1671] | 80 | |
---|
[1835] | 81 | #Create file function from time series |
---|
| 82 | F = file_function(filename + '.tms', |
---|
| 83 | quantities = ['Attribute0', |
---|
| 84 | 'Attribute1', |
---|
| 85 | 'Attribute2']) |
---|
[1671] | 86 | |
---|
[1093] | 87 | #Now try interpolation |
---|
| 88 | for i in range(20): |
---|
| 89 | t = i*10 |
---|
| 90 | q = F(t) |
---|
| 91 | |
---|
| 92 | #Exact linear intpolation |
---|
| 93 | assert allclose(q[0], 2*t) |
---|
| 94 | if i%6 == 0: |
---|
| 95 | assert allclose(q[1], t**2) |
---|
| 96 | assert allclose(q[2], sin(t*pi/600)) |
---|
| 97 | |
---|
| 98 | #Check non-exact |
---|
| 99 | |
---|
| 100 | t = 90 #Halfway between 60 and 120 |
---|
| 101 | q = F(t) |
---|
| 102 | assert allclose( (120**2 + 60**2)/2, q[1] ) |
---|
| 103 | assert allclose( (sin(120*pi/600) + sin(60*pi/600))/2, q[2] ) |
---|
| 104 | |
---|
| 105 | |
---|
| 106 | t = 100 #Two thirds of the way between between 60 and 120 |
---|
| 107 | q = F(t) |
---|
| 108 | assert allclose( 2*120**2/3 + 60**2/3, q[1] ) |
---|
| 109 | assert allclose( 2*sin(120*pi/600)/3 + sin(60*pi/600)/3, q[2] ) |
---|
| 110 | |
---|
[1671] | 111 | os.remove(filename + '.txt') |
---|
[1835] | 112 | os.remove(filename + '.tms') |
---|
[1093] | 113 | |
---|
| 114 | |
---|
[1137] | 115 | |
---|
[2852] | 116 | def test_spatio_temporal_file_function_basic(self): |
---|
[1664] | 117 | """Test that spatio temporal file function performs the correct |
---|
| 118 | interpolations in both time and space |
---|
| 119 | NetCDF version (x,y,t dependency) |
---|
| 120 | """ |
---|
| 121 | import time |
---|
| 122 | |
---|
[4160] | 123 | #Create sww file of simple propagation from left to right |
---|
| 124 | #through rectangular domain |
---|
| 125 | from shallow_water import Domain, Dirichlet_boundary |
---|
[1664] | 126 | from mesh_factory import rectangular |
---|
| 127 | from Numeric import take, concatenate, reshape |
---|
| 128 | |
---|
| 129 | #Create basic mesh and shallow water domain |
---|
| 130 | points, vertices, boundary = rectangular(3, 3) |
---|
| 131 | domain1 = Domain(points, vertices, boundary) |
---|
| 132 | |
---|
[3514] | 133 | from anuga.utilities.numerical_tools import mean |
---|
[1664] | 134 | domain1.reduction = mean |
---|
| 135 | domain1.smooth = True #NOTE: Mimic sww output where each vertex has |
---|
| 136 | # only one value. |
---|
| 137 | |
---|
| 138 | domain1.default_order = 2 |
---|
[4160] | 139 | domain1.store = True |
---|
[1664] | 140 | domain1.set_datadir('.') |
---|
| 141 | domain1.set_name('spatio_temporal_boundary_source_%d' %(id(self))) |
---|
| 142 | domain1.quantities_to_be_stored = ['stage', 'xmomentum', 'ymomentum'] |
---|
| 143 | |
---|
| 144 | #Bed-slope, friction and IC at vertices (and interpolated elsewhere) |
---|
| 145 | domain1.set_quantity('elevation', 0) |
---|
| 146 | domain1.set_quantity('friction', 0) |
---|
| 147 | domain1.set_quantity('stage', 0) |
---|
| 148 | |
---|
| 149 | # Boundary conditions |
---|
| 150 | B0 = Dirichlet_boundary([0,0,0]) |
---|
| 151 | B6 = Dirichlet_boundary([0.6,0,0]) |
---|
| 152 | domain1.set_boundary({'left': B6, 'top': B6, 'right': B0, 'bottom': B0}) |
---|
| 153 | domain1.check_integrity() |
---|
| 154 | |
---|
| 155 | finaltime = 8 |
---|
| 156 | #Evolution |
---|
[4160] | 157 | t0 = -1 |
---|
[1664] | 158 | for t in domain1.evolve(yieldstep = 0.1, finaltime = finaltime): |
---|
[2852] | 159 | #print 'Timesteps: %.16f, %.16f' %(t0, t) |
---|
[2783] | 160 | #if t == t0: |
---|
| 161 | # msg = 'Duplicate timestep found: %f, %f' %(t0, t) |
---|
[4160] | 162 | # raise msg |
---|
| 163 | t0 = t |
---|
| 164 | |
---|
[1664] | 165 | #domain1.write_time() |
---|
| 166 | |
---|
| 167 | |
---|
| 168 | #Now read data from sww and check |
---|
| 169 | from Scientific.IO.NetCDF import NetCDFFile |
---|
| 170 | filename = domain1.get_name() + '.' + domain1.format |
---|
| 171 | fid = NetCDFFile(filename) |
---|
| 172 | |
---|
| 173 | x = fid.variables['x'][:] |
---|
| 174 | y = fid.variables['y'][:] |
---|
| 175 | stage = fid.variables['stage'][:] |
---|
| 176 | xmomentum = fid.variables['xmomentum'][:] |
---|
| 177 | ymomentum = fid.variables['ymomentum'][:] |
---|
| 178 | time = fid.variables['time'][:] |
---|
| 179 | |
---|
| 180 | #Take stage vertex values at last timestep on diagonal |
---|
| 181 | #Diagonal is identified by vertices: 0, 5, 10, 15 |
---|
| 182 | |
---|
[2852] | 183 | last_time_index = len(time)-1 #Last last_time_index |
---|
| 184 | d_stage = reshape(take(stage[last_time_index, :], [0,5,10,15]), (4,1)) |
---|
| 185 | d_uh = reshape(take(xmomentum[last_time_index, :], [0,5,10,15]), (4,1)) |
---|
| 186 | d_vh = reshape(take(ymomentum[last_time_index, :], [0,5,10,15]), (4,1)) |
---|
[1664] | 187 | D = concatenate( (d_stage, d_uh, d_vh), axis=1) |
---|
| 188 | |
---|
| 189 | #Reference interpolated values at midpoints on diagonal at |
---|
| 190 | #this timestep are |
---|
| 191 | r0 = (D[0] + D[1])/2 |
---|
| 192 | r1 = (D[1] + D[2])/2 |
---|
| 193 | r2 = (D[2] + D[3])/2 |
---|
| 194 | |
---|
| 195 | #And the midpoints are found now |
---|
| 196 | Dx = take(reshape(x, (16,1)), [0,5,10,15]) |
---|
| 197 | Dy = take(reshape(y, (16,1)), [0,5,10,15]) |
---|
| 198 | |
---|
| 199 | diag = concatenate( (Dx, Dy), axis=1) |
---|
| 200 | d_midpoints = (diag[1:] + diag[:-1])/2 |
---|
| 201 | |
---|
| 202 | #Let us see if the file function can find the correct |
---|
| 203 | #values at the midpoints at the last timestep: |
---|
| 204 | f = file_function(filename, domain1, |
---|
| 205 | interpolation_points = d_midpoints) |
---|
| 206 | |
---|
[2884] | 207 | T = f.get_time() |
---|
| 208 | msg = 'duplicate timesteps: %.16f and %.16f' %(T[-1], T[-2]) |
---|
| 209 | assert not T[-1] == T[-2], msg |
---|
[4160] | 210 | t = time[last_time_index] |
---|
[2852] | 211 | q = f(t, point_id=0); assert allclose(r0, q) |
---|
| 212 | q = f(t, point_id=1); assert allclose(r1, q) |
---|
| 213 | q = f(t, point_id=2); assert allclose(r2, q) |
---|
[1664] | 214 | |
---|
| 215 | |
---|
| 216 | ################## |
---|
| 217 | #Now do the same for the first timestep |
---|
| 218 | |
---|
| 219 | timestep = 0 #First timestep |
---|
| 220 | d_stage = reshape(take(stage[timestep, :], [0,5,10,15]), (4,1)) |
---|
| 221 | d_uh = reshape(take(xmomentum[timestep, :], [0,5,10,15]), (4,1)) |
---|
| 222 | d_vh = reshape(take(ymomentum[timestep, :], [0,5,10,15]), (4,1)) |
---|
| 223 | D = concatenate( (d_stage, d_uh, d_vh), axis=1) |
---|
| 224 | |
---|
| 225 | #Reference interpolated values at midpoints on diagonal at |
---|
| 226 | #this timestep are |
---|
| 227 | r0 = (D[0] + D[1])/2 |
---|
| 228 | r1 = (D[1] + D[2])/2 |
---|
| 229 | r2 = (D[2] + D[3])/2 |
---|
| 230 | |
---|
| 231 | #Let us see if the file function can find the correct |
---|
| 232 | #values |
---|
| 233 | q = f(0, point_id=0); assert allclose(r0, q) |
---|
| 234 | q = f(0, point_id=1); assert allclose(r1, q) |
---|
| 235 | q = f(0, point_id=2); assert allclose(r2, q) |
---|
| 236 | |
---|
| 237 | |
---|
| 238 | ################## |
---|
| 239 | #Now do it again for a timestep in the middle |
---|
| 240 | |
---|
| 241 | timestep = 33 |
---|
| 242 | d_stage = reshape(take(stage[timestep, :], [0,5,10,15]), (4,1)) |
---|
| 243 | d_uh = reshape(take(xmomentum[timestep, :], [0,5,10,15]), (4,1)) |
---|
| 244 | d_vh = reshape(take(ymomentum[timestep, :], [0,5,10,15]), (4,1)) |
---|
| 245 | D = concatenate( (d_stage, d_uh, d_vh), axis=1) |
---|
| 246 | |
---|
| 247 | #Reference interpolated values at midpoints on diagonal at |
---|
| 248 | #this timestep are |
---|
| 249 | r0 = (D[0] + D[1])/2 |
---|
| 250 | r1 = (D[1] + D[2])/2 |
---|
| 251 | r2 = (D[2] + D[3])/2 |
---|
| 252 | |
---|
| 253 | q = f(timestep/10., point_id=0); assert allclose(r0, q) |
---|
| 254 | q = f(timestep/10., point_id=1); assert allclose(r1, q) |
---|
| 255 | q = f(timestep/10., point_id=2); assert allclose(r2, q) |
---|
| 256 | |
---|
| 257 | |
---|
| 258 | ################## |
---|
| 259 | #Now check temporal interpolation |
---|
| 260 | #Halfway between timestep 15 and 16 |
---|
| 261 | |
---|
| 262 | timestep = 15 |
---|
| 263 | d_stage = reshape(take(stage[timestep, :], [0,5,10,15]), (4,1)) |
---|
| 264 | d_uh = reshape(take(xmomentum[timestep, :], [0,5,10,15]), (4,1)) |
---|
| 265 | d_vh = reshape(take(ymomentum[timestep, :], [0,5,10,15]), (4,1)) |
---|
| 266 | D = concatenate( (d_stage, d_uh, d_vh), axis=1) |
---|
| 267 | |
---|
| 268 | #Reference interpolated values at midpoints on diagonal at |
---|
| 269 | #this timestep are |
---|
| 270 | r0_0 = (D[0] + D[1])/2 |
---|
| 271 | r1_0 = (D[1] + D[2])/2 |
---|
| 272 | r2_0 = (D[2] + D[3])/2 |
---|
| 273 | |
---|
| 274 | # |
---|
| 275 | timestep = 16 |
---|
| 276 | d_stage = reshape(take(stage[timestep, :], [0,5,10,15]), (4,1)) |
---|
| 277 | d_uh = reshape(take(xmomentum[timestep, :], [0,5,10,15]), (4,1)) |
---|
| 278 | d_vh = reshape(take(ymomentum[timestep, :], [0,5,10,15]), (4,1)) |
---|
| 279 | D = concatenate( (d_stage, d_uh, d_vh), axis=1) |
---|
| 280 | |
---|
| 281 | #Reference interpolated values at midpoints on diagonal at |
---|
| 282 | #this timestep are |
---|
| 283 | r0_1 = (D[0] + D[1])/2 |
---|
| 284 | r1_1 = (D[1] + D[2])/2 |
---|
| 285 | r2_1 = (D[2] + D[3])/2 |
---|
| 286 | |
---|
| 287 | # The reference values are |
---|
| 288 | r0 = (r0_0 + r0_1)/2 |
---|
| 289 | r1 = (r1_0 + r1_1)/2 |
---|
| 290 | r2 = (r2_0 + r2_1)/2 |
---|
| 291 | |
---|
| 292 | q = f((timestep - 0.5)/10., point_id=0); assert allclose(r0, q) |
---|
| 293 | q = f((timestep - 0.5)/10., point_id=1); assert allclose(r1, q) |
---|
| 294 | q = f((timestep - 0.5)/10., point_id=2); assert allclose(r2, q) |
---|
| 295 | |
---|
| 296 | ################## |
---|
| 297 | #Finally check interpolation 2 thirds of the way |
---|
| 298 | #between timestep 15 and 16 |
---|
| 299 | |
---|
| 300 | # The reference values are |
---|
| 301 | r0 = (r0_0 + 2*r0_1)/3 |
---|
| 302 | r1 = (r1_0 + 2*r1_1)/3 |
---|
| 303 | r2 = (r2_0 + 2*r2_1)/3 |
---|
| 304 | |
---|
| 305 | #And the file function gives |
---|
| 306 | q = f((timestep - 1.0/3)/10., point_id=0); assert allclose(r0, q) |
---|
| 307 | q = f((timestep - 1.0/3)/10., point_id=1); assert allclose(r1, q) |
---|
| 308 | q = f((timestep - 1.0/3)/10., point_id=2); assert allclose(r2, q) |
---|
| 309 | |
---|
| 310 | fid.close() |
---|
| 311 | import os |
---|
| 312 | os.remove(filename) |
---|
| 313 | |
---|
[1884] | 314 | |
---|
| 315 | |
---|
| 316 | def test_spatio_temporal_file_function_different_origin(self): |
---|
| 317 | """Test that spatio temporal file function performs the correct |
---|
| 318 | interpolations in both time and space where space is offset by |
---|
| 319 | xllcorner and yllcorner |
---|
| 320 | NetCDF version (x,y,t dependency) |
---|
| 321 | """ |
---|
| 322 | import time |
---|
| 323 | |
---|
[4160] | 324 | #Create sww file of simple propagation from left to right |
---|
| 325 | #through rectangular domain |
---|
| 326 | from shallow_water import Domain, Dirichlet_boundary |
---|
[1884] | 327 | from mesh_factory import rectangular |
---|
| 328 | from Numeric import take, concatenate, reshape |
---|
| 329 | |
---|
| 330 | |
---|
[3514] | 331 | from anuga.coordinate_transforms.geo_reference import Geo_reference |
---|
[1884] | 332 | xllcorner = 2048 |
---|
| 333 | yllcorner = 11000 |
---|
| 334 | zone = 2 |
---|
| 335 | |
---|
| 336 | #Create basic mesh and shallow water domain |
---|
| 337 | points, vertices, boundary = rectangular(3, 3) |
---|
| 338 | domain1 = Domain(points, vertices, boundary, |
---|
| 339 | geo_reference = Geo_reference(xllcorner = xllcorner, |
---|
| 340 | yllcorner = yllcorner)) |
---|
[1137] | 341 | |
---|
| 342 | |
---|
[4160] | 343 | from anuga.utilities.numerical_tools import mean |
---|
[1884] | 344 | domain1.reduction = mean |
---|
| 345 | domain1.smooth = True #NOTE: Mimic sww output where each vertex has |
---|
| 346 | # only one value. |
---|
| 347 | |
---|
| 348 | domain1.default_order = 2 |
---|
[4160] | 349 | domain1.store = True |
---|
[1884] | 350 | domain1.set_datadir('.') |
---|
| 351 | domain1.set_name('spatio_temporal_boundary_source_%d' %(id(self))) |
---|
| 352 | domain1.quantities_to_be_stored = ['stage', 'xmomentum', 'ymomentum'] |
---|
| 353 | |
---|
| 354 | #Bed-slope, friction and IC at vertices (and interpolated elsewhere) |
---|
| 355 | domain1.set_quantity('elevation', 0) |
---|
| 356 | domain1.set_quantity('friction', 0) |
---|
| 357 | domain1.set_quantity('stage', 0) |
---|
| 358 | |
---|
| 359 | # Boundary conditions |
---|
| 360 | B0 = Dirichlet_boundary([0,0,0]) |
---|
| 361 | B6 = Dirichlet_boundary([0.6,0,0]) |
---|
| 362 | domain1.set_boundary({'left': B6, 'top': B6, 'right': B0, 'bottom': B0}) |
---|
| 363 | domain1.check_integrity() |
---|
| 364 | |
---|
| 365 | finaltime = 8 |
---|
| 366 | #Evolution |
---|
| 367 | for t in domain1.evolve(yieldstep = 0.1, finaltime = finaltime): |
---|
| 368 | pass |
---|
| 369 | #domain1.write_time() |
---|
| 370 | |
---|
| 371 | |
---|
| 372 | #Now read data from sww and check |
---|
| 373 | from Scientific.IO.NetCDF import NetCDFFile |
---|
| 374 | filename = domain1.get_name() + '.' + domain1.format |
---|
| 375 | fid = NetCDFFile(filename) |
---|
| 376 | |
---|
| 377 | x = fid.variables['x'][:] |
---|
| 378 | y = fid.variables['y'][:] |
---|
| 379 | stage = fid.variables['stage'][:] |
---|
| 380 | xmomentum = fid.variables['xmomentum'][:] |
---|
| 381 | ymomentum = fid.variables['ymomentum'][:] |
---|
| 382 | time = fid.variables['time'][:] |
---|
| 383 | |
---|
| 384 | #Take stage vertex values at last timestep on diagonal |
---|
| 385 | #Diagonal is identified by vertices: 0, 5, 10, 15 |
---|
| 386 | |
---|
[4160] | 387 | last_time_index = len(time)-1 #Last last_time_index |
---|
[2852] | 388 | d_stage = reshape(take(stage[last_time_index, :], [0,5,10,15]), (4,1)) |
---|
| 389 | d_uh = reshape(take(xmomentum[last_time_index, :], [0,5,10,15]), (4,1)) |
---|
| 390 | d_vh = reshape(take(ymomentum[last_time_index, :], [0,5,10,15]), (4,1)) |
---|
[1884] | 391 | D = concatenate( (d_stage, d_uh, d_vh), axis=1) |
---|
| 392 | |
---|
| 393 | #Reference interpolated values at midpoints on diagonal at |
---|
| 394 | #this timestep are |
---|
| 395 | r0 = (D[0] + D[1])/2 |
---|
| 396 | r1 = (D[1] + D[2])/2 |
---|
| 397 | r2 = (D[2] + D[3])/2 |
---|
| 398 | |
---|
| 399 | #And the midpoints are found now |
---|
| 400 | Dx = take(reshape(x, (16,1)), [0,5,10,15]) |
---|
| 401 | Dy = take(reshape(y, (16,1)), [0,5,10,15]) |
---|
| 402 | |
---|
| 403 | diag = concatenate( (Dx, Dy), axis=1) |
---|
| 404 | d_midpoints = (diag[1:] + diag[:-1])/2 |
---|
| 405 | |
---|
| 406 | |
---|
| 407 | #Adjust for georef - make interpolation points absolute |
---|
| 408 | d_midpoints[:,0] += xllcorner |
---|
| 409 | d_midpoints[:,1] += yllcorner |
---|
| 410 | |
---|
| 411 | #Let us see if the file function can find the correct |
---|
| 412 | #values at the midpoints at the last timestep: |
---|
| 413 | f = file_function(filename, domain1, |
---|
| 414 | interpolation_points = d_midpoints) |
---|
| 415 | |
---|
[4160] | 416 | t = time[last_time_index] |
---|
[2852] | 417 | q = f(t, point_id=0); assert allclose(r0, q) |
---|
| 418 | q = f(t, point_id=1); assert allclose(r1, q) |
---|
| 419 | q = f(t, point_id=2); assert allclose(r2, q) |
---|
[1884] | 420 | |
---|
| 421 | |
---|
| 422 | ################## |
---|
| 423 | #Now do the same for the first timestep |
---|
| 424 | |
---|
| 425 | timestep = 0 #First timestep |
---|
| 426 | d_stage = reshape(take(stage[timestep, :], [0,5,10,15]), (4,1)) |
---|
| 427 | d_uh = reshape(take(xmomentum[timestep, :], [0,5,10,15]), (4,1)) |
---|
| 428 | d_vh = reshape(take(ymomentum[timestep, :], [0,5,10,15]), (4,1)) |
---|
| 429 | D = concatenate( (d_stage, d_uh, d_vh), axis=1) |
---|
| 430 | |
---|
| 431 | #Reference interpolated values at midpoints on diagonal at |
---|
| 432 | #this timestep are |
---|
| 433 | r0 = (D[0] + D[1])/2 |
---|
| 434 | r1 = (D[1] + D[2])/2 |
---|
| 435 | r2 = (D[2] + D[3])/2 |
---|
| 436 | |
---|
| 437 | #Let us see if the file function can find the correct |
---|
| 438 | #values |
---|
| 439 | q = f(0, point_id=0); assert allclose(r0, q) |
---|
| 440 | q = f(0, point_id=1); assert allclose(r1, q) |
---|
| 441 | q = f(0, point_id=2); assert allclose(r2, q) |
---|
| 442 | |
---|
| 443 | |
---|
| 444 | ################## |
---|
| 445 | #Now do it again for a timestep in the middle |
---|
| 446 | |
---|
| 447 | timestep = 33 |
---|
| 448 | d_stage = reshape(take(stage[timestep, :], [0,5,10,15]), (4,1)) |
---|
| 449 | d_uh = reshape(take(xmomentum[timestep, :], [0,5,10,15]), (4,1)) |
---|
| 450 | d_vh = reshape(take(ymomentum[timestep, :], [0,5,10,15]), (4,1)) |
---|
| 451 | D = concatenate( (d_stage, d_uh, d_vh), axis=1) |
---|
| 452 | |
---|
| 453 | #Reference interpolated values at midpoints on diagonal at |
---|
| 454 | #this timestep are |
---|
| 455 | r0 = (D[0] + D[1])/2 |
---|
| 456 | r1 = (D[1] + D[2])/2 |
---|
| 457 | r2 = (D[2] + D[3])/2 |
---|
| 458 | |
---|
| 459 | q = f(timestep/10., point_id=0); assert allclose(r0, q) |
---|
| 460 | q = f(timestep/10., point_id=1); assert allclose(r1, q) |
---|
| 461 | q = f(timestep/10., point_id=2); assert allclose(r2, q) |
---|
| 462 | |
---|
| 463 | |
---|
| 464 | ################## |
---|
| 465 | #Now check temporal interpolation |
---|
| 466 | #Halfway between timestep 15 and 16 |
---|
| 467 | |
---|
| 468 | timestep = 15 |
---|
| 469 | d_stage = reshape(take(stage[timestep, :], [0,5,10,15]), (4,1)) |
---|
| 470 | d_uh = reshape(take(xmomentum[timestep, :], [0,5,10,15]), (4,1)) |
---|
| 471 | d_vh = reshape(take(ymomentum[timestep, :], [0,5,10,15]), (4,1)) |
---|
| 472 | D = concatenate( (d_stage, d_uh, d_vh), axis=1) |
---|
| 473 | |
---|
| 474 | #Reference interpolated values at midpoints on diagonal at |
---|
| 475 | #this timestep are |
---|
| 476 | r0_0 = (D[0] + D[1])/2 |
---|
| 477 | r1_0 = (D[1] + D[2])/2 |
---|
| 478 | r2_0 = (D[2] + D[3])/2 |
---|
| 479 | |
---|
| 480 | # |
---|
| 481 | timestep = 16 |
---|
| 482 | d_stage = reshape(take(stage[timestep, :], [0,5,10,15]), (4,1)) |
---|
| 483 | d_uh = reshape(take(xmomentum[timestep, :], [0,5,10,15]), (4,1)) |
---|
| 484 | d_vh = reshape(take(ymomentum[timestep, :], [0,5,10,15]), (4,1)) |
---|
| 485 | D = concatenate( (d_stage, d_uh, d_vh), axis=1) |
---|
| 486 | |
---|
| 487 | #Reference interpolated values at midpoints on diagonal at |
---|
| 488 | #this timestep are |
---|
| 489 | r0_1 = (D[0] + D[1])/2 |
---|
| 490 | r1_1 = (D[1] + D[2])/2 |
---|
| 491 | r2_1 = (D[2] + D[3])/2 |
---|
| 492 | |
---|
| 493 | # The reference values are |
---|
| 494 | r0 = (r0_0 + r0_1)/2 |
---|
| 495 | r1 = (r1_0 + r1_1)/2 |
---|
| 496 | r2 = (r2_0 + r2_1)/2 |
---|
| 497 | |
---|
| 498 | q = f((timestep - 0.5)/10., point_id=0); assert allclose(r0, q) |
---|
| 499 | q = f((timestep - 0.5)/10., point_id=1); assert allclose(r1, q) |
---|
| 500 | q = f((timestep - 0.5)/10., point_id=2); assert allclose(r2, q) |
---|
| 501 | |
---|
| 502 | ################## |
---|
| 503 | #Finally check interpolation 2 thirds of the way |
---|
| 504 | #between timestep 15 and 16 |
---|
| 505 | |
---|
| 506 | # The reference values are |
---|
| 507 | r0 = (r0_0 + 2*r0_1)/3 |
---|
| 508 | r1 = (r1_0 + 2*r1_1)/3 |
---|
| 509 | r2 = (r2_0 + 2*r2_1)/3 |
---|
| 510 | |
---|
| 511 | #And the file function gives |
---|
| 512 | q = f((timestep - 1.0/3)/10., point_id=0); assert allclose(r0, q) |
---|
| 513 | q = f((timestep - 1.0/3)/10., point_id=1); assert allclose(r1, q) |
---|
| 514 | q = f((timestep - 1.0/3)/10., point_id=2); assert allclose(r2, q) |
---|
| 515 | |
---|
| 516 | fid.close() |
---|
| 517 | import os |
---|
| 518 | os.remove(filename) |
---|
| 519 | |
---|
| 520 | |
---|
| 521 | |
---|
| 522 | |
---|
[2679] | 523 | def qtest_spatio_temporal_file_function_time(self): |
---|
[1093] | 524 | """Test that File function interpolates correctly |
---|
| 525 | between given times. |
---|
| 526 | NetCDF version (x,y,t dependency) |
---|
| 527 | """ |
---|
| 528 | |
---|
| 529 | #Create NetCDF (sww) file to be read |
---|
| 530 | # x: 0, 5, 10, 15 |
---|
| 531 | # y: -20, -10, 0, 10 |
---|
| 532 | # t: 0, 60, 120, ...., 1200 |
---|
| 533 | # |
---|
| 534 | # test quantities (arbitrary but non-trivial expressions): |
---|
| 535 | # |
---|
| 536 | # stage = 3*x - y**2 + 2*t |
---|
| 537 | # xmomentum = exp( -((x-7)**2 + (y+5)**2)/20 ) * t**2 |
---|
| 538 | # ymomentum = x**2 + y**2 * sin(t*pi/600) |
---|
| 539 | |
---|
[1664] | 540 | #NOTE: Nice test that may render some of the others redundant. |
---|
[1093] | 541 | |
---|
| 542 | import os, time |
---|
[3514] | 543 | from anuga.config import time_format |
---|
[1093] | 544 | from Numeric import sin, pi, exp |
---|
| 545 | from mesh_factory import rectangular |
---|
| 546 | from shallow_water import Domain |
---|
[3563] | 547 | import anuga.shallow_water.data_manager |
---|
[1093] | 548 | |
---|
| 549 | finaltime = 1200 |
---|
| 550 | filename = 'test_file_function' |
---|
| 551 | |
---|
| 552 | #Create a domain to hold test grid |
---|
[1670] | 553 | #(0:15, -20:10) |
---|
[1093] | 554 | points, vertices, boundary =\ |
---|
| 555 | rectangular(4, 4, 15, 30, origin = (0, -20)) |
---|
[2679] | 556 | print "points", points |
---|
[1093] | 557 | |
---|
| 558 | #print 'Number of elements', len(vertices) |
---|
| 559 | domain = Domain(points, vertices, boundary) |
---|
| 560 | domain.smooth = False |
---|
| 561 | domain.default_order = 2 |
---|
| 562 | domain.set_datadir('.') |
---|
| 563 | domain.set_name(filename) |
---|
| 564 | domain.store = True |
---|
| 565 | domain.format = 'sww' #Native netcdf visualisation format |
---|
| 566 | |
---|
| 567 | #print points |
---|
| 568 | start = time.mktime(time.strptime('2000', '%Y')) |
---|
| 569 | domain.starttime = start |
---|
| 570 | |
---|
| 571 | |
---|
| 572 | #Store structure |
---|
| 573 | domain.initialise_storage() |
---|
| 574 | |
---|
| 575 | #Compute artificial time steps and store |
---|
| 576 | dt = 60 #One minute intervals |
---|
| 577 | t = 0.0 |
---|
| 578 | while t <= finaltime: |
---|
| 579 | #Compute quantities |
---|
| 580 | f1 = lambda x,y: 3*x - y**2 + 2*t + 4 |
---|
| 581 | domain.set_quantity('stage', f1) |
---|
| 582 | |
---|
| 583 | f2 = lambda x,y: x+y+t**2 |
---|
| 584 | domain.set_quantity('xmomentum', f2) |
---|
| 585 | |
---|
| 586 | f3 = lambda x,y: x**2 + y**2 * sin(t*pi/600) |
---|
| 587 | domain.set_quantity('ymomentum', f3) |
---|
| 588 | |
---|
| 589 | #Store and advance time |
---|
| 590 | domain.time = t |
---|
| 591 | domain.store_timestep(domain.conserved_quantities) |
---|
| 592 | t += dt |
---|
| 593 | |
---|
| 594 | |
---|
| 595 | interpolation_points = [[0,-20], [1,0], [0,1], [1.1, 3.14], [10,-12.5]] |
---|
[2679] | 596 | |
---|
| 597 | #Deliberately set domain.starttime to too early |
---|
| 598 | domain.starttime = start - 1 |
---|
[1093] | 599 | |
---|
[2679] | 600 | #Create file function |
---|
| 601 | F = file_function(filename + '.sww', domain, |
---|
| 602 | quantities = domain.conserved_quantities, |
---|
| 603 | interpolation_points = interpolation_points) |
---|
[1093] | 604 | |
---|
[2679] | 605 | #Check that FF updates fixes domain starttime |
---|
| 606 | assert allclose(domain.starttime, start) |
---|
[1093] | 607 | |
---|
[2679] | 608 | #Check that domain.starttime isn't updated if later |
---|
| 609 | domain.starttime = start + 1 |
---|
| 610 | F = file_function(filename + '.sww', domain, |
---|
| 611 | quantities = domain.conserved_quantities, |
---|
| 612 | interpolation_points = interpolation_points) |
---|
| 613 | assert allclose(domain.starttime, start+1) |
---|
| 614 | domain.starttime = start |
---|
| 615 | |
---|
| 616 | |
---|
| 617 | #Check linear interpolation in time |
---|
| 618 | F = file_function(filename + '.sww', domain, |
---|
| 619 | quantities = domain.conserved_quantities, |
---|
| 620 | interpolation_points = interpolation_points) |
---|
| 621 | for id in range(len(interpolation_points)): |
---|
| 622 | x = interpolation_points[id][0] |
---|
| 623 | y = interpolation_points[id][1] |
---|
| 624 | |
---|
| 625 | for i in range(20): |
---|
| 626 | t = i*10 |
---|
| 627 | k = i%6 |
---|
| 628 | |
---|
| 629 | if k == 0: |
---|
| 630 | q0 = F(t, point_id=id) |
---|
| 631 | q1 = F(t+60, point_id=id) |
---|
| 632 | |
---|
[3452] | 633 | if q0 == NAN: |
---|
[2679] | 634 | actual = q0 |
---|
| 635 | else: |
---|
| 636 | actual = (k*q1 + (6-k)*q0)/6 |
---|
| 637 | q = F(t, point_id=id) |
---|
| 638 | #print i, k, t, q |
---|
| 639 | #print ' ', q0 |
---|
| 640 | #print ' ', q1 |
---|
| 641 | print "q",q |
---|
| 642 | print "actual", actual |
---|
| 643 | #print |
---|
[3452] | 644 | if q0 == NAN: |
---|
[2679] | 645 | self.failUnless( q == actual, 'Fail!') |
---|
| 646 | else: |
---|
| 647 | assert allclose(q, actual) |
---|
| 648 | |
---|
| 649 | |
---|
| 650 | #Another check of linear interpolation in time |
---|
| 651 | for id in range(len(interpolation_points)): |
---|
| 652 | q60 = F(60, point_id=id) |
---|
| 653 | q120 = F(120, point_id=id) |
---|
| 654 | |
---|
| 655 | t = 90 #Halfway between 60 and 120 |
---|
| 656 | q = F(t, point_id=id) |
---|
| 657 | assert allclose( (q120+q60)/2, q ) |
---|
| 658 | |
---|
| 659 | t = 100 #Two thirds of the way between between 60 and 120 |
---|
| 660 | q = F(t, point_id=id) |
---|
| 661 | assert allclose(q60/3 + 2*q120/3, q) |
---|
| 662 | |
---|
| 663 | |
---|
| 664 | |
---|
| 665 | #Check that domain.starttime isn't updated if later than file starttime but earlier |
---|
| 666 | #than file end time |
---|
[4160] | 667 | delta = 23 |
---|
[2679] | 668 | domain.starttime = start + delta |
---|
| 669 | F = file_function(filename + '.sww', domain, |
---|
| 670 | quantities = domain.conserved_quantities, |
---|
| 671 | interpolation_points = interpolation_points) |
---|
| 672 | assert allclose(domain.starttime, start+delta) |
---|
| 673 | |
---|
| 674 | |
---|
| 675 | |
---|
| 676 | |
---|
| 677 | #Now try interpolation with delta offset |
---|
| 678 | for id in range(len(interpolation_points)): |
---|
| 679 | x = interpolation_points[id][0] |
---|
| 680 | y = interpolation_points[id][1] |
---|
| 681 | |
---|
| 682 | for i in range(20): |
---|
| 683 | t = i*10 |
---|
| 684 | k = i%6 |
---|
| 685 | |
---|
| 686 | if k == 0: |
---|
| 687 | q0 = F(t-delta, point_id=id) |
---|
| 688 | q1 = F(t+60-delta, point_id=id) |
---|
| 689 | |
---|
| 690 | q = F(t-delta, point_id=id) |
---|
| 691 | assert allclose(q, (k*q1 + (6-k)*q0)/6) |
---|
| 692 | |
---|
| 693 | |
---|
| 694 | os.remove(filename + '.sww') |
---|
| 695 | |
---|
| 696 | |
---|
| 697 | |
---|
[4588] | 698 | def NOtest_spatio_temporal_file_function_time(self): |
---|
| 699 | # FIXME: This passes but needs some TLC |
---|
[2679] | 700 | # Test that File function interpolates correctly |
---|
| 701 | # When some points are outside the mesh |
---|
| 702 | |
---|
| 703 | import os, time |
---|
[3514] | 704 | from anuga.config import time_format |
---|
[2679] | 705 | from Numeric import sin, pi, exp |
---|
| 706 | from mesh_factory import rectangular |
---|
| 707 | from shallow_water import Domain |
---|
[3563] | 708 | import anuga.shallow_water.data_manager |
---|
[3514] | 709 | from anuga.pmesh.mesh_interface import create_mesh_from_regions |
---|
[2679] | 710 | finaltime = 1200 |
---|
| 711 | |
---|
| 712 | filename = tempfile.mktemp() |
---|
| 713 | #print "filename",filename |
---|
| 714 | filename = 'test_file_function' |
---|
| 715 | |
---|
| 716 | meshfilename = tempfile.mktemp(".tsh") |
---|
| 717 | |
---|
| 718 | boundary_tags = {'walls':[0,1],'bom':[2]} |
---|
| 719 | |
---|
| 720 | polygon_absolute = [[0,-20],[10,-20],[10,15],[-20,15]] |
---|
| 721 | |
---|
| 722 | create_mesh_from_regions(polygon_absolute, |
---|
| 723 | boundary_tags, |
---|
| 724 | 10000000, |
---|
| 725 | filename=meshfilename) |
---|
| 726 | domain = Domain(mesh_filename=meshfilename) |
---|
| 727 | domain.smooth = False |
---|
| 728 | domain.default_order = 2 |
---|
| 729 | domain.set_datadir('.') |
---|
| 730 | domain.set_name(filename) |
---|
| 731 | domain.store = True |
---|
| 732 | domain.format = 'sww' #Native netcdf visualisation format |
---|
| 733 | |
---|
| 734 | #print points |
---|
| 735 | start = time.mktime(time.strptime('2000', '%Y')) |
---|
| 736 | domain.starttime = start |
---|
| 737 | |
---|
| 738 | |
---|
| 739 | #Store structure |
---|
| 740 | domain.initialise_storage() |
---|
| 741 | |
---|
| 742 | #Compute artificial time steps and store |
---|
| 743 | dt = 60 #One minute intervals |
---|
| 744 | t = 0.0 |
---|
| 745 | while t <= finaltime: |
---|
| 746 | #Compute quantities |
---|
| 747 | f1 = lambda x,y: 3*x - y**2 + 2*t + 4 |
---|
| 748 | domain.set_quantity('stage', f1) |
---|
| 749 | |
---|
| 750 | f2 = lambda x,y: x+y+t**2 |
---|
| 751 | domain.set_quantity('xmomentum', f2) |
---|
| 752 | |
---|
| 753 | f3 = lambda x,y: x**2 + y**2 * sin(t*pi/600) |
---|
| 754 | domain.set_quantity('ymomentum', f3) |
---|
| 755 | |
---|
| 756 | #Store and advance time |
---|
| 757 | domain.time = t |
---|
| 758 | domain.store_timestep(domain.conserved_quantities) |
---|
| 759 | t += dt |
---|
| 760 | |
---|
| 761 | interpolation_points = [[1,0]] |
---|
| 762 | interpolation_points = [[100,1000]] |
---|
| 763 | |
---|
| 764 | interpolation_points = [[0,-20], [1,0], [0,1], [1.1, 3.14], [10,-12.5], |
---|
| 765 | [78787,78787],[7878,3432]] |
---|
| 766 | |
---|
[1664] | 767 | #Deliberately set domain.starttime to too early |
---|
[1093] | 768 | domain.starttime = start - 1 |
---|
| 769 | |
---|
| 770 | #Create file function |
---|
| 771 | F = file_function(filename + '.sww', domain, |
---|
| 772 | quantities = domain.conserved_quantities, |
---|
| 773 | interpolation_points = interpolation_points) |
---|
| 774 | |
---|
| 775 | #Check that FF updates fixes domain starttime |
---|
| 776 | assert allclose(domain.starttime, start) |
---|
| 777 | |
---|
| 778 | #Check that domain.starttime isn't updated if later |
---|
| 779 | domain.starttime = start + 1 |
---|
| 780 | F = file_function(filename + '.sww', domain, |
---|
| 781 | quantities = domain.conserved_quantities, |
---|
| 782 | interpolation_points = interpolation_points) |
---|
| 783 | assert allclose(domain.starttime, start+1) |
---|
| 784 | domain.starttime = start |
---|
| 785 | |
---|
| 786 | |
---|
| 787 | #Check linear interpolation in time |
---|
[2679] | 788 | # checking points inside and outside the mesh |
---|
[1668] | 789 | F = file_function(filename + '.sww', domain, |
---|
| 790 | quantities = domain.conserved_quantities, |
---|
[2679] | 791 | interpolation_points = interpolation_points) |
---|
| 792 | |
---|
[1670] | 793 | for id in range(len(interpolation_points)): |
---|
[1093] | 794 | x = interpolation_points[id][0] |
---|
| 795 | y = interpolation_points[id][1] |
---|
| 796 | |
---|
| 797 | for i in range(20): |
---|
| 798 | t = i*10 |
---|
| 799 | k = i%6 |
---|
| 800 | |
---|
| 801 | if k == 0: |
---|
| 802 | q0 = F(t, point_id=id) |
---|
| 803 | q1 = F(t+60, point_id=id) |
---|
| 804 | |
---|
[3452] | 805 | if q0 == NAN: |
---|
[2679] | 806 | actual = q0 |
---|
| 807 | else: |
---|
| 808 | actual = (k*q1 + (6-k)*q0)/6 |
---|
[1093] | 809 | q = F(t, point_id=id) |
---|
[1668] | 810 | #print i, k, t, q |
---|
| 811 | #print ' ', q0 |
---|
| 812 | #print ' ', q1 |
---|
[2679] | 813 | #print "q",q |
---|
| 814 | #print "actual", actual |
---|
[1668] | 815 | #print |
---|
[3452] | 816 | if q0 == NAN: |
---|
[2679] | 817 | self.failUnless( q == actual, 'Fail!') |
---|
| 818 | else: |
---|
| 819 | assert allclose(q, actual) |
---|
[1093] | 820 | |
---|
[2679] | 821 | # now lets check points inside the mesh |
---|
| 822 | interpolation_points = [[0,-20], [1,0], [0,1], [1.1, 3.14]] #, [10,-12.5]] - this point doesn't work WHY? |
---|
| 823 | interpolation_points = [[10,-12.5]] |
---|
| 824 | |
---|
| 825 | print "len(interpolation_points)",len(interpolation_points) |
---|
| 826 | F = file_function(filename + '.sww', domain, |
---|
| 827 | quantities = domain.conserved_quantities, |
---|
| 828 | interpolation_points = interpolation_points) |
---|
[1093] | 829 | |
---|
[2679] | 830 | domain.starttime = start |
---|
| 831 | |
---|
| 832 | |
---|
| 833 | #Check linear interpolation in time |
---|
| 834 | F = file_function(filename + '.sww', domain, |
---|
| 835 | quantities = domain.conserved_quantities, |
---|
| 836 | interpolation_points = interpolation_points) |
---|
| 837 | for id in range(len(interpolation_points)): |
---|
| 838 | x = interpolation_points[id][0] |
---|
| 839 | y = interpolation_points[id][1] |
---|
| 840 | |
---|
| 841 | for i in range(20): |
---|
| 842 | t = i*10 |
---|
| 843 | k = i%6 |
---|
| 844 | |
---|
| 845 | if k == 0: |
---|
| 846 | q0 = F(t, point_id=id) |
---|
| 847 | q1 = F(t+60, point_id=id) |
---|
| 848 | |
---|
[3452] | 849 | if q0 == NAN: |
---|
[2679] | 850 | actual = q0 |
---|
| 851 | else: |
---|
| 852 | actual = (k*q1 + (6-k)*q0)/6 |
---|
| 853 | q = F(t, point_id=id) |
---|
| 854 | print "############" |
---|
| 855 | print "id, x, y ", id, x, y #k, t, q |
---|
| 856 | print "t", t |
---|
| 857 | #print ' ', q0 |
---|
| 858 | #print ' ', q1 |
---|
| 859 | print "q",q |
---|
| 860 | print "actual", actual |
---|
| 861 | #print |
---|
[3452] | 862 | if q0 == NAN: |
---|
[2679] | 863 | self.failUnless( q == actual, 'Fail!') |
---|
| 864 | else: |
---|
| 865 | assert allclose(q, actual) |
---|
| 866 | |
---|
| 867 | |
---|
[1093] | 868 | #Another check of linear interpolation in time |
---|
| 869 | for id in range(len(interpolation_points)): |
---|
| 870 | q60 = F(60, point_id=id) |
---|
| 871 | q120 = F(120, point_id=id) |
---|
| 872 | |
---|
| 873 | t = 90 #Halfway between 60 and 120 |
---|
[1668] | 874 | q = F(t, point_id=id) |
---|
[1093] | 875 | assert allclose( (q120+q60)/2, q ) |
---|
| 876 | |
---|
| 877 | t = 100 #Two thirds of the way between between 60 and 120 |
---|
| 878 | q = F(t, point_id=id) |
---|
| 879 | assert allclose(q60/3 + 2*q120/3, q) |
---|
| 880 | |
---|
| 881 | |
---|
| 882 | |
---|
| 883 | #Check that domain.starttime isn't updated if later than file starttime but earlier |
---|
| 884 | #than file end time |
---|
[4160] | 885 | delta = 23 |
---|
[1093] | 886 | domain.starttime = start + delta |
---|
| 887 | F = file_function(filename + '.sww', domain, |
---|
| 888 | quantities = domain.conserved_quantities, |
---|
| 889 | interpolation_points = interpolation_points) |
---|
| 890 | assert allclose(domain.starttime, start+delta) |
---|
| 891 | |
---|
| 892 | |
---|
| 893 | |
---|
| 894 | |
---|
| 895 | #Now try interpolation with delta offset |
---|
[1670] | 896 | for id in range(len(interpolation_points)): |
---|
[1093] | 897 | x = interpolation_points[id][0] |
---|
| 898 | y = interpolation_points[id][1] |
---|
| 899 | |
---|
| 900 | for i in range(20): |
---|
| 901 | t = i*10 |
---|
| 902 | k = i%6 |
---|
| 903 | |
---|
| 904 | if k == 0: |
---|
| 905 | q0 = F(t-delta, point_id=id) |
---|
| 906 | q1 = F(t+60-delta, point_id=id) |
---|
| 907 | |
---|
| 908 | q = F(t-delta, point_id=id) |
---|
| 909 | assert allclose(q, (k*q1 + (6-k)*q0)/6) |
---|
| 910 | |
---|
| 911 | |
---|
| 912 | os.remove(filename + '.sww') |
---|
| 913 | |
---|
| 914 | def test_file_function_time_with_domain(self): |
---|
| 915 | """Test that File function interpolates correctly |
---|
| 916 | between given times. No x,y dependency here. |
---|
| 917 | Use domain with starttime |
---|
| 918 | """ |
---|
| 919 | |
---|
| 920 | #Write file |
---|
| 921 | import os, time, calendar |
---|
[3514] | 922 | from anuga.config import time_format |
---|
[1093] | 923 | from math import sin, pi |
---|
| 924 | from domain import Domain |
---|
| 925 | |
---|
| 926 | finaltime = 1200 |
---|
[1671] | 927 | filename = 'test_file_function' |
---|
| 928 | fid = open(filename + '.txt', 'w') |
---|
[1093] | 929 | start = time.mktime(time.strptime('2000', '%Y')) |
---|
| 930 | dt = 60 #One minute intervals |
---|
| 931 | t = 0.0 |
---|
| 932 | while t <= finaltime: |
---|
| 933 | t_string = time.strftime(time_format, time.gmtime(t+start)) |
---|
| 934 | fid.write('%s, %f %f %f\n' %(t_string, 2*t, t**2, sin(t*pi/600))) |
---|
| 935 | t += dt |
---|
| 936 | |
---|
| 937 | fid.close() |
---|
| 938 | |
---|
[1671] | 939 | |
---|
| 940 | #Convert ASCII file to NetCDF (Which is what we really like!) |
---|
[1835] | 941 | timefile2netcdf(filename) |
---|
[1671] | 942 | |
---|
| 943 | |
---|
| 944 | |
---|
[1093] | 945 | a = [0.0, 0.0] |
---|
| 946 | b = [4.0, 0.0] |
---|
| 947 | c = [0.0, 3.0] |
---|
| 948 | |
---|
| 949 | points = [a, b, c] |
---|
| 950 | vertices = [[0,1,2]] |
---|
| 951 | domain = Domain(points, vertices) |
---|
| 952 | |
---|
[5221] | 953 | # Check that domain.starttime is updated if non-existing |
---|
| 954 | F = file_function(filename + '.tms', |
---|
| 955 | domain, |
---|
| 956 | quantities = ['Attribute0', 'Attribute1', 'Attribute2']) |
---|
[1093] | 957 | assert allclose(domain.starttime, start) |
---|
| 958 | |
---|
[5221] | 959 | # Check that domain.starttime is updated if too early |
---|
[1093] | 960 | domain.starttime = start - 1 |
---|
[5221] | 961 | F = file_function(filename + '.tms', |
---|
| 962 | domain, |
---|
| 963 | quantities = ['Attribute0', 'Attribute1', 'Attribute2']) |
---|
[1093] | 964 | assert allclose(domain.starttime, start) |
---|
| 965 | |
---|
[5221] | 966 | # Check that domain.starttime isn't updated if later |
---|
[1093] | 967 | domain.starttime = start + 1 |
---|
[5221] | 968 | F = file_function(filename + '.tms', |
---|
| 969 | domain, |
---|
| 970 | quantities = ['Attribute0', 'Attribute1', 'Attribute2']) |
---|
[1093] | 971 | assert allclose(domain.starttime, start+1) |
---|
| 972 | |
---|
| 973 | domain.starttime = start |
---|
[5221] | 974 | F = file_function(filename + '.tms', |
---|
| 975 | domain, |
---|
[4278] | 976 | quantities = ['Attribute0', 'Attribute1', 'Attribute2'], |
---|
| 977 | use_cache=True) |
---|
[1671] | 978 | |
---|
[1093] | 979 | |
---|
[1671] | 980 | #print F.precomputed_values |
---|
| 981 | #print 'F(60)', F(60) |
---|
| 982 | |
---|
[1093] | 983 | #Now try interpolation |
---|
| 984 | for i in range(20): |
---|
| 985 | t = i*10 |
---|
| 986 | q = F(t) |
---|
| 987 | |
---|
| 988 | #Exact linear intpolation |
---|
| 989 | assert allclose(q[0], 2*t) |
---|
| 990 | if i%6 == 0: |
---|
| 991 | assert allclose(q[1], t**2) |
---|
| 992 | assert allclose(q[2], sin(t*pi/600)) |
---|
| 993 | |
---|
| 994 | #Check non-exact |
---|
| 995 | |
---|
| 996 | t = 90 #Halfway between 60 and 120 |
---|
| 997 | q = F(t) |
---|
| 998 | assert allclose( (120**2 + 60**2)/2, q[1] ) |
---|
| 999 | assert allclose( (sin(120*pi/600) + sin(60*pi/600))/2, q[2] ) |
---|
| 1000 | |
---|
| 1001 | |
---|
| 1002 | t = 100 #Two thirds of the way between between 60 and 120 |
---|
| 1003 | q = F(t) |
---|
| 1004 | assert allclose( 2*120**2/3 + 60**2/3, q[1] ) |
---|
| 1005 | assert allclose( 2*sin(120*pi/600)/3 + sin(60*pi/600)/3, q[2] ) |
---|
| 1006 | |
---|
[1835] | 1007 | os.remove(filename + '.tms') |
---|
[1671] | 1008 | os.remove(filename + '.txt') |
---|
[1093] | 1009 | |
---|
| 1010 | def test_file_function_time_with_domain_different_start(self): |
---|
| 1011 | """Test that File function interpolates correctly |
---|
| 1012 | between given times. No x,y dependency here. |
---|
| 1013 | Use domain with a starttime later than that of file |
---|
| 1014 | |
---|
| 1015 | ASCII version |
---|
| 1016 | """ |
---|
| 1017 | |
---|
| 1018 | #Write file |
---|
| 1019 | import os, time, calendar |
---|
[3514] | 1020 | from anuga.config import time_format |
---|
[1093] | 1021 | from math import sin, pi |
---|
| 1022 | from domain import Domain |
---|
| 1023 | |
---|
| 1024 | finaltime = 1200 |
---|
[1671] | 1025 | filename = 'test_file_function' |
---|
| 1026 | fid = open(filename + '.txt', 'w') |
---|
[1093] | 1027 | start = time.mktime(time.strptime('2000', '%Y')) |
---|
| 1028 | dt = 60 #One minute intervals |
---|
| 1029 | t = 0.0 |
---|
| 1030 | while t <= finaltime: |
---|
| 1031 | t_string = time.strftime(time_format, time.gmtime(t+start)) |
---|
| 1032 | fid.write('%s, %f %f %f\n' %(t_string, 2*t, t**2, sin(t*pi/600))) |
---|
| 1033 | t += dt |
---|
| 1034 | |
---|
| 1035 | fid.close() |
---|
| 1036 | |
---|
[1671] | 1037 | #Convert ASCII file to NetCDF (Which is what we really like!) |
---|
[1835] | 1038 | timefile2netcdf(filename) |
---|
[1671] | 1039 | |
---|
[1093] | 1040 | a = [0.0, 0.0] |
---|
| 1041 | b = [4.0, 0.0] |
---|
| 1042 | c = [0.0, 3.0] |
---|
| 1043 | |
---|
| 1044 | points = [a, b, c] |
---|
| 1045 | vertices = [[0,1,2]] |
---|
| 1046 | domain = Domain(points, vertices) |
---|
| 1047 | |
---|
| 1048 | #Check that domain.starttime isn't updated if later than file starttime but earlier |
---|
| 1049 | #than file end time |
---|
[4160] | 1050 | delta = 23 |
---|
[1093] | 1051 | domain.starttime = start + delta |
---|
[1835] | 1052 | F = file_function(filename + '.tms', domain, |
---|
[1671] | 1053 | quantities = ['Attribute0', 'Attribute1', 'Attribute2']) |
---|
[1093] | 1054 | assert allclose(domain.starttime, start+delta) |
---|
| 1055 | |
---|
| 1056 | |
---|
| 1057 | |
---|
| 1058 | |
---|
| 1059 | #Now try interpolation with delta offset |
---|
| 1060 | for i in range(20): |
---|
| 1061 | t = i*10 |
---|
| 1062 | q = F(t-delta) |
---|
| 1063 | |
---|
| 1064 | #Exact linear intpolation |
---|
| 1065 | assert allclose(q[0], 2*t) |
---|
| 1066 | if i%6 == 0: |
---|
| 1067 | assert allclose(q[1], t**2) |
---|
| 1068 | assert allclose(q[2], sin(t*pi/600)) |
---|
| 1069 | |
---|
| 1070 | #Check non-exact |
---|
| 1071 | |
---|
| 1072 | t = 90 #Halfway between 60 and 120 |
---|
| 1073 | q = F(t-delta) |
---|
| 1074 | assert allclose( (120**2 + 60**2)/2, q[1] ) |
---|
| 1075 | assert allclose( (sin(120*pi/600) + sin(60*pi/600))/2, q[2] ) |
---|
| 1076 | |
---|
| 1077 | |
---|
| 1078 | t = 100 #Two thirds of the way between between 60 and 120 |
---|
| 1079 | q = F(t-delta) |
---|
| 1080 | assert allclose( 2*120**2/3 + 60**2/3, q[1] ) |
---|
| 1081 | assert allclose( 2*sin(120*pi/600)/3 + sin(60*pi/600)/3, q[2] ) |
---|
| 1082 | |
---|
| 1083 | |
---|
[1835] | 1084 | os.remove(filename + '.tms') |
---|
[1671] | 1085 | os.remove(filename + '.txt') |
---|
[1093] | 1086 | |
---|
| 1087 | |
---|
[1671] | 1088 | |
---|
[1919] | 1089 | def test_apply_expression_to_dictionary(self): |
---|
[1093] | 1090 | |
---|
[2314] | 1091 | #FIXME: Division is not expected to work for integers. |
---|
| 1092 | #This must be caught. |
---|
[1919] | 1093 | foo = array([[1,2,3], |
---|
[2314] | 1094 | [4,5,6]], Float) |
---|
[1093] | 1095 | |
---|
[1919] | 1096 | bar = array([[-1,0,5], |
---|
[2314] | 1097 | [6,1,1]], Float) |
---|
[1093] | 1098 | |
---|
[1919] | 1099 | D = {'X': foo, 'Y': bar} |
---|
[1093] | 1100 | |
---|
[1919] | 1101 | Z = apply_expression_to_dictionary('X+Y', D) |
---|
| 1102 | assert allclose(Z, foo+bar) |
---|
| 1103 | |
---|
| 1104 | Z = apply_expression_to_dictionary('X*Y', D) |
---|
| 1105 | assert allclose(Z, foo*bar) |
---|
| 1106 | |
---|
| 1107 | Z = apply_expression_to_dictionary('4*X+Y', D) |
---|
| 1108 | assert allclose(Z, 4*foo+bar) |
---|
| 1109 | |
---|
[2314] | 1110 | # test zero division is OK |
---|
| 1111 | Z = apply_expression_to_dictionary('X/Y', D) |
---|
| 1112 | assert allclose(1/Z, 1/(foo/bar)) # can't compare inf to inf |
---|
| 1113 | |
---|
| 1114 | # make an error for zero on zero |
---|
| 1115 | # this is really an error in Numeric, SciPy core can handle it |
---|
| 1116 | # Z = apply_expression_to_dictionary('0/Y', D) |
---|
| 1117 | |
---|
[1919] | 1118 | #Check exceptions |
---|
| 1119 | try: |
---|
| 1120 | #Wrong name |
---|
| 1121 | Z = apply_expression_to_dictionary('4*X+A', D) |
---|
| 1122 | except NameError: |
---|
| 1123 | pass |
---|
| 1124 | else: |
---|
| 1125 | msg = 'Should have raised a NameError Exception' |
---|
| 1126 | raise msg |
---|
| 1127 | |
---|
| 1128 | |
---|
| 1129 | try: |
---|
| 1130 | #Wrong order |
---|
| 1131 | Z = apply_expression_to_dictionary(D, '4*X+A') |
---|
| 1132 | except AssertionError: |
---|
| 1133 | pass |
---|
| 1134 | else: |
---|
| 1135 | msg = 'Should have raised a AssertionError Exception' |
---|
| 1136 | raise msg |
---|
| 1137 | |
---|
| 1138 | |
---|
[1927] | 1139 | def test_multiple_replace(self): |
---|
| 1140 | """Hard test that checks a true word-by-word simultaneous replace |
---|
| 1141 | """ |
---|
| 1142 | |
---|
| 1143 | D = {'x': 'xi', 'y': 'eta', 'xi':'lam'} |
---|
| 1144 | exp = '3*x+y + xi' |
---|
| 1145 | |
---|
| 1146 | new = multiple_replace(exp, D) |
---|
| 1147 | |
---|
| 1148 | assert new == '3*xi+eta + lam' |
---|
| 1149 | |
---|
[1919] | 1150 | |
---|
| 1151 | |
---|
[1932] | 1152 | def test_point_on_line_obsolete(self): |
---|
| 1153 | """Test that obsolete call issues appropriate warning""" |
---|
| 1154 | |
---|
[4160] | 1155 | #Turn warning into an exception |
---|
[1932] | 1156 | import warnings |
---|
[4160] | 1157 | warnings.filterwarnings('error') |
---|
[1932] | 1158 | |
---|
| 1159 | try: |
---|
[4160] | 1160 | assert point_on_line( 0, 0.5, 0,1, 0,0 ) |
---|
| 1161 | except DeprecationWarning: |
---|
| 1162 | pass |
---|
| 1163 | else: |
---|
| 1164 | msg = 'point_on_line should have issued a DeprecationWarning' |
---|
| 1165 | raise Exception(msg) |
---|
[1932] | 1166 | |
---|
[4160] | 1167 | warnings.resetwarnings() |
---|
[2929] | 1168 | |
---|
[4170] | 1169 | def test_get_revision_number(self): |
---|
| 1170 | """test_get_revision_number(self): |
---|
| 1171 | |
---|
| 1172 | Test that revision number can be retrieved. |
---|
| 1173 | """ |
---|
[4644] | 1174 | if os.environ.has_key('USER') and os.environ['USER'] == 'dgray': |
---|
| 1175 | # I have a known snv incompatability issue, |
---|
| 1176 | # so I'm skipping this test. |
---|
| 1177 | # FIXME when SVN is upgraded on our clusters |
---|
| 1178 | pass |
---|
| 1179 | else: |
---|
| 1180 | n = get_revision_number() |
---|
| 1181 | assert n>=0 |
---|
[4159] | 1182 | |
---|
[4170] | 1183 | |
---|
| 1184 | |
---|
| 1185 | def test_add_directories(self): |
---|
| 1186 | |
---|
| 1187 | import tempfile |
---|
| 1188 | root_dir = tempfile.mkdtemp('_test_util', 'test_util_') |
---|
| 1189 | directories = ['ja','ne','ke'] |
---|
| 1190 | kens_dir = add_directories(root_dir, directories) |
---|
| 1191 | assert kens_dir == root_dir + sep + 'ja' + sep + 'ne' + \ |
---|
| 1192 | sep + 'ke' |
---|
| 1193 | assert access(root_dir,F_OK) |
---|
| 1194 | |
---|
| 1195 | add_directories(root_dir, directories) |
---|
| 1196 | assert access(root_dir,F_OK) |
---|
| 1197 | |
---|
| 1198 | #clean up! |
---|
| 1199 | os.rmdir(kens_dir) |
---|
| 1200 | os.rmdir(root_dir + sep + 'ja' + sep + 'ne') |
---|
| 1201 | os.rmdir(root_dir + sep + 'ja') |
---|
| 1202 | os.rmdir(root_dir) |
---|
| 1203 | |
---|
| 1204 | def test_add_directories_bad(self): |
---|
| 1205 | |
---|
| 1206 | import tempfile |
---|
| 1207 | root_dir = tempfile.mkdtemp('_test_util', 'test_util_') |
---|
| 1208 | directories = ['/\/!@#@#$%^%&*((*:*:','ne','ke'] |
---|
| 1209 | |
---|
[4159] | 1210 | try: |
---|
[4170] | 1211 | kens_dir = add_directories(root_dir, directories) |
---|
| 1212 | except OSError: |
---|
| 1213 | pass |
---|
| 1214 | else: |
---|
| 1215 | msg = 'bad dir name should give OSError' |
---|
| 1216 | raise Exception(msg) |
---|
| 1217 | |
---|
| 1218 | #clean up! |
---|
| 1219 | os.rmdir(root_dir) |
---|
| 1220 | |
---|
| 1221 | def test_check_list(self): |
---|
| 1222 | |
---|
| 1223 | check_list(['stage','xmomentum']) |
---|
| 1224 | |
---|
[4160] | 1225 | |
---|
[3983] | 1226 | def test_add_directories(self): |
---|
| 1227 | |
---|
| 1228 | import tempfile |
---|
| 1229 | root_dir = tempfile.mkdtemp('_test_util', 'test_util_') |
---|
| 1230 | directories = ['ja','ne','ke'] |
---|
| 1231 | kens_dir = add_directories(root_dir, directories) |
---|
| 1232 | assert kens_dir == root_dir + sep + 'ja' + sep + 'ne' + \ |
---|
| 1233 | sep + 'ke' |
---|
| 1234 | assert access(root_dir,F_OK) |
---|
[1932] | 1235 | |
---|
[3994] | 1236 | add_directories(root_dir, directories) |
---|
| 1237 | assert access(root_dir,F_OK) |
---|
| 1238 | |
---|
[3983] | 1239 | #clean up! |
---|
| 1240 | os.rmdir(kens_dir) |
---|
| 1241 | os.rmdir(root_dir + sep + 'ja' + sep + 'ne') |
---|
| 1242 | os.rmdir(root_dir + sep + 'ja') |
---|
| 1243 | os.rmdir(root_dir) |
---|
| 1244 | |
---|
[3994] | 1245 | def test_add_directories_bad(self): |
---|
| 1246 | |
---|
| 1247 | import tempfile |
---|
| 1248 | root_dir = tempfile.mkdtemp('_test_util', 'test_util_') |
---|
[3995] | 1249 | directories = ['/\/!@#@#$%^%&*((*:*:','ne','ke'] |
---|
[3994] | 1250 | |
---|
| 1251 | try: |
---|
| 1252 | kens_dir = add_directories(root_dir, directories) |
---|
[4160] | 1253 | except OSError: |
---|
| 1254 | pass |
---|
| 1255 | else: |
---|
| 1256 | msg = 'bad dir name should give OSError' |
---|
| 1257 | raise Exception(msg) |
---|
[3994] | 1258 | |
---|
| 1259 | #clean up! |
---|
| 1260 | os.rmdir(root_dir) |
---|
[4076] | 1261 | |
---|
| 1262 | def test_check_list(self): |
---|
| 1263 | |
---|
| 1264 | check_list(['stage','xmomentum']) |
---|
[4490] | 1265 | |
---|
| 1266 | def test_remove_lone_verts_d(self): |
---|
| 1267 | verts = [[0,0],[1,0],[0,1]] |
---|
| 1268 | tris = [[0,1,2]] |
---|
| 1269 | new_verts, new_tris = remove_lone_verts(verts, tris) |
---|
| 1270 | assert new_verts == verts |
---|
| 1271 | assert new_tris == tris |
---|
| 1272 | |
---|
| 1273 | |
---|
| 1274 | def test_remove_lone_verts_e(self): |
---|
| 1275 | verts = [[0,0],[1,0],[0,1],[99,99]] |
---|
| 1276 | tris = [[0,1,2]] |
---|
| 1277 | new_verts, new_tris = remove_lone_verts(verts, tris) |
---|
| 1278 | assert new_verts == verts[0:3] |
---|
| 1279 | assert new_tris == tris |
---|
| 1280 | |
---|
| 1281 | def test_remove_lone_verts_a(self): |
---|
| 1282 | verts = [[99,99],[0,0],[1,0],[99,99],[0,1],[99,99]] |
---|
| 1283 | tris = [[1,2,4]] |
---|
| 1284 | new_verts, new_tris = remove_lone_verts(verts, tris) |
---|
| 1285 | #print "new_verts", new_verts |
---|
| 1286 | assert new_verts == [[0,0],[1,0],[0,1]] |
---|
| 1287 | assert new_tris == [[0,1,2]] |
---|
| 1288 | |
---|
| 1289 | def test_remove_lone_verts_c(self): |
---|
| 1290 | verts = [[0,0],[1,0],[99,99],[0,1]] |
---|
| 1291 | tris = [[0,1,3]] |
---|
| 1292 | new_verts, new_tris = remove_lone_verts(verts, tris) |
---|
| 1293 | #print "new_verts", new_verts |
---|
| 1294 | assert new_verts == [[0,0],[1,0],[0,1]] |
---|
| 1295 | assert new_tris == [[0,1,2]] |
---|
| 1296 | |
---|
| 1297 | def test_remove_lone_verts_b(self): |
---|
| 1298 | verts = [[0,0],[1,0],[0,1],[99,99],[99,99],[99,99]] |
---|
| 1299 | tris = [[0,1,2]] |
---|
| 1300 | new_verts, new_tris = remove_lone_verts(verts, tris) |
---|
| 1301 | assert new_verts == verts[0:3] |
---|
| 1302 | assert new_tris == tris |
---|
| 1303 | |
---|
| 1304 | |
---|
| 1305 | def test_remove_lone_verts_e(self): |
---|
| 1306 | verts = [[0,0],[1,0],[0,1],[99,99]] |
---|
| 1307 | tris = [[0,1,2]] |
---|
| 1308 | new_verts, new_tris = remove_lone_verts(verts, tris) |
---|
| 1309 | assert new_verts == verts[0:3] |
---|
| 1310 | assert new_tris == tris |
---|
[4634] | 1311 | |
---|
| 1312 | def test_get_min_max_values(self): |
---|
| 1313 | |
---|
| 1314 | list=[8,9,6,1,4] |
---|
| 1315 | min1, max1 = get_min_max_values(list) |
---|
| 1316 | |
---|
| 1317 | assert min1==1 |
---|
| 1318 | assert max1==9 |
---|
[4889] | 1319 | |
---|
[4634] | 1320 | def test_get_min_max_values1(self): |
---|
| 1321 | |
---|
| 1322 | list=[-8,-9,-6,-1,-4] |
---|
[4935] | 1323 | min1, max1 = get_min_max_values(list) |
---|
[4634] | 1324 | |
---|
| 1325 | # print 'min1,max1',min1,max1 |
---|
| 1326 | assert min1==-9 |
---|
| 1327 | assert max1==-1 |
---|
| 1328 | |
---|
[4935] | 1329 | # def test_get_min_max_values2(self): |
---|
| 1330 | # ''' |
---|
| 1331 | # The min and max supplied are greater than the ones in the |
---|
| 1332 | # list and therefore are the ones returned |
---|
| 1333 | # ''' |
---|
| 1334 | # list=[-8,-9,-6,-1,-4] |
---|
| 1335 | # min1, max1 = get_min_max_values(list,-10,10) |
---|
| 1336 | # |
---|
| 1337 | ## print 'min1,max1',min1,max1 |
---|
| 1338 | # assert min1==-10 |
---|
| 1339 | # assert max1==10 |
---|
[4634] | 1340 | |
---|
[5136] | 1341 | def test_make_plots_from_csv_files(self): |
---|
[4634] | 1342 | |
---|
[5182] | 1343 | #if sys.platform == 'win32': #Windows |
---|
[5136] | 1344 | try: |
---|
| 1345 | import pylab |
---|
| 1346 | except ImportError: |
---|
| 1347 | #ANUGA don't need pylab to work so the system doesn't |
---|
| 1348 | #rely on pylab being installed |
---|
| 1349 | return |
---|
| 1350 | |
---|
[4647] | 1351 | |
---|
| 1352 | current_dir=getcwd()+sep+'abstract_2d_finite_volumes' |
---|
| 1353 | temp_dir = tempfile.mkdtemp('','figures') |
---|
| 1354 | # print 'temp_dir',temp_dir |
---|
| 1355 | fileName = temp_dir+sep+'time_series_3.csv' |
---|
| 1356 | file = open(fileName,"w") |
---|
[5166] | 1357 | file.write("time,stage,speed,momentum,elevation\n\ |
---|
[4634] | 1358 | 1.0, 0, 0, 0, 10 \n\ |
---|
| 1359 | 2.0, 5, 2, 4, 10 \n\ |
---|
| 1360 | 3.0, 3, 3, 5, 10 \n") |
---|
[4647] | 1361 | file.close() |
---|
| 1362 | |
---|
| 1363 | fileName1 = temp_dir+sep+'time_series_4.csv' |
---|
| 1364 | file1 = open(fileName1,"w") |
---|
[5166] | 1365 | file1.write("time,stage,speed,momentum,elevation\n\ |
---|
[4634] | 1366 | 1.0, 0, 0, 0, 5 \n\ |
---|
| 1367 | 2.0, -5, -2, -4, 5 \n\ |
---|
| 1368 | 3.0, -4, -3, -5, 5 \n") |
---|
[4647] | 1369 | file1.close() |
---|
| 1370 | |
---|
| 1371 | fileName2 = temp_dir+sep+'time_series_5.csv' |
---|
| 1372 | file2 = open(fileName2,"w") |
---|
[5166] | 1373 | file2.write("time,stage,speed,momentum,elevation\n\ |
---|
[4634] | 1374 | 1.0, 0, 0, 0, 7 \n\ |
---|
| 1375 | 2.0, 4, -0.45, 57, 7 \n\ |
---|
| 1376 | 3.0, 6, -0.5, 56, 7 \n") |
---|
[4647] | 1377 | file2.close() |
---|
| 1378 | |
---|
| 1379 | dir, name=os.path.split(fileName) |
---|
[5182] | 1380 | csv2timeseries_graphs(directories_dic={dir:['gauge', 0, 0]}, |
---|
| 1381 | output_dir=temp_dir, |
---|
| 1382 | base_name='time_series_', |
---|
| 1383 | plot_numbers=['3-5'], |
---|
| 1384 | quantities=['speed','stage','momentum'], |
---|
| 1385 | assess_all_csv_files=True, |
---|
| 1386 | extra_plot_name='test') |
---|
[4647] | 1387 | |
---|
[5166] | 1388 | #print dir+sep+name[:-4]+'_stage_test.png' |
---|
| 1389 | assert(access(dir+sep+name[:-4]+'_stage_test.png',F_OK)==True) |
---|
| 1390 | assert(access(dir+sep+name[:-4]+'_speed_test.png',F_OK)==True) |
---|
| 1391 | assert(access(dir+sep+name[:-4]+'_momentum_test.png',F_OK)==True) |
---|
[4647] | 1392 | |
---|
| 1393 | dir1, name1=os.path.split(fileName1) |
---|
[5166] | 1394 | assert(access(dir+sep+name1[:-4]+'_stage_test.png',F_OK)==True) |
---|
| 1395 | assert(access(dir+sep+name1[:-4]+'_speed_test.png',F_OK)==True) |
---|
| 1396 | assert(access(dir+sep+name1[:-4]+'_momentum_test.png',F_OK)==True) |
---|
[4647] | 1397 | |
---|
| 1398 | |
---|
| 1399 | dir2, name2=os.path.split(fileName2) |
---|
[5166] | 1400 | assert(access(dir+sep+name2[:-4]+'_stage_test.png',F_OK)==True) |
---|
| 1401 | assert(access(dir+sep+name2[:-4]+'_speed_test.png',F_OK)==True) |
---|
| 1402 | assert(access(dir+sep+name2[:-4]+'_momentum_test.png',F_OK)==True) |
---|
[4647] | 1403 | |
---|
| 1404 | del_dir(temp_dir) |
---|
[4634] | 1405 | |
---|
| 1406 | |
---|
[4910] | 1407 | def test_sww2csv_gauges(self): |
---|
[4876] | 1408 | |
---|
| 1409 | def elevation_function(x, y): |
---|
| 1410 | return -x |
---|
[4306] | 1411 | |
---|
[5181] | 1412 | """Most of this test was copied from test_interpolate |
---|
| 1413 | test_interpole_sww2csv |
---|
[4876] | 1414 | |
---|
| 1415 | This is testing the gauge_sww2csv function, by creating a sww file and |
---|
| 1416 | then exporting the gauges and checking the results. |
---|
| 1417 | """ |
---|
| 1418 | |
---|
[5181] | 1419 | # Create mesh |
---|
[4876] | 1420 | mesh_file = tempfile.mktemp(".tsh") |
---|
| 1421 | points = [[0.0,0.0],[6.0,0.0],[6.0,6.0],[0.0,6.0]] |
---|
| 1422 | m = Mesh() |
---|
| 1423 | m.add_vertices(points) |
---|
| 1424 | m.auto_segment() |
---|
| 1425 | m.generate_mesh(verbose=False) |
---|
| 1426 | m.export_mesh_file(mesh_file) |
---|
| 1427 | |
---|
[5181] | 1428 | # Create shallow water domain |
---|
[4876] | 1429 | domain = Domain(mesh_file) |
---|
| 1430 | os.remove(mesh_file) |
---|
| 1431 | |
---|
| 1432 | domain.default_order=2 |
---|
[5181] | 1433 | |
---|
| 1434 | # This test was made before tight_slope_limiters were introduced |
---|
| 1435 | # Since were are testing interpolation values this is OK |
---|
| 1436 | domain.tight_slope_limiters = 0 |
---|
| 1437 | |
---|
[4876] | 1438 | |
---|
[5181] | 1439 | # Set some field values |
---|
[4876] | 1440 | domain.set_quantity('elevation', elevation_function) |
---|
| 1441 | domain.set_quantity('friction', 0.03) |
---|
| 1442 | domain.set_quantity('xmomentum', 3.0) |
---|
| 1443 | domain.set_quantity('ymomentum', 4.0) |
---|
| 1444 | |
---|
| 1445 | ###################### |
---|
| 1446 | # Boundary conditions |
---|
| 1447 | B = Transmissive_boundary(domain) |
---|
| 1448 | domain.set_boundary( {'exterior': B}) |
---|
| 1449 | |
---|
| 1450 | # This call mangles the stage values. |
---|
| 1451 | domain.distribute_to_vertices_and_edges() |
---|
| 1452 | domain.set_quantity('stage', 1.0) |
---|
| 1453 | |
---|
| 1454 | |
---|
| 1455 | domain.set_name('datatest' + str(time.time())) |
---|
| 1456 | domain.format = 'sww' |
---|
| 1457 | domain.smooth = True |
---|
| 1458 | domain.reduction = mean |
---|
| 1459 | |
---|
[5181] | 1460 | |
---|
[4876] | 1461 | sww = get_dataobject(domain) |
---|
| 1462 | sww.store_connectivity() |
---|
| 1463 | sww.store_timestep(['stage', 'xmomentum', 'ymomentum','elevation']) |
---|
| 1464 | domain.set_quantity('stage', 10.0) # This is automatically limited |
---|
| 1465 | # so it will not be less than the elevation |
---|
| 1466 | domain.time = 2. |
---|
| 1467 | sww.store_timestep(['stage','elevation', 'xmomentum', 'ymomentum']) |
---|
| 1468 | |
---|
| 1469 | # test the function |
---|
| 1470 | points = [[5.0,1.],[0.5,2.]] |
---|
| 1471 | |
---|
| 1472 | points_file = tempfile.mktemp(".csv") |
---|
| 1473 | # points_file = 'test_point.csv' |
---|
| 1474 | file_id = open(points_file,"w") |
---|
| 1475 | file_id.write("name, easting, northing, elevation \n\ |
---|
| 1476 | point1, 5.0, 1.0, 3.0\n\ |
---|
| 1477 | point2, 0.5, 2.0, 9.0\n") |
---|
| 1478 | file_id.close() |
---|
| 1479 | |
---|
| 1480 | |
---|
[4910] | 1481 | sww2csv_gauges(sww.filename, |
---|
[5181] | 1482 | points_file, |
---|
| 1483 | verbose=False, |
---|
| 1484 | use_cache=False) |
---|
[4876] | 1485 | |
---|
[4935] | 1486 | # point1_answers_array = [[0.0,1.0,-5.0,3.0,4.0], [2.0,10.0,-5.0,3.0,4.0]] |
---|
| 1487 | point1_answers_array = [[0.0,1.0,6.0,-5.0,3.0,4.0], [2.0,10.0,15.0,-5.0,3.0,4.0]] |
---|
[4876] | 1488 | point1_filename = 'gauge_point1.csv' |
---|
| 1489 | point1_handle = file(point1_filename) |
---|
| 1490 | point1_reader = reader(point1_handle) |
---|
| 1491 | point1_reader.next() |
---|
| 1492 | |
---|
| 1493 | line=[] |
---|
| 1494 | for i,row in enumerate(point1_reader): |
---|
[4935] | 1495 | #print 'i',i,'row',row |
---|
| 1496 | line.append([float(row[0]),float(row[1]),float(row[2]),float(row[3]),float(row[4]),float(row[5])]) |
---|
[4876] | 1497 | #print 'assert line',line[i],'point1',point1_answers_array[i] |
---|
| 1498 | assert allclose(line[i], point1_answers_array[i]) |
---|
| 1499 | |
---|
[4935] | 1500 | point2_answers_array = [[0.0,1.0,1.5,-0.5,3.0,4.0], [2.0,10.0,10.5,-0.5,3.0,4.0]] |
---|
[4876] | 1501 | point2_filename = 'gauge_point2.csv' |
---|
| 1502 | point2_handle = file(point2_filename) |
---|
| 1503 | point2_reader = reader(point2_handle) |
---|
| 1504 | point2_reader.next() |
---|
| 1505 | |
---|
| 1506 | line=[] |
---|
| 1507 | for i,row in enumerate(point2_reader): |
---|
[4935] | 1508 | #print 'i',i,'row',row |
---|
| 1509 | line.append([float(row[0]),float(row[1]),float(row[2]),float(row[3]),float(row[4]),float(row[5])]) |
---|
[4876] | 1510 | #print 'assert line',line[i],'point1',point1_answers_array[i] |
---|
| 1511 | assert allclose(line[i], point2_answers_array[i]) |
---|
| 1512 | |
---|
| 1513 | # clean up |
---|
| 1514 | point1_handle.close() |
---|
| 1515 | point2_handle.close() |
---|
| 1516 | #print "sww.filename",sww.filename |
---|
| 1517 | os.remove(sww.filename) |
---|
| 1518 | os.remove(points_file) |
---|
| 1519 | os.remove(point1_filename) |
---|
| 1520 | os.remove(point2_filename) |
---|
| 1521 | |
---|
| 1522 | |
---|
| 1523 | |
---|
[4910] | 1524 | def test_sww2csv_gauges1(self): |
---|
[4876] | 1525 | from anuga.pmesh.mesh import Mesh |
---|
| 1526 | from anuga.shallow_water import Domain, Transmissive_boundary |
---|
| 1527 | from anuga.shallow_water.data_manager import get_dataobject |
---|
| 1528 | from csv import reader,writer |
---|
| 1529 | import time |
---|
| 1530 | import string |
---|
| 1531 | |
---|
| 1532 | def elevation_function(x, y): |
---|
| 1533 | return -x |
---|
| 1534 | |
---|
[5181] | 1535 | """Most of this test was copied from test_interpolate |
---|
| 1536 | test_interpole_sww2csv |
---|
[4876] | 1537 | |
---|
| 1538 | This is testing the gauge_sww2csv function, by creating a sww file and |
---|
| 1539 | then exporting the gauges and checking the results. |
---|
| 1540 | |
---|
| 1541 | This tests the ablity not to have elevation in the points file and |
---|
| 1542 | not store xmomentum and ymomentum |
---|
| 1543 | """ |
---|
| 1544 | |
---|
[5181] | 1545 | # Create mesh |
---|
[4876] | 1546 | mesh_file = tempfile.mktemp(".tsh") |
---|
| 1547 | points = [[0.0,0.0],[6.0,0.0],[6.0,6.0],[0.0,6.0]] |
---|
| 1548 | m = Mesh() |
---|
| 1549 | m.add_vertices(points) |
---|
| 1550 | m.auto_segment() |
---|
| 1551 | m.generate_mesh(verbose=False) |
---|
| 1552 | m.export_mesh_file(mesh_file) |
---|
| 1553 | |
---|
[5181] | 1554 | # Create shallow water domain |
---|
[4876] | 1555 | domain = Domain(mesh_file) |
---|
| 1556 | os.remove(mesh_file) |
---|
| 1557 | |
---|
| 1558 | domain.default_order=2 |
---|
| 1559 | |
---|
[5181] | 1560 | # Set some field values |
---|
[4876] | 1561 | domain.set_quantity('elevation', elevation_function) |
---|
| 1562 | domain.set_quantity('friction', 0.03) |
---|
| 1563 | domain.set_quantity('xmomentum', 3.0) |
---|
| 1564 | domain.set_quantity('ymomentum', 4.0) |
---|
| 1565 | |
---|
| 1566 | ###################### |
---|
| 1567 | # Boundary conditions |
---|
| 1568 | B = Transmissive_boundary(domain) |
---|
| 1569 | domain.set_boundary( {'exterior': B}) |
---|
| 1570 | |
---|
| 1571 | # This call mangles the stage values. |
---|
| 1572 | domain.distribute_to_vertices_and_edges() |
---|
| 1573 | domain.set_quantity('stage', 1.0) |
---|
| 1574 | |
---|
| 1575 | |
---|
| 1576 | domain.set_name('datatest' + str(time.time())) |
---|
| 1577 | domain.format = 'sww' |
---|
| 1578 | domain.smooth = True |
---|
| 1579 | domain.reduction = mean |
---|
| 1580 | |
---|
| 1581 | sww = get_dataobject(domain) |
---|
| 1582 | sww.store_connectivity() |
---|
| 1583 | sww.store_timestep(['stage', 'xmomentum', 'ymomentum']) |
---|
| 1584 | domain.set_quantity('stage', 10.0) # This is automatically limited |
---|
| 1585 | # so it will not be less than the elevation |
---|
| 1586 | domain.time = 2. |
---|
| 1587 | sww.store_timestep(['stage', 'xmomentum', 'ymomentum']) |
---|
| 1588 | |
---|
| 1589 | # test the function |
---|
| 1590 | points = [[5.0,1.],[0.5,2.]] |
---|
| 1591 | |
---|
| 1592 | points_file = tempfile.mktemp(".csv") |
---|
| 1593 | # points_file = 'test_point.csv' |
---|
| 1594 | file_id = open(points_file,"w") |
---|
[4918] | 1595 | file_id.write("name,easting,northing \n\ |
---|
[4876] | 1596 | point1, 5.0, 1.0\n\ |
---|
| 1597 | point2, 0.5, 2.0\n") |
---|
| 1598 | file_id.close() |
---|
| 1599 | |
---|
[4910] | 1600 | sww2csv_gauges(sww.filename, |
---|
[4876] | 1601 | points_file, |
---|
[4935] | 1602 | quantities=['stage', 'elevation'], |
---|
[4876] | 1603 | use_cache=False, |
---|
| 1604 | verbose=False) |
---|
| 1605 | |
---|
| 1606 | point1_answers_array = [[0.0,1.0,-5.0], [2.0,10.0,-5.0]] |
---|
| 1607 | point1_filename = 'gauge_point1.csv' |
---|
| 1608 | point1_handle = file(point1_filename) |
---|
| 1609 | point1_reader = reader(point1_handle) |
---|
| 1610 | point1_reader.next() |
---|
| 1611 | |
---|
| 1612 | line=[] |
---|
| 1613 | for i,row in enumerate(point1_reader): |
---|
| 1614 | # print 'i',i,'row',row |
---|
| 1615 | line.append([float(row[0]),float(row[1]),float(row[2])]) |
---|
| 1616 | #print 'line',line[i],'point1',point1_answers_array[i] |
---|
| 1617 | assert allclose(line[i], point1_answers_array[i]) |
---|
| 1618 | |
---|
| 1619 | point2_answers_array = [[0.0,1.0,-0.5], [2.0,10.0,-0.5]] |
---|
| 1620 | point2_filename = 'gauge_point2.csv' |
---|
| 1621 | point2_handle = file(point2_filename) |
---|
| 1622 | point2_reader = reader(point2_handle) |
---|
| 1623 | point2_reader.next() |
---|
| 1624 | |
---|
| 1625 | line=[] |
---|
| 1626 | for i,row in enumerate(point2_reader): |
---|
| 1627 | # print 'i',i,'row',row |
---|
| 1628 | line.append([float(row[0]),float(row[1]),float(row[2])]) |
---|
| 1629 | # print 'line',line[i],'point1',point1_answers_array[i] |
---|
| 1630 | assert allclose(line[i], point2_answers_array[i]) |
---|
| 1631 | |
---|
| 1632 | # clean up |
---|
| 1633 | point1_handle.close() |
---|
| 1634 | point2_handle.close() |
---|
| 1635 | #print "sww.filename",sww.filename |
---|
| 1636 | os.remove(sww.filename) |
---|
| 1637 | os.remove(points_file) |
---|
| 1638 | os.remove(point1_filename) |
---|
| 1639 | os.remove(point2_filename) |
---|
[4889] | 1640 | |
---|
[4936] | 1641 | |
---|
| 1642 | def test_sww2csv_gauges2(self): |
---|
| 1643 | |
---|
| 1644 | def elevation_function(x, y): |
---|
| 1645 | return -x |
---|
| 1646 | |
---|
[5181] | 1647 | """Most of this test was copied from test_interpolate |
---|
| 1648 | test_interpole_sww2csv |
---|
[4936] | 1649 | |
---|
| 1650 | This is testing the gauge_sww2csv function, by creating a sww file and |
---|
| 1651 | then exporting the gauges and checking the results. |
---|
| 1652 | |
---|
[5181] | 1653 | This is the same as sww2csv_gauges except set domain.set_starttime to 5. |
---|
| 1654 | Therefore testing the storing of the absolute time in the csv files |
---|
[4936] | 1655 | """ |
---|
| 1656 | |
---|
[5181] | 1657 | # Create mesh |
---|
[4936] | 1658 | mesh_file = tempfile.mktemp(".tsh") |
---|
| 1659 | points = [[0.0,0.0],[6.0,0.0],[6.0,6.0],[0.0,6.0]] |
---|
| 1660 | m = Mesh() |
---|
| 1661 | m.add_vertices(points) |
---|
| 1662 | m.auto_segment() |
---|
| 1663 | m.generate_mesh(verbose=False) |
---|
| 1664 | m.export_mesh_file(mesh_file) |
---|
| 1665 | |
---|
[5181] | 1666 | # Create shallow water domain |
---|
[4936] | 1667 | domain = Domain(mesh_file) |
---|
| 1668 | os.remove(mesh_file) |
---|
| 1669 | |
---|
| 1670 | domain.default_order=2 |
---|
| 1671 | |
---|
[5181] | 1672 | # This test was made before tight_slope_limiters were introduced |
---|
| 1673 | # Since were are testing interpolation values this is OK |
---|
| 1674 | domain.tight_slope_limiters = 0 |
---|
| 1675 | |
---|
| 1676 | # Set some field values |
---|
[4936] | 1677 | domain.set_quantity('elevation', elevation_function) |
---|
| 1678 | domain.set_quantity('friction', 0.03) |
---|
| 1679 | domain.set_quantity('xmomentum', 3.0) |
---|
| 1680 | domain.set_quantity('ymomentum', 4.0) |
---|
| 1681 | domain.set_starttime(5) |
---|
| 1682 | |
---|
| 1683 | ###################### |
---|
| 1684 | # Boundary conditions |
---|
| 1685 | B = Transmissive_boundary(domain) |
---|
| 1686 | domain.set_boundary( {'exterior': B}) |
---|
| 1687 | |
---|
| 1688 | # This call mangles the stage values. |
---|
| 1689 | domain.distribute_to_vertices_and_edges() |
---|
| 1690 | domain.set_quantity('stage', 1.0) |
---|
| 1691 | |
---|
| 1692 | |
---|
| 1693 | |
---|
| 1694 | domain.set_name('datatest' + str(time.time())) |
---|
| 1695 | domain.format = 'sww' |
---|
| 1696 | domain.smooth = True |
---|
| 1697 | domain.reduction = mean |
---|
| 1698 | |
---|
| 1699 | sww = get_dataobject(domain) |
---|
| 1700 | sww.store_connectivity() |
---|
| 1701 | sww.store_timestep(['stage', 'xmomentum', 'ymomentum','elevation']) |
---|
| 1702 | domain.set_quantity('stage', 10.0) # This is automatically limited |
---|
| 1703 | # so it will not be less than the elevation |
---|
| 1704 | domain.time = 2. |
---|
| 1705 | sww.store_timestep(['stage','elevation', 'xmomentum', 'ymomentum']) |
---|
| 1706 | |
---|
| 1707 | # test the function |
---|
| 1708 | points = [[5.0,1.],[0.5,2.]] |
---|
| 1709 | |
---|
| 1710 | points_file = tempfile.mktemp(".csv") |
---|
| 1711 | # points_file = 'test_point.csv' |
---|
| 1712 | file_id = open(points_file,"w") |
---|
| 1713 | file_id.write("name, easting, northing, elevation \n\ |
---|
| 1714 | point1, 5.0, 1.0, 3.0\n\ |
---|
| 1715 | point2, 0.5, 2.0, 9.0\n") |
---|
| 1716 | file_id.close() |
---|
| 1717 | |
---|
| 1718 | |
---|
| 1719 | sww2csv_gauges(sww.filename, |
---|
| 1720 | points_file, |
---|
| 1721 | verbose=False, |
---|
| 1722 | use_cache=False) |
---|
| 1723 | |
---|
| 1724 | # point1_answers_array = [[0.0,1.0,-5.0,3.0,4.0], [2.0,10.0,-5.0,3.0,4.0]] |
---|
| 1725 | point1_answers_array = [[5.0,1.0,6.0,-5.0,3.0,4.0], [7.0,10.0,15.0,-5.0,3.0,4.0]] |
---|
| 1726 | point1_filename = 'gauge_point1.csv' |
---|
| 1727 | point1_handle = file(point1_filename) |
---|
| 1728 | point1_reader = reader(point1_handle) |
---|
| 1729 | point1_reader.next() |
---|
| 1730 | |
---|
| 1731 | line=[] |
---|
| 1732 | for i,row in enumerate(point1_reader): |
---|
| 1733 | #print 'i',i,'row',row |
---|
| 1734 | line.append([float(row[0]),float(row[1]),float(row[2]),float(row[3]),float(row[4]),float(row[5])]) |
---|
| 1735 | #print 'assert line',line[i],'point1',point1_answers_array[i] |
---|
| 1736 | assert allclose(line[i], point1_answers_array[i]) |
---|
| 1737 | |
---|
| 1738 | point2_answers_array = [[5.0,1.0,1.5,-0.5,3.0,4.0], [7.0,10.0,10.5,-0.5,3.0,4.0]] |
---|
| 1739 | point2_filename = 'gauge_point2.csv' |
---|
| 1740 | point2_handle = file(point2_filename) |
---|
| 1741 | point2_reader = reader(point2_handle) |
---|
| 1742 | point2_reader.next() |
---|
| 1743 | |
---|
| 1744 | line=[] |
---|
| 1745 | for i,row in enumerate(point2_reader): |
---|
| 1746 | #print 'i',i,'row',row |
---|
| 1747 | line.append([float(row[0]),float(row[1]),float(row[2]),float(row[3]),float(row[4]),float(row[5])]) |
---|
| 1748 | #print 'assert line',line[i],'point1',point1_answers_array[i] |
---|
| 1749 | assert allclose(line[i], point2_answers_array[i]) |
---|
| 1750 | |
---|
| 1751 | # clean up |
---|
| 1752 | point1_handle.close() |
---|
| 1753 | point2_handle.close() |
---|
| 1754 | #print "sww.filename",sww.filename |
---|
| 1755 | os.remove(sww.filename) |
---|
| 1756 | os.remove(points_file) |
---|
| 1757 | os.remove(point1_filename) |
---|
| 1758 | os.remove(point2_filename) |
---|
| 1759 | |
---|
| 1760 | |
---|
[4889] | 1761 | def test_greens_law(self): |
---|
| 1762 | |
---|
| 1763 | from math import sqrt |
---|
[4876] | 1764 | |
---|
[4889] | 1765 | d1 = 80.0 |
---|
| 1766 | d2 = 20.0 |
---|
| 1767 | h1 = 1.0 |
---|
| 1768 | h2 = greens_law(d1,d2,h1) |
---|
| 1769 | |
---|
| 1770 | assert h2==sqrt(2.0) |
---|
[4984] | 1771 | |
---|
| 1772 | def test_calc_bearings(self): |
---|
| 1773 | |
---|
| 1774 | from math import atan, degrees |
---|
| 1775 | #Test East |
---|
| 1776 | uh = 1 |
---|
| 1777 | vh = 1.e-15 |
---|
| 1778 | angle = calc_bearing(uh, vh) |
---|
| 1779 | if 89 < angle < 91: v=1 |
---|
| 1780 | assert v==1 |
---|
| 1781 | #Test West |
---|
| 1782 | uh = -1 |
---|
| 1783 | vh = 1.e-15 |
---|
| 1784 | angle = calc_bearing(uh, vh) |
---|
| 1785 | if 269 < angle < 271: v=1 |
---|
| 1786 | assert v==1 |
---|
| 1787 | #Test North |
---|
| 1788 | uh = 1.e-15 |
---|
| 1789 | vh = 1 |
---|
| 1790 | angle = calc_bearing(uh, vh) |
---|
| 1791 | if -1 < angle < 1: v=1 |
---|
| 1792 | assert v==1 |
---|
| 1793 | #Test South |
---|
| 1794 | uh = 1.e-15 |
---|
| 1795 | vh = -1 |
---|
| 1796 | angle = calc_bearing(uh, vh) |
---|
| 1797 | if 179 < angle < 181: v=1 |
---|
| 1798 | assert v==1 |
---|
| 1799 | #Test South-East |
---|
| 1800 | uh = 1 |
---|
| 1801 | vh = -1 |
---|
| 1802 | angle = calc_bearing(uh, vh) |
---|
| 1803 | if 134 < angle < 136: v=1 |
---|
| 1804 | assert v==1 |
---|
| 1805 | #Test North-East |
---|
| 1806 | uh = 1 |
---|
| 1807 | vh = 1 |
---|
| 1808 | angle = calc_bearing(uh, vh) |
---|
| 1809 | if 44 < angle < 46: v=1 |
---|
| 1810 | assert v==1 |
---|
| 1811 | #Test South-West |
---|
| 1812 | uh = -1 |
---|
| 1813 | vh = -1 |
---|
| 1814 | angle = calc_bearing(uh, vh) |
---|
| 1815 | if 224 < angle < 226: v=1 |
---|
| 1816 | assert v==1 |
---|
| 1817 | #Test North-West |
---|
| 1818 | uh = -1 |
---|
| 1819 | vh = 1 |
---|
| 1820 | angle = calc_bearing(uh, vh) |
---|
| 1821 | if 314 < angle < 316: v=1 |
---|
| 1822 | assert v==1 |
---|
| 1823 | |
---|
| 1824 | |
---|
| 1825 | |
---|
| 1826 | |
---|
[4889] | 1827 | |
---|
| 1828 | |
---|
[4486] | 1829 | #------------------------------------------------------------- |
---|
| 1830 | if __name__ == "__main__": |
---|
[4635] | 1831 | suite = unittest.makeSuite(Test_Util,'test') |
---|
[4935] | 1832 | # suite = unittest.makeSuite(Test_Util,'test_sww2csv') |
---|
[4876] | 1833 | # runner = unittest.TextTestRunner(verbosity=2) |
---|
| 1834 | runner = unittest.TextTestRunner(verbosity=1) |
---|
[4486] | 1835 | runner.run(suite) |
---|
[4076] | 1836 | |
---|
[4468] | 1837 | |
---|
[4306] | 1838 | |
---|
[4480] | 1839 | |
---|