[5897] | 1 | #!/usr/bin/env python |
---|
| 2 | |
---|
| 3 | |
---|
| 4 | import unittest |
---|
| 5 | from math import sqrt, pi |
---|
| 6 | import tempfile, os |
---|
| 7 | from os import access, F_OK,sep, removedirs,remove,mkdir,getcwd |
---|
| 8 | |
---|
| 9 | from anuga.abstract_2d_finite_volumes.util import * |
---|
| 10 | from anuga.config import epsilon |
---|
| 11 | from anuga.shallow_water.data_manager import timefile2netcdf,del_dir |
---|
| 12 | |
---|
| 13 | from anuga.utilities.numerical_tools import NAN |
---|
| 14 | |
---|
| 15 | from sys import platform |
---|
| 16 | |
---|
| 17 | from anuga.pmesh.mesh import Mesh |
---|
| 18 | from anuga.shallow_water import Domain, Transmissive_boundary |
---|
[7340] | 19 | from anuga.shallow_water.data_manager import SWW_file |
---|
[5897] | 20 | from csv import reader,writer |
---|
| 21 | import time |
---|
| 22 | import string |
---|
| 23 | |
---|
[7276] | 24 | import numpy as num |
---|
[6145] | 25 | |
---|
| 26 | |
---|
[5897] | 27 | def test_function(x, y): |
---|
| 28 | return x+y |
---|
| 29 | |
---|
| 30 | class Test_Util(unittest.TestCase): |
---|
| 31 | def setUp(self): |
---|
| 32 | pass |
---|
| 33 | |
---|
| 34 | def tearDown(self): |
---|
| 35 | pass |
---|
| 36 | |
---|
| 37 | |
---|
| 38 | |
---|
| 39 | |
---|
| 40 | #Geometric |
---|
| 41 | #def test_distance(self): |
---|
| 42 | # from anuga.abstract_2d_finite_volumes.util import distance# |
---|
| 43 | # |
---|
| 44 | # self.failUnless( distance([4,2],[7,6]) == 5.0, |
---|
| 45 | # 'Distance is wrong!') |
---|
| 46 | # self.failUnless( allclose(distance([7,6],[9,8]), 2.82842712475), |
---|
| 47 | # 'distance is wrong!') |
---|
| 48 | # self.failUnless( allclose(distance([9,8],[4,2]), 7.81024967591), |
---|
| 49 | # 'distance is wrong!') |
---|
| 50 | # |
---|
| 51 | # self.failUnless( distance([9,8],[4,2]) == distance([4,2],[9,8]), |
---|
| 52 | # 'distance is wrong!') |
---|
| 53 | |
---|
| 54 | |
---|
| 55 | def test_file_function_time1(self): |
---|
| 56 | """Test that File function interpolates correctly |
---|
| 57 | between given times. No x,y dependency here. |
---|
| 58 | """ |
---|
| 59 | |
---|
| 60 | #Write file |
---|
| 61 | import os, time |
---|
| 62 | from anuga.config import time_format |
---|
| 63 | from math import sin, pi |
---|
| 64 | |
---|
| 65 | #Typical ASCII file |
---|
| 66 | finaltime = 1200 |
---|
| 67 | filename = 'test_file_function' |
---|
| 68 | fid = open(filename + '.txt', 'w') |
---|
| 69 | start = time.mktime(time.strptime('2000', '%Y')) |
---|
| 70 | dt = 60 #One minute intervals |
---|
| 71 | t = 0.0 |
---|
| 72 | while t <= finaltime: |
---|
| 73 | t_string = time.strftime(time_format, time.gmtime(t+start)) |
---|
| 74 | fid.write('%s, %f %f %f\n' %(t_string, 2*t, t**2, sin(t*pi/600))) |
---|
| 75 | t += dt |
---|
| 76 | |
---|
| 77 | fid.close() |
---|
| 78 | |
---|
| 79 | #Convert ASCII file to NetCDF (Which is what we really like!) |
---|
| 80 | timefile2netcdf(filename) |
---|
| 81 | |
---|
| 82 | |
---|
| 83 | #Create file function from time series |
---|
| 84 | F = file_function(filename + '.tms', |
---|
| 85 | quantities = ['Attribute0', |
---|
| 86 | 'Attribute1', |
---|
| 87 | 'Attribute2']) |
---|
| 88 | |
---|
| 89 | #Now try interpolation |
---|
| 90 | for i in range(20): |
---|
| 91 | t = i*10 |
---|
| 92 | q = F(t) |
---|
| 93 | |
---|
| 94 | #Exact linear intpolation |
---|
[6145] | 95 | assert num.allclose(q[0], 2*t) |
---|
[5897] | 96 | if i%6 == 0: |
---|
[6145] | 97 | assert num.allclose(q[1], t**2) |
---|
| 98 | assert num.allclose(q[2], sin(t*pi/600)) |
---|
[5897] | 99 | |
---|
| 100 | #Check non-exact |
---|
| 101 | |
---|
| 102 | t = 90 #Halfway between 60 and 120 |
---|
| 103 | q = F(t) |
---|
[6145] | 104 | assert num.allclose( (120**2 + 60**2)/2, q[1] ) |
---|
| 105 | assert num.allclose( (sin(120*pi/600) + sin(60*pi/600))/2, q[2] ) |
---|
[5897] | 106 | |
---|
| 107 | |
---|
| 108 | t = 100 #Two thirds of the way between between 60 and 120 |
---|
| 109 | q = F(t) |
---|
[6145] | 110 | assert num.allclose( 2*120**2/3 + 60**2/3, q[1] ) |
---|
| 111 | assert num.allclose( 2*sin(120*pi/600)/3 + sin(60*pi/600)/3, q[2] ) |
---|
[5897] | 112 | |
---|
| 113 | os.remove(filename + '.txt') |
---|
| 114 | os.remove(filename + '.tms') |
---|
| 115 | |
---|
| 116 | |
---|
| 117 | |
---|
| 118 | def test_spatio_temporal_file_function_basic(self): |
---|
| 119 | """Test that spatio temporal file function performs the correct |
---|
| 120 | interpolations in both time and space |
---|
| 121 | NetCDF version (x,y,t dependency) |
---|
| 122 | """ |
---|
| 123 | import time |
---|
| 124 | |
---|
| 125 | #Create sww file of simple propagation from left to right |
---|
| 126 | #through rectangular domain |
---|
| 127 | from shallow_water import Domain, Dirichlet_boundary |
---|
| 128 | from mesh_factory import rectangular |
---|
| 129 | |
---|
| 130 | #Create basic mesh and shallow water domain |
---|
| 131 | points, vertices, boundary = rectangular(3, 3) |
---|
| 132 | domain1 = Domain(points, vertices, boundary) |
---|
| 133 | |
---|
| 134 | from anuga.utilities.numerical_tools import mean |
---|
| 135 | domain1.reduction = mean |
---|
| 136 | domain1.smooth = True #NOTE: Mimic sww output where each vertex has |
---|
| 137 | # only one value. |
---|
| 138 | |
---|
| 139 | domain1.default_order = 2 |
---|
| 140 | domain1.store = True |
---|
| 141 | domain1.set_datadir('.') |
---|
[7562] | 142 | sww_file = 'spatio_temporal_boundary_source_%d' %(id(self)) |
---|
| 143 | domain1.set_name(sww_file) |
---|
[5897] | 144 | |
---|
| 145 | #Bed-slope, friction and IC at vertices (and interpolated elsewhere) |
---|
| 146 | domain1.set_quantity('elevation', 0) |
---|
| 147 | domain1.set_quantity('friction', 0) |
---|
| 148 | domain1.set_quantity('stage', 0) |
---|
| 149 | |
---|
| 150 | # Boundary conditions |
---|
| 151 | B0 = Dirichlet_boundary([0,0,0]) |
---|
| 152 | B6 = Dirichlet_boundary([0.6,0,0]) |
---|
| 153 | domain1.set_boundary({'left': B6, 'top': B6, 'right': B0, 'bottom': B0}) |
---|
| 154 | domain1.check_integrity() |
---|
| 155 | |
---|
| 156 | finaltime = 8 |
---|
| 157 | #Evolution |
---|
| 158 | t0 = -1 |
---|
| 159 | for t in domain1.evolve(yieldstep = 0.1, finaltime = finaltime): |
---|
| 160 | #print 'Timesteps: %.16f, %.16f' %(t0, t) |
---|
| 161 | #if t == t0: |
---|
| 162 | # msg = 'Duplicate timestep found: %f, %f' %(t0, t) |
---|
| 163 | # raise msg |
---|
| 164 | t0 = t |
---|
| 165 | |
---|
| 166 | #domain1.write_time() |
---|
| 167 | |
---|
| 168 | |
---|
| 169 | #Now read data from sww and check |
---|
| 170 | from Scientific.IO.NetCDF import NetCDFFile |
---|
[7340] | 171 | filename = domain1.get_name() + '.sww' |
---|
[5897] | 172 | fid = NetCDFFile(filename) |
---|
| 173 | |
---|
| 174 | x = fid.variables['x'][:] |
---|
| 175 | y = fid.variables['y'][:] |
---|
| 176 | stage = fid.variables['stage'][:] |
---|
| 177 | xmomentum = fid.variables['xmomentum'][:] |
---|
| 178 | ymomentum = fid.variables['ymomentum'][:] |
---|
| 179 | time = fid.variables['time'][:] |
---|
| 180 | |
---|
| 181 | #Take stage vertex values at last timestep on diagonal |
---|
| 182 | #Diagonal is identified by vertices: 0, 5, 10, 15 |
---|
| 183 | |
---|
| 184 | last_time_index = len(time)-1 #Last last_time_index |
---|
[7276] | 185 | d_stage = num.reshape(num.take(stage[last_time_index, :], |
---|
| 186 | [0,5,10,15], |
---|
| 187 | axis=0), |
---|
| 188 | (4,1)) |
---|
| 189 | d_uh = num.reshape(num.take(xmomentum[last_time_index, :], |
---|
| 190 | [0,5,10,15], |
---|
| 191 | axis=0), |
---|
| 192 | (4,1)) |
---|
| 193 | d_vh = num.reshape(num.take(ymomentum[last_time_index, :], |
---|
| 194 | [0,5,10,15], |
---|
| 195 | axis=0), |
---|
| 196 | (4,1)) |
---|
[6171] | 197 | D = num.concatenate((d_stage, d_uh, d_vh), axis=1) |
---|
[5897] | 198 | |
---|
| 199 | #Reference interpolated values at midpoints on diagonal at |
---|
| 200 | #this timestep are |
---|
| 201 | r0 = (D[0] + D[1])/2 |
---|
| 202 | r1 = (D[1] + D[2])/2 |
---|
| 203 | r2 = (D[2] + D[3])/2 |
---|
| 204 | |
---|
| 205 | #And the midpoints are found now |
---|
[7276] | 206 | Dx = num.take(num.reshape(x, (16,1)), [0,5,10,15], axis=0) |
---|
| 207 | Dy = num.take(num.reshape(y, (16,1)), [0,5,10,15], axis=0) |
---|
[5897] | 208 | |
---|
[6145] | 209 | diag = num.concatenate( (Dx, Dy), axis=1) |
---|
[5897] | 210 | d_midpoints = (diag[1:] + diag[:-1])/2 |
---|
| 211 | |
---|
| 212 | #Let us see if the file function can find the correct |
---|
| 213 | #values at the midpoints at the last timestep: |
---|
| 214 | f = file_function(filename, domain1, |
---|
| 215 | interpolation_points = d_midpoints) |
---|
| 216 | |
---|
| 217 | T = f.get_time() |
---|
| 218 | msg = 'duplicate timesteps: %.16f and %.16f' %(T[-1], T[-2]) |
---|
| 219 | assert not T[-1] == T[-2], msg |
---|
| 220 | t = time[last_time_index] |
---|
[6145] | 221 | q = f(t, point_id=0); assert num.allclose(r0, q) |
---|
| 222 | q = f(t, point_id=1); assert num.allclose(r1, q) |
---|
| 223 | q = f(t, point_id=2); assert num.allclose(r2, q) |
---|
[5897] | 224 | |
---|
| 225 | |
---|
| 226 | ################## |
---|
| 227 | #Now do the same for the first timestep |
---|
| 228 | |
---|
| 229 | timestep = 0 #First timestep |
---|
[7276] | 230 | d_stage = num.reshape(num.take(stage[timestep, :], [0,5,10,15], axis=0), (4,1)) |
---|
| 231 | d_uh = num.reshape(num.take(xmomentum[timestep, :], [0,5,10,15], axis=0), (4,1)) |
---|
| 232 | d_vh = num.reshape(num.take(ymomentum[timestep, :], [0,5,10,15], axis=0), (4,1)) |
---|
[6171] | 233 | D = num.concatenate((d_stage, d_uh, d_vh), axis=1) |
---|
[5897] | 234 | |
---|
| 235 | #Reference interpolated values at midpoints on diagonal at |
---|
| 236 | #this timestep are |
---|
| 237 | r0 = (D[0] + D[1])/2 |
---|
| 238 | r1 = (D[1] + D[2])/2 |
---|
| 239 | r2 = (D[2] + D[3])/2 |
---|
| 240 | |
---|
| 241 | #Let us see if the file function can find the correct |
---|
| 242 | #values |
---|
[6145] | 243 | q = f(0, point_id=0); assert num.allclose(r0, q) |
---|
| 244 | q = f(0, point_id=1); assert num.allclose(r1, q) |
---|
| 245 | q = f(0, point_id=2); assert num.allclose(r2, q) |
---|
[5897] | 246 | |
---|
| 247 | |
---|
| 248 | ################## |
---|
| 249 | #Now do it again for a timestep in the middle |
---|
| 250 | |
---|
| 251 | timestep = 33 |
---|
[7276] | 252 | d_stage = num.reshape(num.take(stage[timestep, :], [0,5,10,15], axis=0), (4,1)) |
---|
| 253 | d_uh = num.reshape(num.take(xmomentum[timestep, :], [0,5,10,15], axis=0), (4,1)) |
---|
| 254 | d_vh = num.reshape(num.take(ymomentum[timestep, :], [0,5,10,15], axis=0), (4,1)) |
---|
[6171] | 255 | D = num.concatenate((d_stage, d_uh, d_vh), axis=1) |
---|
[5897] | 256 | |
---|
| 257 | #Reference interpolated values at midpoints on diagonal at |
---|
| 258 | #this timestep are |
---|
| 259 | r0 = (D[0] + D[1])/2 |
---|
| 260 | r1 = (D[1] + D[2])/2 |
---|
| 261 | r2 = (D[2] + D[3])/2 |
---|
| 262 | |
---|
[6145] | 263 | q = f(timestep/10., point_id=0); assert num.allclose(r0, q) |
---|
| 264 | q = f(timestep/10., point_id=1); assert num.allclose(r1, q) |
---|
| 265 | q = f(timestep/10., point_id=2); assert num.allclose(r2, q) |
---|
[5897] | 266 | |
---|
| 267 | |
---|
| 268 | ################## |
---|
| 269 | #Now check temporal interpolation |
---|
| 270 | #Halfway between timestep 15 and 16 |
---|
| 271 | |
---|
| 272 | timestep = 15 |
---|
[7276] | 273 | d_stage = num.reshape(num.take(stage[timestep, :], [0,5,10,15], axis=0), (4,1)) |
---|
| 274 | d_uh = num.reshape(num.take(xmomentum[timestep, :], [0,5,10,15], axis=0), (4,1)) |
---|
| 275 | d_vh = num.reshape(num.take(ymomentum[timestep, :], [0,5,10,15], axis=0), (4,1)) |
---|
[6171] | 276 | D = num.concatenate((d_stage, d_uh, d_vh), axis=1) |
---|
[5897] | 277 | |
---|
| 278 | #Reference interpolated values at midpoints on diagonal at |
---|
| 279 | #this timestep are |
---|
| 280 | r0_0 = (D[0] + D[1])/2 |
---|
| 281 | r1_0 = (D[1] + D[2])/2 |
---|
| 282 | r2_0 = (D[2] + D[3])/2 |
---|
| 283 | |
---|
| 284 | # |
---|
| 285 | timestep = 16 |
---|
[7276] | 286 | d_stage = num.reshape(num.take(stage[timestep, :], [0,5,10,15], axis=0), (4,1)) |
---|
| 287 | d_uh = num.reshape(num.take(xmomentum[timestep, :], [0,5,10,15], axis=0), (4,1)) |
---|
| 288 | d_vh = num.reshape(num.take(ymomentum[timestep, :], [0,5,10,15], axis=0), (4,1)) |
---|
[6171] | 289 | D = num.concatenate((d_stage, d_uh, d_vh), axis=1) |
---|
[5897] | 290 | |
---|
| 291 | #Reference interpolated values at midpoints on diagonal at |
---|
| 292 | #this timestep are |
---|
| 293 | r0_1 = (D[0] + D[1])/2 |
---|
| 294 | r1_1 = (D[1] + D[2])/2 |
---|
| 295 | r2_1 = (D[2] + D[3])/2 |
---|
| 296 | |
---|
| 297 | # The reference values are |
---|
| 298 | r0 = (r0_0 + r0_1)/2 |
---|
| 299 | r1 = (r1_0 + r1_1)/2 |
---|
| 300 | r2 = (r2_0 + r2_1)/2 |
---|
| 301 | |
---|
[6145] | 302 | q = f((timestep - 0.5)/10., point_id=0); assert num.allclose(r0, q) |
---|
| 303 | q = f((timestep - 0.5)/10., point_id=1); assert num.allclose(r1, q) |
---|
| 304 | q = f((timestep - 0.5)/10., point_id=2); assert num.allclose(r2, q) |
---|
[5897] | 305 | |
---|
| 306 | ################## |
---|
| 307 | #Finally check interpolation 2 thirds of the way |
---|
| 308 | #between timestep 15 and 16 |
---|
| 309 | |
---|
| 310 | # The reference values are |
---|
| 311 | r0 = (r0_0 + 2*r0_1)/3 |
---|
| 312 | r1 = (r1_0 + 2*r1_1)/3 |
---|
| 313 | r2 = (r2_0 + 2*r2_1)/3 |
---|
| 314 | |
---|
| 315 | #And the file function gives |
---|
[6145] | 316 | q = f((timestep - 1.0/3)/10., point_id=0); assert num.allclose(r0, q) |
---|
| 317 | q = f((timestep - 1.0/3)/10., point_id=1); assert num.allclose(r1, q) |
---|
| 318 | q = f((timestep - 1.0/3)/10., point_id=2); assert num.allclose(r2, q) |
---|
[5897] | 319 | |
---|
| 320 | fid.close() |
---|
| 321 | import os |
---|
| 322 | os.remove(filename) |
---|
| 323 | |
---|
| 324 | |
---|
| 325 | |
---|
| 326 | def test_spatio_temporal_file_function_different_origin(self): |
---|
| 327 | """Test that spatio temporal file function performs the correct |
---|
| 328 | interpolations in both time and space where space is offset by |
---|
| 329 | xllcorner and yllcorner |
---|
| 330 | NetCDF version (x,y,t dependency) |
---|
| 331 | """ |
---|
| 332 | import time |
---|
| 333 | |
---|
| 334 | #Create sww file of simple propagation from left to right |
---|
| 335 | #through rectangular domain |
---|
| 336 | from shallow_water import Domain, Dirichlet_boundary |
---|
| 337 | from mesh_factory import rectangular |
---|
| 338 | |
---|
| 339 | |
---|
| 340 | from anuga.coordinate_transforms.geo_reference import Geo_reference |
---|
| 341 | xllcorner = 2048 |
---|
| 342 | yllcorner = 11000 |
---|
| 343 | zone = 2 |
---|
| 344 | |
---|
| 345 | #Create basic mesh and shallow water domain |
---|
| 346 | points, vertices, boundary = rectangular(3, 3) |
---|
| 347 | domain1 = Domain(points, vertices, boundary, |
---|
| 348 | geo_reference = Geo_reference(xllcorner = xllcorner, |
---|
| 349 | yllcorner = yllcorner)) |
---|
| 350 | |
---|
| 351 | |
---|
| 352 | from anuga.utilities.numerical_tools import mean |
---|
| 353 | domain1.reduction = mean |
---|
| 354 | domain1.smooth = True #NOTE: Mimic sww output where each vertex has |
---|
| 355 | # only one value. |
---|
| 356 | |
---|
| 357 | domain1.default_order = 2 |
---|
| 358 | domain1.store = True |
---|
| 359 | domain1.set_datadir('.') |
---|
| 360 | domain1.set_name('spatio_temporal_boundary_source_%d' %(id(self))) |
---|
| 361 | |
---|
| 362 | #Bed-slope, friction and IC at vertices (and interpolated elsewhere) |
---|
| 363 | domain1.set_quantity('elevation', 0) |
---|
| 364 | domain1.set_quantity('friction', 0) |
---|
| 365 | domain1.set_quantity('stage', 0) |
---|
| 366 | |
---|
| 367 | # Boundary conditions |
---|
| 368 | B0 = Dirichlet_boundary([0,0,0]) |
---|
| 369 | B6 = Dirichlet_boundary([0.6,0,0]) |
---|
| 370 | domain1.set_boundary({'left': B6, 'top': B6, 'right': B0, 'bottom': B0}) |
---|
| 371 | domain1.check_integrity() |
---|
| 372 | |
---|
| 373 | finaltime = 8 |
---|
| 374 | #Evolution |
---|
| 375 | for t in domain1.evolve(yieldstep = 0.1, finaltime = finaltime): |
---|
| 376 | pass |
---|
| 377 | #domain1.write_time() |
---|
| 378 | |
---|
| 379 | |
---|
| 380 | #Now read data from sww and check |
---|
| 381 | from Scientific.IO.NetCDF import NetCDFFile |
---|
[7340] | 382 | filename = domain1.get_name() + '.sww' |
---|
[5897] | 383 | fid = NetCDFFile(filename) |
---|
| 384 | |
---|
| 385 | x = fid.variables['x'][:] |
---|
| 386 | y = fid.variables['y'][:] |
---|
[7276] | 387 | # we 'cast' to 64 bit floats to pass this test |
---|
| 388 | # SWW file quantities are stored as 32 bits |
---|
| 389 | x = num.array(x, num.float) |
---|
| 390 | y = num.array(y, num.float) |
---|
| 391 | |
---|
[5897] | 392 | stage = fid.variables['stage'][:] |
---|
| 393 | xmomentum = fid.variables['xmomentum'][:] |
---|
| 394 | ymomentum = fid.variables['ymomentum'][:] |
---|
| 395 | time = fid.variables['time'][:] |
---|
| 396 | |
---|
| 397 | #Take stage vertex values at last timestep on diagonal |
---|
| 398 | #Diagonal is identified by vertices: 0, 5, 10, 15 |
---|
| 399 | |
---|
| 400 | last_time_index = len(time)-1 #Last last_time_index |
---|
[7276] | 401 | d_stage = num.reshape(num.take(stage[last_time_index, :], |
---|
| 402 | [0,5,10,15], |
---|
| 403 | axis=0), |
---|
| 404 | (4,1)) |
---|
| 405 | d_uh = num.reshape(num.take(xmomentum[last_time_index, :], |
---|
| 406 | [0,5,10,15], |
---|
| 407 | axis=0), |
---|
| 408 | (4,1)) |
---|
| 409 | d_vh = num.reshape(num.take(ymomentum[last_time_index, :], |
---|
| 410 | [0,5,10,15], |
---|
| 411 | axis=0), |
---|
| 412 | (4,1)) |
---|
[6171] | 413 | D = num.concatenate((d_stage, d_uh, d_vh), axis=1) |
---|
[5897] | 414 | |
---|
| 415 | #Reference interpolated values at midpoints on diagonal at |
---|
| 416 | #this timestep are |
---|
| 417 | r0 = (D[0] + D[1])/2 |
---|
| 418 | r1 = (D[1] + D[2])/2 |
---|
| 419 | r2 = (D[2] + D[3])/2 |
---|
| 420 | |
---|
| 421 | #And the midpoints are found now |
---|
[7276] | 422 | Dx = num.take(num.reshape(x, (16,1)), [0,5,10,15], axis=0) |
---|
| 423 | Dy = num.take(num.reshape(y, (16,1)), [0,5,10,15], axis=0) |
---|
[5897] | 424 | |
---|
[7276] | 425 | diag = num.concatenate((Dx, Dy), axis=1) |
---|
[5897] | 426 | d_midpoints = (diag[1:] + diag[:-1])/2 |
---|
| 427 | |
---|
| 428 | |
---|
| 429 | #Adjust for georef - make interpolation points absolute |
---|
| 430 | d_midpoints[:,0] += xllcorner |
---|
| 431 | d_midpoints[:,1] += yllcorner |
---|
| 432 | |
---|
| 433 | #Let us see if the file function can find the correct |
---|
| 434 | #values at the midpoints at the last timestep: |
---|
| 435 | f = file_function(filename, domain1, |
---|
| 436 | interpolation_points = d_midpoints) |
---|
| 437 | |
---|
| 438 | t = time[last_time_index] |
---|
| 439 | |
---|
[7276] | 440 | q = f(t, point_id=0) |
---|
| 441 | msg = '\nr0=%s\nq=%s' % (str(r0), str(q)) |
---|
| 442 | assert num.allclose(r0, q), msg |
---|
[5897] | 443 | |
---|
[7276] | 444 | q = f(t, point_id=1) |
---|
| 445 | msg = '\nr1=%s\nq=%s' % (str(r1), str(q)) |
---|
| 446 | assert num.allclose(r1, q), msg |
---|
| 447 | |
---|
| 448 | q = f(t, point_id=2) |
---|
| 449 | msg = '\nr2=%s\nq=%s' % (str(r2), str(q)) |
---|
| 450 | assert num.allclose(r2, q), msg |
---|
| 451 | |
---|
| 452 | |
---|
[5897] | 453 | ################## |
---|
| 454 | #Now do the same for the first timestep |
---|
| 455 | |
---|
| 456 | timestep = 0 #First timestep |
---|
[7276] | 457 | d_stage = num.reshape(num.take(stage[timestep, :], |
---|
| 458 | [0,5,10,15], |
---|
| 459 | axis=0), |
---|
| 460 | (4,1)) |
---|
| 461 | d_uh = num.reshape(num.take(xmomentum[timestep, :], |
---|
| 462 | [0,5,10,15], |
---|
| 463 | axis=0), |
---|
| 464 | (4,1)) |
---|
| 465 | d_vh = num.reshape(num.take(ymomentum[timestep, :], |
---|
| 466 | [0,5,10,15], |
---|
| 467 | axis=0), |
---|
| 468 | (4,1)) |
---|
[6145] | 469 | D = num.concatenate( (d_stage, d_uh, d_vh), axis=1) |
---|
[5897] | 470 | |
---|
| 471 | #Reference interpolated values at midpoints on diagonal at |
---|
| 472 | #this timestep are |
---|
| 473 | r0 = (D[0] + D[1])/2 |
---|
| 474 | r1 = (D[1] + D[2])/2 |
---|
| 475 | r2 = (D[2] + D[3])/2 |
---|
| 476 | |
---|
| 477 | #Let us see if the file function can find the correct |
---|
| 478 | #values |
---|
[6145] | 479 | q = f(0, point_id=0); assert num.allclose(r0, q) |
---|
| 480 | q = f(0, point_id=1); assert num.allclose(r1, q) |
---|
| 481 | q = f(0, point_id=2); assert num.allclose(r2, q) |
---|
[5897] | 482 | |
---|
| 483 | |
---|
| 484 | ################## |
---|
| 485 | #Now do it again for a timestep in the middle |
---|
| 486 | |
---|
| 487 | timestep = 33 |
---|
[7276] | 488 | d_stage = num.reshape(num.take(stage[timestep, :], |
---|
| 489 | [0,5,10,15], |
---|
| 490 | axis=0), |
---|
| 491 | (4,1)) |
---|
| 492 | d_uh = num.reshape(num.take(xmomentum[timestep, :], |
---|
| 493 | [0,5,10,15], |
---|
| 494 | axis=0), |
---|
| 495 | (4,1)) |
---|
| 496 | d_vh = num.reshape(num.take(ymomentum[timestep, :], |
---|
| 497 | [0,5,10,15], |
---|
| 498 | axis=0), |
---|
| 499 | (4,1)) |
---|
[6145] | 500 | D = num.concatenate( (d_stage, d_uh, d_vh), axis=1) |
---|
[5897] | 501 | |
---|
| 502 | #Reference interpolated values at midpoints on diagonal at |
---|
| 503 | #this timestep are |
---|
| 504 | r0 = (D[0] + D[1])/2 |
---|
| 505 | r1 = (D[1] + D[2])/2 |
---|
| 506 | r2 = (D[2] + D[3])/2 |
---|
| 507 | |
---|
[6145] | 508 | q = f(timestep/10., point_id=0); assert num.allclose(r0, q) |
---|
| 509 | q = f(timestep/10., point_id=1); assert num.allclose(r1, q) |
---|
| 510 | q = f(timestep/10., point_id=2); assert num.allclose(r2, q) |
---|
[5897] | 511 | |
---|
| 512 | |
---|
| 513 | ################## |
---|
| 514 | #Now check temporal interpolation |
---|
| 515 | #Halfway between timestep 15 and 16 |
---|
| 516 | |
---|
| 517 | timestep = 15 |
---|
[7276] | 518 | d_stage = num.reshape(num.take(stage[timestep, :], |
---|
| 519 | [0,5,10,15], |
---|
| 520 | axis=0), |
---|
| 521 | (4,1)) |
---|
| 522 | d_uh = num.reshape(num.take(xmomentum[timestep, :], |
---|
| 523 | [0,5,10,15], |
---|
| 524 | axis=0), |
---|
| 525 | (4,1)) |
---|
| 526 | d_vh = num.reshape(num.take(ymomentum[timestep, :], |
---|
| 527 | [0,5,10,15], |
---|
| 528 | axis=0), |
---|
| 529 | (4,1)) |
---|
[6145] | 530 | D = num.concatenate( (d_stage, d_uh, d_vh), axis=1) |
---|
[5897] | 531 | |
---|
| 532 | #Reference interpolated values at midpoints on diagonal at |
---|
| 533 | #this timestep are |
---|
| 534 | r0_0 = (D[0] + D[1])/2 |
---|
| 535 | r1_0 = (D[1] + D[2])/2 |
---|
| 536 | r2_0 = (D[2] + D[3])/2 |
---|
| 537 | |
---|
| 538 | # |
---|
| 539 | timestep = 16 |
---|
[7276] | 540 | d_stage = num.reshape(num.take(stage[timestep, :], |
---|
| 541 | [0,5,10,15], |
---|
| 542 | axis=0), |
---|
| 543 | (4,1)) |
---|
| 544 | d_uh = num.reshape(num.take(xmomentum[timestep, :], |
---|
| 545 | [0,5,10,15], |
---|
| 546 | axis=0), |
---|
| 547 | (4,1)) |
---|
| 548 | d_vh = num.reshape(num.take(ymomentum[timestep, :], |
---|
| 549 | [0,5,10,15], |
---|
| 550 | axis=0), |
---|
| 551 | (4,1)) |
---|
[6145] | 552 | D = num.concatenate( (d_stage, d_uh, d_vh), axis=1) |
---|
[5897] | 553 | |
---|
| 554 | #Reference interpolated values at midpoints on diagonal at |
---|
| 555 | #this timestep are |
---|
| 556 | r0_1 = (D[0] + D[1])/2 |
---|
| 557 | r1_1 = (D[1] + D[2])/2 |
---|
| 558 | r2_1 = (D[2] + D[3])/2 |
---|
| 559 | |
---|
| 560 | # The reference values are |
---|
| 561 | r0 = (r0_0 + r0_1)/2 |
---|
| 562 | r1 = (r1_0 + r1_1)/2 |
---|
| 563 | r2 = (r2_0 + r2_1)/2 |
---|
| 564 | |
---|
[6145] | 565 | q = f((timestep - 0.5)/10., point_id=0); assert num.allclose(r0, q) |
---|
| 566 | q = f((timestep - 0.5)/10., point_id=1); assert num.allclose(r1, q) |
---|
| 567 | q = f((timestep - 0.5)/10., point_id=2); assert num.allclose(r2, q) |
---|
[5897] | 568 | |
---|
| 569 | ################## |
---|
| 570 | #Finally check interpolation 2 thirds of the way |
---|
| 571 | #between timestep 15 and 16 |
---|
| 572 | |
---|
| 573 | # The reference values are |
---|
| 574 | r0 = (r0_0 + 2*r0_1)/3 |
---|
| 575 | r1 = (r1_0 + 2*r1_1)/3 |
---|
| 576 | r2 = (r2_0 + 2*r2_1)/3 |
---|
| 577 | |
---|
| 578 | #And the file function gives |
---|
[6145] | 579 | q = f((timestep - 1.0/3)/10., point_id=0); assert num.allclose(r0, q) |
---|
| 580 | q = f((timestep - 1.0/3)/10., point_id=1); assert num.allclose(r1, q) |
---|
| 581 | q = f((timestep - 1.0/3)/10., point_id=2); assert num.allclose(r2, q) |
---|
[5897] | 582 | |
---|
| 583 | fid.close() |
---|
| 584 | import os |
---|
| 585 | os.remove(filename) |
---|
| 586 | |
---|
| 587 | |
---|
| 588 | |
---|
| 589 | |
---|
| 590 | def test_spatio_temporal_file_function_time(self): |
---|
| 591 | """Test that File function interpolates correctly |
---|
| 592 | between given times. |
---|
| 593 | NetCDF version (x,y,t dependency) |
---|
| 594 | """ |
---|
| 595 | |
---|
| 596 | #Create NetCDF (sww) file to be read |
---|
| 597 | # x: 0, 5, 10, 15 |
---|
| 598 | # y: -20, -10, 0, 10 |
---|
| 599 | # t: 0, 60, 120, ...., 1200 |
---|
| 600 | # |
---|
| 601 | # test quantities (arbitrary but non-trivial expressions): |
---|
| 602 | # |
---|
| 603 | # stage = 3*x - y**2 + 2*t |
---|
| 604 | # xmomentum = exp( -((x-7)**2 + (y+5)**2)/20 ) * t**2 |
---|
| 605 | # ymomentum = x**2 + y**2 * sin(t*pi/600) |
---|
| 606 | |
---|
| 607 | #NOTE: Nice test that may render some of the others redundant. |
---|
| 608 | |
---|
| 609 | import os, time |
---|
| 610 | from anuga.config import time_format |
---|
| 611 | from mesh_factory import rectangular |
---|
| 612 | from shallow_water import Domain |
---|
| 613 | import anuga.shallow_water.data_manager |
---|
| 614 | |
---|
| 615 | finaltime = 1200 |
---|
| 616 | filename = 'test_file_function' |
---|
| 617 | |
---|
| 618 | #Create a domain to hold test grid |
---|
| 619 | #(0:15, -20:10) |
---|
| 620 | points, vertices, boundary =\ |
---|
| 621 | rectangular(4, 4, 15, 30, origin = (0, -20)) |
---|
| 622 | #print "points", points |
---|
| 623 | |
---|
| 624 | #print 'Number of elements', len(vertices) |
---|
| 625 | domain = Domain(points, vertices, boundary) |
---|
| 626 | domain.smooth = False |
---|
| 627 | domain.default_order = 2 |
---|
| 628 | domain.set_datadir('.') |
---|
| 629 | domain.set_name(filename) |
---|
| 630 | domain.store = True |
---|
| 631 | |
---|
| 632 | #print points |
---|
| 633 | start = time.mktime(time.strptime('2000', '%Y')) |
---|
| 634 | domain.starttime = start |
---|
| 635 | |
---|
| 636 | |
---|
| 637 | #Store structure |
---|
| 638 | domain.initialise_storage() |
---|
| 639 | |
---|
| 640 | #Compute artificial time steps and store |
---|
| 641 | dt = 60 #One minute intervals |
---|
| 642 | t = 0.0 |
---|
| 643 | while t <= finaltime: |
---|
| 644 | #Compute quantities |
---|
| 645 | f1 = lambda x,y: 3*x - y**2 + 2*t + 4 |
---|
| 646 | domain.set_quantity('stage', f1) |
---|
| 647 | |
---|
| 648 | f2 = lambda x,y: x+y+t**2 |
---|
| 649 | domain.set_quantity('xmomentum', f2) |
---|
| 650 | |
---|
[6145] | 651 | f3 = lambda x,y: x**2 + y**2 * num.sin(t*num.pi/600) |
---|
[5897] | 652 | domain.set_quantity('ymomentum', f3) |
---|
| 653 | |
---|
| 654 | #Store and advance time |
---|
| 655 | domain.time = t |
---|
[7340] | 656 | domain.store_timestep() |
---|
[5897] | 657 | t += dt |
---|
| 658 | |
---|
| 659 | |
---|
| 660 | interpolation_points = [[0,-20], [1,0], [0,1], [1.1, 3.14], [10,-12.5]] |
---|
| 661 | |
---|
| 662 | #Deliberately set domain.starttime to too early |
---|
| 663 | domain.starttime = start - 1 |
---|
| 664 | |
---|
| 665 | #Create file function |
---|
| 666 | F = file_function(filename + '.sww', domain, |
---|
| 667 | quantities = domain.conserved_quantities, |
---|
| 668 | interpolation_points = interpolation_points) |
---|
| 669 | |
---|
| 670 | #Check that FF updates fixes domain starttime |
---|
[6145] | 671 | assert num.allclose(domain.starttime, start) |
---|
[5897] | 672 | |
---|
| 673 | #Check that domain.starttime isn't updated if later |
---|
| 674 | domain.starttime = start + 1 |
---|
| 675 | F = file_function(filename + '.sww', domain, |
---|
| 676 | quantities = domain.conserved_quantities, |
---|
| 677 | interpolation_points = interpolation_points) |
---|
[6145] | 678 | assert num.allclose(domain.starttime, start+1) |
---|
[5897] | 679 | domain.starttime = start |
---|
| 680 | |
---|
| 681 | |
---|
| 682 | #Check linear interpolation in time |
---|
| 683 | F = file_function(filename + '.sww', domain, |
---|
| 684 | quantities = domain.conserved_quantities, |
---|
| 685 | interpolation_points = interpolation_points) |
---|
| 686 | for id in range(len(interpolation_points)): |
---|
| 687 | x = interpolation_points[id][0] |
---|
| 688 | y = interpolation_points[id][1] |
---|
| 689 | |
---|
| 690 | for i in range(20): |
---|
| 691 | t = i*10 |
---|
| 692 | k = i%6 |
---|
| 693 | |
---|
| 694 | if k == 0: |
---|
| 695 | q0 = F(t, point_id=id) |
---|
| 696 | q1 = F(t+60, point_id=id) |
---|
| 697 | |
---|
[7276] | 698 | if num.alltrue(q0 == NAN): |
---|
[5897] | 699 | actual = q0 |
---|
| 700 | else: |
---|
| 701 | actual = (k*q1 + (6-k)*q0)/6 |
---|
| 702 | q = F(t, point_id=id) |
---|
| 703 | #print i, k, t, q |
---|
| 704 | #print ' ', q0 |
---|
| 705 | #print ' ', q1 |
---|
| 706 | #print "q",q |
---|
| 707 | #print "actual", actual |
---|
| 708 | #print |
---|
[7276] | 709 | if num.alltrue(q0 == NAN): |
---|
| 710 | self.failUnless(num.alltrue(q == actual), 'Fail!') |
---|
[5897] | 711 | else: |
---|
[6145] | 712 | assert num.allclose(q, actual) |
---|
[5897] | 713 | |
---|
| 714 | |
---|
| 715 | #Another check of linear interpolation in time |
---|
| 716 | for id in range(len(interpolation_points)): |
---|
| 717 | q60 = F(60, point_id=id) |
---|
| 718 | q120 = F(120, point_id=id) |
---|
| 719 | |
---|
| 720 | t = 90 #Halfway between 60 and 120 |
---|
| 721 | q = F(t, point_id=id) |
---|
[6145] | 722 | assert num.allclose( (q120+q60)/2, q ) |
---|
[5897] | 723 | |
---|
| 724 | t = 100 #Two thirds of the way between between 60 and 120 |
---|
| 725 | q = F(t, point_id=id) |
---|
[6145] | 726 | assert num.allclose(q60/3 + 2*q120/3, q) |
---|
[5897] | 727 | |
---|
| 728 | |
---|
| 729 | |
---|
| 730 | #Check that domain.starttime isn't updated if later than file starttime but earlier |
---|
| 731 | #than file end time |
---|
| 732 | delta = 23 |
---|
| 733 | domain.starttime = start + delta |
---|
| 734 | F = file_function(filename + '.sww', domain, |
---|
| 735 | quantities = domain.conserved_quantities, |
---|
| 736 | interpolation_points = interpolation_points) |
---|
[6145] | 737 | assert num.allclose(domain.starttime, start+delta) |
---|
[5897] | 738 | |
---|
| 739 | |
---|
| 740 | |
---|
| 741 | |
---|
| 742 | #Now try interpolation with delta offset |
---|
| 743 | for id in range(len(interpolation_points)): |
---|
| 744 | x = interpolation_points[id][0] |
---|
| 745 | y = interpolation_points[id][1] |
---|
| 746 | |
---|
| 747 | for i in range(20): |
---|
| 748 | t = i*10 |
---|
| 749 | k = i%6 |
---|
| 750 | |
---|
| 751 | if k == 0: |
---|
| 752 | q0 = F(t-delta, point_id=id) |
---|
| 753 | q1 = F(t+60-delta, point_id=id) |
---|
| 754 | |
---|
| 755 | q = F(t-delta, point_id=id) |
---|
[6145] | 756 | assert num.allclose(q, (k*q1 + (6-k)*q0)/6) |
---|
[5897] | 757 | |
---|
| 758 | |
---|
| 759 | os.remove(filename + '.sww') |
---|
| 760 | |
---|
| 761 | |
---|
| 762 | |
---|
| 763 | def Xtest_spatio_temporal_file_function_time(self): |
---|
| 764 | # FIXME: This passes but needs some TLC |
---|
| 765 | # Test that File function interpolates correctly |
---|
| 766 | # When some points are outside the mesh |
---|
| 767 | |
---|
| 768 | import os, time |
---|
| 769 | from anuga.config import time_format |
---|
| 770 | from mesh_factory import rectangular |
---|
| 771 | from shallow_water import Domain |
---|
| 772 | import anuga.shallow_water.data_manager |
---|
| 773 | from anuga.pmesh.mesh_interface import create_mesh_from_regions |
---|
| 774 | finaltime = 1200 |
---|
| 775 | |
---|
| 776 | filename = tempfile.mktemp() |
---|
| 777 | #print "filename",filename |
---|
| 778 | filename = 'test_file_function' |
---|
| 779 | |
---|
| 780 | meshfilename = tempfile.mktemp(".tsh") |
---|
| 781 | |
---|
| 782 | boundary_tags = {'walls':[0,1],'bom':[2]} |
---|
| 783 | |
---|
| 784 | polygon_absolute = [[0,-20],[10,-20],[10,15],[-20,15]] |
---|
| 785 | |
---|
| 786 | create_mesh_from_regions(polygon_absolute, |
---|
| 787 | boundary_tags, |
---|
| 788 | 10000000, |
---|
| 789 | filename=meshfilename) |
---|
| 790 | domain = Domain(mesh_filename=meshfilename) |
---|
| 791 | domain.smooth = False |
---|
| 792 | domain.default_order = 2 |
---|
| 793 | domain.set_datadir('.') |
---|
| 794 | domain.set_name(filename) |
---|
| 795 | domain.store = True |
---|
| 796 | |
---|
| 797 | #print points |
---|
| 798 | start = time.mktime(time.strptime('2000', '%Y')) |
---|
| 799 | domain.starttime = start |
---|
| 800 | |
---|
| 801 | |
---|
| 802 | #Store structure |
---|
| 803 | domain.initialise_storage() |
---|
| 804 | |
---|
| 805 | #Compute artificial time steps and store |
---|
| 806 | dt = 60 #One minute intervals |
---|
| 807 | t = 0.0 |
---|
| 808 | while t <= finaltime: |
---|
| 809 | #Compute quantities |
---|
| 810 | f1 = lambda x,y: 3*x - y**2 + 2*t + 4 |
---|
| 811 | domain.set_quantity('stage', f1) |
---|
| 812 | |
---|
| 813 | f2 = lambda x,y: x+y+t**2 |
---|
| 814 | domain.set_quantity('xmomentum', f2) |
---|
| 815 | |
---|
[6145] | 816 | f3 = lambda x,y: x**2 + y**2 * num.sin(t*num.pi/600) |
---|
[5897] | 817 | domain.set_quantity('ymomentum', f3) |
---|
| 818 | |
---|
| 819 | #Store and advance time |
---|
| 820 | domain.time = t |
---|
[7342] | 821 | domain.store_timestep() |
---|
[5897] | 822 | t += dt |
---|
| 823 | |
---|
| 824 | interpolation_points = [[1,0]] |
---|
| 825 | interpolation_points = [[100,1000]] |
---|
| 826 | |
---|
| 827 | interpolation_points = [[0,-20], [1,0], [0,1], [1.1, 3.14], [10,-12.5], |
---|
| 828 | [78787,78787],[7878,3432]] |
---|
| 829 | |
---|
| 830 | #Deliberately set domain.starttime to too early |
---|
| 831 | domain.starttime = start - 1 |
---|
| 832 | |
---|
| 833 | #Create file function |
---|
| 834 | F = file_function(filename + '.sww', domain, |
---|
| 835 | quantities = domain.conserved_quantities, |
---|
| 836 | interpolation_points = interpolation_points) |
---|
| 837 | |
---|
| 838 | #Check that FF updates fixes domain starttime |
---|
[6145] | 839 | assert num.allclose(domain.starttime, start) |
---|
[5897] | 840 | |
---|
| 841 | #Check that domain.starttime isn't updated if later |
---|
| 842 | domain.starttime = start + 1 |
---|
| 843 | F = file_function(filename + '.sww', domain, |
---|
| 844 | quantities = domain.conserved_quantities, |
---|
| 845 | interpolation_points = interpolation_points) |
---|
[6145] | 846 | assert num.allclose(domain.starttime, start+1) |
---|
[5897] | 847 | domain.starttime = start |
---|
| 848 | |
---|
| 849 | |
---|
| 850 | #Check linear interpolation in time |
---|
| 851 | # checking points inside and outside the mesh |
---|
| 852 | F = file_function(filename + '.sww', domain, |
---|
| 853 | quantities = domain.conserved_quantities, |
---|
| 854 | interpolation_points = interpolation_points) |
---|
| 855 | |
---|
| 856 | for id in range(len(interpolation_points)): |
---|
| 857 | x = interpolation_points[id][0] |
---|
| 858 | y = interpolation_points[id][1] |
---|
| 859 | |
---|
| 860 | for i in range(20): |
---|
| 861 | t = i*10 |
---|
| 862 | k = i%6 |
---|
| 863 | |
---|
| 864 | if k == 0: |
---|
| 865 | q0 = F(t, point_id=id) |
---|
| 866 | q1 = F(t+60, point_id=id) |
---|
| 867 | |
---|
| 868 | if q0 == NAN: |
---|
| 869 | actual = q0 |
---|
| 870 | else: |
---|
| 871 | actual = (k*q1 + (6-k)*q0)/6 |
---|
| 872 | q = F(t, point_id=id) |
---|
| 873 | #print i, k, t, q |
---|
| 874 | #print ' ', q0 |
---|
| 875 | #print ' ', q1 |
---|
| 876 | #print "q",q |
---|
| 877 | #print "actual", actual |
---|
| 878 | #print |
---|
| 879 | if q0 == NAN: |
---|
| 880 | self.failUnless( q == actual, 'Fail!') |
---|
| 881 | else: |
---|
[6145] | 882 | assert num.allclose(q, actual) |
---|
[5897] | 883 | |
---|
| 884 | # now lets check points inside the mesh |
---|
| 885 | interpolation_points = [[0,-20], [1,0], [0,1], [1.1, 3.14]] #, [10,-12.5]] - this point doesn't work WHY? |
---|
| 886 | interpolation_points = [[10,-12.5]] |
---|
| 887 | |
---|
| 888 | print "len(interpolation_points)",len(interpolation_points) |
---|
| 889 | F = file_function(filename + '.sww', domain, |
---|
| 890 | quantities = domain.conserved_quantities, |
---|
| 891 | interpolation_points = interpolation_points) |
---|
| 892 | |
---|
| 893 | domain.starttime = start |
---|
| 894 | |
---|
| 895 | |
---|
| 896 | #Check linear interpolation in time |
---|
| 897 | F = file_function(filename + '.sww', domain, |
---|
| 898 | quantities = domain.conserved_quantities, |
---|
| 899 | interpolation_points = interpolation_points) |
---|
| 900 | for id in range(len(interpolation_points)): |
---|
| 901 | x = interpolation_points[id][0] |
---|
| 902 | y = interpolation_points[id][1] |
---|
| 903 | |
---|
| 904 | for i in range(20): |
---|
| 905 | t = i*10 |
---|
| 906 | k = i%6 |
---|
| 907 | |
---|
| 908 | if k == 0: |
---|
| 909 | q0 = F(t, point_id=id) |
---|
| 910 | q1 = F(t+60, point_id=id) |
---|
| 911 | |
---|
| 912 | if q0 == NAN: |
---|
| 913 | actual = q0 |
---|
| 914 | else: |
---|
| 915 | actual = (k*q1 + (6-k)*q0)/6 |
---|
| 916 | q = F(t, point_id=id) |
---|
| 917 | print "############" |
---|
| 918 | print "id, x, y ", id, x, y #k, t, q |
---|
| 919 | print "t", t |
---|
| 920 | #print ' ', q0 |
---|
| 921 | #print ' ', q1 |
---|
| 922 | print "q",q |
---|
| 923 | print "actual", actual |
---|
| 924 | #print |
---|
| 925 | if q0 == NAN: |
---|
| 926 | self.failUnless( q == actual, 'Fail!') |
---|
| 927 | else: |
---|
[6145] | 928 | assert num.allclose(q, actual) |
---|
[5897] | 929 | |
---|
| 930 | |
---|
| 931 | #Another check of linear interpolation in time |
---|
| 932 | for id in range(len(interpolation_points)): |
---|
| 933 | q60 = F(60, point_id=id) |
---|
| 934 | q120 = F(120, point_id=id) |
---|
| 935 | |
---|
| 936 | t = 90 #Halfway between 60 and 120 |
---|
| 937 | q = F(t, point_id=id) |
---|
[6145] | 938 | assert num.allclose( (q120+q60)/2, q ) |
---|
[5897] | 939 | |
---|
| 940 | t = 100 #Two thirds of the way between between 60 and 120 |
---|
| 941 | q = F(t, point_id=id) |
---|
[6145] | 942 | assert num.allclose(q60/3 + 2*q120/3, q) |
---|
[5897] | 943 | |
---|
| 944 | |
---|
| 945 | |
---|
| 946 | #Check that domain.starttime isn't updated if later than file starttime but earlier |
---|
| 947 | #than file end time |
---|
| 948 | delta = 23 |
---|
| 949 | domain.starttime = start + delta |
---|
| 950 | F = file_function(filename + '.sww', domain, |
---|
| 951 | quantities = domain.conserved_quantities, |
---|
| 952 | interpolation_points = interpolation_points) |
---|
[6145] | 953 | assert num.allclose(domain.starttime, start+delta) |
---|
[5897] | 954 | |
---|
| 955 | |
---|
| 956 | |
---|
| 957 | |
---|
| 958 | #Now try interpolation with delta offset |
---|
| 959 | for id in range(len(interpolation_points)): |
---|
| 960 | x = interpolation_points[id][0] |
---|
| 961 | y = interpolation_points[id][1] |
---|
| 962 | |
---|
| 963 | for i in range(20): |
---|
| 964 | t = i*10 |
---|
| 965 | k = i%6 |
---|
| 966 | |
---|
| 967 | if k == 0: |
---|
| 968 | q0 = F(t-delta, point_id=id) |
---|
| 969 | q1 = F(t+60-delta, point_id=id) |
---|
| 970 | |
---|
| 971 | q = F(t-delta, point_id=id) |
---|
[6145] | 972 | assert num.allclose(q, (k*q1 + (6-k)*q0)/6) |
---|
[5897] | 973 | |
---|
| 974 | |
---|
| 975 | os.remove(filename + '.sww') |
---|
| 976 | |
---|
| 977 | def test_file_function_time_with_domain(self): |
---|
| 978 | """Test that File function interpolates correctly |
---|
| 979 | between given times. No x,y dependency here. |
---|
| 980 | Use domain with starttime |
---|
| 981 | """ |
---|
| 982 | |
---|
| 983 | #Write file |
---|
| 984 | import os, time, calendar |
---|
| 985 | from anuga.config import time_format |
---|
| 986 | from math import sin, pi |
---|
| 987 | from domain import Domain |
---|
| 988 | |
---|
| 989 | finaltime = 1200 |
---|
| 990 | filename = 'test_file_function' |
---|
| 991 | fid = open(filename + '.txt', 'w') |
---|
| 992 | start = time.mktime(time.strptime('2000', '%Y')) |
---|
| 993 | dt = 60 #One minute intervals |
---|
| 994 | t = 0.0 |
---|
| 995 | while t <= finaltime: |
---|
| 996 | t_string = time.strftime(time_format, time.gmtime(t+start)) |
---|
| 997 | fid.write('%s, %f %f %f\n' %(t_string, 2*t, t**2, sin(t*pi/600))) |
---|
| 998 | t += dt |
---|
| 999 | |
---|
| 1000 | fid.close() |
---|
| 1001 | |
---|
| 1002 | |
---|
| 1003 | #Convert ASCII file to NetCDF (Which is what we really like!) |
---|
| 1004 | timefile2netcdf(filename) |
---|
| 1005 | |
---|
| 1006 | |
---|
| 1007 | |
---|
| 1008 | a = [0.0, 0.0] |
---|
| 1009 | b = [4.0, 0.0] |
---|
| 1010 | c = [0.0, 3.0] |
---|
| 1011 | |
---|
| 1012 | points = [a, b, c] |
---|
| 1013 | vertices = [[0,1,2]] |
---|
| 1014 | domain = Domain(points, vertices) |
---|
| 1015 | |
---|
| 1016 | # Check that domain.starttime is updated if non-existing |
---|
| 1017 | F = file_function(filename + '.tms', |
---|
| 1018 | domain, |
---|
| 1019 | quantities = ['Attribute0', 'Attribute1', 'Attribute2']) |
---|
[6145] | 1020 | assert num.allclose(domain.starttime, start) |
---|
[5897] | 1021 | |
---|
| 1022 | # Check that domain.starttime is updated if too early |
---|
| 1023 | domain.starttime = start - 1 |
---|
| 1024 | F = file_function(filename + '.tms', |
---|
| 1025 | domain, |
---|
| 1026 | quantities = ['Attribute0', 'Attribute1', 'Attribute2']) |
---|
[6145] | 1027 | assert num.allclose(domain.starttime, start) |
---|
[5897] | 1028 | |
---|
| 1029 | # Check that domain.starttime isn't updated if later |
---|
| 1030 | domain.starttime = start + 1 |
---|
| 1031 | F = file_function(filename + '.tms', |
---|
| 1032 | domain, |
---|
| 1033 | quantities = ['Attribute0', 'Attribute1', 'Attribute2']) |
---|
[6145] | 1034 | assert num.allclose(domain.starttime, start+1) |
---|
[5897] | 1035 | |
---|
| 1036 | domain.starttime = start |
---|
| 1037 | F = file_function(filename + '.tms', |
---|
| 1038 | domain, |
---|
| 1039 | quantities = ['Attribute0', 'Attribute1', 'Attribute2'], |
---|
| 1040 | use_cache=True) |
---|
| 1041 | |
---|
| 1042 | |
---|
| 1043 | #print F.precomputed_values |
---|
| 1044 | #print 'F(60)', F(60) |
---|
| 1045 | |
---|
| 1046 | #Now try interpolation |
---|
| 1047 | for i in range(20): |
---|
| 1048 | t = i*10 |
---|
| 1049 | q = F(t) |
---|
| 1050 | |
---|
| 1051 | #Exact linear intpolation |
---|
[6145] | 1052 | assert num.allclose(q[0], 2*t) |
---|
[5897] | 1053 | if i%6 == 0: |
---|
[6145] | 1054 | assert num.allclose(q[1], t**2) |
---|
| 1055 | assert num.allclose(q[2], sin(t*pi/600)) |
---|
[5897] | 1056 | |
---|
| 1057 | #Check non-exact |
---|
| 1058 | |
---|
| 1059 | t = 90 #Halfway between 60 and 120 |
---|
| 1060 | q = F(t) |
---|
[6145] | 1061 | assert num.allclose( (120**2 + 60**2)/2, q[1] ) |
---|
| 1062 | assert num.allclose( (sin(120*pi/600) + sin(60*pi/600))/2, q[2] ) |
---|
[5897] | 1063 | |
---|
| 1064 | |
---|
| 1065 | t = 100 #Two thirds of the way between between 60 and 120 |
---|
| 1066 | q = F(t) |
---|
[6145] | 1067 | assert num.allclose( 2*120**2/3 + 60**2/3, q[1] ) |
---|
| 1068 | assert num.allclose( 2*sin(120*pi/600)/3 + sin(60*pi/600)/3, q[2] ) |
---|
[5897] | 1069 | |
---|
| 1070 | os.remove(filename + '.tms') |
---|
| 1071 | os.remove(filename + '.txt') |
---|
| 1072 | |
---|
| 1073 | def test_file_function_time_with_domain_different_start(self): |
---|
| 1074 | """Test that File function interpolates correctly |
---|
| 1075 | between given times. No x,y dependency here. |
---|
| 1076 | Use domain with a starttime later than that of file |
---|
| 1077 | |
---|
| 1078 | ASCII version |
---|
| 1079 | """ |
---|
| 1080 | |
---|
| 1081 | #Write file |
---|
| 1082 | import os, time, calendar |
---|
| 1083 | from anuga.config import time_format |
---|
| 1084 | from math import sin, pi |
---|
| 1085 | from domain import Domain |
---|
| 1086 | |
---|
| 1087 | finaltime = 1200 |
---|
| 1088 | filename = 'test_file_function' |
---|
| 1089 | fid = open(filename + '.txt', 'w') |
---|
| 1090 | start = time.mktime(time.strptime('2000', '%Y')) |
---|
| 1091 | dt = 60 #One minute intervals |
---|
| 1092 | t = 0.0 |
---|
| 1093 | while t <= finaltime: |
---|
| 1094 | t_string = time.strftime(time_format, time.gmtime(t+start)) |
---|
| 1095 | fid.write('%s, %f %f %f\n' %(t_string, 2*t, t**2, sin(t*pi/600))) |
---|
| 1096 | t += dt |
---|
| 1097 | |
---|
| 1098 | fid.close() |
---|
| 1099 | |
---|
| 1100 | #Convert ASCII file to NetCDF (Which is what we really like!) |
---|
| 1101 | timefile2netcdf(filename) |
---|
| 1102 | |
---|
| 1103 | a = [0.0, 0.0] |
---|
| 1104 | b = [4.0, 0.0] |
---|
| 1105 | c = [0.0, 3.0] |
---|
| 1106 | |
---|
| 1107 | points = [a, b, c] |
---|
| 1108 | vertices = [[0,1,2]] |
---|
| 1109 | domain = Domain(points, vertices) |
---|
| 1110 | |
---|
| 1111 | #Check that domain.starttime isn't updated if later than file starttime but earlier |
---|
| 1112 | #than file end time |
---|
| 1113 | delta = 23 |
---|
| 1114 | domain.starttime = start + delta |
---|
| 1115 | F = file_function(filename + '.tms', domain, |
---|
| 1116 | quantities = ['Attribute0', 'Attribute1', 'Attribute2']) |
---|
[6145] | 1117 | assert num.allclose(domain.starttime, start+delta) |
---|
[5897] | 1118 | |
---|
[6173] | 1119 | assert num.allclose(F.get_time(), [-23., 37., 97., 157., 217., |
---|
| 1120 | 277., 337., 397., 457., 517., |
---|
| 1121 | 577., 637., 697., 757., 817., |
---|
| 1122 | 877., 937., 997., 1057., 1117., |
---|
| 1123 | 1177.]) |
---|
[5897] | 1124 | |
---|
| 1125 | |
---|
| 1126 | #Now try interpolation with delta offset |
---|
| 1127 | for i in range(20): |
---|
| 1128 | t = i*10 |
---|
| 1129 | q = F(t-delta) |
---|
| 1130 | |
---|
| 1131 | #Exact linear intpolation |
---|
[6145] | 1132 | assert num.allclose(q[0], 2*t) |
---|
[5897] | 1133 | if i%6 == 0: |
---|
[6145] | 1134 | assert num.allclose(q[1], t**2) |
---|
| 1135 | assert num.allclose(q[2], sin(t*pi/600)) |
---|
[5897] | 1136 | |
---|
| 1137 | #Check non-exact |
---|
| 1138 | |
---|
| 1139 | t = 90 #Halfway between 60 and 120 |
---|
| 1140 | q = F(t-delta) |
---|
[6145] | 1141 | assert num.allclose( (120**2 + 60**2)/2, q[1] ) |
---|
| 1142 | assert num.allclose( (sin(120*pi/600) + sin(60*pi/600))/2, q[2] ) |
---|
[5897] | 1143 | |
---|
| 1144 | |
---|
| 1145 | t = 100 #Two thirds of the way between between 60 and 120 |
---|
| 1146 | q = F(t-delta) |
---|
[6145] | 1147 | assert num.allclose( 2*120**2/3 + 60**2/3, q[1] ) |
---|
| 1148 | assert num.allclose( 2*sin(120*pi/600)/3 + sin(60*pi/600)/3, q[2] ) |
---|
[5897] | 1149 | |
---|
| 1150 | |
---|
| 1151 | os.remove(filename + '.tms') |
---|
| 1152 | os.remove(filename + '.txt') |
---|
| 1153 | |
---|
[6173] | 1154 | |
---|
[5897] | 1155 | |
---|
[6173] | 1156 | def test_file_function_time_with_domain_different_start_and_time_limit(self): |
---|
| 1157 | """Test that File function interpolates correctly |
---|
| 1158 | between given times. No x,y dependency here. |
---|
| 1159 | Use domain with a starttime later than that of file |
---|
[5897] | 1160 | |
---|
[6173] | 1161 | ASCII version |
---|
| 1162 | |
---|
| 1163 | This test also tests that time can be truncated. |
---|
| 1164 | """ |
---|
| 1165 | |
---|
| 1166 | # Write file |
---|
| 1167 | import os, time, calendar |
---|
| 1168 | from anuga.config import time_format |
---|
| 1169 | from math import sin, pi |
---|
| 1170 | from domain import Domain |
---|
| 1171 | |
---|
| 1172 | finaltime = 1200 |
---|
| 1173 | filename = 'test_file_function' |
---|
| 1174 | fid = open(filename + '.txt', 'w') |
---|
| 1175 | start = time.mktime(time.strptime('2000', '%Y')) |
---|
| 1176 | dt = 60 #One minute intervals |
---|
| 1177 | t = 0.0 |
---|
| 1178 | while t <= finaltime: |
---|
| 1179 | t_string = time.strftime(time_format, time.gmtime(t+start)) |
---|
| 1180 | fid.write('%s, %f %f %f\n' %(t_string, 2*t, t**2, sin(t*pi/600))) |
---|
| 1181 | t += dt |
---|
| 1182 | |
---|
| 1183 | fid.close() |
---|
| 1184 | |
---|
| 1185 | # Convert ASCII file to NetCDF (Which is what we really like!) |
---|
| 1186 | timefile2netcdf(filename) |
---|
| 1187 | |
---|
| 1188 | a = [0.0, 0.0] |
---|
| 1189 | b = [4.0, 0.0] |
---|
| 1190 | c = [0.0, 3.0] |
---|
| 1191 | |
---|
| 1192 | points = [a, b, c] |
---|
| 1193 | vertices = [[0,1,2]] |
---|
| 1194 | domain = Domain(points, vertices) |
---|
| 1195 | |
---|
| 1196 | # Check that domain.starttime isn't updated if later than file starttime but earlier |
---|
| 1197 | # than file end time |
---|
| 1198 | delta = 23 |
---|
| 1199 | domain.starttime = start + delta |
---|
[6175] | 1200 | time_limit = domain.starttime + 600 |
---|
[6173] | 1201 | F = file_function(filename + '.tms', domain, |
---|
[6175] | 1202 | time_limit=time_limit, |
---|
[6173] | 1203 | quantities=['Attribute0', 'Attribute1', 'Attribute2']) |
---|
| 1204 | assert num.allclose(domain.starttime, start+delta) |
---|
| 1205 | |
---|
| 1206 | assert num.allclose(F.get_time(), [-23., 37., 97., 157., 217., |
---|
| 1207 | 277., 337., 397., 457., 517., |
---|
| 1208 | 577.]) |
---|
| 1209 | |
---|
| 1210 | |
---|
| 1211 | |
---|
| 1212 | # Now try interpolation with delta offset |
---|
| 1213 | for i in range(20): |
---|
| 1214 | t = i*10 |
---|
| 1215 | q = F(t-delta) |
---|
| 1216 | |
---|
| 1217 | #Exact linear intpolation |
---|
| 1218 | assert num.allclose(q[0], 2*t) |
---|
| 1219 | if i%6 == 0: |
---|
| 1220 | assert num.allclose(q[1], t**2) |
---|
| 1221 | assert num.allclose(q[2], sin(t*pi/600)) |
---|
| 1222 | |
---|
| 1223 | # Check non-exact |
---|
| 1224 | t = 90 #Halfway between 60 and 120 |
---|
| 1225 | q = F(t-delta) |
---|
| 1226 | assert num.allclose( (120**2 + 60**2)/2, q[1] ) |
---|
| 1227 | assert num.allclose( (sin(120*pi/600) + sin(60*pi/600))/2, q[2] ) |
---|
| 1228 | |
---|
| 1229 | |
---|
| 1230 | t = 100 # Two thirds of the way between between 60 and 120 |
---|
| 1231 | q = F(t-delta) |
---|
| 1232 | assert num.allclose( 2*120**2/3 + 60**2/3, q[1] ) |
---|
| 1233 | assert num.allclose( 2*sin(120*pi/600)/3 + sin(60*pi/600)/3, q[2] ) |
---|
| 1234 | |
---|
| 1235 | |
---|
| 1236 | os.remove(filename + '.tms') |
---|
| 1237 | os.remove(filename + '.txt') |
---|
| 1238 | |
---|
| 1239 | |
---|
| 1240 | |
---|
| 1241 | |
---|
| 1242 | |
---|
| 1243 | |
---|
[5897] | 1244 | def test_apply_expression_to_dictionary(self): |
---|
| 1245 | |
---|
| 1246 | #FIXME: Division is not expected to work for integers. |
---|
| 1247 | #This must be caught. |
---|
[7276] | 1248 | foo = num.array([[1,2,3], [4,5,6]], num.float) |
---|
[5897] | 1249 | |
---|
[7276] | 1250 | bar = num.array([[-1,0,5], [6,1,1]], num.float) |
---|
[5897] | 1251 | |
---|
| 1252 | D = {'X': foo, 'Y': bar} |
---|
| 1253 | |
---|
| 1254 | Z = apply_expression_to_dictionary('X+Y', D) |
---|
[6145] | 1255 | assert num.allclose(Z, foo+bar) |
---|
[5897] | 1256 | |
---|
| 1257 | Z = apply_expression_to_dictionary('X*Y', D) |
---|
[6145] | 1258 | assert num.allclose(Z, foo*bar) |
---|
[5897] | 1259 | |
---|
| 1260 | Z = apply_expression_to_dictionary('4*X+Y', D) |
---|
[6145] | 1261 | assert num.allclose(Z, 4*foo+bar) |
---|
[5897] | 1262 | |
---|
| 1263 | # test zero division is OK |
---|
| 1264 | Z = apply_expression_to_dictionary('X/Y', D) |
---|
[6145] | 1265 | assert num.allclose(1/Z, 1/(foo/bar)) # can't compare inf to inf |
---|
[5897] | 1266 | |
---|
| 1267 | # make an error for zero on zero |
---|
[7276] | 1268 | # this is really an error in numeric, SciPy core can handle it |
---|
[5897] | 1269 | # Z = apply_expression_to_dictionary('0/Y', D) |
---|
| 1270 | |
---|
| 1271 | #Check exceptions |
---|
| 1272 | try: |
---|
| 1273 | #Wrong name |
---|
| 1274 | Z = apply_expression_to_dictionary('4*X+A', D) |
---|
| 1275 | except NameError: |
---|
| 1276 | pass |
---|
| 1277 | else: |
---|
| 1278 | msg = 'Should have raised a NameError Exception' |
---|
| 1279 | raise msg |
---|
| 1280 | |
---|
| 1281 | |
---|
| 1282 | try: |
---|
| 1283 | #Wrong order |
---|
| 1284 | Z = apply_expression_to_dictionary(D, '4*X+A') |
---|
| 1285 | except AssertionError: |
---|
| 1286 | pass |
---|
| 1287 | else: |
---|
| 1288 | msg = 'Should have raised a AssertionError Exception' |
---|
| 1289 | raise msg |
---|
| 1290 | |
---|
| 1291 | |
---|
| 1292 | def test_multiple_replace(self): |
---|
| 1293 | """Hard test that checks a true word-by-word simultaneous replace |
---|
| 1294 | """ |
---|
| 1295 | |
---|
| 1296 | D = {'x': 'xi', 'y': 'eta', 'xi':'lam'} |
---|
| 1297 | exp = '3*x+y + xi' |
---|
| 1298 | |
---|
| 1299 | new = multiple_replace(exp, D) |
---|
| 1300 | |
---|
| 1301 | assert new == '3*xi+eta + lam' |
---|
| 1302 | |
---|
| 1303 | |
---|
| 1304 | |
---|
| 1305 | def test_point_on_line_obsolete(self): |
---|
| 1306 | """Test that obsolete call issues appropriate warning""" |
---|
| 1307 | |
---|
| 1308 | #Turn warning into an exception |
---|
| 1309 | import warnings |
---|
| 1310 | warnings.filterwarnings('error') |
---|
| 1311 | |
---|
| 1312 | try: |
---|
| 1313 | assert point_on_line( 0, 0.5, 0,1, 0,0 ) |
---|
| 1314 | except DeprecationWarning: |
---|
| 1315 | pass |
---|
| 1316 | else: |
---|
| 1317 | msg = 'point_on_line should have issued a DeprecationWarning' |
---|
| 1318 | raise Exception(msg) |
---|
| 1319 | |
---|
| 1320 | warnings.resetwarnings() |
---|
| 1321 | |
---|
| 1322 | def test_get_revision_number(self): |
---|
| 1323 | """test_get_revision_number(self): |
---|
| 1324 | |
---|
| 1325 | Test that revision number can be retrieved. |
---|
| 1326 | """ |
---|
| 1327 | if os.environ.has_key('USER') and os.environ['USER'] == 'dgray': |
---|
| 1328 | # I have a known snv incompatability issue, |
---|
| 1329 | # so I'm skipping this test. |
---|
| 1330 | # FIXME when SVN is upgraded on our clusters |
---|
| 1331 | pass |
---|
| 1332 | else: |
---|
| 1333 | n = get_revision_number() |
---|
| 1334 | assert n>=0 |
---|
| 1335 | |
---|
| 1336 | |
---|
| 1337 | |
---|
| 1338 | def test_add_directories(self): |
---|
| 1339 | |
---|
| 1340 | import tempfile |
---|
| 1341 | root_dir = tempfile.mkdtemp('_test_util', 'test_util_') |
---|
| 1342 | directories = ['ja','ne','ke'] |
---|
| 1343 | kens_dir = add_directories(root_dir, directories) |
---|
| 1344 | assert kens_dir == root_dir + sep + 'ja' + sep + 'ne' + \ |
---|
| 1345 | sep + 'ke' |
---|
| 1346 | assert access(root_dir,F_OK) |
---|
| 1347 | |
---|
| 1348 | add_directories(root_dir, directories) |
---|
| 1349 | assert access(root_dir,F_OK) |
---|
| 1350 | |
---|
| 1351 | #clean up! |
---|
| 1352 | os.rmdir(kens_dir) |
---|
| 1353 | os.rmdir(root_dir + sep + 'ja' + sep + 'ne') |
---|
| 1354 | os.rmdir(root_dir + sep + 'ja') |
---|
| 1355 | os.rmdir(root_dir) |
---|
| 1356 | |
---|
| 1357 | def test_add_directories_bad(self): |
---|
| 1358 | |
---|
| 1359 | import tempfile |
---|
| 1360 | root_dir = tempfile.mkdtemp('_test_util', 'test_util_') |
---|
| 1361 | directories = ['/\/!@#@#$%^%&*((*:*:','ne','ke'] |
---|
| 1362 | |
---|
| 1363 | try: |
---|
| 1364 | kens_dir = add_directories(root_dir, directories) |
---|
| 1365 | except OSError: |
---|
| 1366 | pass |
---|
| 1367 | else: |
---|
| 1368 | msg = 'bad dir name should give OSError' |
---|
| 1369 | raise Exception(msg) |
---|
| 1370 | |
---|
| 1371 | #clean up! |
---|
| 1372 | os.rmdir(root_dir) |
---|
| 1373 | |
---|
| 1374 | def test_check_list(self): |
---|
| 1375 | |
---|
| 1376 | check_list(['stage','xmomentum']) |
---|
| 1377 | |
---|
| 1378 | |
---|
| 1379 | def test_add_directories(self): |
---|
| 1380 | |
---|
| 1381 | import tempfile |
---|
| 1382 | root_dir = tempfile.mkdtemp('_test_util', 'test_util_') |
---|
| 1383 | directories = ['ja','ne','ke'] |
---|
| 1384 | kens_dir = add_directories(root_dir, directories) |
---|
| 1385 | assert kens_dir == root_dir + sep + 'ja' + sep + 'ne' + \ |
---|
| 1386 | sep + 'ke' |
---|
| 1387 | assert access(root_dir,F_OK) |
---|
| 1388 | |
---|
| 1389 | add_directories(root_dir, directories) |
---|
| 1390 | assert access(root_dir,F_OK) |
---|
| 1391 | |
---|
| 1392 | #clean up! |
---|
| 1393 | os.rmdir(kens_dir) |
---|
| 1394 | os.rmdir(root_dir + sep + 'ja' + sep + 'ne') |
---|
| 1395 | os.rmdir(root_dir + sep + 'ja') |
---|
| 1396 | os.rmdir(root_dir) |
---|
| 1397 | |
---|
| 1398 | def test_add_directories_bad(self): |
---|
| 1399 | |
---|
| 1400 | import tempfile |
---|
| 1401 | root_dir = tempfile.mkdtemp('_test_util', 'test_util_') |
---|
| 1402 | directories = ['/\/!@#@#$%^%&*((*:*:','ne','ke'] |
---|
| 1403 | |
---|
| 1404 | try: |
---|
| 1405 | kens_dir = add_directories(root_dir, directories) |
---|
| 1406 | except OSError: |
---|
| 1407 | pass |
---|
| 1408 | else: |
---|
| 1409 | msg = 'bad dir name should give OSError' |
---|
| 1410 | raise Exception(msg) |
---|
| 1411 | |
---|
| 1412 | #clean up! |
---|
| 1413 | os.rmdir(root_dir) |
---|
| 1414 | |
---|
| 1415 | def test_check_list(self): |
---|
| 1416 | |
---|
| 1417 | check_list(['stage','xmomentum']) |
---|
[6070] | 1418 | |
---|
| 1419 | ###### |
---|
| 1420 | # Test the remove_lone_verts() function |
---|
| 1421 | ###### |
---|
[5897] | 1422 | |
---|
[6070] | 1423 | def test_remove_lone_verts_a(self): |
---|
[5897] | 1424 | verts = [[0,0],[1,0],[0,1]] |
---|
| 1425 | tris = [[0,1,2]] |
---|
| 1426 | new_verts, new_tris = remove_lone_verts(verts, tris) |
---|
[6070] | 1427 | self.failUnless(new_verts.tolist() == verts) |
---|
| 1428 | self.failUnless(new_tris.tolist() == tris) |
---|
[5897] | 1429 | |
---|
[6070] | 1430 | def test_remove_lone_verts_b(self): |
---|
[5897] | 1431 | verts = [[0,0],[1,0],[0,1],[99,99]] |
---|
| 1432 | tris = [[0,1,2]] |
---|
| 1433 | new_verts, new_tris = remove_lone_verts(verts, tris) |
---|
[6070] | 1434 | self.failUnless(new_verts.tolist() == verts[0:3]) |
---|
| 1435 | self.failUnless(new_tris.tolist() == tris) |
---|
[5897] | 1436 | |
---|
[6070] | 1437 | def test_remove_lone_verts_c(self): |
---|
[5897] | 1438 | verts = [[99,99],[0,0],[1,0],[99,99],[0,1],[99,99]] |
---|
| 1439 | tris = [[1,2,4]] |
---|
| 1440 | new_verts, new_tris = remove_lone_verts(verts, tris) |
---|
[6070] | 1441 | self.failUnless(new_verts.tolist() == [[0,0],[1,0],[0,1]]) |
---|
| 1442 | self.failUnless(new_tris.tolist() == [[0,1,2]]) |
---|
[5897] | 1443 | |
---|
[6070] | 1444 | def test_remove_lone_verts_d(self): |
---|
[5897] | 1445 | verts = [[0,0],[1,0],[99,99],[0,1]] |
---|
| 1446 | tris = [[0,1,3]] |
---|
| 1447 | new_verts, new_tris = remove_lone_verts(verts, tris) |
---|
[6070] | 1448 | self.failUnless(new_verts.tolist() == [[0,0],[1,0],[0,1]]) |
---|
| 1449 | self.failUnless(new_tris.tolist() == [[0,1,2]]) |
---|
[5897] | 1450 | |
---|
[6070] | 1451 | def test_remove_lone_verts_e(self): |
---|
[5897] | 1452 | verts = [[0,0],[1,0],[0,1],[99,99],[99,99],[99,99]] |
---|
| 1453 | tris = [[0,1,2]] |
---|
| 1454 | new_verts, new_tris = remove_lone_verts(verts, tris) |
---|
[6070] | 1455 | self.failUnless(new_verts.tolist() == verts[0:3]) |
---|
| 1456 | self.failUnless(new_tris.tolist() == tris) |
---|
[5897] | 1457 | |
---|
[6070] | 1458 | def test_remove_lone_verts_f(self): |
---|
| 1459 | verts = [[0,0],[1,0],[99,99],[0,1],[99,99],[1,1],[99,99]] |
---|
| 1460 | tris = [[0,1,3],[0,1,5]] |
---|
[5897] | 1461 | new_verts, new_tris = remove_lone_verts(verts, tris) |
---|
[6070] | 1462 | self.failUnless(new_verts.tolist() == [[0,0],[1,0],[0,1],[1,1]]) |
---|
| 1463 | self.failUnless(new_tris.tolist() == [[0,1,2],[0,1,3]]) |
---|
[5897] | 1464 | |
---|
[6070] | 1465 | ###### |
---|
| 1466 | # |
---|
| 1467 | ###### |
---|
| 1468 | |
---|
[5897] | 1469 | def test_get_min_max_values(self): |
---|
| 1470 | |
---|
| 1471 | list=[8,9,6,1,4] |
---|
| 1472 | min1, max1 = get_min_max_values(list) |
---|
| 1473 | |
---|
| 1474 | assert min1==1 |
---|
| 1475 | assert max1==9 |
---|
| 1476 | |
---|
| 1477 | def test_get_min_max_values1(self): |
---|
| 1478 | |
---|
| 1479 | list=[-8,-9,-6,-1,-4] |
---|
| 1480 | min1, max1 = get_min_max_values(list) |
---|
| 1481 | |
---|
| 1482 | # print 'min1,max1',min1,max1 |
---|
| 1483 | assert min1==-9 |
---|
| 1484 | assert max1==-1 |
---|
| 1485 | |
---|
| 1486 | # def test_get_min_max_values2(self): |
---|
| 1487 | # ''' |
---|
| 1488 | # The min and max supplied are greater than the ones in the |
---|
| 1489 | # list and therefore are the ones returned |
---|
| 1490 | # ''' |
---|
| 1491 | # list=[-8,-9,-6,-1,-4] |
---|
| 1492 | # min1, max1 = get_min_max_values(list,-10,10) |
---|
| 1493 | # |
---|
| 1494 | ## print 'min1,max1',min1,max1 |
---|
| 1495 | # assert min1==-10 |
---|
| 1496 | # assert max1==10 |
---|
| 1497 | |
---|
| 1498 | def test_make_plots_from_csv_files(self): |
---|
| 1499 | |
---|
| 1500 | #if sys.platform == 'win32': #Windows |
---|
| 1501 | try: |
---|
| 1502 | import pylab |
---|
| 1503 | except ImportError: |
---|
| 1504 | #ANUGA don't need pylab to work so the system doesn't |
---|
| 1505 | #rely on pylab being installed |
---|
| 1506 | return |
---|
| 1507 | |
---|
| 1508 | |
---|
| 1509 | current_dir=getcwd()+sep+'abstract_2d_finite_volumes' |
---|
| 1510 | temp_dir = tempfile.mkdtemp('','figures') |
---|
| 1511 | # print 'temp_dir',temp_dir |
---|
| 1512 | fileName = temp_dir+sep+'time_series_3.csv' |
---|
| 1513 | file = open(fileName,"w") |
---|
| 1514 | file.write("time,stage,speed,momentum,elevation\n\ |
---|
| 1515 | 1.0, 0, 0, 0, 10 \n\ |
---|
| 1516 | 2.0, 5, 2, 4, 10 \n\ |
---|
| 1517 | 3.0, 3, 3, 5, 10 \n") |
---|
| 1518 | file.close() |
---|
| 1519 | |
---|
| 1520 | fileName1 = temp_dir+sep+'time_series_4.csv' |
---|
| 1521 | file1 = open(fileName1,"w") |
---|
| 1522 | file1.write("time,stage,speed,momentum,elevation\n\ |
---|
| 1523 | 1.0, 0, 0, 0, 5 \n\ |
---|
| 1524 | 2.0, -5, -2, -4, 5 \n\ |
---|
| 1525 | 3.0, -4, -3, -5, 5 \n") |
---|
| 1526 | file1.close() |
---|
| 1527 | |
---|
| 1528 | fileName2 = temp_dir+sep+'time_series_5.csv' |
---|
| 1529 | file2 = open(fileName2,"w") |
---|
| 1530 | file2.write("time,stage,speed,momentum,elevation\n\ |
---|
| 1531 | 1.0, 0, 0, 0, 7 \n\ |
---|
| 1532 | 2.0, 4, -0.45, 57, 7 \n\ |
---|
| 1533 | 3.0, 6, -0.5, 56, 7 \n") |
---|
| 1534 | file2.close() |
---|
| 1535 | |
---|
| 1536 | dir, name=os.path.split(fileName) |
---|
| 1537 | csv2timeseries_graphs(directories_dic={dir:['gauge', 0, 0]}, |
---|
| 1538 | output_dir=temp_dir, |
---|
| 1539 | base_name='time_series_', |
---|
| 1540 | plot_numbers=['3-5'], |
---|
| 1541 | quantities=['speed','stage','momentum'], |
---|
| 1542 | assess_all_csv_files=True, |
---|
| 1543 | extra_plot_name='test') |
---|
| 1544 | |
---|
| 1545 | #print dir+sep+name[:-4]+'_stage_test.png' |
---|
| 1546 | assert(access(dir+sep+name[:-4]+'_stage_test.png',F_OK)==True) |
---|
| 1547 | assert(access(dir+sep+name[:-4]+'_speed_test.png',F_OK)==True) |
---|
| 1548 | assert(access(dir+sep+name[:-4]+'_momentum_test.png',F_OK)==True) |
---|
| 1549 | |
---|
| 1550 | dir1, name1=os.path.split(fileName1) |
---|
| 1551 | assert(access(dir+sep+name1[:-4]+'_stage_test.png',F_OK)==True) |
---|
| 1552 | assert(access(dir+sep+name1[:-4]+'_speed_test.png',F_OK)==True) |
---|
| 1553 | assert(access(dir+sep+name1[:-4]+'_momentum_test.png',F_OK)==True) |
---|
| 1554 | |
---|
| 1555 | |
---|
| 1556 | dir2, name2=os.path.split(fileName2) |
---|
| 1557 | assert(access(dir+sep+name2[:-4]+'_stage_test.png',F_OK)==True) |
---|
| 1558 | assert(access(dir+sep+name2[:-4]+'_speed_test.png',F_OK)==True) |
---|
| 1559 | assert(access(dir+sep+name2[:-4]+'_momentum_test.png',F_OK)==True) |
---|
| 1560 | |
---|
| 1561 | del_dir(temp_dir) |
---|
| 1562 | |
---|
| 1563 | |
---|
| 1564 | |
---|
| 1565 | def test_greens_law(self): |
---|
| 1566 | |
---|
| 1567 | from math import sqrt |
---|
| 1568 | |
---|
| 1569 | d1 = 80.0 |
---|
| 1570 | d2 = 20.0 |
---|
| 1571 | h1 = 1.0 |
---|
| 1572 | h2 = greens_law(d1,d2,h1) |
---|
| 1573 | |
---|
| 1574 | assert h2==sqrt(2.0) |
---|
| 1575 | |
---|
| 1576 | def test_calc_bearings(self): |
---|
| 1577 | |
---|
| 1578 | from math import atan, degrees |
---|
| 1579 | #Test East |
---|
| 1580 | uh = 1 |
---|
| 1581 | vh = 1.e-15 |
---|
| 1582 | angle = calc_bearing(uh, vh) |
---|
| 1583 | if 89 < angle < 91: v=1 |
---|
| 1584 | assert v==1 |
---|
| 1585 | #Test West |
---|
| 1586 | uh = -1 |
---|
| 1587 | vh = 1.e-15 |
---|
| 1588 | angle = calc_bearing(uh, vh) |
---|
| 1589 | if 269 < angle < 271: v=1 |
---|
| 1590 | assert v==1 |
---|
| 1591 | #Test North |
---|
| 1592 | uh = 1.e-15 |
---|
| 1593 | vh = 1 |
---|
| 1594 | angle = calc_bearing(uh, vh) |
---|
| 1595 | if -1 < angle < 1: v=1 |
---|
| 1596 | assert v==1 |
---|
| 1597 | #Test South |
---|
| 1598 | uh = 1.e-15 |
---|
| 1599 | vh = -1 |
---|
| 1600 | angle = calc_bearing(uh, vh) |
---|
| 1601 | if 179 < angle < 181: v=1 |
---|
| 1602 | assert v==1 |
---|
| 1603 | #Test South-East |
---|
| 1604 | uh = 1 |
---|
| 1605 | vh = -1 |
---|
| 1606 | angle = calc_bearing(uh, vh) |
---|
| 1607 | if 134 < angle < 136: v=1 |
---|
| 1608 | assert v==1 |
---|
| 1609 | #Test North-East |
---|
| 1610 | uh = 1 |
---|
| 1611 | vh = 1 |
---|
| 1612 | angle = calc_bearing(uh, vh) |
---|
| 1613 | if 44 < angle < 46: v=1 |
---|
| 1614 | assert v==1 |
---|
| 1615 | #Test South-West |
---|
| 1616 | uh = -1 |
---|
| 1617 | vh = -1 |
---|
| 1618 | angle = calc_bearing(uh, vh) |
---|
| 1619 | if 224 < angle < 226: v=1 |
---|
| 1620 | assert v==1 |
---|
| 1621 | #Test North-West |
---|
| 1622 | uh = -1 |
---|
| 1623 | vh = 1 |
---|
| 1624 | angle = calc_bearing(uh, vh) |
---|
| 1625 | if 314 < angle < 316: v=1 |
---|
| 1626 | assert v==1 |
---|
| 1627 | |
---|
| 1628 | |
---|
| 1629 | #------------------------------------------------------------- |
---|
[7276] | 1630 | |
---|
[5897] | 1631 | if __name__ == "__main__": |
---|
[7276] | 1632 | suite = unittest.makeSuite(Test_Util, 'test') |
---|
[5897] | 1633 | # runner = unittest.TextTestRunner(verbosity=2) |
---|
| 1634 | runner = unittest.TextTestRunner(verbosity=1) |
---|
| 1635 | runner.run(suite) |
---|