[195] | 1 | """Class Domain - |
---|
| 2 | 2D triangular domains for finite-volume computations of |
---|
| 3 | the advection equation. |
---|
| 4 | |
---|
| 5 | This module contains a specialisation of class Domain from module domain.py |
---|
| 6 | consisting of methods specific to the advection equantion |
---|
| 7 | |
---|
| 8 | The equation is |
---|
| 9 | |
---|
| 10 | u_t + (v_1 u)_x + (v_2 u)_y = 0 |
---|
| 11 | |
---|
[773] | 12 | There is only one conserved quantity, the stage u |
---|
[195] | 13 | |
---|
| 14 | The advection equation is a very simple specialisation of the generic |
---|
| 15 | domain and may serve as an instructive example or a test of other |
---|
| 16 | components such as visualisation. |
---|
| 17 | |
---|
| 18 | Ole Nielsen, Stephen Roberts, Duncan Gray, Christopher Zoppou |
---|
[1363] | 19 | Geoscience Australia, 2004 |
---|
[195] | 20 | """ |
---|
| 21 | |
---|
[1556] | 22 | |
---|
[4796] | 23 | #import logging, logging.config |
---|
| 24 | #logger = logging.getLogger('advection') |
---|
| 25 | #logger.setLevel(logging.WARNING) |
---|
| 26 | # |
---|
| 27 | #try: |
---|
| 28 | # logging.config.fileConfig('log.ini') |
---|
| 29 | #except: |
---|
| 30 | # pass |
---|
[1556] | 31 | |
---|
| 32 | |
---|
[4793] | 33 | from anuga.abstract_2d_finite_volumes.domain import * |
---|
[4794] | 34 | Generic_domain = Domain # Rename |
---|
[195] | 35 | |
---|
| 36 | class Domain(Generic_domain): |
---|
| 37 | |
---|
[2813] | 38 | def __init__(self, |
---|
| 39 | coordinates, |
---|
| 40 | vertices, |
---|
| 41 | boundary = None, |
---|
| 42 | tagged_elements = None, |
---|
| 43 | geo_reference = None, |
---|
| 44 | use_inscribed_circle=False, |
---|
| 45 | velocity = None, |
---|
| 46 | full_send_dict=None, |
---|
| 47 | ghost_recv_dict=None, |
---|
| 48 | processor=0, |
---|
| 49 | numproc=1 |
---|
| 50 | ): |
---|
[195] | 51 | |
---|
[1556] | 52 | conserved_quantities = ['stage'] |
---|
| 53 | other_quantities = [] |
---|
[2813] | 54 | Generic_domain.__init__(self, |
---|
| 55 | source=coordinates, |
---|
| 56 | triangles=vertices, |
---|
| 57 | boundary=boundary, |
---|
| 58 | conserved_quantities=conserved_quantities, |
---|
| 59 | other_quantities=other_quantities, |
---|
| 60 | tagged_elements=tagged_elements, |
---|
| 61 | geo_reference=geo_reference, |
---|
| 62 | use_inscribed_circle=use_inscribed_circle, |
---|
| 63 | full_send_dict=full_send_dict, |
---|
| 64 | ghost_recv_dict=ghost_recv_dict, |
---|
| 65 | processor=processor, |
---|
| 66 | numproc=numproc) |
---|
[195] | 67 | |
---|
[1556] | 68 | |
---|
[195] | 69 | if velocity is None: |
---|
| 70 | self.velocity = [1,0] |
---|
| 71 | else: |
---|
| 72 | self.velocity = velocity |
---|
| 73 | |
---|
[1363] | 74 | #Only first is implemented for advection |
---|
| 75 | self.default_order = self.order = 1 |
---|
[195] | 76 | |
---|
[271] | 77 | self.smooth = True |
---|
[195] | 78 | |
---|
| 79 | def check_integrity(self): |
---|
| 80 | Generic_domain.check_integrity(self) |
---|
| 81 | |
---|
[773] | 82 | msg = 'Conserved quantity must be "stage"' |
---|
| 83 | assert self.conserved_quantities[0] == 'stage', msg |
---|
[195] | 84 | |
---|
[1363] | 85 | |
---|
[195] | 86 | def flux_function(self, normal, ql, qr, zl=None, zr=None): |
---|
| 87 | """Compute outward flux as inner product between velocity |
---|
| 88 | vector v=(v_1, v_2) and normal vector n. |
---|
[1363] | 89 | |
---|
[195] | 90 | if <n,v> > 0 flux direction is outward bound and its magnitude is |
---|
| 91 | determined by the quantity inside volume: ql. |
---|
| 92 | Otherwise it is inbound and magnitude is determined by the |
---|
| 93 | quantity outside the volume: qr. |
---|
| 94 | """ |
---|
[1363] | 95 | |
---|
[195] | 96 | v1 = self.velocity[0] |
---|
| 97 | v2 = self.velocity[1] |
---|
| 98 | |
---|
| 99 | |
---|
| 100 | normal_velocity = v1*normal[0] + v2*normal[1] |
---|
| 101 | |
---|
| 102 | if normal_velocity < 0: |
---|
| 103 | flux = qr * normal_velocity |
---|
| 104 | else: |
---|
| 105 | flux = ql * normal_velocity |
---|
[1363] | 106 | |
---|
[195] | 107 | max_speed = abs(normal_velocity) |
---|
[1363] | 108 | return flux, max_speed |
---|
[195] | 109 | |
---|
[1556] | 110 | def compute_fluxes(self): |
---|
[1363] | 111 | |
---|
[1575] | 112 | try: |
---|
[4964] | 113 | self.compute_fluxes_ext() |
---|
[1575] | 114 | except: |
---|
| 115 | self.compute_fluxes_python() |
---|
[4964] | 116 | |
---|
[1575] | 117 | |
---|
| 118 | |
---|
[1556] | 119 | def compute_fluxes_python(self): |
---|
[195] | 120 | """Compute all fluxes and the timestep suitable for all volumes |
---|
| 121 | in domain. |
---|
[1363] | 122 | |
---|
[195] | 123 | Compute total flux for each conserved quantity using "flux_function" |
---|
[1363] | 124 | |
---|
[195] | 125 | Fluxes across each edge are scaled by edgelengths and summed up |
---|
| 126 | Resulting flux is then scaled by area and stored in |
---|
| 127 | domain.explicit_update |
---|
| 128 | |
---|
| 129 | The maximal allowable speed computed by the flux_function |
---|
| 130 | for each volume |
---|
| 131 | is converted to a timestep that must not be exceeded. The minimum of |
---|
| 132 | those is computed as the next overall timestep. |
---|
| 133 | |
---|
| 134 | Post conditions: |
---|
| 135 | domain.explicit_update is reset to computed flux values |
---|
[1363] | 136 | domain.timestep is set to the largest step satisfying all volumes. |
---|
[195] | 137 | """ |
---|
| 138 | |
---|
| 139 | import sys |
---|
| 140 | from Numeric import zeros, Float |
---|
[3514] | 141 | from anuga.config import max_timestep |
---|
[195] | 142 | |
---|
[3928] | 143 | N = len(self) |
---|
[1363] | 144 | |
---|
[195] | 145 | neighbours = self.neighbours |
---|
| 146 | neighbour_edges = self.neighbour_edges |
---|
| 147 | normals = self.normals |
---|
| 148 | |
---|
| 149 | areas = self.areas |
---|
| 150 | radii = self.radii |
---|
| 151 | edgelengths = self.edgelengths |
---|
[1363] | 152 | |
---|
[195] | 153 | timestep = max_timestep #FIXME: Get rid of this |
---|
| 154 | |
---|
| 155 | #Shortcuts |
---|
[773] | 156 | Stage = self.quantities['stage'] |
---|
[195] | 157 | |
---|
| 158 | #Arrays |
---|
[773] | 159 | stage = Stage.edge_values |
---|
[195] | 160 | |
---|
[773] | 161 | stage_bdry = Stage.boundary_values |
---|
[1363] | 162 | |
---|
[195] | 163 | flux = zeros(1, Float) #Work array for summing up fluxes |
---|
| 164 | |
---|
| 165 | #Loop |
---|
| 166 | for k in range(N): |
---|
| 167 | optimal_timestep = float(sys.maxint) |
---|
| 168 | |
---|
| 169 | flux[:] = 0. #Reset work array |
---|
| 170 | for i in range(3): |
---|
| 171 | #Quantities inside volume facing neighbour i |
---|
[773] | 172 | ql = stage[k, i] |
---|
[195] | 173 | |
---|
| 174 | #Quantities at neighbour on nearest face |
---|
[1363] | 175 | n = neighbours[k,i] |
---|
[195] | 176 | if n < 0: |
---|
| 177 | m = -n-1 #Convert neg flag to index |
---|
[773] | 178 | qr = stage_bdry[m] |
---|
[1363] | 179 | else: |
---|
[195] | 180 | m = neighbour_edges[k,i] |
---|
[773] | 181 | qr = stage[n, m] |
---|
[195] | 182 | |
---|
[1363] | 183 | |
---|
| 184 | #Outward pointing normal vector |
---|
[195] | 185 | normal = normals[k, 2*i:2*i+2] |
---|
| 186 | |
---|
| 187 | #Flux computation using provided function |
---|
| 188 | edgeflux, max_speed = self.flux_function(normal, ql, qr) |
---|
| 189 | flux -= edgeflux * edgelengths[k,i] |
---|
[1363] | 190 | |
---|
[195] | 191 | #Update optimal_timestep |
---|
[3167] | 192 | if self.tri_full_flag[k] == 1 : |
---|
[3021] | 193 | try: |
---|
| 194 | optimal_timestep = min(optimal_timestep, radii[k]/max_speed) |
---|
| 195 | except ZeroDivisionError: |
---|
| 196 | pass |
---|
[195] | 197 | |
---|
| 198 | #Normalise by area and store for when all conserved |
---|
| 199 | #quantities get updated |
---|
| 200 | flux /= areas[k] |
---|
[773] | 201 | Stage.explicit_update[k] = flux[0] |
---|
[1363] | 202 | |
---|
[195] | 203 | timestep = min(timestep, optimal_timestep) |
---|
| 204 | |
---|
[1363] | 205 | self.timestep = timestep |
---|
[195] | 206 | |
---|
[4964] | 207 | |
---|
| 208 | def compute_fluxes_ext(self): |
---|
[1556] | 209 | """Compute all fluxes and the timestep suitable for all volumes |
---|
| 210 | in domain. |
---|
[271] | 211 | |
---|
[1556] | 212 | Compute total flux for each conserved quantity using "flux_function" |
---|
[1363] | 213 | |
---|
[1556] | 214 | Fluxes across each edge are scaled by edgelengths and summed up |
---|
| 215 | Resulting flux is then scaled by area and stored in |
---|
| 216 | domain.explicit_update |
---|
| 217 | |
---|
| 218 | The maximal allowable speed computed by the flux_function |
---|
| 219 | for each volume |
---|
| 220 | is converted to a timestep that must not be exceeded. The minimum of |
---|
| 221 | those is computed as the next overall timestep. |
---|
| 222 | |
---|
| 223 | Post conditions: |
---|
| 224 | domain.explicit_update is reset to computed flux values |
---|
| 225 | domain.timestep is set to the largest step satisfying all volumes. |
---|
| 226 | """ |
---|
| 227 | |
---|
| 228 | import sys |
---|
| 229 | from Numeric import zeros, Float |
---|
[3514] | 230 | from anuga.config import max_timestep |
---|
[1556] | 231 | |
---|
| 232 | import weave |
---|
| 233 | from weave import converters |
---|
| 234 | |
---|
[3928] | 235 | N = len(self) |
---|
[1556] | 236 | |
---|
| 237 | |
---|
| 238 | timestep = zeros( 1, Float); |
---|
| 239 | timestep[0] = float(max_timestep) #FIXME: Get rid of this |
---|
| 240 | |
---|
| 241 | #Shortcuts |
---|
| 242 | Stage = self.quantities['stage'] |
---|
| 243 | |
---|
| 244 | #Arrays |
---|
| 245 | neighbours = self.neighbours |
---|
| 246 | neighbour_edges = self.neighbour_edges |
---|
| 247 | normals = self.normals |
---|
| 248 | areas = self.areas |
---|
| 249 | radii = self.radii |
---|
| 250 | edgelengths = self.edgelengths |
---|
[3021] | 251 | tri_full_flag = self.tri_full_flag |
---|
[1556] | 252 | |
---|
| 253 | stage_edge = Stage.edge_values |
---|
| 254 | stage_bdry = Stage.boundary_values |
---|
| 255 | stage_update = Stage.explicit_update |
---|
| 256 | |
---|
| 257 | huge_timestep = float(sys.maxint) |
---|
| 258 | |
---|
[4964] | 259 | v = self.velocity |
---|
[1556] | 260 | |
---|
[4964] | 261 | from advection_ext import compute_fluxes |
---|
| 262 | |
---|
| 263 | compute_fluxes(stage_edge,stage_bdry,stage_update, |
---|
| 264 | neighbours,neighbour_edges,normals, |
---|
| 265 | areas,radii,edgelengths, |
---|
| 266 | tri_full_flag, |
---|
| 267 | huge_timestep,timestep,v) |
---|
[1556] | 268 | |
---|
[4964] | 269 | self.timestep = timestep |
---|
[1556] | 270 | |
---|
| 271 | |
---|
[2494] | 272 | def evolve(self, |
---|
| 273 | yieldstep = None, |
---|
| 274 | finaltime = None, |
---|
[2813] | 275 | duration = None, |
---|
[2494] | 276 | skip_initial_step = False): |
---|
[2813] | 277 | |
---|
[271] | 278 | """Specialisation of basic evolve method from parent class |
---|
| 279 | """ |
---|
[1363] | 280 | |
---|
[271] | 281 | #Call basic machinery from parent class |
---|
[2494] | 282 | for t in Generic_domain.evolve(self, |
---|
| 283 | yieldstep=yieldstep, |
---|
| 284 | finaltime=finaltime, |
---|
| 285 | duration=duration, |
---|
| 286 | skip_initial_step=skip_initial_step): |
---|
[2050] | 287 | |
---|
[1363] | 288 | #Pass control on to outer loop for more specific actions |
---|
[271] | 289 | yield(t) |
---|