source: anuga_core/source/anuga/config.py @ 6425

Last change on this file since 6425 was 6258, checked in by ole, 15 years ago

Made second order accuracy the default and tested.

File size: 8.5 KB
RevLine 
[4837]1"""Module where global ANUGA model parameters and default values are set
[4376]2"""
3
[6105]4import os
5import sys
6
[6086]7################################################################################
[4837]8# Numerical constants
[6086]9################################################################################
10
11epsilon = 1.0e-12                    # Smallest number - used for safe division
12max_float = 1.0e36                   # Largest number - used to initialise
13                                     # (max, min) ranges
14default_smoothing_parameter = 0.001  # Default alpha for penalised
15                                     # least squares fitting
16single_precision = 1.0e-6            # Smallest single precision number
[5436]17velocity_protection = 1.0e-6                                     
18
[6086]19################################################################################
20# Standard filenames, directories and system parameters used by ANUGA
21################################################################################
22
[4837]23pmesh_filename = '.\\pmesh'
24version_filename = 'stored_version_info.py'
25default_datadir = '.'
[4376]26time_format = '%d/%m/%y %H:%M:%S'
[4837]27umask = 002  # Controls file and directory permission created by anuga
28default_boundary_tag = 'exterior' 
[4376]29
[4837]30# Major revision number for use with create_distribution
31# and update_anuga_user_guide
32major_revision = '1.0beta'
[4376]33
[6086]34################################################################################
35# Physical constants
36################################################################################
[4376]37
[4837]38manning = 0.03  # Manning's friction coefficient
39#g = 9.80665    # Gravity - FIXME reinstate this and fix unit tests.
[4376]40g = 9.8
41#g(phi) = 9780313 * (1 + 0.0053024 sin(phi)**2 - 0.000 0059 sin(2*phi)**2) micro m/s**2, where phi is the latitude
42#The 'official' average is 9.80665
43
[6086]44eta_w = 3.0e-3 # Wind stress coefficient
45rho_a = 1.2e-3 # Atmospheric density
46rho_w = 1023   # Fluid density [kg/m^3] (rho_w = 1023 for salt water)
[4376]47
[6086]48################################################################################
[4837]49# Limiters - used with linear reconstruction of vertex
50# values from centroid values
[6086]51################################################################################
[4837]52
53# Betas [0;1] control the allowed steepness of gradient for second order
54# extrapolations. Values of 1 allow the steepes gradients while
55# lower values are more conservative. Values of 0 correspond to
56# 1'st order extrapolations.
[4376]57#
[4768]58
[5442]59# There are separate betas for the w, uh, and vh limiters
[4376]60# I think these are better SR but they conflict with the unit tests!
61beta_w      = 1.0
62beta_w_dry  = 0.2
63beta_uh     = 1.0
64beta_uh_dry = 0.2
65beta_vh     = 1.0
66beta_vh_dry = 0.2
67
68# Alpha_balance controls how limiters are balanced between deep and shallow.
[6086]69# A large value will favour the deep water limiters, allowing the a closer hug
70# to the coastline.  This will minimise 'creep' but at the same time cause
71# smaller time steps
[4376]72# Range:
73alpha_balance = 2.0 
74
75# Flag use of new limiters.
[4631]76# tight_slope_limiters = 0 means use old limiters (e.g. for some tests)
77# tight_slope_limiters = 1 means use new limiters that hug the bathymetry closer
[5181]78tight_slope_limiters = True
[4376]79
[5315]80# Use centroid velocities to reconstruct momentum at vertices in
81# very shallow water
[5313]82# This option has a first order flavour to it, but we still have second order
[5315]83# reconstruction of stage and this option only applies in
84# balance_deep_and_shallow when
[5313]85# alpha < 1 so in deeper water the full second order scheme is used.
[5290]86#
[5303]87# This option is good with tight_slope_limiters, especially for large domains.
[5313]88use_centroid_velocities = True
[5957]89       
90# FIXME (Ole) Maybe get rid of order altogether and use beta_w
[6258]91default_order = 2
[4376]92
[6086]93################################################################################
[4837]94# Timestepping
[6086]95################################################################################
[4376]96
[4837]97CFL = 1.0  # CFL condition assigned to domain.CFL - controls timestep size
98     
[4712]99# Choose type of timestepping,
[6086]100#timestepping_method = 'rk2'   # 2nd Order TVD scheme
[4712]101timestepping_method = 'euler' # 1st order euler
102
[5162]103# rk2 is a little more stable than euler, so rk2 timestepping
104# can deal with a larger beta when slope limiting the reconstructed
105# solution. The large beta is needed if solving problems sensitive
106# to numerical diffusion, like a small forced wave in an ocean
107beta_euler = 1.0
108beta_rk2   = 1.6
109
[4677]110# Option to search for signatures where isolated triangles are
111# responsible for a small global timestep.
112# Treating these by limiting their momenta may help speed up the
113# overall computation.
114# This facility is experimental.
[4805]115# protect_against_isolated_degenerate_timesteps = False
[4677]116protect_against_isolated_degenerate_timesteps = False
[4376]117
[4837]118min_timestep = 1.0e-6 # Minimal timestep accepted in ANUGA
119max_timestep = 1.0e+3
[6086]120max_smallsteps = 50   # Max number of degenerate steps allowed b4
121                      # trying first order
[4376]122
[6086]123# Perhaps minimal timestep could be based on the geometry as follows:
124# Define maximal possible speed in open water v_max, e.g. 500m/s (soundspeed?)
125# Then work out minimal internal distance in mesh r_min and set
126# min_timestep = r_min/v_max
[4837]127#
[6086]128# Max speeds are calculated in the flux function as
[4837]129#
[6086]130# lambda = v +/- sqrt(gh)
[4837]131#
132# so with 500 m/s, h ~ 500^2/g = 2500 m well out of the domain of the
133# shallow water wave equation
134#
[6086]135# The actual soundspeed can be as high as 1530m/s
136# (see http://staff.washington.edu/aganse/public.projects/clustering/clustering.html),
137# but that would only happen with h>225000m in this equation. Why ?
138# The maximal speed we specify is really related to the max speed
139# of surface pertubation
[4837]140#
[6086]141# v_max = 100 #For use in domain_ext.c
142# sound_speed = 500
[4376]143
[6086]144################################################################################
[4837]145# Ranges specific to the shallow water wave equation
[6086]146# These control maximal and minimal values of quantities
147################################################################################
[4376]148
[4837]149# Water depth below which it is considered to be 0 in the model
150minimum_allowed_height = 1.0e-3 
[4376]151
[4837]152# Water depth below which it is *stored* as 0
153minimum_storable_height = 1.0e-5
[4376]154
[4805]155# FIXME (Ole): Redefine this parameter to control maximal speeds in general
156# and associate it with protect_against_isolated_degenerate_timesteps = True
[4732]157maximum_allowed_speed = 0.0 # Maximal particle speed of water
158#maximum_allowed_speed = 1.0 # Maximal particle speed of water
[6086]159                             # Too large (100) creates 'flopping' water
160                             # Too small (0) creates 'creep'
[4837]161                           
162maximum_froude_number = 100.0 # To be used in limiters.
[4376]163
[6086]164################################################################################
[4837]165# Performance parameters used to invoke various optimisations
[6086]166################################################################################
[4815]167
[4837]168use_extensions = True # Use C-extensions
[6086]169use_psyco = True      # Use psyco optimisations
[4376]170
[4837]171optimise_dry_cells = True # Exclude dry and still cells from flux computation
172optimised_gradient_limiter = True # Use hardwired gradient limiter
[6086]173use_edge_limiter = False  # The edge limiter is better, but most runs have been
174                          # using vertex limiting. Validations passed with this
175                          # one True 9th May 2008, but many unit tests need
176                          # backward compatibility flag set FIXME(Ole).
[4837]177
[4376]178points_file_block_line_size = 500 # Number of lines read in from a points file
179                                  # when blocking
[4502]180
[6086]181################################################################################
182# Dynamically-defined constants.
183################################################################################
[4685]184
[6086]185# Determine if we can read/write large NetCDF files
186netcdf_mode_w = 'w'
187netcdf_mode_a = 'a'
188netcdf_mode_r = 'r'
[4837]189
[6105]190# Code to set the write mode depending on
191# whether Scientific.IO supports large NetCDF files
[6106]192s = """from Scientific.IO.NetCDF import NetCDFFile; fid = NetCDFFile('tmpfilenamexx', 'wl')"""
[4837]193
[6105]194# Need to run in a separate process due an
195# error with older versions of Scientific.IO
196if sys.platform == 'win32':
197    null = 'NUL'
198else:
199    null = '/dev/null'
[6106]200cmd = 'python -c "%s" 2> %s' % (s, null)
201err = os.system(cmd)
[6105]202
[6106]203if err != 0:
[6105]204    # The Python script s failed e.g. with a segfault
205    # which means that large file support is
206    # definitely not supported
207    pass
208else:   
209    # Try the import within this process
210    try:
211        exec(s)
212    except IOError:
[6108]213        # NetCDFFile does not segfault but it does not
214        # support large file support   
[6105]215        pass
[6106]216    else:
217        # Set the default mode to large file support
218        netcdf_mode_w = 'wl'
Note: See TracBrowser for help on using the repository browser.