[5435] | 1 | from anuga.shallow_water.shallow_water_domain import Inflow, General_forcing |
---|
| 2 | from anuga.culvert_flows.culvert_polygons import create_culvert_polygons |
---|
| 3 | from anuga.utilities.system_tools import log_to_file |
---|
| 4 | |
---|
[5434] | 5 | class Culvert_flow: |
---|
| 6 | """Culvert flow - transfer water from one hole to another |
---|
| 7 | |
---|
| 8 | Using Momentum as Calculated by Culvert Flow !! |
---|
| 9 | Could be Several Methods Investigated to do This !!! |
---|
| 10 | |
---|
| 11 | 2008_May_08 |
---|
| 12 | To Ole: |
---|
| 13 | OK so here we need to get the Polygon Creating code to create polygons for the culvert Based on |
---|
| 14 | the two input Points (X0,Y0) and (X1,Y1) - need to be passed to create polygon |
---|
| 15 | |
---|
| 16 | The two centers are now passed on to create_polygon. |
---|
| 17 | |
---|
| 18 | |
---|
| 19 | Input: Two points, pipe_size (either diameter or width, height), mannings_rougness, |
---|
| 20 | inlet/outlet energy_loss_coefficients, internal_bend_coefficent, |
---|
| 21 | top-down_blockage_factor and bottom_up_blockage_factor |
---|
| 22 | |
---|
| 23 | |
---|
| 24 | And the Delta H enquiry should be change from Openings in line 412 to the enquiry Polygons infront |
---|
| 25 | of the culvert |
---|
| 26 | At the moment this script uses only Depth, later we can change it to Energy... |
---|
| 27 | |
---|
| 28 | Once we have Delta H can calculate a Flow Rate and from Flow Rate an Outlet Velocity |
---|
| 29 | The Outlet Velocity x Outlet Depth = Momentum to be applied at the Outlet... |
---|
| 30 | |
---|
| 31 | """ |
---|
| 32 | |
---|
| 33 | def __init__(self, |
---|
| 34 | domain, |
---|
| 35 | label=None, |
---|
| 36 | description=None, |
---|
| 37 | end_point0=None, |
---|
| 38 | end_point1=None, |
---|
| 39 | width=None, |
---|
| 40 | height=None, |
---|
| 41 | diameter=None, |
---|
| 42 | manning=None, # Mannings Roughness for Culvert |
---|
| 43 | invert_level0=None, # Invert level if not the same as the Elevation on the Domain |
---|
| 44 | invert_level1=None, # Invert level if not the same as the Elevation on the Domain |
---|
| 45 | loss_exit=None, |
---|
| 46 | loss_entry=None, |
---|
| 47 | loss_bend=None, |
---|
| 48 | loss_special=None, |
---|
| 49 | blockage_topdwn=None, |
---|
| 50 | blockage_bottup=None, |
---|
| 51 | culvert_routine=None, |
---|
| 52 | verbose=False): |
---|
| 53 | |
---|
| 54 | from Numeric import sqrt, sum |
---|
| 55 | |
---|
| 56 | # Input check |
---|
| 57 | if diameter is not None: |
---|
| 58 | self.culvert_type = 'circle' |
---|
| 59 | self.diameter = diameter |
---|
| 60 | if height is not None or width is not None: |
---|
| 61 | msg = 'Either diameter or width&height must be specified, but not both.' |
---|
| 62 | raise Exception, msg |
---|
| 63 | else: |
---|
| 64 | if height is not None: |
---|
| 65 | if width is None: |
---|
| 66 | self.culvert_type = 'square' |
---|
| 67 | width = height |
---|
| 68 | else: |
---|
| 69 | self.culvert_type = 'rectangle' |
---|
| 70 | elif width is not None: |
---|
| 71 | if height is None: |
---|
| 72 | self.culvert_type = 'square' |
---|
| 73 | height = width |
---|
| 74 | else: |
---|
| 75 | msg = 'Either diameter or width&height must be specified.' |
---|
| 76 | raise Exception, msg |
---|
| 77 | |
---|
| 78 | if height == width: |
---|
| 79 | self.culvert_type = 'square' |
---|
| 80 | |
---|
| 81 | self.height = height |
---|
| 82 | self.width = width |
---|
| 83 | |
---|
| 84 | |
---|
| 85 | assert self.culvert_type in ['circle', 'square', 'rectangle'] |
---|
| 86 | |
---|
| 87 | # Set defaults |
---|
| 88 | if manning is None: manning = 0.012 # Set a Default Mannings Roughness for Pipe |
---|
| 89 | if loss_exit is None: loss_exit = 1.00 |
---|
| 90 | if loss_entry is None: loss_entry = 0.50 |
---|
| 91 | if loss_bend is None: loss_bend=0.00 |
---|
| 92 | if loss_special is None: loss_special=0.00 |
---|
| 93 | if blockage_topdwn is None: blockage_topdwn=0.00 |
---|
| 94 | if blockage_bottup is None: blockage_bottup=0.00 |
---|
| 95 | if culvert_routine is None: culvert_routine=boyd_generalised_culvert_model |
---|
[5437] | 96 | if label is None: label = 'culvert_flow' |
---|
| 97 | label += '_' + str(id(self)) |
---|
[5434] | 98 | |
---|
| 99 | # Open log file for storing some specific results... |
---|
| 100 | self.log_filename = label + '.log' |
---|
| 101 | self.label = label |
---|
| 102 | |
---|
[5437] | 103 | # Print something |
---|
| 104 | log_to_file(self.log_filename, self.label) |
---|
| 105 | log_to_file(self.log_filename, description) |
---|
| 106 | log_to_file(self.log_filename, self.culvert_type) |
---|
[5434] | 107 | |
---|
[5437] | 108 | |
---|
| 109 | # Create the fundamental culvert polygons from POLYGON |
---|
| 110 | if self.culvert_type == 'circle': |
---|
| 111 | # Redefine width and height for use with create_culvert_polygons |
---|
| 112 | width = height = diameter |
---|
| 113 | |
---|
[5434] | 114 | P = create_culvert_polygons(end_point0, |
---|
| 115 | end_point1, |
---|
| 116 | width=width, |
---|
| 117 | height=height) |
---|
| 118 | |
---|
| 119 | if verbose is True: |
---|
| 120 | pass |
---|
| 121 | #plot_polygons([[end_point0, end_point1], |
---|
| 122 | # P['exchange_polygon0'], |
---|
| 123 | # P['exchange_polygon1'], |
---|
| 124 | # P['enquiry_polygon0'], |
---|
| 125 | # P['enquiry_polygon1']], |
---|
| 126 | # figname='culvert_polygon_output') |
---|
| 127 | |
---|
| 128 | self.openings = [] |
---|
| 129 | self.openings.append(Inflow(domain, |
---|
| 130 | polygon=P['exchange_polygon0'])) |
---|
| 131 | |
---|
| 132 | self.openings.append(Inflow(domain, |
---|
| 133 | polygon=P['exchange_polygon1'])) |
---|
| 134 | |
---|
| 135 | |
---|
| 136 | # Assume two openings for now: Referred to as 0 and 1 |
---|
| 137 | assert len(self.openings) == 2 |
---|
| 138 | |
---|
| 139 | # Store basic geometry |
---|
| 140 | self.end_points = [end_point0, end_point1] |
---|
| 141 | self.invert_levels = [invert_level0, invert_level1] |
---|
| 142 | self.enquiry_polygons = [P['enquiry_polygon0'], P['enquiry_polygon1']] |
---|
| 143 | self.vector = P['vector'] |
---|
| 144 | self.length = P['length']; assert self.length > 0.0 |
---|
| 145 | self.verbose = verbose |
---|
| 146 | self.last_time = 0.0 |
---|
| 147 | |
---|
| 148 | |
---|
| 149 | # Store hydraulic parameters |
---|
| 150 | self.manning = manning |
---|
| 151 | self.loss_exit = loss_exit |
---|
| 152 | self.loss_entry = loss_entry |
---|
| 153 | self.loss_bend = loss_bend |
---|
| 154 | self.loss_special = loss_special |
---|
| 155 | self.sum_loss = loss_exit + loss_entry + loss_bend + loss_special |
---|
| 156 | self.blockage_topdwn = blockage_topdwn |
---|
| 157 | self.blockage_bottup = blockage_bottup |
---|
| 158 | |
---|
| 159 | # Store culvert routine |
---|
| 160 | self.culvert_routine = culvert_routine |
---|
| 161 | |
---|
| 162 | |
---|
| 163 | # Create objects to update momentum (a bit crude at this stage) |
---|
| 164 | |
---|
| 165 | |
---|
| 166 | xmom0 = General_forcing(domain, 'xmomentum', |
---|
| 167 | polygon=P['exchange_polygon0']) |
---|
| 168 | |
---|
| 169 | xmom1 = General_forcing(domain, 'xmomentum', |
---|
| 170 | polygon=P['exchange_polygon1']) |
---|
| 171 | |
---|
| 172 | ymom0 = General_forcing(domain, 'ymomentum', |
---|
| 173 | polygon=P['exchange_polygon0']) |
---|
| 174 | |
---|
| 175 | ymom1 = General_forcing(domain, 'ymomentum', |
---|
| 176 | polygon=P['exchange_polygon1']) |
---|
| 177 | |
---|
| 178 | self.opening_momentum = [ [xmom0, ymom0], [xmom1, ymom1] ] |
---|
| 179 | |
---|
| 180 | |
---|
| 181 | # Print something |
---|
| 182 | s = 'Culvert Effective Length = %.2f m' %(self.length) |
---|
| 183 | log_to_file(self.log_filename, s) |
---|
| 184 | |
---|
| 185 | s = 'Culvert Direction is %s\n' %str(self.vector) |
---|
| 186 | log_to_file(self.log_filename, s) |
---|
| 187 | |
---|
| 188 | def __call__(self, domain): |
---|
| 189 | from anuga.utilities.numerical_tools import mean |
---|
| 190 | from anuga.utilities.polygon import inside_polygon |
---|
| 191 | from anuga.config import g, epsilon |
---|
| 192 | from Numeric import take, sqrt |
---|
| 193 | from anuga.config import velocity_protection |
---|
| 194 | |
---|
| 195 | |
---|
| 196 | log_filename = self.log_filename |
---|
| 197 | |
---|
| 198 | # Time stuff |
---|
| 199 | time = domain.get_time() |
---|
| 200 | delta_t = time-self.last_time |
---|
| 201 | s = '\nTime = %.2f, delta_t = %f' %(time, delta_t) |
---|
| 202 | log_to_file(log_filename, s) |
---|
| 203 | |
---|
| 204 | msg = 'Time did not advance' |
---|
| 205 | if time > 0.0: assert delta_t > 0.0, msg |
---|
| 206 | |
---|
| 207 | |
---|
| 208 | # Get average water depths at each opening |
---|
| 209 | openings = self.openings # There are two Opening [0] and [1] |
---|
| 210 | for i, opening in enumerate(openings): |
---|
| 211 | stage = domain.quantities['stage'].get_values(location='centroids', |
---|
| 212 | indices=opening.exchange_indices) |
---|
| 213 | elevation = domain.quantities['elevation'].get_values(location='centroids', |
---|
| 214 | indices=opening.exchange_indices) |
---|
| 215 | |
---|
| 216 | # Indices corresponding to energy enquiry field for this opening |
---|
[5453] | 217 | coordinates = domain.get_centroid_coordinates(absolute=True) # Get all centroid points (x,y) |
---|
[5434] | 218 | enquiry_indices = inside_polygon(coordinates, self.enquiry_polygons[i]) |
---|
[5453] | 219 | |
---|
| 220 | if len(enquiry_indices) == 0: |
---|
| 221 | msg = 'No triangles have been identified in specified region: %s' %str(self.enquiry_polygons[i]) |
---|
| 222 | raise Exception, msg |
---|
[5434] | 223 | |
---|
| 224 | # Get model values for points in enquiry polygon for this opening |
---|
| 225 | dq = domain.quantities |
---|
| 226 | stage = dq['stage'].get_values(location='centroids', indices=enquiry_indices) |
---|
| 227 | xmomentum = dq['xmomentum'].get_values(location='centroids', indices=enquiry_indices) |
---|
| 228 | ymomentum = dq['ymomentum'].get_values(location='centroids', indices=enquiry_indices) |
---|
| 229 | elevation = dq['elevation'].get_values(location='centroids', indices=enquiry_indices) |
---|
| 230 | depth = stage - elevation |
---|
| 231 | |
---|
| 232 | # Compute mean values of selected quantitites in the enquiry area in front of the culvert |
---|
| 233 | # Epsilon handles a dry cell case |
---|
| 234 | ux = xmomentum/(depth+velocity_protection/depth) # Velocity (x-direction) |
---|
| 235 | uy = ymomentum/(depth+velocity_protection/depth) # Velocity (y-direction) |
---|
| 236 | v = mean(sqrt(ux**2+uy**2)) # Average velocity |
---|
| 237 | w = mean(stage) # Average stage |
---|
| 238 | |
---|
| 239 | # Store values at enquiry field |
---|
| 240 | opening.velocity = v |
---|
| 241 | |
---|
| 242 | |
---|
| 243 | # Compute mean values of selected quantitites in the exchange area in front of the culvert |
---|
| 244 | # Stage and velocity comes from enquiry area and elevation from exchange area |
---|
| 245 | |
---|
| 246 | # Use invert level instead of elevation if specified |
---|
| 247 | invert_level = self.invert_levels[i] |
---|
| 248 | if invert_level is not None: |
---|
| 249 | z = invert_level |
---|
| 250 | else: |
---|
| 251 | elevation = dq['elevation'].get_values(location='centroids', indices=opening.exchange_indices) |
---|
| 252 | z = mean(elevation) # Average elevation |
---|
[5437] | 253 | |
---|
[5434] | 254 | # Estimated depth above the culvert inlet |
---|
[5437] | 255 | d = w - z # Used for calculations involving depth |
---|
[5434] | 256 | if d < 0.0: |
---|
| 257 | # This is possible since w and z are taken at different locations |
---|
| 258 | #msg = 'D < 0.0: %f' %d |
---|
| 259 | #raise msg |
---|
| 260 | d = 0.0 |
---|
| 261 | |
---|
[5437] | 262 | |
---|
| 263 | |
---|
| 264 | # Depth at exchange area used to trigger calculations |
---|
| 265 | stage = dq['stage'].get_values(location='centroids', indices=enquiry_indices) |
---|
| 266 | elevation = dq['elevation'].get_values(location='centroids', indices=enquiry_indices) |
---|
| 267 | depth = stage - elevation |
---|
| 268 | d_trigger = mean(depth) |
---|
| 269 | |
---|
| 270 | |
---|
| 271 | |
---|
[5434] | 272 | # Ratio of depth to culvert height. |
---|
| 273 | # If ratio > 1 then culvert is running full |
---|
[5437] | 274 | if self.culvert_type == 'circle': |
---|
| 275 | ratio = d/self.diameter |
---|
| 276 | else: |
---|
| 277 | ratio = d/self.height |
---|
[5434] | 278 | opening.ratio = ratio |
---|
| 279 | |
---|
| 280 | # Average measures of energy in front of this opening |
---|
| 281 | Es = d + 0.5*v**2/g # Specific energy in exchange area |
---|
| 282 | Et = w + 0.5*v**2/g # Total energy in the enquiry area |
---|
| 283 | opening.total_energy = Et |
---|
| 284 | opening.specific_energy = Es |
---|
| 285 | |
---|
[5437] | 286 | # Store current average stage and depth with each opening object |
---|
[5434] | 287 | opening.depth = d |
---|
[5437] | 288 | opening.depth_trigger = d_trigger |
---|
[5434] | 289 | opening.stage = w |
---|
| 290 | opening.elevation = z |
---|
| 291 | |
---|
| 292 | |
---|
| 293 | ################# End of the FOR loop ################################################ |
---|
| 294 | |
---|
| 295 | |
---|
| 296 | # We now need to deal with each opening individually |
---|
| 297 | |
---|
| 298 | # Determine flow direction based on total energy difference |
---|
| 299 | delta_Et = openings[0].total_energy - openings[1].total_energy |
---|
| 300 | |
---|
| 301 | if delta_Et > 0: |
---|
| 302 | #print 'Flow U/S ---> D/S' |
---|
| 303 | inlet=openings[0] |
---|
| 304 | outlet=openings[1] |
---|
| 305 | |
---|
| 306 | inlet.momentum = self.opening_momentum[0] |
---|
| 307 | outlet.momentum = self.opening_momentum[1] |
---|
| 308 | |
---|
| 309 | else: |
---|
| 310 | #print 'Flow D/S ---> U/S' |
---|
| 311 | inlet=openings[1] |
---|
| 312 | outlet=openings[0] |
---|
| 313 | |
---|
| 314 | inlet.momentum = self.opening_momentum[1] |
---|
| 315 | outlet.momentum = self.opening_momentum[0] |
---|
| 316 | |
---|
| 317 | delta_Et = -delta_Et |
---|
| 318 | |
---|
| 319 | msg = 'Total energy difference is negative' |
---|
| 320 | assert delta_Et > 0.0, msg |
---|
| 321 | |
---|
| 322 | delta_h = inlet.stage - outlet.stage |
---|
| 323 | delta_z = inlet.elevation - outlet.elevation |
---|
| 324 | culvert_slope = (delta_z/self.length) |
---|
| 325 | |
---|
| 326 | if culvert_slope < 0.0: |
---|
| 327 | # Adverse gradient - flow is running uphill |
---|
| 328 | # Flow will be purely controlled by uphill outlet face |
---|
| 329 | print 'WARNING: Flow is running uphill. Watch Out!', inlet.elevation, outlet.elevation |
---|
| 330 | |
---|
| 331 | |
---|
| 332 | s = 'Delta total energy = %.3f' %(delta_Et) |
---|
| 333 | log_to_file(log_filename, s) |
---|
| 334 | |
---|
| 335 | |
---|
| 336 | Q, barrel_velocity, culvert_outlet_depth = self.culvert_routine(self, inlet, outlet, delta_Et, g) |
---|
| 337 | ##################################################### |
---|
| 338 | barrel_momentum = barrel_velocity*culvert_outlet_depth |
---|
| 339 | |
---|
| 340 | s = 'Barrel velocity = %f' %barrel_velocity |
---|
| 341 | log_to_file(log_filename, s) |
---|
| 342 | |
---|
| 343 | # Compute momentum vector at outlet |
---|
| 344 | outlet_mom_x, outlet_mom_y = self.vector * barrel_momentum |
---|
| 345 | |
---|
| 346 | s = 'Directional momentum = (%f, %f)' %(outlet_mom_x, outlet_mom_y) |
---|
| 347 | log_to_file(log_filename, s) |
---|
| 348 | |
---|
| 349 | delta_t = time - self.last_time |
---|
| 350 | if delta_t > 0.0: |
---|
| 351 | xmomentum_rate = outlet_mom_x - outlet.momentum[0].value |
---|
| 352 | xmomentum_rate /= delta_t |
---|
| 353 | |
---|
| 354 | ymomentum_rate = outlet_mom_y - outlet.momentum[1].value |
---|
| 355 | ymomentum_rate /= delta_t |
---|
| 356 | |
---|
| 357 | s = 'X Y MOM_RATE = (%f, %f) ' %(xmomentum_rate, ymomentum_rate) |
---|
| 358 | log_to_file(log_filename, s) |
---|
| 359 | else: |
---|
| 360 | xmomentum_rate = ymomentum_rate = 0.0 |
---|
| 361 | |
---|
| 362 | |
---|
| 363 | # Set momentum rates for outlet jet |
---|
| 364 | outlet.momentum[0].rate = xmomentum_rate |
---|
| 365 | outlet.momentum[1].rate = ymomentum_rate |
---|
| 366 | |
---|
| 367 | # Remember this value for next step (IMPORTANT) |
---|
| 368 | outlet.momentum[0].value = outlet_mom_x |
---|
| 369 | outlet.momentum[1].value = outlet_mom_y |
---|
| 370 | |
---|
| 371 | if int(domain.time*100) % 100 == 0: |
---|
| 372 | s = 'T=%.5f, Culvert Discharge = %.3f f'\ |
---|
| 373 | %(time, Q) |
---|
| 374 | s += ' Depth= %0.3f Momentum = (%0.3f, %0.3f)'\ |
---|
| 375 | %(culvert_outlet_depth, outlet_mom_x,outlet_mom_y) |
---|
| 376 | s += ' Momentum rate: (%.4f, %.4f)'\ |
---|
| 377 | %(xmomentum_rate, ymomentum_rate) |
---|
| 378 | s+='Outlet Vel= %.3f'\ |
---|
| 379 | %(barrel_velocity) |
---|
| 380 | log_to_file(log_filename, s) |
---|
| 381 | |
---|
| 382 | |
---|
| 383 | |
---|
| 384 | |
---|
| 385 | |
---|
| 386 | # Execute flow term for each opening |
---|
| 387 | # This is where Inflow objects are evaluated and update the domain |
---|
| 388 | for opening in self.openings: |
---|
| 389 | opening(domain) |
---|
| 390 | |
---|
| 391 | # Execute momentum terms |
---|
| 392 | # This is where Inflow objects are evaluated and update the domain |
---|
| 393 | outlet.momentum[0](domain) |
---|
| 394 | outlet.momentum[1](domain) |
---|
| 395 | |
---|
| 396 | # Store value of time |
---|
| 397 | self.last_time = time |
---|
| 398 | |
---|
| 399 | |
---|