1 | from anuga.shallow_water.shallow_water_domain import Inflow, General_forcing |
---|
2 | from anuga.culvert_flows.culvert_polygons import create_culvert_polygons |
---|
3 | from anuga.utilities.system_tools import log_to_file |
---|
4 | from anuga.utilities.polygon import inside_polygon |
---|
5 | from anuga.utilities.polygon import is_inside_polygon |
---|
6 | |
---|
7 | |
---|
8 | class Culvert_flow: |
---|
9 | """Culvert flow - transfer water from one hole to another |
---|
10 | |
---|
11 | Using Momentum as Calculated by Culvert Flow !! |
---|
12 | Could be Several Methods Investigated to do This !!! |
---|
13 | |
---|
14 | 2008_May_08 |
---|
15 | To Ole: |
---|
16 | OK so here we need to get the Polygon Creating code to create polygons for the culvert Based on |
---|
17 | the two input Points (X0,Y0) and (X1,Y1) - need to be passed to create polygon |
---|
18 | |
---|
19 | The two centers are now passed on to create_polygon. |
---|
20 | |
---|
21 | |
---|
22 | Input: Two points, pipe_size (either diameter or width, height), mannings_rougness, |
---|
23 | inlet/outlet energy_loss_coefficients, internal_bend_coefficent, |
---|
24 | top-down_blockage_factor and bottom_up_blockage_factor |
---|
25 | |
---|
26 | |
---|
27 | And the Delta H enquiry should be change from Openings in line 412 to the enquiry Polygons infront |
---|
28 | of the culvert |
---|
29 | At the moment this script uses only Depth, later we can change it to Energy... |
---|
30 | |
---|
31 | Once we have Delta H can calculate a Flow Rate and from Flow Rate an Outlet Velocity |
---|
32 | The Outlet Velocity x Outlet Depth = Momentum to be applied at the Outlet... |
---|
33 | |
---|
34 | """ |
---|
35 | |
---|
36 | def __init__(self, |
---|
37 | domain, |
---|
38 | label=None, |
---|
39 | description=None, |
---|
40 | end_point0=None, |
---|
41 | end_point1=None, |
---|
42 | width=None, |
---|
43 | height=None, |
---|
44 | diameter=None, |
---|
45 | manning=None, # Mannings Roughness for Culvert |
---|
46 | invert_level0=None, # Invert level if not the same as the Elevation on the Domain |
---|
47 | invert_level1=None, # Invert level if not the same as the Elevation on the Domain |
---|
48 | loss_exit=None, |
---|
49 | loss_entry=None, |
---|
50 | loss_bend=None, |
---|
51 | loss_special=None, |
---|
52 | blockage_topdwn=None, |
---|
53 | blockage_bottup=None, |
---|
54 | culvert_routine=None, |
---|
55 | verbose=False): |
---|
56 | |
---|
57 | from Numeric import sqrt, sum |
---|
58 | |
---|
59 | # Input check |
---|
60 | if diameter is not None: |
---|
61 | self.culvert_type = 'circle' |
---|
62 | self.diameter = diameter |
---|
63 | if height is not None or width is not None: |
---|
64 | msg = 'Either diameter or width&height must be specified, but not both.' |
---|
65 | raise Exception, msg |
---|
66 | else: |
---|
67 | if height is not None: |
---|
68 | if width is None: |
---|
69 | self.culvert_type = 'square' |
---|
70 | width = height |
---|
71 | else: |
---|
72 | self.culvert_type = 'rectangle' |
---|
73 | elif width is not None: |
---|
74 | if height is None: |
---|
75 | self.culvert_type = 'square' |
---|
76 | height = width |
---|
77 | else: |
---|
78 | msg = 'Either diameter or width&height must be specified.' |
---|
79 | raise Exception, msg |
---|
80 | |
---|
81 | if height == width: |
---|
82 | self.culvert_type = 'square' |
---|
83 | |
---|
84 | self.height = height |
---|
85 | self.width = width |
---|
86 | |
---|
87 | |
---|
88 | assert self.culvert_type in ['circle', 'square', 'rectangle'] |
---|
89 | |
---|
90 | # Set defaults |
---|
91 | if manning is None: manning = 0.012 # Set a Default Mannings Roughness for Pipe |
---|
92 | if loss_exit is None: loss_exit = 1.00 |
---|
93 | if loss_entry is None: loss_entry = 0.50 |
---|
94 | if loss_bend is None: loss_bend=0.00 |
---|
95 | if loss_special is None: loss_special=0.00 |
---|
96 | if blockage_topdwn is None: blockage_topdwn=0.00 |
---|
97 | if blockage_bottup is None: blockage_bottup=0.00 |
---|
98 | if culvert_routine is None: culvert_routine=boyd_generalised_culvert_model |
---|
99 | if label is None: label = 'culvert_flow' |
---|
100 | label += '_' + str(id(self)) |
---|
101 | |
---|
102 | # Open log file for storing some specific results... |
---|
103 | self.log_filename = label + '.log' |
---|
104 | self.label = label |
---|
105 | |
---|
106 | # Print something |
---|
107 | log_to_file(self.log_filename, self.label) |
---|
108 | log_to_file(self.log_filename, description) |
---|
109 | log_to_file(self.log_filename, self.culvert_type) |
---|
110 | |
---|
111 | |
---|
112 | # Create the fundamental culvert polygons from POLYGON |
---|
113 | if self.culvert_type == 'circle': |
---|
114 | # Redefine width and height for use with create_culvert_polygons |
---|
115 | width = height = diameter |
---|
116 | |
---|
117 | P = create_culvert_polygons(end_point0, |
---|
118 | end_point1, |
---|
119 | width=width, |
---|
120 | height=height) |
---|
121 | |
---|
122 | if verbose is True: |
---|
123 | pass |
---|
124 | #plot_polygons([[end_point0, end_point1], |
---|
125 | # P['exchange_polygon0'], |
---|
126 | # P['exchange_polygon1'], |
---|
127 | # P['enquiry_polygon0'], |
---|
128 | # P['enquiry_polygon1']], |
---|
129 | # figname='culvert_polygon_output') |
---|
130 | |
---|
131 | |
---|
132 | # Check that all polygons lie within the mesh. |
---|
133 | bounding_polygon = domain.get_boundary_polygon() |
---|
134 | for key in P.keys(): |
---|
135 | print 'Key', key |
---|
136 | for point in P[key]: |
---|
137 | |
---|
138 | print 'Passing in:', point |
---|
139 | msg = 'Point %s in polygon %s for culvert %s did not'\ |
---|
140 | %(str(point), key, self.label) |
---|
141 | msg += 'fall within the domain boundary.' |
---|
142 | assert is_inside_polygon(point, bounding_polygon), msg |
---|
143 | |
---|
144 | |
---|
145 | # Create inflow object at each end of the culvert. |
---|
146 | self.openings = [] |
---|
147 | self.openings.append(Inflow(domain, |
---|
148 | polygon=P['exchange_polygon0'])) |
---|
149 | |
---|
150 | self.openings.append(Inflow(domain, |
---|
151 | polygon=P['exchange_polygon1'])) |
---|
152 | |
---|
153 | |
---|
154 | # Assume two openings for now: Referred to as 0 and 1 |
---|
155 | assert len(self.openings) == 2 |
---|
156 | |
---|
157 | # Store basic geometry |
---|
158 | self.end_points = [end_point0, end_point1] |
---|
159 | self.invert_levels = [invert_level0, invert_level1] |
---|
160 | self.enquiry_polygons = [P['enquiry_polygon0'], P['enquiry_polygon1']] |
---|
161 | self.vector = P['vector'] |
---|
162 | self.length = P['length']; assert self.length > 0.0 |
---|
163 | self.verbose = verbose |
---|
164 | self.last_time = 0.0 |
---|
165 | |
---|
166 | |
---|
167 | # Store hydraulic parameters |
---|
168 | self.manning = manning |
---|
169 | self.loss_exit = loss_exit |
---|
170 | self.loss_entry = loss_entry |
---|
171 | self.loss_bend = loss_bend |
---|
172 | self.loss_special = loss_special |
---|
173 | self.sum_loss = loss_exit + loss_entry + loss_bend + loss_special |
---|
174 | self.blockage_topdwn = blockage_topdwn |
---|
175 | self.blockage_bottup = blockage_bottup |
---|
176 | |
---|
177 | # Store culvert routine |
---|
178 | self.culvert_routine = culvert_routine |
---|
179 | |
---|
180 | |
---|
181 | # Create objects to update momentum (a bit crude at this stage) |
---|
182 | |
---|
183 | |
---|
184 | xmom0 = General_forcing(domain, 'xmomentum', |
---|
185 | polygon=P['exchange_polygon0']) |
---|
186 | |
---|
187 | xmom1 = General_forcing(domain, 'xmomentum', |
---|
188 | polygon=P['exchange_polygon1']) |
---|
189 | |
---|
190 | ymom0 = General_forcing(domain, 'ymomentum', |
---|
191 | polygon=P['exchange_polygon0']) |
---|
192 | |
---|
193 | ymom1 = General_forcing(domain, 'ymomentum', |
---|
194 | polygon=P['exchange_polygon1']) |
---|
195 | |
---|
196 | self.opening_momentum = [ [xmom0, ymom0], [xmom1, ymom1] ] |
---|
197 | |
---|
198 | |
---|
199 | # Print something |
---|
200 | s = 'Culvert Effective Length = %.2f m' %(self.length) |
---|
201 | log_to_file(self.log_filename, s) |
---|
202 | |
---|
203 | s = 'Culvert Direction is %s\n' %str(self.vector) |
---|
204 | log_to_file(self.log_filename, s) |
---|
205 | |
---|
206 | def __call__(self, domain): |
---|
207 | from anuga.utilities.numerical_tools import mean |
---|
208 | |
---|
209 | from anuga.config import g, epsilon |
---|
210 | from Numeric import take, sqrt |
---|
211 | from anuga.config import velocity_protection |
---|
212 | |
---|
213 | |
---|
214 | log_filename = self.log_filename |
---|
215 | |
---|
216 | # Time stuff |
---|
217 | time = domain.get_time() |
---|
218 | delta_t = time-self.last_time |
---|
219 | s = '\nTime = %.2f, delta_t = %f' %(time, delta_t) |
---|
220 | log_to_file(log_filename, s) |
---|
221 | |
---|
222 | msg = 'Time did not advance' |
---|
223 | if time > 0.0: assert delta_t > 0.0, msg |
---|
224 | |
---|
225 | |
---|
226 | # Get average water depths at each opening |
---|
227 | openings = self.openings # There are two Opening [0] and [1] |
---|
228 | for i, opening in enumerate(openings): |
---|
229 | dq = domain.quantities |
---|
230 | |
---|
231 | stage = dq['stage'].get_values(location='centroids', |
---|
232 | indices=opening.exchange_indices) |
---|
233 | elevation = dq['elevation'].get_values(location='centroids', |
---|
234 | indices=opening.exchange_indices) |
---|
235 | |
---|
236 | # Indices corresponding to energy enquiry field for this opening |
---|
237 | coordinates = domain.get_centroid_coordinates(absolute=True) # Get all centroid points (x,y) |
---|
238 | enquiry_indices = inside_polygon(coordinates, |
---|
239 | self.enquiry_polygons[i]) |
---|
240 | |
---|
241 | if len(enquiry_indices) == 0: |
---|
242 | msg = 'No triangles have been identified in specified region: %s' %str(self.enquiry_polygons[i]) |
---|
243 | raise Exception, msg |
---|
244 | |
---|
245 | # Get model values for points in enquiry polygon for this opening |
---|
246 | stage = dq['stage'].get_values(location='centroids', |
---|
247 | indices=enquiry_indices) |
---|
248 | xmomentum = dq['xmomentum'].get_values(location='centroids', |
---|
249 | indices=enquiry_indices) |
---|
250 | ymomentum = dq['ymomentum'].get_values(location='centroids', |
---|
251 | indices=enquiry_indices) |
---|
252 | elevation = dq['elevation'].get_values(location='centroids', |
---|
253 | indices=enquiry_indices) |
---|
254 | depth = stage - elevation |
---|
255 | |
---|
256 | # Compute mean values of selected quantitites in the enquiry area in front of the culvert |
---|
257 | # Epsilon handles a dry cell case |
---|
258 | ux = xmomentum/(depth+velocity_protection/depth) # Velocity (x-direction) |
---|
259 | uy = ymomentum/(depth+velocity_protection/depth) # Velocity (y-direction) |
---|
260 | print 'Velocity in culvert:', ux, uy, depth, xmomentum, ymomentum |
---|
261 | v = mean(sqrt(ux**2+uy**2)) # Average velocity |
---|
262 | w = mean(stage) # Average stage |
---|
263 | |
---|
264 | # Store values at enquiry field |
---|
265 | opening.velocity = v |
---|
266 | |
---|
267 | |
---|
268 | # Compute mean values of selected quantitites in the exchange area in front of the culvert |
---|
269 | # Stage and velocity comes from enquiry area and elevation from exchange area |
---|
270 | |
---|
271 | # Use invert level instead of elevation if specified |
---|
272 | invert_level = self.invert_levels[i] |
---|
273 | if invert_level is not None: |
---|
274 | z = invert_level |
---|
275 | else: |
---|
276 | elevation = dq['elevation'].get_values(location='centroids', indices=opening.exchange_indices) |
---|
277 | z = mean(elevation) # Average elevation |
---|
278 | |
---|
279 | # Estimated depth above the culvert inlet |
---|
280 | d = w - z # Used for calculations involving depth |
---|
281 | if d < 0.0: |
---|
282 | # This is possible since w and z are taken at different locations |
---|
283 | #msg = 'D < 0.0: %f' %d |
---|
284 | #raise msg |
---|
285 | d = 0.0 |
---|
286 | |
---|
287 | |
---|
288 | |
---|
289 | # Depth at exchange area used to trigger calculations |
---|
290 | stage = dq['stage'].get_values(location='centroids', indices=enquiry_indices) |
---|
291 | elevation = dq['elevation'].get_values(location='centroids', indices=enquiry_indices) |
---|
292 | depth = stage - elevation |
---|
293 | d_trigger = mean(depth) |
---|
294 | |
---|
295 | |
---|
296 | |
---|
297 | # Ratio of depth to culvert height. |
---|
298 | # If ratio > 1 then culvert is running full |
---|
299 | if self.culvert_type == 'circle': |
---|
300 | ratio = d/self.diameter |
---|
301 | else: |
---|
302 | ratio = d/self.height |
---|
303 | opening.ratio = ratio |
---|
304 | |
---|
305 | # Average measures of energy in front of this opening |
---|
306 | Es = d + 0.5*v**2/g # Specific energy in exchange area |
---|
307 | Et = w + 0.5*v**2/g # Total energy in the enquiry area |
---|
308 | opening.total_energy = Et |
---|
309 | opening.specific_energy = Es |
---|
310 | |
---|
311 | # Store current average stage and depth with each opening object |
---|
312 | opening.depth = d |
---|
313 | opening.depth_trigger = d_trigger |
---|
314 | opening.stage = w |
---|
315 | opening.elevation = z |
---|
316 | |
---|
317 | |
---|
318 | ################# End of the FOR loop ################################################ |
---|
319 | |
---|
320 | |
---|
321 | # We now need to deal with each opening individually |
---|
322 | |
---|
323 | # Determine flow direction based on total energy difference |
---|
324 | delta_Et = openings[0].total_energy - openings[1].total_energy |
---|
325 | |
---|
326 | if delta_Et > 0: |
---|
327 | #print 'Flow U/S ---> D/S' |
---|
328 | inlet=openings[0] |
---|
329 | outlet=openings[1] |
---|
330 | |
---|
331 | inlet.momentum = self.opening_momentum[0] |
---|
332 | outlet.momentum = self.opening_momentum[1] |
---|
333 | |
---|
334 | else: |
---|
335 | #print 'Flow D/S ---> U/S' |
---|
336 | inlet=openings[1] |
---|
337 | outlet=openings[0] |
---|
338 | |
---|
339 | inlet.momentum = self.opening_momentum[1] |
---|
340 | outlet.momentum = self.opening_momentum[0] |
---|
341 | |
---|
342 | delta_Et = -delta_Et |
---|
343 | |
---|
344 | msg = 'Total energy difference is negative' |
---|
345 | assert delta_Et > 0.0, msg |
---|
346 | |
---|
347 | delta_h = inlet.stage - outlet.stage |
---|
348 | delta_z = inlet.elevation - outlet.elevation |
---|
349 | culvert_slope = (delta_z/self.length) |
---|
350 | |
---|
351 | if culvert_slope < 0.0: |
---|
352 | # Adverse gradient - flow is running uphill |
---|
353 | # Flow will be purely controlled by uphill outlet face |
---|
354 | print 'WARNING: Flow is running uphill. Watch Out!', inlet.elevation, outlet.elevation |
---|
355 | |
---|
356 | |
---|
357 | s = 'Delta total energy = %.3f' %(delta_Et) |
---|
358 | log_to_file(log_filename, s) |
---|
359 | |
---|
360 | |
---|
361 | Q, barrel_velocity, culvert_outlet_depth = self.culvert_routine(self, inlet, outlet, delta_Et, g) |
---|
362 | ##################################################### |
---|
363 | barrel_momentum = barrel_velocity*culvert_outlet_depth |
---|
364 | |
---|
365 | s = 'Barrel velocity = %f' %barrel_velocity |
---|
366 | log_to_file(log_filename, s) |
---|
367 | |
---|
368 | # Compute momentum vector at outlet |
---|
369 | outlet_mom_x, outlet_mom_y = self.vector * barrel_momentum |
---|
370 | |
---|
371 | s = 'Directional momentum = (%f, %f)' %(outlet_mom_x, outlet_mom_y) |
---|
372 | log_to_file(log_filename, s) |
---|
373 | |
---|
374 | delta_t = time - self.last_time |
---|
375 | if delta_t > 0.0: |
---|
376 | xmomentum_rate = outlet_mom_x - outlet.momentum[0].value |
---|
377 | xmomentum_rate /= delta_t |
---|
378 | |
---|
379 | ymomentum_rate = outlet_mom_y - outlet.momentum[1].value |
---|
380 | ymomentum_rate /= delta_t |
---|
381 | |
---|
382 | s = 'X Y MOM_RATE = (%f, %f) ' %(xmomentum_rate, ymomentum_rate) |
---|
383 | log_to_file(log_filename, s) |
---|
384 | else: |
---|
385 | xmomentum_rate = ymomentum_rate = 0.0 |
---|
386 | |
---|
387 | |
---|
388 | # Set momentum rates for outlet jet |
---|
389 | outlet.momentum[0].rate = xmomentum_rate |
---|
390 | outlet.momentum[1].rate = ymomentum_rate |
---|
391 | |
---|
392 | # Remember this value for next step (IMPORTANT) |
---|
393 | outlet.momentum[0].value = outlet_mom_x |
---|
394 | outlet.momentum[1].value = outlet_mom_y |
---|
395 | |
---|
396 | if int(domain.time*100) % 100 == 0: |
---|
397 | s = 'T=%.5f, Culvert Discharge = %.3f f'\ |
---|
398 | %(time, Q) |
---|
399 | s += ' Depth= %0.3f Momentum = (%0.3f, %0.3f)'\ |
---|
400 | %(culvert_outlet_depth, outlet_mom_x,outlet_mom_y) |
---|
401 | s += ' Momentum rate: (%.4f, %.4f)'\ |
---|
402 | %(xmomentum_rate, ymomentum_rate) |
---|
403 | s+='Outlet Vel= %.3f'\ |
---|
404 | %(barrel_velocity) |
---|
405 | log_to_file(log_filename, s) |
---|
406 | |
---|
407 | |
---|
408 | |
---|
409 | |
---|
410 | |
---|
411 | # Execute flow term for each opening |
---|
412 | # This is where Inflow objects are evaluated and update the domain |
---|
413 | for opening in self.openings: |
---|
414 | opening(domain) |
---|
415 | |
---|
416 | # Execute momentum terms |
---|
417 | # This is where Inflow objects are evaluated and update the domain |
---|
418 | outlet.momentum[0](domain) |
---|
419 | outlet.momentum[1](domain) |
---|
420 | |
---|
421 | # Store value of time |
---|
422 | self.last_time = time |
---|
423 | |
---|
424 | |
---|