1 | import sys |
---|
2 | |
---|
3 | from anuga.shallow_water.shallow_water_domain import Inflow, General_forcing |
---|
4 | from anuga.culvert_flows.culvert_polygons import create_culvert_polygons |
---|
5 | from anuga.utilities.system_tools import log_to_file |
---|
6 | from anuga.utilities.polygon import inside_polygon |
---|
7 | from anuga.utilities.polygon import is_inside_polygon |
---|
8 | from anuga.utilities.polygon import plot_polygons |
---|
9 | |
---|
10 | from anuga.utilities.numerical_tools import mean |
---|
11 | from anuga.utilities.numerical_tools import ensure_numeric, sign |
---|
12 | |
---|
13 | from anuga.config import g, epsilon |
---|
14 | from anuga.config import minimum_allowed_height, velocity_protection |
---|
15 | |
---|
16 | import Numeric as num |
---|
17 | from math import sqrt |
---|
18 | |
---|
19 | class Below_interval(Exception): pass |
---|
20 | class Above_interval(Exception): pass |
---|
21 | |
---|
22 | # FIXME(Ole): Take a good hard look at logging here |
---|
23 | |
---|
24 | |
---|
25 | # FIXME(Ole): Write in C and reuse this function by similar code |
---|
26 | # in interpolate.py |
---|
27 | def interpolate_linearly(x, xvec, yvec): |
---|
28 | |
---|
29 | msg = 'Input to function interpolate_linearly could not be converted ' |
---|
30 | msg += 'to numerical scalar: x = %s' % str(x) |
---|
31 | try: |
---|
32 | x = float(x) |
---|
33 | except: |
---|
34 | raise Exception, msg |
---|
35 | |
---|
36 | |
---|
37 | # Check bounds |
---|
38 | if x < xvec[0]: |
---|
39 | msg = 'Value provided = %.2f, interpolation minimum = %.2f.'\ |
---|
40 | % (x, xvec[0]) |
---|
41 | raise Below_interval, msg |
---|
42 | |
---|
43 | if x > xvec[-1]: |
---|
44 | msg = 'Value provided = %.2f, interpolation maximum = %.2f.'\ |
---|
45 | %(x, xvec[-1]) |
---|
46 | raise Above_interval, msg |
---|
47 | |
---|
48 | |
---|
49 | # Find appropriate slot within bounds |
---|
50 | i = 0 |
---|
51 | while x > xvec[i]: i += 1 |
---|
52 | |
---|
53 | |
---|
54 | x0 = xvec[i-1] |
---|
55 | x1 = xvec[i] |
---|
56 | alpha = (x - x0)/(x1 - x0) |
---|
57 | |
---|
58 | y0 = yvec[i-1] |
---|
59 | y1 = yvec[i] |
---|
60 | y = alpha*y1 + (1-alpha)*y0 |
---|
61 | |
---|
62 | return y |
---|
63 | |
---|
64 | |
---|
65 | |
---|
66 | def read_culvert_description(culvert_description_filename): |
---|
67 | |
---|
68 | # Read description file |
---|
69 | fid = open(culvert_description_filename) |
---|
70 | |
---|
71 | read_rating_curve_data = False |
---|
72 | rating_curve = [] |
---|
73 | for i, line in enumerate(fid.readlines()): |
---|
74 | |
---|
75 | if read_rating_curve_data is True: |
---|
76 | fields = line.split(',') |
---|
77 | head_difference = float(fields[0].strip()) |
---|
78 | flow_rate = float(fields[1].strip()) |
---|
79 | barrel_velocity = float(fields[2].strip()) |
---|
80 | |
---|
81 | rating_curve.append([head_difference, flow_rate, barrel_velocity]) |
---|
82 | |
---|
83 | if i == 0: |
---|
84 | # Header |
---|
85 | continue |
---|
86 | if i == 1: |
---|
87 | # Metadata |
---|
88 | fields = line.split(',') |
---|
89 | label=fields[0].strip() |
---|
90 | type=fields[1].strip().lower() |
---|
91 | assert type in ['box', 'pipe'] |
---|
92 | |
---|
93 | width=float(fields[2].strip()) |
---|
94 | height=float(fields[3].strip()) |
---|
95 | length=float(fields[4].strip()) |
---|
96 | number_of_barrels=int(fields[5].strip()) |
---|
97 | #fields[6] refers to losses |
---|
98 | description=fields[7].strip() |
---|
99 | |
---|
100 | if line.strip() == '': continue # Skip blanks |
---|
101 | |
---|
102 | if line.startswith('Rating'): |
---|
103 | read_rating_curve_data = True |
---|
104 | # Flow data follows |
---|
105 | |
---|
106 | fid.close() |
---|
107 | |
---|
108 | return label, type, width, height, length, number_of_barrels, description, rating_curve |
---|
109 | |
---|
110 | |
---|
111 | |
---|
112 | |
---|
113 | class Culvert_flow_general: |
---|
114 | """Culvert flow - transfer water from one hole to another |
---|
115 | |
---|
116 | This version will work with either rating curve file or with culvert |
---|
117 | routine. |
---|
118 | |
---|
119 | Input: Two points, pipe_size (either diameter or width, height), |
---|
120 | mannings_rougness, |
---|
121 | """ |
---|
122 | |
---|
123 | def __init__(self, |
---|
124 | domain, |
---|
125 | culvert_description_filename=None, |
---|
126 | culvert_routine=None, |
---|
127 | end_point0=None, |
---|
128 | end_point1=None, |
---|
129 | enquiry_point0=None, |
---|
130 | enquiry_point1=None, |
---|
131 | type='box', |
---|
132 | width=None, |
---|
133 | height=None, |
---|
134 | length=None, |
---|
135 | number_of_barrels=1, |
---|
136 | trigger_depth=0.01, # Depth below which no flow happens |
---|
137 | manning=None, # Mannings Roughness for Culvert |
---|
138 | sum_loss=None, |
---|
139 | use_velocity_head=False, # FIXME(Ole): Get rid of - always True |
---|
140 | use_momentum_jet=False, # FIXME(Ole): Not yet implemented |
---|
141 | label=None, |
---|
142 | description=None, |
---|
143 | update_interval=None, |
---|
144 | log_file=False, |
---|
145 | discharge_hydrograph=False, |
---|
146 | verbose=False): |
---|
147 | |
---|
148 | |
---|
149 | |
---|
150 | # Input check |
---|
151 | |
---|
152 | if height is None: height = width |
---|
153 | self.height = height |
---|
154 | self.width = width |
---|
155 | |
---|
156 | |
---|
157 | assert number_of_barrels >= 1 |
---|
158 | assert use_velocity_head is True or use_velocity_head is False |
---|
159 | |
---|
160 | msg = 'Momentum jet not yet moved to general culvert' |
---|
161 | assert use_momentum_jet is False, msg |
---|
162 | |
---|
163 | self.culvert_routine = culvert_routine |
---|
164 | self.culvert_description_filename = culvert_description_filename |
---|
165 | if culvert_description_filename is not None: |
---|
166 | label, type, width, height, length, number_of_barrels, description, rating_curve = read_culvert_description(culvert_description_filename) |
---|
167 | self.rating_curve = ensure_numeric(rating_curve) |
---|
168 | |
---|
169 | self.domain = domain |
---|
170 | self.trigger_depth = trigger_depth |
---|
171 | |
---|
172 | if manning is None: |
---|
173 | self.manning = 0.012 # Default roughness for pipe |
---|
174 | |
---|
175 | if sum_loss is None: |
---|
176 | self.sum_loss = 0.0 |
---|
177 | |
---|
178 | |
---|
179 | |
---|
180 | # Store culvert information |
---|
181 | self.label = label |
---|
182 | self.description = description |
---|
183 | self.culvert_type = type |
---|
184 | self.number_of_barrels = number_of_barrels |
---|
185 | |
---|
186 | # Store options |
---|
187 | self.use_velocity_head = use_velocity_head |
---|
188 | |
---|
189 | if label is None: label = 'culvert_flow' |
---|
190 | label += '_' + str(id(self)) |
---|
191 | self.label = label |
---|
192 | |
---|
193 | # File for storing discharge_hydrograph |
---|
194 | if discharge_hydrograph is True: |
---|
195 | self.timeseries_filename = label + '_timeseries.csv' |
---|
196 | fid = open(self.timeseries_filename, 'w') |
---|
197 | fid.write('time, discharge\n') |
---|
198 | fid.close() |
---|
199 | |
---|
200 | # Log file for storing general textual output |
---|
201 | if log_file is True: |
---|
202 | self.log_filename = label + '.log' |
---|
203 | log_to_file(self.log_filename, self.label) |
---|
204 | log_to_file(self.log_filename, description) |
---|
205 | log_to_file(self.log_filename, self.culvert_type) |
---|
206 | else: |
---|
207 | self.log_filename = None |
---|
208 | |
---|
209 | |
---|
210 | # Create the fundamental culvert polygons from polygon |
---|
211 | P = create_culvert_polygons(end_point0, |
---|
212 | end_point1, |
---|
213 | width=width, |
---|
214 | height=height, |
---|
215 | number_of_barrels=number_of_barrels) |
---|
216 | self.culvert_polygons = P |
---|
217 | |
---|
218 | # Select enquiry points |
---|
219 | if enquiry_point0 is None: |
---|
220 | enquiry_point0 = P['enquiry_point0'] |
---|
221 | |
---|
222 | if enquiry_point1 is None: |
---|
223 | enquiry_point1 = P['enquiry_point1'] |
---|
224 | |
---|
225 | if verbose is True: |
---|
226 | pass |
---|
227 | #plot_polygons([[end_point0, end_point1], |
---|
228 | # P['exchange_polygon0'], |
---|
229 | # P['exchange_polygon1'], |
---|
230 | # [enquiry_point0, 1.005*enquiry_point0], |
---|
231 | # [enquiry_point1, 1.005*enquiry_point1]], |
---|
232 | # figname='culvert_polygon_output') |
---|
233 | |
---|
234 | |
---|
235 | |
---|
236 | self.enquiry_points = [enquiry_point0, enquiry_point1] |
---|
237 | self.enquiry_indices = self.get_enquiry_indices() |
---|
238 | self.check_culvert_inside_domain() |
---|
239 | |
---|
240 | |
---|
241 | # Create inflow object at each end of the culvert. |
---|
242 | self.openings = [] |
---|
243 | self.openings.append(Inflow(domain, |
---|
244 | polygon=P['exchange_polygon0'])) |
---|
245 | self.openings.append(Inflow(domain, |
---|
246 | polygon=P['exchange_polygon1'])) |
---|
247 | |
---|
248 | # Assume two openings for now: Referred to as 0 and 1 |
---|
249 | assert len(self.openings) == 2 |
---|
250 | |
---|
251 | # Establish initial values at each enquiry point |
---|
252 | dq = domain.quantities |
---|
253 | for i, opening in enumerate(self.openings): |
---|
254 | idx = self.enquiry_indices[i] |
---|
255 | elevation = dq['elevation'].get_values(location='centroids', |
---|
256 | indices=[idx])[0] |
---|
257 | stage = dq['stage'].get_values(location='centroids', |
---|
258 | indices=[idx])[0] |
---|
259 | opening.elevation = elevation |
---|
260 | opening.stage = stage |
---|
261 | opening.depth = stage-elevation |
---|
262 | |
---|
263 | |
---|
264 | |
---|
265 | # Determine initial pipe direction. |
---|
266 | # This may change dynamically based on the total energy difference |
---|
267 | # Consequently, this may be superfluous |
---|
268 | delta_z = self.openings[0].elevation - self.openings[1].elevation |
---|
269 | if delta_z > 0.0: |
---|
270 | self.inlet = self.openings[0] |
---|
271 | self.outlet = self.openings[1] |
---|
272 | else: |
---|
273 | self.outlet = self.openings[0] |
---|
274 | self.inlet = self.openings[1] |
---|
275 | |
---|
276 | |
---|
277 | # Store basic geometry |
---|
278 | self.end_points = [end_point0, end_point1] |
---|
279 | self.vector = P['vector'] |
---|
280 | self.length = P['length']; assert self.length > 0.0 |
---|
281 | if culvert_description_filename is not None: |
---|
282 | if not num.allclose(self.length, length, rtol=1.0e-2, atol=1.0e-2): |
---|
283 | msg = 'WARNING: barrel length specified in "%s" (%.2f m)'\ |
---|
284 | % (culvert_description_filename, |
---|
285 | length) |
---|
286 | msg += ' does not match distance between specified' |
---|
287 | msg += ' end points (%.2f m)' %self.length |
---|
288 | print msg |
---|
289 | |
---|
290 | self.verbose = verbose |
---|
291 | |
---|
292 | |
---|
293 | |
---|
294 | # For use with update_interval |
---|
295 | self.last_update = 0.0 |
---|
296 | self.update_interval = update_interval |
---|
297 | |
---|
298 | |
---|
299 | # Print some diagnostics to log if requested |
---|
300 | if self.log_filename is not None: |
---|
301 | s = 'Culvert Effective Length = %.2f m' %(self.length) |
---|
302 | log_to_file(self.log_filename, s) |
---|
303 | |
---|
304 | s = 'Culvert Direction is %s\n' %str(self.vector) |
---|
305 | log_to_file(self.log_filename, s) |
---|
306 | |
---|
307 | |
---|
308 | |
---|
309 | |
---|
310 | |
---|
311 | def __call__(self, domain): |
---|
312 | |
---|
313 | # Time stuff |
---|
314 | time = domain.get_time() |
---|
315 | |
---|
316 | |
---|
317 | update = False |
---|
318 | if self.update_interval is None: |
---|
319 | # Use next timestep as has been computed in domain.py |
---|
320 | delta_t = domain.timestep |
---|
321 | update = True |
---|
322 | else: |
---|
323 | # Use update interval |
---|
324 | delta_t = self.update_interval |
---|
325 | if time - self.last_update > self.update_interval or time == 0.0: |
---|
326 | update = True |
---|
327 | |
---|
328 | if self.log_filename is not None: |
---|
329 | s = '\nTime = %.2f, delta_t = %f' %(time, delta_t) |
---|
330 | log_to_file(self.log_filename, s) |
---|
331 | |
---|
332 | |
---|
333 | if update is True: |
---|
334 | self.compute_rates(delta_t) |
---|
335 | |
---|
336 | |
---|
337 | # Execute flow term for each opening |
---|
338 | # This is where Inflow objects are evaluated using the last rate |
---|
339 | # that has been calculated |
---|
340 | # |
---|
341 | # This will take place at every internal timestep and update the domain |
---|
342 | for opening in self.openings: |
---|
343 | opening(domain) |
---|
344 | |
---|
345 | |
---|
346 | |
---|
347 | def get_enquiry_indices(self): |
---|
348 | """Get indices for nearest centroids to self.enquiry_points |
---|
349 | """ |
---|
350 | |
---|
351 | domain = self.domain |
---|
352 | |
---|
353 | enquiry_indices = [] |
---|
354 | for point in self.enquiry_points: |
---|
355 | # Find nearest centroid |
---|
356 | N = len(domain) |
---|
357 | points = domain.get_centroid_coordinates(absolute=True) |
---|
358 | |
---|
359 | # Calculate indices in exchange area for this forcing term |
---|
360 | |
---|
361 | triangle_id = min_dist = sys.maxint |
---|
362 | for k in range(N): |
---|
363 | x, y = points[k,:] # Centroid |
---|
364 | |
---|
365 | c = point |
---|
366 | distance = (x-c[0])**2+(y-c[1])**2 |
---|
367 | if distance < min_dist: |
---|
368 | min_dist = distance |
---|
369 | triangle_id = k |
---|
370 | |
---|
371 | |
---|
372 | if triangle_id < sys.maxint: |
---|
373 | msg = 'found triangle with centroid (%f, %f)'\ |
---|
374 | %tuple(points[triangle_id, :]) |
---|
375 | msg += ' for point (%f, %f)' %tuple(point) |
---|
376 | |
---|
377 | enquiry_indices.append(triangle_id) |
---|
378 | else: |
---|
379 | msg = 'Triangle not found for point (%f, %f)' %point |
---|
380 | raise Exception, msg |
---|
381 | |
---|
382 | return enquiry_indices |
---|
383 | |
---|
384 | |
---|
385 | def check_culvert_inside_domain(self): |
---|
386 | """Check that all polygons and enquiry points lie within the mesh. |
---|
387 | """ |
---|
388 | bounding_polygon = self.domain.get_boundary_polygon() |
---|
389 | P = self.culvert_polygons |
---|
390 | for key in P.keys(): |
---|
391 | if key in ['exchange_polygon0', |
---|
392 | 'exchange_polygon1']: |
---|
393 | for point in list(P[key]) + self.enquiry_points: |
---|
394 | msg = 'Point %s in polygon %s for culvert %s did not'\ |
---|
395 | %(str(point), key, self.label) |
---|
396 | msg += 'fall within the domain boundary.' |
---|
397 | assert is_inside_polygon(point, bounding_polygon), msg |
---|
398 | |
---|
399 | |
---|
400 | def adjust_flow_for_available_water_at_inlet(self, Q, delta_t): |
---|
401 | """Adjust Q downwards depending on available water at inlet |
---|
402 | """ |
---|
403 | |
---|
404 | if delta_t < epsilon: |
---|
405 | # No need to adjust if time step is very small or zero |
---|
406 | # In this case the possible flow will be very large |
---|
407 | # anyway. |
---|
408 | return Q |
---|
409 | |
---|
410 | # Short hands |
---|
411 | domain = self.domain |
---|
412 | dq = domain.quantities |
---|
413 | time = domain.get_time() |
---|
414 | I = self.inlet |
---|
415 | idx = I.exchange_indices |
---|
416 | |
---|
417 | # Find triangle with the smallest depth |
---|
418 | stage = dq['stage'].get_values(location='centroids', |
---|
419 | indices=[idx]) |
---|
420 | elevation = dq['elevation'].get_values(location='centroids', |
---|
421 | indices=[idx]) |
---|
422 | depth = stage-elevation |
---|
423 | min_depth = min(depth.flat) |
---|
424 | |
---|
425 | # Compute possible flow for exchange region based on |
---|
426 | # triangle with smallest depth |
---|
427 | max_Q = min_depth*I.exchange_area/delta_t |
---|
428 | |
---|
429 | # Calculate the minimum in absolute terms of |
---|
430 | # the requsted flow and the possible flow |
---|
431 | Q_reduced = sign(Q)*min(abs(Q), abs(max_Q)) |
---|
432 | |
---|
433 | if abs(Q_reduced) < abs(Q): |
---|
434 | msg = '%.2fs: Requested flow is ' % time |
---|
435 | msg += 'greater than what is supported by the smallest ' |
---|
436 | msg += 'depth at inlet exchange area:\n ' |
---|
437 | msg += 'h_min*inlet_area/delta_t = %.2f*%.2f/%.2f '\ |
---|
438 | % (min_depth, I.exchange_area, delta_t) |
---|
439 | msg += ' = %.2f m^3/s\n ' % Q_reduced |
---|
440 | msg += 'Q will be reduced from %.2f m^3/s to %.2f m^3/s.' % (Q, Q_reduced) |
---|
441 | if self.verbose is True: |
---|
442 | print msg |
---|
443 | |
---|
444 | if self.log_filename is not None: |
---|
445 | log_to_file(self.log_filename, msg) |
---|
446 | |
---|
447 | return Q_reduced |
---|
448 | |
---|
449 | |
---|
450 | def compute_rates(self, delta_t): |
---|
451 | """Compute new rates for inlet and outlet |
---|
452 | """ |
---|
453 | |
---|
454 | # Short hands |
---|
455 | domain = self.domain |
---|
456 | dq = domain.quantities |
---|
457 | |
---|
458 | # Time stuff |
---|
459 | time = domain.get_time() |
---|
460 | self.last_update = time |
---|
461 | |
---|
462 | |
---|
463 | if hasattr(self, 'log_filename'): |
---|
464 | log_filename = self.log_filename |
---|
465 | |
---|
466 | # Compute stage, energy and velocity at the |
---|
467 | # enquiry points at each end of the culvert |
---|
468 | openings = self.openings |
---|
469 | for i, opening in enumerate(openings): |
---|
470 | idx = self.enquiry_indices[i] |
---|
471 | |
---|
472 | stage = dq['stage'].get_values(location='centroids', |
---|
473 | indices=[idx])[0] |
---|
474 | depth = h = stage-opening.elevation |
---|
475 | |
---|
476 | |
---|
477 | # Get velocity |
---|
478 | xmomentum = dq['xmomentum'].get_values(location='centroids', |
---|
479 | indices=[idx])[0] |
---|
480 | ymomentum = dq['xmomentum'].get_values(location='centroids', |
---|
481 | indices=[idx])[0] |
---|
482 | |
---|
483 | if h > minimum_allowed_height: |
---|
484 | u = xmomentum/(h + velocity_protection/h) |
---|
485 | v = ymomentum/(h + velocity_protection/h) |
---|
486 | else: |
---|
487 | u = v = 0.0 |
---|
488 | |
---|
489 | v_squared = u*u + v*v |
---|
490 | |
---|
491 | if self.use_velocity_head is True: |
---|
492 | velocity_head = 0.5*v_squared/g |
---|
493 | else: |
---|
494 | velocity_head = 0.0 |
---|
495 | |
---|
496 | opening.total_energy = velocity_head + stage |
---|
497 | opening.specific_energy = velocity_head + depth |
---|
498 | opening.stage = stage |
---|
499 | opening.depth = depth |
---|
500 | opening.velocity = sqrt(v_squared) |
---|
501 | |
---|
502 | |
---|
503 | # We now need to deal with each opening individually |
---|
504 | # Determine flow direction based on total energy difference |
---|
505 | delta_total_energy = openings[0].total_energy - openings[1].total_energy |
---|
506 | if delta_total_energy > 0: |
---|
507 | #print 'Flow U/S ---> D/S' |
---|
508 | inlet = openings[0] |
---|
509 | outlet = openings[1] |
---|
510 | else: |
---|
511 | #print 'Flow D/S ---> U/S' |
---|
512 | inlet = openings[1] |
---|
513 | outlet = openings[0] |
---|
514 | |
---|
515 | delta_total_energy = -delta_total_energy |
---|
516 | |
---|
517 | self.inlet = inlet |
---|
518 | self.outlet = outlet |
---|
519 | |
---|
520 | msg = 'Total energy difference is negative' |
---|
521 | assert delta_total_energy > 0.0, msg |
---|
522 | |
---|
523 | # Recompute slope and issue warning if flow is uphill |
---|
524 | # These values do not enter the computation |
---|
525 | delta_z = inlet.elevation - outlet.elevation |
---|
526 | culvert_slope = (delta_z/self.length) |
---|
527 | if culvert_slope < 0.0: |
---|
528 | # Adverse gradient - flow is running uphill |
---|
529 | # Flow will be purely controlled by uphill outlet face |
---|
530 | if self.verbose is True: |
---|
531 | print '%.2fs - WARNING: Flow is running uphill.' % time |
---|
532 | |
---|
533 | if self.log_filename is not None: |
---|
534 | s = 'Time=%.2f, inlet stage = %.2f, outlet stage = %.2f'\ |
---|
535 | %(time, self.inlet.stage, self.outlet.stage) |
---|
536 | log_to_file(self.log_filename, s) |
---|
537 | s = 'Delta total energy = %.3f' %(delta_total_energy) |
---|
538 | log_to_file(log_filename, s) |
---|
539 | |
---|
540 | |
---|
541 | # Determine controlling energy (driving head) for culvert |
---|
542 | if inlet.specific_energy > delta_total_energy: |
---|
543 | # Outlet control |
---|
544 | driving_head = delta_total_energy |
---|
545 | else: |
---|
546 | # Inlet control |
---|
547 | driving_head = inlet.specific_energy |
---|
548 | |
---|
549 | |
---|
550 | |
---|
551 | if self.inlet.depth <= self.trigger_depth: |
---|
552 | Q = 0.0 |
---|
553 | else: |
---|
554 | # Calculate discharge for one barrel and |
---|
555 | # set inlet.rate and outlet.rate |
---|
556 | |
---|
557 | if self.culvert_description_filename is not None: |
---|
558 | try: |
---|
559 | Q = interpolate_linearly(driving_head, |
---|
560 | self.rating_curve[:,0], |
---|
561 | self.rating_curve[:,1]) |
---|
562 | except Below_interval, e: |
---|
563 | Q = self.rating_curve[0,1] |
---|
564 | msg = '%.2fs: ' % time |
---|
565 | msg += 'Delta head smaller than rating curve minimum: ' |
---|
566 | msg += str(e) |
---|
567 | msg += '\n ' |
---|
568 | msg += 'I will use minimum discharge %.2f m^3/s ' % Q |
---|
569 | msg += 'for culvert "%s"' % self.label |
---|
570 | |
---|
571 | if hasattr(self, 'log_filename'): |
---|
572 | log_to_file(self.log_filename, msg) |
---|
573 | except Above_interval, e: |
---|
574 | Q = self.rating_curve[-1,1] |
---|
575 | msg = '%.2fs: ' % time |
---|
576 | msg += 'Delta head greater than rating curve maximum: ' |
---|
577 | msg += str(e) |
---|
578 | msg += '\n ' |
---|
579 | msg += 'I will use maximum discharge %.2f m^3/s ' % Q |
---|
580 | msg += 'for culvert "%s"' % self.label |
---|
581 | |
---|
582 | if self.log_filename is not None: |
---|
583 | log_to_file(self.log_filename, msg) |
---|
584 | else: |
---|
585 | # User culvert routine |
---|
586 | Q, barrel_velocity, culvert_outlet_depth =\ |
---|
587 | self.culvert_routine(inlet.depth, |
---|
588 | outlet.depth, |
---|
589 | inlet.velocity, |
---|
590 | outlet.velocity, |
---|
591 | inlet.specific_energy, |
---|
592 | delta_total_energy, |
---|
593 | g, |
---|
594 | culvert_length=self.length, |
---|
595 | culvert_width=self.width, |
---|
596 | culvert_height=self.height, |
---|
597 | culvert_type=self.culvert_type, |
---|
598 | manning=self.manning, |
---|
599 | sum_loss=self.sum_loss, |
---|
600 | log_filename=self.log_filename) |
---|
601 | |
---|
602 | |
---|
603 | |
---|
604 | # Adjust discharge for multiple barrels |
---|
605 | Q *= self.number_of_barrels |
---|
606 | |
---|
607 | |
---|
608 | Q = self.adjust_flow_for_available_water_at_inlet(Q, delta_t) |
---|
609 | |
---|
610 | self.inlet.rate = -Q |
---|
611 | self.outlet.rate = Q |
---|
612 | |
---|
613 | # Log timeseries to file |
---|
614 | try: |
---|
615 | fid = open(self.timeseries_filename, 'a') |
---|
616 | except: |
---|
617 | pass |
---|
618 | else: |
---|
619 | fid.write('%.2f, %.2f\n' %(time, Q)) |
---|
620 | fid.close() |
---|
621 | |
---|
622 | |
---|
623 | # OBSOLETE (Except for momentum jet in Culvert_flow_energy) |
---|
624 | class Culvert_flow_rating: |
---|
625 | """Culvert flow - transfer water from one hole to another |
---|
626 | |
---|
627 | |
---|
628 | Input: Two points, pipe_size (either diameter or width, height), |
---|
629 | mannings_rougness, |
---|
630 | inlet/outlet energy_loss_coefficients, internal_bend_coefficent, |
---|
631 | top-down_blockage_factor and bottom_up_blockage_factor |
---|
632 | |
---|
633 | """ |
---|
634 | |
---|
635 | def __init__(self, |
---|
636 | domain, |
---|
637 | culvert_description_filename=None, |
---|
638 | end_point0=None, |
---|
639 | end_point1=None, |
---|
640 | enquiry_point0=None, |
---|
641 | enquiry_point1=None, |
---|
642 | update_interval=None, |
---|
643 | log_file=False, |
---|
644 | discharge_hydrograph=False, |
---|
645 | verbose=False): |
---|
646 | |
---|
647 | |
---|
648 | |
---|
649 | label, type, width, height, length, number_of_barrels, description, rating_curve = read_culvert_description(culvert_description_filename) |
---|
650 | |
---|
651 | |
---|
652 | # Store culvert information |
---|
653 | self.label = label |
---|
654 | self.description = description |
---|
655 | self.culvert_type = type |
---|
656 | self.rating_curve = ensure_numeric(rating_curve) |
---|
657 | self.number_of_barrels = number_of_barrels |
---|
658 | |
---|
659 | if label is None: label = 'culvert_flow' |
---|
660 | label += '_' + str(id(self)) |
---|
661 | self.label = label |
---|
662 | |
---|
663 | # File for storing discharge_hydrograph |
---|
664 | if discharge_hydrograph is True: |
---|
665 | self.timeseries_filename = label + '_timeseries.csv' |
---|
666 | fid = open(self.timeseries_filename, 'w') |
---|
667 | fid.write('time, discharge\n') |
---|
668 | fid.close() |
---|
669 | |
---|
670 | # Log file for storing general textual output |
---|
671 | if log_file is True: |
---|
672 | self.log_filename = label + '.log' |
---|
673 | log_to_file(self.log_filename, self.label) |
---|
674 | log_to_file(self.log_filename, description) |
---|
675 | log_to_file(self.log_filename, self.culvert_type) |
---|
676 | |
---|
677 | |
---|
678 | # Create the fundamental culvert polygons from POLYGON |
---|
679 | #if self.culvert_type == 'circle': |
---|
680 | # # Redefine width and height for use with create_culvert_polygons |
---|
681 | # width = height = diameter |
---|
682 | |
---|
683 | P = create_culvert_polygons(end_point0, |
---|
684 | end_point1, |
---|
685 | width=width, |
---|
686 | height=height, |
---|
687 | number_of_barrels=number_of_barrels) |
---|
688 | |
---|
689 | # Select enquiry points |
---|
690 | if enquiry_point0 is None: |
---|
691 | enquiry_point0 = P['enquiry_point0'] |
---|
692 | |
---|
693 | if enquiry_point1 is None: |
---|
694 | enquiry_point1 = P['enquiry_point1'] |
---|
695 | |
---|
696 | if verbose is True: |
---|
697 | pass |
---|
698 | #plot_polygons([[end_point0, end_point1], |
---|
699 | # P['exchange_polygon0'], |
---|
700 | # P['exchange_polygon1'], |
---|
701 | # [enquiry_point0, 1.005*enquiry_point0], |
---|
702 | # [enquiry_point1, 1.005*enquiry_point1]], |
---|
703 | # figname='culvert_polygon_output') |
---|
704 | |
---|
705 | |
---|
706 | |
---|
707 | self.enquiry_points = [enquiry_point0, enquiry_point1] |
---|
708 | |
---|
709 | self.enquiry_indices = [] |
---|
710 | for point in self.enquiry_points: |
---|
711 | # Find nearest centroid |
---|
712 | N = len(domain) |
---|
713 | points = domain.get_centroid_coordinates(absolute=True) |
---|
714 | |
---|
715 | # Calculate indices in exchange area for this forcing term |
---|
716 | |
---|
717 | triangle_id = min_dist = sys.maxint |
---|
718 | for k in range(N): |
---|
719 | x, y = points[k,:] # Centroid |
---|
720 | |
---|
721 | c = point |
---|
722 | distance = (x-c[0])**2+(y-c[1])**2 |
---|
723 | if distance < min_dist: |
---|
724 | min_dist = distance |
---|
725 | triangle_id = k |
---|
726 | |
---|
727 | |
---|
728 | if triangle_id < sys.maxint: |
---|
729 | msg = 'found triangle with centroid (%f, %f)'\ |
---|
730 | %tuple(points[triangle_id, :]) |
---|
731 | msg += ' for point (%f, %f)' %tuple(point) |
---|
732 | |
---|
733 | self.enquiry_indices.append(triangle_id) |
---|
734 | else: |
---|
735 | msg = 'Triangle not found for point (%f, %f)' %point |
---|
736 | raise Exception, msg |
---|
737 | |
---|
738 | |
---|
739 | |
---|
740 | # Check that all polygons lie within the mesh. |
---|
741 | bounding_polygon = domain.get_boundary_polygon() |
---|
742 | for key in P.keys(): |
---|
743 | if key in ['exchange_polygon0', |
---|
744 | 'exchange_polygon1']: |
---|
745 | for point in list(P[key]) + self.enquiry_points: |
---|
746 | msg = 'Point %s in polygon %s for culvert %s did not'\ |
---|
747 | %(str(point), key, self.label) |
---|
748 | msg += 'fall within the domain boundary.' |
---|
749 | assert is_inside_polygon(point, bounding_polygon), msg |
---|
750 | |
---|
751 | |
---|
752 | # Create inflow object at each end of the culvert. |
---|
753 | self.openings = [] |
---|
754 | self.openings.append(Inflow(domain, |
---|
755 | polygon=P['exchange_polygon0'])) |
---|
756 | |
---|
757 | self.openings.append(Inflow(domain, |
---|
758 | polygon=P['exchange_polygon1'])) |
---|
759 | |
---|
760 | |
---|
761 | |
---|
762 | dq = domain.quantities |
---|
763 | for i, opening in enumerate(self.openings): |
---|
764 | elevation = dq['elevation'].get_values(location='centroids', |
---|
765 | indices=[self.enquiry_indices[i]]) |
---|
766 | opening.elevation = elevation |
---|
767 | opening.stage = elevation # Simple assumption that culvert is dry initially |
---|
768 | |
---|
769 | # Assume two openings for now: Referred to as 0 and 1 |
---|
770 | assert len(self.openings) == 2 |
---|
771 | |
---|
772 | # Determine pipe direction |
---|
773 | self.delta_z = delta_z = self.openings[0].elevation - self.openings[1].elevation |
---|
774 | if delta_z > 0.0: |
---|
775 | self.inlet = self.openings[0] |
---|
776 | self.outlet = self.openings[1] |
---|
777 | else: |
---|
778 | self.outlet = self.openings[0] |
---|
779 | self.inlet = self.openings[1] |
---|
780 | |
---|
781 | |
---|
782 | # Store basic geometry |
---|
783 | self.end_points = [end_point0, end_point1] |
---|
784 | self.vector = P['vector'] |
---|
785 | self.length = P['length']; assert self.length > 0.0 |
---|
786 | if not num.allclose(self.length, length, rtol=1.0e-2, atol=1.0e-2): |
---|
787 | msg = 'WARNING: barrel length specified in "%s" (%.2f m)' %(culvert_description_filename, length) |
---|
788 | msg += ' does not match distance between specified' |
---|
789 | msg += ' end points (%.2f m)' %self.length |
---|
790 | print msg |
---|
791 | |
---|
792 | self.verbose = verbose |
---|
793 | self.last_update = 0.0 # For use with update_interval |
---|
794 | self.last_time = 0.0 |
---|
795 | self.update_interval = update_interval |
---|
796 | |
---|
797 | |
---|
798 | # Print something |
---|
799 | if hasattr(self, 'log_filename'): |
---|
800 | s = 'Culvert Effective Length = %.2f m' %(self.length) |
---|
801 | log_to_file(self.log_filename, s) |
---|
802 | |
---|
803 | s = 'Culvert Direction is %s\n' %str(self.vector) |
---|
804 | log_to_file(self.log_filename, s) |
---|
805 | |
---|
806 | |
---|
807 | |
---|
808 | |
---|
809 | |
---|
810 | def __call__(self, domain): |
---|
811 | |
---|
812 | # Time stuff |
---|
813 | time = domain.get_time() |
---|
814 | |
---|
815 | |
---|
816 | update = False |
---|
817 | if self.update_interval is None: |
---|
818 | update = True |
---|
819 | delta_t = domain.timestep # Next timestep has been computed in domain.py |
---|
820 | else: |
---|
821 | if time - self.last_update > self.update_interval or time == 0.0: |
---|
822 | update = True |
---|
823 | delta_t = self.update_interval |
---|
824 | |
---|
825 | s = '\nTime = %.2f, delta_t = %f' %(time, delta_t) |
---|
826 | if hasattr(self, 'log_filename'): |
---|
827 | log_to_file(self.log_filename, s) |
---|
828 | |
---|
829 | |
---|
830 | if update is True: |
---|
831 | self.last_update = time |
---|
832 | |
---|
833 | dq = domain.quantities |
---|
834 | |
---|
835 | # Get average water depths at each opening |
---|
836 | openings = self.openings # There are two Opening [0] and [1] |
---|
837 | for i, opening in enumerate(openings): |
---|
838 | |
---|
839 | # Compute mean values of selected quantitites in the |
---|
840 | # enquiry area in front of the culvert |
---|
841 | |
---|
842 | stage = dq['stage'].get_values(location='centroids', |
---|
843 | indices=[self.enquiry_indices[i]]) |
---|
844 | |
---|
845 | # Store current average stage and depth with each opening object |
---|
846 | opening.depth = stage - opening.elevation |
---|
847 | opening.stage = stage |
---|
848 | |
---|
849 | |
---|
850 | |
---|
851 | ################# End of the FOR loop ################################################ |
---|
852 | |
---|
853 | # We now need to deal with each opening individually |
---|
854 | |
---|
855 | # Determine flow direction based on total energy difference |
---|
856 | |
---|
857 | delta_w = self.inlet.stage - self.outlet.stage |
---|
858 | |
---|
859 | if hasattr(self, 'log_filename'): |
---|
860 | s = 'Time=%.2f, inlet stage = %.2f, outlet stage = %.2f' %(time, |
---|
861 | self.inlet.stage, |
---|
862 | self.outlet.stage) |
---|
863 | log_to_file(self.log_filename, s) |
---|
864 | |
---|
865 | |
---|
866 | if self.inlet.depth <= 0.01: |
---|
867 | Q = 0.0 |
---|
868 | else: |
---|
869 | # Calculate discharge for one barrel and set inlet.rate and outlet.rate |
---|
870 | |
---|
871 | try: |
---|
872 | Q = interpolate_linearly(delta_w, self.rating_curve[:,0], self.rating_curve[:,1]) |
---|
873 | except Below_interval, e: |
---|
874 | Q = self.rating_curve[0,1] |
---|
875 | msg = '%.2fs: Delta head smaller than rating curve minimum: ' %time |
---|
876 | msg += str(e) |
---|
877 | msg += '\n I will use minimum discharge %.2f m^3/s for culvert "%s"'\ |
---|
878 | %(Q, self.label) |
---|
879 | if hasattr(self, 'log_filename'): |
---|
880 | log_to_file(self.log_filename, msg) |
---|
881 | except Above_interval, e: |
---|
882 | Q = self.rating_curve[-1,1] |
---|
883 | msg = '%.2fs: Delta head greater than rating curve maximum: ' %time |
---|
884 | msg += str(e) |
---|
885 | msg += '\n I will use maximum discharge %.2f m^3/s for culvert "%s"'\ |
---|
886 | %(Q, self.label) |
---|
887 | if hasattr(self, 'log_filename'): |
---|
888 | log_to_file(self.log_filename, msg) |
---|
889 | |
---|
890 | |
---|
891 | |
---|
892 | |
---|
893 | # Adjust discharge for multiple barrels |
---|
894 | Q *= self.number_of_barrels |
---|
895 | |
---|
896 | |
---|
897 | # Adjust Q downwards depending on available water at inlet |
---|
898 | stage = self.inlet.get_quantity_values(quantity_name='stage') |
---|
899 | elevation = self.inlet.get_quantity_values(quantity_name='elevation') |
---|
900 | depth = stage-elevation |
---|
901 | |
---|
902 | |
---|
903 | V = 0 |
---|
904 | for i, d in enumerate(depth): |
---|
905 | V += d * domain.areas[i] |
---|
906 | |
---|
907 | #Vsimple = mean(depth)*self.inlet.exchange_area # Current volume in exchange area |
---|
908 | #print 'Q', Q, 'dt', delta_t, 'Q*dt', Q*delta_t, 'V', V, 'Vsimple', Vsimple |
---|
909 | |
---|
910 | dt = delta_t |
---|
911 | if Q*dt > V: |
---|
912 | |
---|
913 | Q_reduced = 0.9*V/dt # Reduce with safety factor |
---|
914 | |
---|
915 | msg = '%.2fs: Computed extraction for this time interval (Q*dt) is ' % time |
---|
916 | msg += 'greater than current volume (V) at inlet.\n' |
---|
917 | msg += ' Q will be reduced from %.2f m^3/s to %.2f m^3/s.' % (Q, Q_reduced) |
---|
918 | |
---|
919 | #print msg |
---|
920 | |
---|
921 | if self.verbose is True: |
---|
922 | print msg |
---|
923 | if hasattr(self, 'log_filename'): |
---|
924 | log_to_file(self.log_filename, msg) |
---|
925 | |
---|
926 | Q = Q_reduced |
---|
927 | |
---|
928 | self.inlet.rate = -Q |
---|
929 | self.outlet.rate = Q |
---|
930 | |
---|
931 | # Log timeseries to file |
---|
932 | try: |
---|
933 | fid = open(self.timeseries_filename, 'a') |
---|
934 | except: |
---|
935 | pass |
---|
936 | else: |
---|
937 | fid.write('%.2f, %.2f\n' %(time, Q)) |
---|
938 | fid.close() |
---|
939 | |
---|
940 | # Store value of time |
---|
941 | self.last_time = time |
---|
942 | |
---|
943 | |
---|
944 | |
---|
945 | # Execute flow term for each opening |
---|
946 | # This is where Inflow objects are evaluated using the last rate that has been calculated |
---|
947 | # |
---|
948 | # This will take place at every internal timestep and update the domain |
---|
949 | for opening in self.openings: |
---|
950 | opening(domain) |
---|
951 | |
---|
952 | |
---|
953 | |
---|
954 | |
---|
955 | |
---|
956 | |
---|
957 | class Culvert_flow_energy: |
---|
958 | """Culvert flow - transfer water from one hole to another |
---|
959 | |
---|
960 | Using Momentum as Calculated by Culvert Flow !! |
---|
961 | Could be Several Methods Investigated to do This !!! |
---|
962 | |
---|
963 | 2008_May_08 |
---|
964 | To Ole: |
---|
965 | OK so here we need to get the Polygon Creating code to create |
---|
966 | polygons for the culvert Based on |
---|
967 | the two input Points (X0,Y0) and (X1,Y1) - need to be passed |
---|
968 | to create polygon |
---|
969 | |
---|
970 | The two centers are now passed on to create_polygon. |
---|
971 | |
---|
972 | |
---|
973 | Input: Two points, pipe_size (either diameter or width, height), |
---|
974 | mannings_rougness, |
---|
975 | inlet/outlet energy_loss_coefficients, internal_bend_coefficent, |
---|
976 | top-down_blockage_factor and bottom_up_blockage_factor |
---|
977 | |
---|
978 | |
---|
979 | And the Delta H enquiry should be change from Openings in line 412 |
---|
980 | to the enquiry Polygons infront of the culvert |
---|
981 | At the moment this script uses only Depth, later we can change it to |
---|
982 | Energy... |
---|
983 | |
---|
984 | Once we have Delta H can calculate a Flow Rate and from Flow Rate |
---|
985 | an Outlet Velocity |
---|
986 | The Outlet Velocity x Outlet Depth = Momentum to be applied at the Outlet... |
---|
987 | |
---|
988 | Invert levels are optional. If left out they will default to the |
---|
989 | elevation at the opening. |
---|
990 | |
---|
991 | """ |
---|
992 | |
---|
993 | def __init__(self, |
---|
994 | domain, |
---|
995 | label=None, |
---|
996 | description=None, |
---|
997 | end_point0=None, |
---|
998 | end_point1=None, |
---|
999 | width=None, |
---|
1000 | height=None, |
---|
1001 | diameter=None, |
---|
1002 | manning=None, # Mannings Roughness for Culvert |
---|
1003 | invert_level0=None, # Invert level at opening 0 |
---|
1004 | invert_level1=None, # Invert level at opening 1 |
---|
1005 | loss_exit=None, |
---|
1006 | loss_entry=None, |
---|
1007 | loss_bend=None, |
---|
1008 | loss_special=None, |
---|
1009 | blockage_topdwn=None, |
---|
1010 | blockage_bottup=None, |
---|
1011 | culvert_routine=None, |
---|
1012 | number_of_barrels=1, |
---|
1013 | enquiry_point0=None, |
---|
1014 | enquiry_point1=None, |
---|
1015 | update_interval=None, |
---|
1016 | verbose=False): |
---|
1017 | |
---|
1018 | # Input check |
---|
1019 | if diameter is not None: |
---|
1020 | self.culvert_type = 'circle' |
---|
1021 | self.diameter = diameter |
---|
1022 | if height is not None or width is not None: |
---|
1023 | msg = 'Either diameter or width&height must be specified, ' |
---|
1024 | msg += 'but not both.' |
---|
1025 | raise Exception, msg |
---|
1026 | else: |
---|
1027 | if height is not None: |
---|
1028 | if width is None: |
---|
1029 | self.culvert_type = 'square' |
---|
1030 | width = height |
---|
1031 | else: |
---|
1032 | self.culvert_type = 'rectangle' |
---|
1033 | elif width is not None: |
---|
1034 | if height is None: |
---|
1035 | self.culvert_type = 'square' |
---|
1036 | height = width |
---|
1037 | else: |
---|
1038 | msg = 'Either diameter or width&height must be specified.' |
---|
1039 | raise Exception, msg |
---|
1040 | |
---|
1041 | if height == width: |
---|
1042 | self.culvert_type = 'square' |
---|
1043 | |
---|
1044 | self.height = height |
---|
1045 | self.width = width |
---|
1046 | |
---|
1047 | |
---|
1048 | assert self.culvert_type in ['circle', 'square', 'rectangle'] |
---|
1049 | |
---|
1050 | assert number_of_barrels >= 1 |
---|
1051 | self.number_of_barrels = number_of_barrels |
---|
1052 | |
---|
1053 | |
---|
1054 | # Set defaults |
---|
1055 | if manning is None: manning = 0.012 # Default roughness for pipe |
---|
1056 | if loss_exit is None: loss_exit = 1.00 |
---|
1057 | if loss_entry is None: loss_entry = 0.50 |
---|
1058 | if loss_bend is None: loss_bend=0.00 |
---|
1059 | if loss_special is None: loss_special=0.00 |
---|
1060 | if blockage_topdwn is None: blockage_topdwn=0.00 |
---|
1061 | if blockage_bottup is None: blockage_bottup=0.00 |
---|
1062 | if culvert_routine is None: |
---|
1063 | culvert_routine=boyd_generalised_culvert_model |
---|
1064 | |
---|
1065 | if label is None: label = 'culvert_flow' |
---|
1066 | label += '_' + str(id(self)) |
---|
1067 | self.label = label |
---|
1068 | |
---|
1069 | # File for storing culvert quantities |
---|
1070 | self.timeseries_filename = label + '_timeseries.csv' |
---|
1071 | fid = open(self.timeseries_filename, 'w') |
---|
1072 | fid.write('time, E0, E1, Velocity, Discharge\n') |
---|
1073 | fid.close() |
---|
1074 | |
---|
1075 | # Log file for storing general textual output |
---|
1076 | self.log_filename = label + '.log' |
---|
1077 | log_to_file(self.log_filename, self.label) |
---|
1078 | log_to_file(self.log_filename, description) |
---|
1079 | log_to_file(self.log_filename, self.culvert_type) |
---|
1080 | |
---|
1081 | |
---|
1082 | # Create the fundamental culvert polygons from POLYGON |
---|
1083 | if self.culvert_type == 'circle': |
---|
1084 | # Redefine width and height for use with create_culvert_polygons |
---|
1085 | width = height = diameter |
---|
1086 | |
---|
1087 | P = create_culvert_polygons(end_point0, |
---|
1088 | end_point1, |
---|
1089 | width=width, |
---|
1090 | height=height, |
---|
1091 | number_of_barrels=number_of_barrels) |
---|
1092 | |
---|
1093 | # Select enquiry points |
---|
1094 | if enquiry_point0 is None: |
---|
1095 | enquiry_point0 = P['enquiry_point0'] |
---|
1096 | |
---|
1097 | if enquiry_point1 is None: |
---|
1098 | enquiry_point1 = P['enquiry_point1'] |
---|
1099 | |
---|
1100 | if verbose is True: |
---|
1101 | pass |
---|
1102 | #plot_polygons([[end_point0, end_point1], |
---|
1103 | # P['exchange_polygon0'], |
---|
1104 | # P['exchange_polygon1'], |
---|
1105 | # [enquiry_point0, 1.005*enquiry_point0], |
---|
1106 | # [enquiry_point1, 1.005*enquiry_point1]], |
---|
1107 | # figname='culvert_polygon_output') |
---|
1108 | |
---|
1109 | |
---|
1110 | self.enquiry_points = [enquiry_point0, enquiry_point1] |
---|
1111 | |
---|
1112 | |
---|
1113 | self.enquiry_indices = [] |
---|
1114 | for point in self.enquiry_points: |
---|
1115 | # Find nearest centroid |
---|
1116 | N = len(domain) |
---|
1117 | points = domain.get_centroid_coordinates(absolute=True) |
---|
1118 | |
---|
1119 | # Calculate indices in exchange area for this forcing term |
---|
1120 | |
---|
1121 | triangle_id = min_dist = sys.maxint |
---|
1122 | for k in range(N): |
---|
1123 | x, y = points[k,:] # Centroid |
---|
1124 | |
---|
1125 | c = point |
---|
1126 | distance = (x-c[0])**2+(y-c[1])**2 |
---|
1127 | if distance < min_dist: |
---|
1128 | min_dist = distance |
---|
1129 | triangle_id = k |
---|
1130 | |
---|
1131 | |
---|
1132 | if triangle_id < sys.maxint: |
---|
1133 | msg = 'found triangle with centroid (%f, %f)'\ |
---|
1134 | %tuple(points[triangle_id, :]) |
---|
1135 | msg += ' for point (%f, %f)' %tuple(point) |
---|
1136 | |
---|
1137 | self.enquiry_indices.append(triangle_id) |
---|
1138 | else: |
---|
1139 | msg = 'Triangle not found for point (%f, %f)' %point |
---|
1140 | raise Exception, msg |
---|
1141 | |
---|
1142 | |
---|
1143 | |
---|
1144 | |
---|
1145 | |
---|
1146 | |
---|
1147 | # Check that all polygons lie within the mesh. |
---|
1148 | bounding_polygon = domain.get_boundary_polygon() |
---|
1149 | for key in P.keys(): |
---|
1150 | if key in ['exchange_polygon0', |
---|
1151 | 'exchange_polygon1']: |
---|
1152 | for point in P[key]: |
---|
1153 | |
---|
1154 | msg = 'Point %s in polygon %s for culvert %s did not'\ |
---|
1155 | %(str(point), key, self.label) |
---|
1156 | msg += 'fall within the domain boundary.' |
---|
1157 | assert is_inside_polygon(point, bounding_polygon), msg |
---|
1158 | |
---|
1159 | |
---|
1160 | # Create inflow object at each end of the culvert. |
---|
1161 | self.openings = [] |
---|
1162 | self.openings.append(Inflow(domain, |
---|
1163 | polygon=P['exchange_polygon0'])) |
---|
1164 | |
---|
1165 | self.openings.append(Inflow(domain, |
---|
1166 | polygon=P['exchange_polygon1'])) |
---|
1167 | |
---|
1168 | |
---|
1169 | # Assume two openings for now: Referred to as 0 and 1 |
---|
1170 | assert len(self.openings) == 2 |
---|
1171 | |
---|
1172 | # Store basic geometry |
---|
1173 | self.end_points = [end_point0, end_point1] |
---|
1174 | self.invert_levels = [invert_level0, invert_level1] |
---|
1175 | #self.enquiry_polygons = [P['enquiry_polygon0'], P['enquiry_polygon1']] |
---|
1176 | #self.enquiry_polylines = [P['enquiry_polygon0'][:2], |
---|
1177 | # P['enquiry_polygon1'][:2]] |
---|
1178 | self.vector = P['vector'] |
---|
1179 | self.length = P['length']; assert self.length > 0.0 |
---|
1180 | self.verbose = verbose |
---|
1181 | self.last_time = 0.0 |
---|
1182 | self.last_update = 0.0 # For use with update_interval |
---|
1183 | self.update_interval = update_interval |
---|
1184 | |
---|
1185 | |
---|
1186 | # Store hydraulic parameters |
---|
1187 | self.manning = manning |
---|
1188 | self.loss_exit = loss_exit |
---|
1189 | self.loss_entry = loss_entry |
---|
1190 | self.loss_bend = loss_bend |
---|
1191 | self.loss_special = loss_special |
---|
1192 | self.sum_loss = loss_exit + loss_entry + loss_bend + loss_special |
---|
1193 | self.blockage_topdwn = blockage_topdwn |
---|
1194 | self.blockage_bottup = blockage_bottup |
---|
1195 | |
---|
1196 | # Store culvert routine |
---|
1197 | self.culvert_routine = culvert_routine |
---|
1198 | |
---|
1199 | |
---|
1200 | # Create objects to update momentum (a bit crude at this stage) |
---|
1201 | |
---|
1202 | |
---|
1203 | xmom0 = General_forcing(domain, 'xmomentum', |
---|
1204 | polygon=P['exchange_polygon0']) |
---|
1205 | |
---|
1206 | xmom1 = General_forcing(domain, 'xmomentum', |
---|
1207 | polygon=P['exchange_polygon1']) |
---|
1208 | |
---|
1209 | ymom0 = General_forcing(domain, 'ymomentum', |
---|
1210 | polygon=P['exchange_polygon0']) |
---|
1211 | |
---|
1212 | ymom1 = General_forcing(domain, 'ymomentum', |
---|
1213 | polygon=P['exchange_polygon1']) |
---|
1214 | |
---|
1215 | self.opening_momentum = [ [xmom0, ymom0], [xmom1, ymom1] ] |
---|
1216 | |
---|
1217 | |
---|
1218 | # Print something |
---|
1219 | s = 'Culvert Effective Length = %.2f m' %(self.length) |
---|
1220 | log_to_file(self.log_filename, s) |
---|
1221 | |
---|
1222 | s = 'Culvert Direction is %s\n' %str(self.vector) |
---|
1223 | log_to_file(self.log_filename, s) |
---|
1224 | |
---|
1225 | |
---|
1226 | def __call__(self, domain): |
---|
1227 | |
---|
1228 | log_filename = self.log_filename |
---|
1229 | |
---|
1230 | # Time stuff |
---|
1231 | time = domain.get_time() |
---|
1232 | |
---|
1233 | # Short hand |
---|
1234 | dq = domain.quantities |
---|
1235 | |
---|
1236 | |
---|
1237 | update = False |
---|
1238 | if self.update_interval is None: |
---|
1239 | update = True |
---|
1240 | delta_t = domain.timestep # Next timestep has been computed in domain.py |
---|
1241 | else: |
---|
1242 | if time - self.last_update > self.update_interval or time == 0.0: |
---|
1243 | update = True |
---|
1244 | delta_t = self.update_interval |
---|
1245 | |
---|
1246 | s = '\nTime = %.2f, delta_t = %f' %(time, delta_t) |
---|
1247 | if hasattr(self, 'log_filename'): |
---|
1248 | log_to_file(log_filename, s) |
---|
1249 | |
---|
1250 | |
---|
1251 | if update is True: |
---|
1252 | self.last_update = time |
---|
1253 | |
---|
1254 | msg = 'Time did not advance' |
---|
1255 | if time > 0.0: assert delta_t > 0.0, msg |
---|
1256 | |
---|
1257 | |
---|
1258 | # Get average water depths at each opening |
---|
1259 | openings = self.openings # There are two Opening [0] and [1] |
---|
1260 | for i, opening in enumerate(openings): |
---|
1261 | |
---|
1262 | # Compute mean values of selected quantitites in the |
---|
1263 | # exchange area in front of the culvert |
---|
1264 | |
---|
1265 | stage = opening.get_quantity_values(quantity_name='stage') |
---|
1266 | w = mean(stage) # Average stage |
---|
1267 | |
---|
1268 | # Use invert level instead of elevation if specified |
---|
1269 | invert_level = self.invert_levels[i] |
---|
1270 | if invert_level is not None: |
---|
1271 | z = invert_level |
---|
1272 | else: |
---|
1273 | elevation = opening.get_quantity_values(quantity_name='elevation') |
---|
1274 | z = mean(elevation) # Average elevation |
---|
1275 | |
---|
1276 | # Estimated depth above the culvert inlet |
---|
1277 | d = w - z # Used for calculations involving depth |
---|
1278 | if d < 0.0: |
---|
1279 | # This is possible since w and z are taken at different locations |
---|
1280 | #msg = 'D < 0.0: %f' %d |
---|
1281 | #raise msg |
---|
1282 | d = 0.0 |
---|
1283 | |
---|
1284 | |
---|
1285 | # Ratio of depth to culvert height. |
---|
1286 | # If ratio > 1 then culvert is running full |
---|
1287 | if self.culvert_type == 'circle': |
---|
1288 | ratio = d/self.diameter |
---|
1289 | else: |
---|
1290 | ratio = d/self.height |
---|
1291 | opening.ratio = ratio |
---|
1292 | |
---|
1293 | |
---|
1294 | # Average measures of energy in front of this opening |
---|
1295 | |
---|
1296 | id = [self.enquiry_indices[i]] |
---|
1297 | stage = dq['stage'].get_values(location='centroids', |
---|
1298 | indices=id) |
---|
1299 | elevation = dq['elevation'].get_values(location='centroids', |
---|
1300 | indices=id) |
---|
1301 | xmomentum = dq['xmomentum'].get_values(location='centroids', |
---|
1302 | indices=id) |
---|
1303 | ymomentum = dq['xmomentum'].get_values(location='centroids', |
---|
1304 | indices=id) |
---|
1305 | depth = stage-elevation |
---|
1306 | if depth > 0.0: |
---|
1307 | u = xmomentum/(depth + velocity_protection/depth) |
---|
1308 | v = ymomentum/(depth + velocity_protection/depth) |
---|
1309 | else: |
---|
1310 | u = v = 0.0 |
---|
1311 | |
---|
1312 | |
---|
1313 | opening.total_energy = 0.5*(u*u + v*v)/g + stage |
---|
1314 | #print 'Et = %.3f m' %opening.total_energy |
---|
1315 | |
---|
1316 | # Store current average stage and depth with each opening object |
---|
1317 | opening.depth = d |
---|
1318 | opening.depth_trigger = d # Use this for now |
---|
1319 | opening.stage = w |
---|
1320 | opening.elevation = z |
---|
1321 | |
---|
1322 | |
---|
1323 | ################# End of the FOR loop ################################################ |
---|
1324 | |
---|
1325 | # We now need to deal with each opening individually |
---|
1326 | |
---|
1327 | # Determine flow direction based on total energy difference |
---|
1328 | delta_Et = openings[0].total_energy - openings[1].total_energy |
---|
1329 | |
---|
1330 | if delta_Et > 0: |
---|
1331 | #print 'Flow U/S ---> D/S' |
---|
1332 | inlet = openings[0] |
---|
1333 | outlet = openings[1] |
---|
1334 | |
---|
1335 | inlet.momentum = self.opening_momentum[0] |
---|
1336 | outlet.momentum = self.opening_momentum[1] |
---|
1337 | |
---|
1338 | else: |
---|
1339 | #print 'Flow D/S ---> U/S' |
---|
1340 | inlet = openings[1] |
---|
1341 | outlet = openings[0] |
---|
1342 | |
---|
1343 | inlet.momentum = self.opening_momentum[1] |
---|
1344 | outlet.momentum = self.opening_momentum[0] |
---|
1345 | |
---|
1346 | delta_Et = -delta_Et |
---|
1347 | |
---|
1348 | self.inlet = inlet |
---|
1349 | self.outlet = outlet |
---|
1350 | |
---|
1351 | msg = 'Total energy difference is negative' |
---|
1352 | assert delta_Et > 0.0, msg |
---|
1353 | |
---|
1354 | delta_h = inlet.stage - outlet.stage |
---|
1355 | delta_z = inlet.elevation - outlet.elevation |
---|
1356 | culvert_slope = (delta_z/self.length) |
---|
1357 | |
---|
1358 | if culvert_slope < 0.0: |
---|
1359 | # Adverse gradient - flow is running uphill |
---|
1360 | # Flow will be purely controlled by uphill outlet face |
---|
1361 | if self.verbose is True: |
---|
1362 | print 'WARNING: Flow is running uphill. Watch Out!', inlet.elevation, outlet.elevation |
---|
1363 | |
---|
1364 | |
---|
1365 | s = 'Delta total energy = %.3f' %(delta_Et) |
---|
1366 | log_to_file(log_filename, s) |
---|
1367 | |
---|
1368 | |
---|
1369 | # Calculate discharge for one barrel and set inlet.rate and outlet.rate |
---|
1370 | Q, barrel_velocity, culvert_outlet_depth = self.culvert_routine(self, inlet, outlet, delta_Et, g) |
---|
1371 | |
---|
1372 | # Adjust discharge for multiple barrels |
---|
1373 | Q *= self.number_of_barrels |
---|
1374 | |
---|
1375 | # Compute barrel momentum |
---|
1376 | barrel_momentum = barrel_velocity*culvert_outlet_depth |
---|
1377 | |
---|
1378 | s = 'Barrel velocity = %f' %barrel_velocity |
---|
1379 | log_to_file(log_filename, s) |
---|
1380 | |
---|
1381 | # Compute momentum vector at outlet |
---|
1382 | outlet_mom_x, outlet_mom_y = self.vector * barrel_momentum |
---|
1383 | |
---|
1384 | s = 'Directional momentum = (%f, %f)' %(outlet_mom_x, outlet_mom_y) |
---|
1385 | log_to_file(log_filename, s) |
---|
1386 | |
---|
1387 | # Log timeseries to file |
---|
1388 | fid = open(self.timeseries_filename, 'a') |
---|
1389 | fid.write('%f, %f, %f, %f, %f\n'\ |
---|
1390 | %(time, |
---|
1391 | openings[0].total_energy, |
---|
1392 | openings[1].total_energy, |
---|
1393 | barrel_velocity, |
---|
1394 | Q)) |
---|
1395 | fid.close() |
---|
1396 | |
---|
1397 | # Update momentum |
---|
1398 | |
---|
1399 | if delta_t > 0.0: |
---|
1400 | xmomentum_rate = outlet_mom_x - outlet.momentum[0].value |
---|
1401 | xmomentum_rate /= delta_t |
---|
1402 | |
---|
1403 | ymomentum_rate = outlet_mom_y - outlet.momentum[1].value |
---|
1404 | ymomentum_rate /= delta_t |
---|
1405 | |
---|
1406 | s = 'X Y MOM_RATE = (%f, %f) ' %(xmomentum_rate, ymomentum_rate) |
---|
1407 | log_to_file(log_filename, s) |
---|
1408 | else: |
---|
1409 | xmomentum_rate = ymomentum_rate = 0.0 |
---|
1410 | |
---|
1411 | |
---|
1412 | # Set momentum rates for outlet jet |
---|
1413 | outlet.momentum[0].rate = xmomentum_rate |
---|
1414 | outlet.momentum[1].rate = ymomentum_rate |
---|
1415 | |
---|
1416 | # Remember this value for next step (IMPORTANT) |
---|
1417 | outlet.momentum[0].value = outlet_mom_x |
---|
1418 | outlet.momentum[1].value = outlet_mom_y |
---|
1419 | |
---|
1420 | if int(domain.time*100) % 100 == 0: |
---|
1421 | s = 'T=%.5f, Culvert Discharge = %.3f f'\ |
---|
1422 | %(time, Q) |
---|
1423 | s += ' Depth= %0.3f Momentum = (%0.3f, %0.3f)'\ |
---|
1424 | %(culvert_outlet_depth, outlet_mom_x,outlet_mom_y) |
---|
1425 | s += ' Momentum rate: (%.4f, %.4f)'\ |
---|
1426 | %(xmomentum_rate, ymomentum_rate) |
---|
1427 | s+='Outlet Vel= %.3f'\ |
---|
1428 | %(barrel_velocity) |
---|
1429 | log_to_file(log_filename, s) |
---|
1430 | |
---|
1431 | # Store value of time |
---|
1432 | self.last_time = time |
---|
1433 | |
---|
1434 | |
---|
1435 | |
---|
1436 | # Execute flow term for each opening |
---|
1437 | # This is where Inflow objects are evaluated and update the domain |
---|
1438 | for opening in self.openings: |
---|
1439 | opening(domain) |
---|
1440 | |
---|
1441 | # Execute momentum terms |
---|
1442 | # This is where Inflow objects are evaluated and update the domain |
---|
1443 | self.outlet.momentum[0](domain) |
---|
1444 | self.outlet.momentum[1](domain) |
---|
1445 | |
---|
1446 | |
---|
1447 | |
---|
1448 | Culvert_flow = Culvert_flow_general |
---|