1 | # external modules |
---|
2 | import numpy as num |
---|
3 | |
---|
4 | # ANUGA modules |
---|
5 | from anuga.abstract_2d_finite_volumes.util import remove_lone_verts |
---|
6 | from anuga.coordinate_transforms.geo_reference import Geo_reference |
---|
7 | from anuga.utilities.system_tools import get_vars_in_expression |
---|
8 | import anuga.utilities.log as log |
---|
9 | |
---|
10 | |
---|
11 | ###### |
---|
12 | # formula mappings |
---|
13 | ###### |
---|
14 | |
---|
15 | quantity_formula = {'momentum':'(xmomentum**2 + ymomentum**2)**0.5', |
---|
16 | 'depth':'stage-elevation', |
---|
17 | 'speed': \ |
---|
18 | '(xmomentum**2 + ymomentum**2)**0.5/(stage-elevation+1.e-6/(stage-elevation))'} |
---|
19 | |
---|
20 | |
---|
21 | |
---|
22 | # Default block size for sww2dem() |
---|
23 | DEFAULT_BLOCK_SIZE = 10000 |
---|
24 | |
---|
25 | def sww2dem(basename_in, basename_out=None, |
---|
26 | quantity=None, # defaults to elevation |
---|
27 | reduction=None, |
---|
28 | cellsize=10, |
---|
29 | number_of_decimal_places=None, |
---|
30 | NODATA_value=-9999, |
---|
31 | easting_min=None, |
---|
32 | easting_max=None, |
---|
33 | northing_min=None, |
---|
34 | northing_max=None, |
---|
35 | verbose=False, |
---|
36 | origin=None, |
---|
37 | datum='WGS84', |
---|
38 | format='ers', |
---|
39 | block_size=None): |
---|
40 | """Read SWW file and convert to Digitial Elevation model format |
---|
41 | (.asc or .ers) |
---|
42 | |
---|
43 | Example (ASC): |
---|
44 | ncols 3121 |
---|
45 | nrows 1800 |
---|
46 | xllcorner 722000 |
---|
47 | yllcorner 5893000 |
---|
48 | cellsize 25 |
---|
49 | NODATA_value -9999 |
---|
50 | 138.3698 137.4194 136.5062 135.5558 .......... |
---|
51 | |
---|
52 | The number of decimal places can be specified by the user to save |
---|
53 | on disk space requirements by specifying in the call to sww2dem. |
---|
54 | |
---|
55 | Also write accompanying file with same basename_in but extension .prj |
---|
56 | used to fix the UTM zone, datum, false northings and eastings. |
---|
57 | |
---|
58 | The prj format is assumed to be as |
---|
59 | |
---|
60 | Projection UTM |
---|
61 | Zone 56 |
---|
62 | Datum WGS84 |
---|
63 | Zunits NO |
---|
64 | Units METERS |
---|
65 | Spheroid WGS84 |
---|
66 | Xshift 0.0000000000 |
---|
67 | Yshift 10000000.0000000000 |
---|
68 | Parameters |
---|
69 | |
---|
70 | |
---|
71 | The parameter quantity must be the name of an existing quantity or |
---|
72 | an expression involving existing quantities. The default is |
---|
73 | 'elevation'. Quantity is not a list of quantities. |
---|
74 | |
---|
75 | if timestep (an index) is given, output quantity at that timestep |
---|
76 | |
---|
77 | if reduction is given and its an index, output quantity at that timestep. If reduction is given |
---|
78 | and is a built in function, use that to reduce quantity over all timesteps. |
---|
79 | |
---|
80 | datum |
---|
81 | |
---|
82 | format can be either 'asc' or 'ers' |
---|
83 | block_size - sets the number of slices along the non-time axis to |
---|
84 | process in one block. |
---|
85 | """ |
---|
86 | |
---|
87 | import sys |
---|
88 | import types |
---|
89 | |
---|
90 | from anuga.geometry.polygon import inside_polygon, outside_polygon |
---|
91 | from anuga.abstract_2d_finite_volumes.util import \ |
---|
92 | apply_expression_to_dictionary |
---|
93 | |
---|
94 | msg = 'Format must be either asc or ers' |
---|
95 | assert format.lower() in ['asc', 'ers'], msg |
---|
96 | |
---|
97 | false_easting = 500000 |
---|
98 | false_northing = 10000000 |
---|
99 | |
---|
100 | if quantity is None: |
---|
101 | quantity = 'elevation' |
---|
102 | |
---|
103 | if reduction is None: |
---|
104 | reduction = max |
---|
105 | |
---|
106 | if basename_out is None: |
---|
107 | basename_out = basename_in + '_%s' % quantity |
---|
108 | |
---|
109 | if quantity_formula.has_key(quantity): |
---|
110 | quantity = quantity_formula[quantity] |
---|
111 | |
---|
112 | if number_of_decimal_places is None: |
---|
113 | number_of_decimal_places = 3 |
---|
114 | |
---|
115 | if block_size is None: |
---|
116 | block_size = DEFAULT_BLOCK_SIZE |
---|
117 | |
---|
118 | # Read SWW file |
---|
119 | swwfile = basename_in + '.sww' |
---|
120 | demfile = basename_out + '.' + format |
---|
121 | |
---|
122 | # Read sww file |
---|
123 | if verbose: |
---|
124 | log.critical('Reading from %s' % swwfile) |
---|
125 | log.critical('Output directory is %s' % basename_out) |
---|
126 | |
---|
127 | from Scientific.IO.NetCDF import NetCDFFile |
---|
128 | fid = NetCDFFile(swwfile) |
---|
129 | |
---|
130 | #Get extent and reference |
---|
131 | x = fid.variables['x'][:] |
---|
132 | y = fid.variables['y'][:] |
---|
133 | volumes = fid.variables['volumes'][:] |
---|
134 | if type(reduction) is not types.BuiltinFunctionType: |
---|
135 | times = fid.variables['time'][reduction] |
---|
136 | else: |
---|
137 | times = fid.variables['time'][:] |
---|
138 | |
---|
139 | number_of_timesteps = fid.dimensions['number_of_timesteps'] |
---|
140 | number_of_points = fid.dimensions['number_of_points'] |
---|
141 | |
---|
142 | if origin is None: |
---|
143 | # Get geo_reference |
---|
144 | # sww files don't have to have a geo_ref |
---|
145 | try: |
---|
146 | geo_reference = Geo_reference(NetCDFObject=fid) |
---|
147 | except AttributeError, e: |
---|
148 | geo_reference = Geo_reference() # Default georef object |
---|
149 | |
---|
150 | xllcorner = geo_reference.get_xllcorner() |
---|
151 | yllcorner = geo_reference.get_yllcorner() |
---|
152 | zone = geo_reference.get_zone() |
---|
153 | else: |
---|
154 | zone = origin[0] |
---|
155 | xllcorner = origin[1] |
---|
156 | yllcorner = origin[2] |
---|
157 | |
---|
158 | # FIXME: Refactor using code from Interpolation_function.statistics |
---|
159 | # (in interpolate.py) |
---|
160 | # Something like print swwstats(swwname) |
---|
161 | if verbose: |
---|
162 | log.critical('------------------------------------------------') |
---|
163 | log.critical('Statistics of SWW file:') |
---|
164 | log.critical(' Name: %s' % swwfile) |
---|
165 | log.critical(' Reference:') |
---|
166 | log.critical(' Lower left corner: [%f, %f]' % (xllcorner, yllcorner)) |
---|
167 | if type(reduction) is not types.BuiltinFunctionType: |
---|
168 | log.critical(' Time: %f' % times) |
---|
169 | else: |
---|
170 | log.critical(' Start time: %f' % fid.starttime[0]) |
---|
171 | log.critical(' Extent:') |
---|
172 | log.critical(' x [m] in [%f, %f], len(x) == %d' |
---|
173 | %(num.min(x), num.max(x), len(x.flat))) |
---|
174 | log.critical(' y [m] in [%f, %f], len(y) == %d' |
---|
175 | % (num.min(y), num.max(y), len(y.flat))) |
---|
176 | if type(reduction) is not types.BuiltinFunctionType: |
---|
177 | log.critical(' t [s] = %f, len(t) == %d' % (times, 1)) |
---|
178 | else: |
---|
179 | log.critical(' t [s] in [%f, %f], len(t) == %d' |
---|
180 | % (min(times), max(times), len(times))) |
---|
181 | log.critical(' Quantities [SI units]:') |
---|
182 | |
---|
183 | # Comment out for reduced memory consumption |
---|
184 | for name in ['stage', 'xmomentum', 'ymomentum']: |
---|
185 | q = fid.variables[name][:].flatten() |
---|
186 | if type(reduction) is not types.BuiltinFunctionType: |
---|
187 | q = q[reduction*len(x):(reduction+1)*len(x)] |
---|
188 | if verbose: log.critical(' %s in [%f, %f]' |
---|
189 | % (name, min(q), max(q))) |
---|
190 | for name in ['elevation']: |
---|
191 | q = fid.variables[name][:].flatten() |
---|
192 | if verbose: log.critical(' %s in [%f, %f]' |
---|
193 | % (name, min(q), max(q))) |
---|
194 | |
---|
195 | # Get the variables in the supplied expression. |
---|
196 | # This may throw a SyntaxError exception. |
---|
197 | var_list = get_vars_in_expression(quantity) |
---|
198 | |
---|
199 | # Check that we have the required variables in the SWW file. |
---|
200 | missing_vars = [] |
---|
201 | for name in var_list: |
---|
202 | try: |
---|
203 | _ = fid.variables[name] |
---|
204 | except: |
---|
205 | missing_vars.append(name) |
---|
206 | if missing_vars: |
---|
207 | msg = ("In expression '%s', variables %s are not in the SWW file '%s'" |
---|
208 | % (quantity, swwfile)) |
---|
209 | raise Exception, msg |
---|
210 | |
---|
211 | # Create result array and start filling, block by block. |
---|
212 | result = num.zeros(number_of_points, num.float) |
---|
213 | |
---|
214 | for start_slice in xrange(0, number_of_points, block_size): |
---|
215 | # Limit slice size to array end if at last block |
---|
216 | end_slice = min(start_slice + block_size, number_of_points) |
---|
217 | |
---|
218 | # Get slices of all required variables |
---|
219 | q_dict = {} |
---|
220 | for name in var_list: |
---|
221 | # check if variable has time axis |
---|
222 | if len(fid.variables[name].shape) == 2: |
---|
223 | q_dict[name] = fid.variables[name][:,start_slice:end_slice] |
---|
224 | else: # no time axis |
---|
225 | q_dict[name] = fid.variables[name][start_slice:end_slice] |
---|
226 | |
---|
227 | # Evaluate expression with quantities found in SWW file |
---|
228 | res = apply_expression_to_dictionary(quantity, q_dict) |
---|
229 | |
---|
230 | if len(res.shape) == 2: |
---|
231 | new_res = num.zeros(res.shape[1], num.float) |
---|
232 | for k in xrange(res.shape[1]): |
---|
233 | if type(reduction) is not types.BuiltinFunctionType: |
---|
234 | new_res[k] = res[reduction,k] |
---|
235 | else: |
---|
236 | new_res[k] = reduction(res[:,k]) |
---|
237 | res = new_res |
---|
238 | |
---|
239 | result[start_slice:end_slice] = res |
---|
240 | |
---|
241 | # Post condition: Now q has dimension: number_of_points |
---|
242 | assert len(result.shape) == 1 |
---|
243 | assert result.shape[0] == number_of_points |
---|
244 | |
---|
245 | if verbose: |
---|
246 | log.critical('Processed values for %s are in [%f, %f]' |
---|
247 | % (quantity, min(result), max(result))) |
---|
248 | |
---|
249 | # Create grid and update xll/yll corner and x,y |
---|
250 | # Relative extent |
---|
251 | if easting_min is None: |
---|
252 | xmin = min(x) |
---|
253 | else: |
---|
254 | xmin = easting_min - xllcorner |
---|
255 | |
---|
256 | if easting_max is None: |
---|
257 | xmax = max(x) |
---|
258 | else: |
---|
259 | xmax = easting_max - xllcorner |
---|
260 | |
---|
261 | if northing_min is None: |
---|
262 | ymin = min(y) |
---|
263 | else: |
---|
264 | ymin = northing_min - yllcorner |
---|
265 | |
---|
266 | if northing_max is None: |
---|
267 | ymax = max(y) |
---|
268 | else: |
---|
269 | ymax = northing_max - yllcorner |
---|
270 | |
---|
271 | msg = 'xmax must be greater than or equal to xmin.\n' |
---|
272 | msg += 'I got xmin = %f, xmax = %f' %(xmin, xmax) |
---|
273 | assert xmax >= xmin, msg |
---|
274 | |
---|
275 | msg = 'ymax must be greater than or equal to xmin.\n' |
---|
276 | msg += 'I got ymin = %f, ymax = %f' %(ymin, ymax) |
---|
277 | assert ymax >= ymin, msg |
---|
278 | |
---|
279 | if verbose: log.critical('Creating grid') |
---|
280 | ncols = int((xmax-xmin)/cellsize) + 1 |
---|
281 | nrows = int((ymax-ymin)/cellsize) + 1 |
---|
282 | |
---|
283 | # New absolute reference and coordinates |
---|
284 | newxllcorner = xmin + xllcorner |
---|
285 | newyllcorner = ymin + yllcorner |
---|
286 | |
---|
287 | x = x + xllcorner - newxllcorner |
---|
288 | y = y + yllcorner - newyllcorner |
---|
289 | |
---|
290 | vertex_points = num.concatenate ((x[:,num.newaxis], y[:,num.newaxis]), axis=1) |
---|
291 | assert len(vertex_points.shape) == 2 |
---|
292 | |
---|
293 | grid_points = num.zeros ((ncols*nrows, 2), num.float) |
---|
294 | |
---|
295 | for i in xrange(nrows): |
---|
296 | if format.lower() == 'asc': |
---|
297 | yg = i * cellsize |
---|
298 | else: |
---|
299 | # this will flip the order of the y values for ers |
---|
300 | yg = (nrows-i) * cellsize |
---|
301 | |
---|
302 | for j in xrange(ncols): |
---|
303 | xg = j * cellsize |
---|
304 | k = i*ncols + j |
---|
305 | |
---|
306 | grid_points[k, 0] = xg |
---|
307 | grid_points[k, 1] = yg |
---|
308 | |
---|
309 | # Interpolate |
---|
310 | from anuga.fit_interpolate.interpolate import Interpolate |
---|
311 | |
---|
312 | # Remove loners from vertex_points, volumes here |
---|
313 | vertex_points, volumes = remove_lone_verts(vertex_points, volumes) |
---|
314 | # export_mesh_file('monkey.tsh',{'vertices':vertex_points, 'triangles':volumes}) |
---|
315 | interp = Interpolate(vertex_points, volumes, verbose = verbose) |
---|
316 | |
---|
317 | # Interpolate using quantity values |
---|
318 | if verbose: log.critical('Interpolating') |
---|
319 | grid_values = interp.interpolate(result, grid_points).flatten() |
---|
320 | |
---|
321 | if verbose: |
---|
322 | log.critical('Interpolated values are in [%f, %f]' |
---|
323 | % (num.min(grid_values), num.max(grid_values))) |
---|
324 | |
---|
325 | # Assign NODATA_value to all points outside bounding polygon (from interpolation mesh) |
---|
326 | P = interp.mesh.get_boundary_polygon() |
---|
327 | outside_indices = outside_polygon(grid_points, P, closed=True) |
---|
328 | |
---|
329 | for i in outside_indices: |
---|
330 | grid_values[i] = NODATA_value |
---|
331 | |
---|
332 | if format.lower() == 'ers': |
---|
333 | # setup ERS header information |
---|
334 | grid_values = num.reshape(grid_values, (nrows, ncols)) |
---|
335 | header = {} |
---|
336 | header['datum'] = '"' + datum + '"' |
---|
337 | # FIXME The use of hardwired UTM and zone number needs to be made optional |
---|
338 | # FIXME Also need an automatic test for coordinate type (i.e. EN or LL) |
---|
339 | header['projection'] = '"UTM-' + str(zone) + '"' |
---|
340 | header['coordinatetype'] = 'EN' |
---|
341 | if header['coordinatetype'] == 'LL': |
---|
342 | header['longitude'] = str(newxllcorner) |
---|
343 | header['latitude'] = str(newyllcorner) |
---|
344 | elif header['coordinatetype'] == 'EN': |
---|
345 | header['eastings'] = str(newxllcorner) |
---|
346 | header['northings'] = str(newyllcorner) |
---|
347 | header['nullcellvalue'] = str(NODATA_value) |
---|
348 | header['xdimension'] = str(cellsize) |
---|
349 | header['ydimension'] = str(cellsize) |
---|
350 | header['value'] = '"' + quantity + '"' |
---|
351 | #header['celltype'] = 'IEEE8ByteReal' #FIXME: Breaks unit test |
---|
352 | |
---|
353 | #Write |
---|
354 | if verbose: log.critical('Writing %s' % demfile) |
---|
355 | |
---|
356 | import ermapper_grids |
---|
357 | |
---|
358 | ermapper_grids.write_ermapper_grid(demfile, grid_values, header) |
---|
359 | |
---|
360 | fid.close() |
---|
361 | else: |
---|
362 | #Write to Ascii format |
---|
363 | #Write prj file |
---|
364 | prjfile = basename_out + '.prj' |
---|
365 | |
---|
366 | if verbose: log.critical('Writing %s' % prjfile) |
---|
367 | prjid = open(prjfile, 'w') |
---|
368 | prjid.write('Projection %s\n' %'UTM') |
---|
369 | prjid.write('Zone %d\n' %zone) |
---|
370 | prjid.write('Datum %s\n' %datum) |
---|
371 | prjid.write('Zunits NO\n') |
---|
372 | prjid.write('Units METERS\n') |
---|
373 | prjid.write('Spheroid %s\n' %datum) |
---|
374 | prjid.write('Xshift %d\n' %false_easting) |
---|
375 | prjid.write('Yshift %d\n' %false_northing) |
---|
376 | prjid.write('Parameters\n') |
---|
377 | prjid.close() |
---|
378 | |
---|
379 | if verbose: log.critical('Writing %s' % demfile) |
---|
380 | |
---|
381 | ascid = open(demfile, 'w') |
---|
382 | |
---|
383 | ascid.write('ncols %d\n' %ncols) |
---|
384 | ascid.write('nrows %d\n' %nrows) |
---|
385 | ascid.write('xllcorner %d\n' %newxllcorner) |
---|
386 | ascid.write('yllcorner %d\n' %newyllcorner) |
---|
387 | ascid.write('cellsize %f\n' %cellsize) |
---|
388 | ascid.write('NODATA_value %d\n' %NODATA_value) |
---|
389 | |
---|
390 | #Get bounding polygon from mesh |
---|
391 | #P = interp.mesh.get_boundary_polygon() |
---|
392 | #inside_indices = inside_polygon(grid_points, P) |
---|
393 | |
---|
394 | # change printoptions so that a long string of zeros in not |
---|
395 | # summarized as [0.0, 0.0, 0.0, ... 0.0, 0.0, 0.0] |
---|
396 | #printoptions = num.get_printoptions() |
---|
397 | #num.set_printoptions(threshold=sys.maxint) |
---|
398 | |
---|
399 | format = '%.'+'%g' % number_of_decimal_places +'e' |
---|
400 | for i in range(nrows): |
---|
401 | if verbose and i % ((nrows+10)/10) == 0: |
---|
402 | log.critical('Doing row %d of %d' % (i, nrows)) |
---|
403 | |
---|
404 | base_index = (nrows-i-1)*ncols |
---|
405 | |
---|
406 | slice = grid_values[base_index:base_index+ncols] |
---|
407 | |
---|
408 | num.savetxt(ascid, slice.reshape(1,ncols), format, ' ' ) |
---|
409 | |
---|
410 | |
---|
411 | #Close |
---|
412 | ascid.close() |
---|
413 | fid.close() |
---|
414 | |
---|
415 | return basename_out |
---|