source: anuga_core/source/anuga/fit_interpolate/interpolate.py @ 7707

Last change on this file since 7707 was 7707, checked in by hudson, 14 years ago

New quadtree implementation - unoptimised and no tree balancing. A couple of failing unit tests to fix.

File size: 50.7 KB
Line 
1"""Least squares interpolation.
2
3   Implements a least-squares interpolation.
4   Putting mesh data onto points.
5
6   Ole Nielsen, Stephen Roberts, Duncan Gray, Christopher Zoppou
7   Geoscience Australia, 2004.
8
9DESIGN ISSUES
10* what variables should be global?
11- if there are no global vars functions can be moved around alot easier
12
13* The public interface to Interpolate
14__init__
15interpolate
16interpolate_block
17
18"""
19
20import time
21import os
22import sys
23from warnings import warn
24from math import sqrt
25from csv import writer, DictWriter
26
27from anuga.caching.caching import cache
28from anuga.abstract_2d_finite_volumes.neighbour_mesh import Mesh
29from anuga.utilities.sparse import Sparse, Sparse_CSR
30from anuga.utilities.cg_solve import conjugate_gradient, VectorShapeError
31from anuga.coordinate_transforms.geo_reference import Geo_reference
32from anuga.utilities.numerical_tools import ensure_numeric, NAN
33from anuga.utilities.polygon import in_and_outside_polygon
34from anuga.geospatial_data.geospatial_data import Geospatial_data
35from anuga.geospatial_data.geospatial_data import ensure_absolute
36from anuga.fit_interpolate.search_functions import search_tree_of_vertices
37from anuga.fit_interpolate.general_fit_interpolate import FitInterpolate
38from anuga.abstract_2d_finite_volumes.file_function import file_function
39from anuga.config import netcdf_mode_r, netcdf_mode_w, netcdf_mode_a
40from utilities.polygon import interpolate_polyline
41import anuga.utilities.log as log
42
43import numpy as num
44
45
46# Interpolation specific exceptions
47
48class Modeltime_too_late(Exception): pass
49class Modeltime_too_early(Exception): pass
50
51
52##
53# @brief Interpolate vertex_values to interpolation points.
54# @param vertex_coordinates List of coordinate pairs making a mesh.
55# @param triangles Iterable of 3-tuples representing indices of mesh vertices.
56# @param vertex_values Array of data at mesh vertices.
57# @param interpolation_points Points to interpolate to.
58# @param mesh_origin A geo_ref object or 3-tuples of UTMzone, easting, northing.
59# @param max_vertices_per_cell Max number of vertices before splitting cell.
60# @param start_blocking_len Block if # of points greater than this.
61# @param use_cache If True, cache.
62# @param verbose True if this function is to be verbose.
63def interpolate(vertex_coordinates,
64                triangles,
65                vertex_values,
66                interpolation_points,
67                mesh_origin=None,
68                max_vertices_per_cell=None,
69                start_blocking_len=500000,
70                use_cache=False,
71                verbose=False,
72                output_centroids=False):
73    """Interpolate vertex_values to interpolation points.
74
75    Inputs (mandatory):
76
77
78    vertex_coordinates: List of coordinate pairs [xi, eta] of
79                        points constituting a mesh
80                        (or an m x 2 numeric array or
81                        a geospatial object)
82                        Points may appear multiple times
83                        (e.g. if vertices have discontinuities)
84
85    triangles: List of 3-tuples (or a numeric array) of
86               integers representing indices of all vertices
87               in the mesh.
88
89    vertex_values: Vector or array of data at the mesh vertices.
90                   If array, interpolation will be done for each column as
91                   per underlying matrix-matrix multiplication
92
93    interpolation_points: Interpolate mesh data to these positions.
94                          List of coordinate pairs [x, y] of
95                          data points or an nx2 numeric array or a
96                          Geospatial_data object
97
98    Inputs (optional)
99
100    mesh_origin: A geo_reference object or 3-tuples consisting of
101                 UTM zone, easting and northing.
102                 If specified vertex coordinates are assumed to be
103                 relative to their respective origins.
104
105    max_vertices_per_cell: Number of vertices in a quad tree cell
106                           at which the cell is split into 4.
107
108                           Note: Don't supply a vertex coords as a geospatial
109                           object and a mesh origin, since geospatial has its
110                           own mesh origin.
111
112    start_blocking_len: If the # of points is more or greater than this,
113                        start blocking
114
115    use_cache: True or False
116
117
118    Output:
119
120    Interpolated values at specified point_coordinates
121
122    Note: This function is a simple shortcut for case where
123    interpolation matrix is unnecessary
124    Note: This function does not take blocking into account,
125    but allows caching.
126
127    """
128
129    # FIXME(Ole): Probably obsolete since I is precomputed and
130    #             interpolate_block caches
131
132    from anuga.caching import cache
133
134    # Create interpolation object with matrix
135    args = (ensure_numeric(vertex_coordinates, num.float),
136            ensure_numeric(triangles))
137    kwargs = {'mesh_origin': mesh_origin,
138              'max_vertices_per_cell': max_vertices_per_cell,
139              'verbose': verbose}
140
141    if use_cache is True:
142        if sys.platform != 'win32':
143            I = cache(Interpolate, args, kwargs, verbose=verbose)
144        else:
145            # Messy wrapping of Interpolate to deal with win32 error
146            def wrap_Interpolate(args,kwargs):
147                I = apply(Interpolate, args, kwargs)
148                return I
149            I = cache(wrap_Interpolate, (args, kwargs), {}, verbose=verbose)
150    else:
151        I = apply(Interpolate, args, kwargs)           
152               
153    # Call interpolate method with interpolation points
154    result = I.interpolate_block(vertex_values, interpolation_points,
155                                 use_cache=use_cache,
156                                 verbose=verbose,
157                                 output_centroids=output_centroids)
158
159    return result
160
161
162##
163# @brief
164class Interpolate (FitInterpolate):
165
166    ##
167    # @brief Build interpolation matrix.
168    # @param vertex_coordinates List of pairs [xi, eta] of points making a mesh.
169    # @param triangles List of 3-tuples of indices of all vertices in the mesh.
170    # @param mesh_origin A geo_ref object (UTM zone, easting and northing).
171    # @param verbose If True, this function is to be verbose.
172    # @param max_vertices_per_cell Split quadtree cell if vertices >= this.
173    def __init__(self,
174                 vertex_coordinates,
175                 triangles,
176                 mesh_origin=None,
177                 verbose=False,
178                 max_vertices_per_cell=None):
179
180        """ Build interpolation matrix mapping from
181        function values at vertices to function values at data points
182
183        Inputs:
184          vertex_coordinates: List of coordinate pairs [xi, eta] of
185              points constituting a mesh (or an m x 2 numeric array or
186              a geospatial object)
187              Points may appear multiple times
188              (e.g. if vertices have discontinuities)
189
190          triangles: List of 3-tuples (or a numeric array) of
191              integers representing indices of all vertices in the mesh.
192
193          mesh_origin: A geo_reference object or 3-tuples consisting of
194              UTM zone, easting and northing.
195              If specified vertex coordinates are assumed to be
196              relative to their respective origins.
197
198          max_vertices_per_cell: Number of vertices in a quad tree cell
199          at which the cell is split into 4.
200
201          Note: Don't supply a vertex coords as a geospatial object and
202              a mesh origin, since geospatial has its own mesh origin.
203        """
204
205        # FIXME (Ole): Need an input check
206
207        FitInterpolate.__init__(self,
208                                vertex_coordinates=vertex_coordinates,
209                                triangles=triangles,
210                                mesh_origin=mesh_origin,
211                                verbose=verbose,
212                                max_vertices_per_cell=max_vertices_per_cell)
213
214        # Initialise variables
215        self._A_can_be_reused = False  # FIXME (Ole): Probably obsolete
216        self._point_coordinates = None # FIXME (Ole): Probably obsolete
217        self.interpolation_matrices = {} # Store precomputed matrices
218
219
220    ##
221    # @brief Interpolate mesh data f to determine values, z, at points.
222    # @param f Data on the mesh vertices.
223    # @param point_coordinates Interpolate mesh data to these positions.
224    # @param start_blocking_len Block if # points >= this.
225    # @param verbose True if this function is to be verbose.
226    # FIXME: What is a good start_blocking_len value?
227    def interpolate(self,
228                    f,
229                    point_coordinates=None,
230                    start_blocking_len=500000,
231                    verbose=False,
232                    output_centroids=False):
233        """Interpolate mesh data f to determine values, z, at points.
234
235        f is the data on the mesh vertices.
236
237        The mesh values representing a smooth surface are
238        assumed to be specified in f.
239
240        Inputs:
241          f: Vector or array of data at the mesh vertices.
242              If f is an array, interpolation will be done for each column as
243              per underlying matrix-matrix multiplication
244
245          point_coordinates: Interpolate mesh data to these positions.
246              List of coordinate pairs [x, y] of
247              data points or an nx2 numeric array or a Geospatial_data object
248
249              If point_coordinates is absent, the points inputted last time
250              this method was called are used, if possible.
251
252          start_blocking_len: If the # of points is more or greater than this,
253              start blocking
254
255        Output:
256          Interpolated values at inputted points (z).
257        """
258
259        # FIXME (Ole): Why is the interpolation matrix rebuilt everytime the
260        # method is called even if interpolation points are unchanged.
261        # This really should use some kind of caching in cases where
262        # interpolation points are reused.
263        #
264        # This has now been addressed through an attempt in interpolate_block
265
266        if verbose: log.critical('Build intepolation object')
267        if isinstance(point_coordinates, Geospatial_data):
268            point_coordinates = point_coordinates.get_data_points(absolute=True)
269
270        # Can I interpolate, based on previous point_coordinates?
271        if point_coordinates is None:
272            if self._A_can_be_reused is True \
273               and len(self._point_coordinates) < start_blocking_len:
274                z = self._get_point_data_z(f, verbose=verbose)
275            elif self._point_coordinates is not None:
276                #     if verbose, give warning
277                if verbose:
278                    log.critical('WARNING: Recalculating A matrix, '
279                                 'due to blocking.')
280                point_coordinates = self._point_coordinates
281            else:
282                # There are no good point_coordinates. import sys; sys.exit()
283                msg = 'ERROR (interpolate.py): No point_coordinates inputted'
284                raise Exception(msg)
285
286        if point_coordinates is not None:
287            self._point_coordinates = point_coordinates
288            if len(point_coordinates) < start_blocking_len \
289               or start_blocking_len == 0:
290                self._A_can_be_reused = True
291                z = self.interpolate_block(f, point_coordinates,
292                                           verbose=verbose, output_centroids=output_centroids)
293            else:
294                # Handle blocking
295                self._A_can_be_reused = False
296                start = 0
297                # creating a dummy array to concatenate to.
298
299                f = ensure_numeric(f, num.float)
300                if len(f.shape) > 1:
301                    z = num.zeros((0, f.shape[1]), num.int)     #array default#
302                else:
303                    z = num.zeros((0,), num.int)        #array default#
304
305                for end in range(start_blocking_len,
306                                 len(point_coordinates),
307                                 start_blocking_len):
308                    t = self.interpolate_block(f, point_coordinates[start:end],
309                                               verbose=verbose, output_centroids=output_centroids)
310                    z = num.concatenate((z, t), axis=0)    #??default#
311                    start = end
312
313                end = len(point_coordinates)
314                t = self.interpolate_block(f, point_coordinates[start:end],
315                                           verbose=verbose, output_centroids=output_centroids)
316                z = num.concatenate((z, t), axis=0)    #??default#
317        return z
318
319
320    ##
321    # @brief Interpolate a block of vertices
322    # @param f Array of arbitrary data to be interpolated
323    # @param point_coordinates List of vertices to intersect with the mesh
324    # @param use_cache True if caching should be used to accelerate the calculations
325    # @param verbose True if this function is verbose.
326    # @return interpolated f
327    def interpolate_block(self, f, point_coordinates,
328                          use_cache=False, verbose=False, output_centroids=False):
329        """
330        Call this if you want to control the blocking or make sure blocking
331        doesn't occur.
332
333        Return the point data, z.
334
335        See interpolate for doc info.
336        """     
337               
338        # FIXME (Ole): I reckon we should change the interface so that
339        # the user can specify the interpolation matrix instead of the
340        # interpolation points to save time.
341
342        if isinstance(point_coordinates, Geospatial_data):
343            point_coordinates = point_coordinates.get_data_points(absolute=True)
344
345        # Convert lists to numeric arrays if necessary
346        point_coordinates = ensure_numeric(point_coordinates, num.float)
347        f = ensure_numeric(f, num.float)
348
349        from anuga.caching import myhash
350        import sys
351
352        if use_cache is True:
353            if sys.platform != 'win32':
354                # FIXME (Ole): (Why doesn't this work on windoze?)
355                # Still absolutely fails on Win 24 Oct 2008
356
357                X = cache(self._build_interpolation_matrix_A,
358                          args=(point_coordinates, output_centroids),
359                          kwargs={'verbose': verbose},
360                          verbose=verbose)
361            else:
362                # FIXME
363                # Hash point_coordinates to memory location, reuse if possible
364                # This will work on Linux as well if we want to use it there.
365                key = myhash(point_coordinates)
366
367                reuse_A = False
368
369                if self.interpolation_matrices.has_key(key):
370                    X, stored_points = self.interpolation_matrices[key]
371                    if num.alltrue(stored_points == point_coordinates):
372                        reuse_A = True                # Reuse interpolation matrix
373
374                if reuse_A is False:
375                    X = self._build_interpolation_matrix_A(point_coordinates,
376                                                           output_centroids,
377                                                           verbose=verbose)
378                    self.interpolation_matrices[key] = (X, point_coordinates)
379        else:
380            X = self._build_interpolation_matrix_A(point_coordinates, output_centroids,
381                                                   verbose=verbose)
382
383        # Unpack result
384        self._A, self.inside_poly_indices, self.outside_poly_indices, self.centroids = X
385
386        # Check that input dimensions are compatible
387        msg = 'Two columns must be specified in point coordinates. ' \
388              'I got shape=%s' % (str(point_coordinates.shape))
389        assert point_coordinates.shape[1] == 2, msg
390
391        msg = 'The number of rows in matrix A must be the same as the '
392        msg += 'number of points supplied.'
393        msg += ' I got %d points and %d matrix rows.' \
394               % (point_coordinates.shape[0], self._A.shape[0])
395        assert point_coordinates.shape[0] == self._A.shape[0], msg
396
397        msg = 'The number of columns in matrix A must be the same as the '
398        msg += 'number of mesh vertices.'
399        msg += ' I got %d vertices and %d matrix columns.' \
400               % (f.shape[0], self._A.shape[1])
401        assert self._A.shape[1] == f.shape[0], msg
402
403        # Compute Matrix vector product and return
404        return self._get_point_data_z(f)
405
406
407    ##
408    # @brief Get interpolated data at given points.
409    #        Applies a transform to all points to calculate the
410    #        interpolated values. Points outside the mesh are returned as NaN.
411    # @note self._A matrix must be valid
412    # @param f Array of arbitrary data
413    # @param verbose True if this function is to be verbose.
414    # @return f transformed by interpolation matrix (f')
415    def _get_point_data_z(self, f, verbose=False):
416        """
417        Return the point data, z.
418
419        Precondition: The _A matrix has been created
420        """
421
422        z = self._A * f
423
424        # Taking into account points outside the mesh.
425        for i in self.outside_poly_indices:
426            z[i] = NAN
427        return z
428
429
430    ##
431    # @brief Build NxM interpolation matrix.
432    # @param point_coordinates Points to sample at
433    # @param output_centroids set to True to always sample from the centre
434    #                         of the intersected triangle, instead of the intersection
435    #                         point.
436    # @param verbose True if this function is to be verbose.
437    # @return Interpolation matrix A, plus lists of the points inside and outside the mesh
438    #         and the list of centroids, if requested.
439    def _build_interpolation_matrix_A(self,
440                                      point_coordinates,
441                                      output_centroids=False,
442                                      verbose=False):
443        """Build n x m interpolation matrix, where
444        n is the number of data points and
445        m is the number of basis functions phi_k (one per vertex)
446
447        This algorithm uses a quad tree data structure for fast binning
448        of data points
449        origin is a 3-tuple consisting of UTM zone, easting and northing.
450        If specified coordinates are assumed to be relative to this origin.
451
452        This one will override any data_origin that may be specified in
453        instance interpolation
454
455        Preconditions:
456            Point_coordindates and mesh vertices have the same origin.
457        """
458
459        if verbose: log.critical('Building interpolation matrix')
460
461        # Convert point_coordinates to numeric arrays, in case it was a list.
462        point_coordinates = ensure_numeric(point_coordinates, num.float)
463
464        if verbose: log.critical('Getting indices inside mesh boundary')
465
466        # Quick test against boundary, but will not deal with holes in the mesh
467        inside_boundary_indices, outside_poly_indices = \
468            in_and_outside_polygon(point_coordinates,
469                                   self.mesh.get_boundary_polygon(),
470                                   closed=True, verbose=verbose)
471
472        # Build n x m interpolation matrix
473        if verbose and len(outside_poly_indices) > 0:
474            log.critical('WARNING: Points outside mesh boundary.')
475
476        # Since you can block, throw a warning, not an error.
477        if verbose and 0 == len(inside_boundary_indices):
478            log.critical('WARNING: No points within the mesh!')
479
480        m = self.mesh.number_of_nodes  # Nbr of basis functions (1/vertex)
481        n = point_coordinates.shape[0] # Nbr of data points
482
483        if verbose: log.critical('Number of datapoints: %d' % n)
484        if verbose: log.critical('Number of basis functions: %d' % m)
485
486        A = Sparse(n,m)
487
488        n = len(inside_boundary_indices)
489
490        centroids = []
491        inside_poly_indices = []
492       
493        # Compute matrix elements for points inside the mesh
494        if verbose: log.critical('Building interpolation matrix from %d points'
495                                 % n)
496
497        for d, i in enumerate(inside_boundary_indices):
498            # For each data_coordinate point
499            if verbose and d%((n+10)/10)==0: log.critical('Doing %d of %d'
500                                                          %(d, n))
501
502            x = point_coordinates[i]
503            element_found, sigma0, sigma1, sigma2, k = \
504                           search_tree_of_vertices(self.root, self.mesh, x)
505                       
506        # Update interpolation matrix A if necessary
507            if element_found is True:
508
509                if verbose:
510                    print 'Point is within mesh:', d, i           
511           
512                inside_poly_indices.append(i)
513               
514                # Assign values to matrix A
515                j0 = self.mesh.triangles[k,0] # Global vertex id for sigma0
516                j1 = self.mesh.triangles[k,1] # Global vertex id for sigma1
517                j2 = self.mesh.triangles[k,2] # Global vertex id for sigma2
518                js = [j0, j1, j2]
519               
520                if output_centroids is False:
521                    # Weight each vertex according to its distance from x
522                    sigmas = {j0:sigma0, j1:sigma1, j2:sigma2}
523                    for j in js:
524                        A[i, j] = sigmas[j]
525                else:
526                    # If centroids are needed, weight all 3 vertices equally
527                    for j in js:
528                        A[i, j] = 1.0/3.0
529                    centroids.append(self.mesh.centroid_coordinates[k])                       
530            else:
531                if verbose:
532                    log.critical('Mesh has a hole - moving this point to outside list')
533
534                # This is a numpy arrays, so we need to do a slow transfer
535                outside_poly_indices = num.append(outside_poly_indices, [i], axis=0)
536
537        return A, inside_poly_indices, outside_poly_indices, centroids
538
539
540
541
542
543
544##
545# @brief ??
546# @param vertices ??
547# @param vertex_attributes ??
548# @param triangles ??
549# @param points ??
550# @param max_points_per_cell ??
551# @param start_blocking_len ??
552# @param mesh_origin ??
553def benchmark_interpolate(vertices,
554                          vertex_attributes,
555                          triangles, points,
556                          max_points_per_cell=None,
557                          start_blocking_len=500000,
558                          mesh_origin=None):
559    """
560    points: Interpolate mesh data to these positions.
561            List of coordinate pairs [x, y] of
562            data points or an nx2 numeric array or a Geospatial_data object
563
564    No test for this yet.
565    Note, this has no time the input data has no time dimension.  Which is
566    different from most of the data we interpolate, eg sww info.
567
568    Output:
569        Interpolated values at inputted points.
570    """
571
572    interp = Interpolate(vertices,
573                         triangles,
574                         max_vertices_per_cell=max_points_per_cell,
575                         mesh_origin=mesh_origin)
576
577    calc = interp.interpolate(vertex_attributes,
578                              points,
579                              start_blocking_len=start_blocking_len)
580
581
582##
583# @brief Interpolate quantities at given locations (from .SWW file).
584# @param sww_file Input .SWW file.
585# @param points A list of the 'gauges' x,y location.
586# @param depth_file The name of the output depth file.
587# @param velocity_x_file Name of the output x velocity  file.
588# @param velocity_y_file Name of the output y velocity  file.
589# @param stage_file Name of the output stage file.
590# @param froude_file
591# @param time_thinning Time thinning step to use.
592# @param verbose True if this function is to be verbose.
593# @param use_cache True if we are caching.
594def interpolate_sww2csv(sww_file,
595                        points,
596                        depth_file,
597                        velocity_x_file,
598                        velocity_y_file,
599                        stage_file=None,
600                        froude_file=None,
601                        time_thinning=1,
602                        verbose=True,
603                        use_cache = True):
604    """
605    Interpolate the quantities at a given set of locations, given
606    an sww file.
607    The results are written to csv files.
608
609    sww_file is the input sww file.
610    points is a list of the 'gauges' x,y location.
611    depth_file is the name of the output depth file
612    velocity_x_file is the name of the output x velocity file.
613    velocity_y_file is the name of the output y velocity file.
614    stage_file is the name of the output stage file.
615
616    In the csv files columns represents the gauges and each row is a
617    time slice.
618
619    Time_thinning_number controls how many timesteps to use. Only
620    timesteps with index%time_thinning_number == 0 will used, or
621    in other words a value of 3, say, will cause the algorithm to
622    use every third time step.
623
624    In the future let points be a points file.
625    And let the user choose the quantities.
626
627    This is currently quite specific.
628    If it is need to be more general, change things.
629    """
630
631    quantities =  ['stage', 'elevation', 'xmomentum', 'ymomentum']
632    points = ensure_absolute(points)
633    point_count = len(points)
634    callable_sww = file_function(sww_file,
635                                 quantities=quantities,
636                                 interpolation_points=points,
637                                 verbose=verbose,
638                                 time_thinning=time_thinning,
639                                 use_cache=use_cache)
640
641    depth_writer = writer(file(depth_file, "wb"))
642    velocity_x_writer = writer(file(velocity_x_file, "wb"))
643    velocity_y_writer = writer(file(velocity_y_file, "wb"))
644    if stage_file is not None:
645        stage_writer = writer(file(stage_file, "wb"))
646    if froude_file is not None:
647        froude_writer = writer(file(froude_file, "wb"))
648
649    # Write heading
650    heading = [str(x[0])+ ':' + str(x[1]) for x in points]
651    heading.insert(0, "time")
652    depth_writer.writerow(heading)
653    velocity_x_writer.writerow(heading)
654    velocity_y_writer.writerow(heading)
655    if stage_file is not None:
656        stage_writer.writerow(heading)
657    if froude_file is not None:
658        froude_writer.writerow(heading)
659
660    for time in callable_sww.get_time():
661        depths = [time]
662        velocity_xs = [time]
663        velocity_ys = [time]
664        if stage_file is not None:
665            stages = [time]
666        if froude_file is not None:
667            froudes = [time]
668        for point_i, point in enumerate(points):
669            quantities = callable_sww(time,point_i)
670
671            w = quantities[0]
672            z = quantities[1]
673            momentum_x = quantities[2]
674            momentum_y = quantities[3]
675            depth = w - z
676
677            if w == NAN or z == NAN or momentum_x == NAN:
678                velocity_x = NAN
679            else:
680                if depth > 1.e-30: # use epsilon
681                    velocity_x = momentum_x / depth  #Absolute velocity
682                else:
683                    velocity_x = 0
684
685            if w == NAN or z == NAN or momentum_y == NAN:
686                velocity_y = NAN
687            else:
688                if depth > 1.e-30: # use epsilon
689                    velocity_y = momentum_y / depth  #Absolute velocity
690                else:
691                    velocity_y = 0
692
693            if depth < 1.e-30: # use epsilon
694                froude = NAN
695            else:
696                froude = sqrt(velocity_x*velocity_x + velocity_y*velocity_y)/ \
697                         sqrt(depth * 9.8066) # gravity m/s/s
698
699            depths.append(depth)
700            velocity_xs.append(velocity_x)
701            velocity_ys.append(velocity_y)
702
703            if stage_file is not None:
704                stages.append(w)
705            if froude_file is not None:
706                froudes.append(froude)
707
708        depth_writer.writerow(depths)
709        velocity_x_writer.writerow(velocity_xs)
710        velocity_y_writer.writerow(velocity_ys)
711
712        if stage_file is not None:
713            stage_writer.writerow(stages)
714        if froude_file is not None:
715            froude_writer.writerow(froudes)
716
717
718##
719# @brief
720class Interpolation_function:
721    """Interpolation_interface - creates callable object f(t, id) or f(t,x,y)
722    which is interpolated from time series defined at vertices of
723    triangular mesh (such as those stored in sww files)
724
725    Let m be the number of vertices, n the number of triangles
726    and p the number of timesteps.
727    Also, let N be the number of interpolation points.
728
729    Mandatory input
730        time:                 px1 array of monotonously increasing times (float)
731        quantities:           Dictionary of arrays or 1 array (float)
732                              The arrays must either have dimensions pxm or mx1.
733                              The resulting function will be time dependent in
734                              the former case while it will be constant with
735                              respect to time in the latter case.
736
737    Optional input:
738        quantity_names:       List of keys into the quantities dictionary for
739                              imposing a particular order on the output vector.
740        vertex_coordinates:   mx2 array of coordinates (float)
741        triangles:            nx3 array of indices into vertex_coordinates (int)
742        interpolation_points: Nx2 array of coordinates to be interpolated to
743        verbose:              Level of reporting
744
745    The quantities returned by the callable object are specified by
746    the list quantities which must contain the names of the
747    quantities to be returned and also reflect the order, e.g. for
748    the shallow water wave equation, on would have
749    quantities = ['stage', 'xmomentum', 'ymomentum']
750
751    The parameter interpolation_points decides at which points interpolated
752    quantities are to be computed whenever object is called.
753    If None, return average value
754
755    FIXME (Ole): Need to allow vertex coordinates and interpolation points to
756                 be geospatial data objects
757
758    (FIXME (Ole): This comment should be removed)
759    Time assumed to be relative to starttime
760    All coordinates assume origin of (0,0) - e.g. georeferencing must be
761    taken care of outside this function
762    """
763
764    ##
765    # @brief ??
766    # @param time ??
767    # @param quantities ??
768    # @param quantity_names   ??
769    # @param vertex_coordinates ??
770    # @param triangles ??
771    # @param interpolation_points ??
772    # @param time_thinning ??
773    # @param verbose ??
774    # @param gauge_neighbour_id ??
775    def __init__(self,
776                 time,
777                 quantities,
778                 quantity_names=None,
779                 vertex_coordinates=None,
780                 triangles=None,
781                 interpolation_points=None,
782                 time_thinning=1,
783                 verbose=False,
784                 gauge_neighbour_id=None,
785                 output_centroids=False):
786        """Initialise object and build spatial interpolation if required
787
788        Time_thinning_number controls how many timesteps to use. Only timesteps
789        with index%time_thinning_number == 0 will used, or in other words a
790        value of 3, say, will cause the algorithm to use every third time step.
791        """
792
793        from anuga.config import time_format
794        import types
795
796        if verbose is True:
797            log.critical('Interpolation_function: input checks')
798
799        # Check temporal info
800        time = ensure_numeric(time)
801
802        if not num.alltrue(time[1:] - time[:-1] >= 0):
803            # This message is time consuming to form due to the conversion of
804            msg = 'Time must be a monotonuosly increasing sequence %s' % time
805            raise Exception, msg
806
807        # Check if quantities is a single array only
808        if type(quantities) != types.DictType:
809            quantities = ensure_numeric(quantities)
810            quantity_names = ['Attribute']
811
812            # Make it a dictionary
813            quantities = {quantity_names[0]: quantities}
814
815        # Use keys if no names are specified
816        if quantity_names is None:
817            quantity_names = quantities.keys()
818
819        # Check spatial info
820        if vertex_coordinates is None:
821            self.spatial = False
822        else:
823            # FIXME (Ole): Try ensure_numeric here -
824            #              this function knows nothing about georefering.
825            vertex_coordinates = ensure_absolute(vertex_coordinates)
826
827            if triangles is not None:
828                triangles = ensure_numeric(triangles)
829            self.spatial = True
830
831        if verbose is True:
832            log.critical('Interpolation_function: thinning by %d'
833                         % time_thinning)
834
835
836        # Thin timesteps if needed
837        # Note array() is used to make the thinned arrays contiguous in memory
838        self.time = num.array(time[::time_thinning])
839        for name in quantity_names:
840            if len(quantities[name].shape) == 2:
841                quantities[name] = num.array(quantities[name][::time_thinning,:])
842
843        if verbose is True:
844            log.critical('Interpolation_function: precomputing')
845
846        # Save for use with statistics
847        self.quantities_range = {}
848        for name in quantity_names:
849            q = quantities[name][:].flatten()
850            self.quantities_range[name] = [min(q), max(q)]
851
852        self.quantity_names = quantity_names
853        self.vertex_coordinates = vertex_coordinates
854        self.interpolation_points = interpolation_points
855
856        self.index = 0    # Initial time index
857        self.precomputed_values = {}
858        self.centroids = []
859
860        # Precomputed spatial interpolation if requested
861        if interpolation_points is not None:
862            #no longer true. sts files have spatial = True but
863            #if self.spatial is False:
864            #    raise 'Triangles and vertex_coordinates must be specified'
865            #
866            try:
867                self.interpolation_points = \
868                    interpolation_points = ensure_numeric(interpolation_points)
869            except:
870                msg = 'Interpolation points must be an N x 2 numeric array ' \
871                      'or a list of points\n'
872                msg += 'Got: %s.' %(str(self.interpolation_points)[:60] + '...')
873                raise msg
874
875            # Ensure 'mesh_boundary_polygon' is defined
876            mesh_boundary_polygon = None
877           
878            if triangles is not None and vertex_coordinates is not None:
879                # Check that all interpolation points fall within
880                # mesh boundary as defined by triangles and vertex_coordinates.
881                from anuga.abstract_2d_finite_volumes.neighbour_mesh import Mesh
882                from anuga.utilities.polygon import outside_polygon
883
884                # Create temporary mesh object from mesh info passed
885                # into this function.
886                mesh = Mesh(vertex_coordinates, triangles)
887                mesh_boundary_polygon = mesh.get_boundary_polygon()
888
889                indices = outside_polygon(interpolation_points,
890                                          mesh_boundary_polygon)
891
892                # Record result
893                #self.mesh_boundary_polygon = mesh_boundary_polygon
894                self.indices_outside_mesh = indices
895
896                # Report
897                if len(indices) > 0:
898                    msg = 'Interpolation points in Interpolation function fall '
899                    msg += 'outside specified mesh. Offending points:\n'
900                    out_interp_pts = []
901                    for i in indices:
902                        msg += '%d: %s\n' % (i, interpolation_points[i])
903                        out_interp_pts.append(
904                                    ensure_numeric(interpolation_points[i]))
905
906                    if verbose is True:
907                        import sys
908                        if sys.platform == 'win32':
909                            # FIXME (Ole): Why only Windoze?
910                            from anuga.utilities.polygon import plot_polygons
911                            title = ('Interpolation points fall '
912                                     'outside specified mesh')
913                            plot_polygons([mesh_boundary_polygon,
914                                           interpolation_points,
915                                           out_interp_pts],
916                                          ['line', 'point', 'outside'],
917                                          figname='points_boundary_out',
918                                          label=title,
919                                          verbose=verbose)
920
921                    # Joaquim Luis suggested this as an Exception, so
922                    # that the user can now what the problem is rather than
923                    # looking for NaN's. However, NANs are handy as they can
924                    # be ignored leaving good points for continued processing.
925                    if verbose:
926                        log.critical(msg)
927                    #raise Exception(msg)
928
929            elif triangles is None and vertex_coordinates is not None:    #jj
930                #Dealing with sts file
931                pass
932            else:
933                raise Exception('Sww file function requires both triangles and '
934                                'vertex_coordinates. sts file file function '
935                                'requires the latter.')
936
937            # Plot boundary and interpolation points,
938            # but only if if 'mesh_boundary_polygon' has data.
939            if verbose is True and mesh_boundary_polygon is not None:
940                import sys
941                if sys.platform == 'win32':
942                    from anuga.utilities.polygon import plot_polygons
943                    title = ('Interpolation function: '
944                             'Polygon and interpolation points')
945                    plot_polygons([mesh_boundary_polygon,
946                                   interpolation_points],
947                                  ['line', 'point'],
948                                  figname='points_boundary',
949                                  label=title,
950                                  verbose=verbose)
951
952            m = len(self.interpolation_points)
953            p = len(self.time)
954
955            for name in quantity_names:
956                self.precomputed_values[name] = num.zeros((p, m), num.float)
957
958            if verbose is True:
959                log.critical('Build interpolator')
960
961
962            # Build interpolator
963            if triangles is not None and vertex_coordinates is not None:
964                if verbose:
965                    msg = 'Building interpolation matrix from source mesh '
966                    msg += '(%d vertices, %d triangles)' \
967                           % (vertex_coordinates.shape[0],
968                              triangles.shape[0])
969                    log.critical(msg)
970
971                # This one is no longer needed for STS files
972                interpol = Interpolate(vertex_coordinates,
973                                       triangles,
974                                       verbose=verbose)
975
976            elif triangles is None and vertex_coordinates is not None:
977                if verbose:
978                    log.critical('Interpolation from STS file')
979
980
981
982            if verbose:
983                log.critical('Interpolating (%d interpolation points, %d timesteps).'
984                             % (self.interpolation_points.shape[0], self.time.shape[0]))
985
986                if time_thinning > 1:
987                    log.critical('Timesteps were thinned by a factor of %d'
988                                 % time_thinning)
989                else:
990                    log.critical()
991
992            for i, t in enumerate(self.time):
993                # Interpolate quantities at this timestep
994                if verbose and i%((p+10)/10) == 0:
995                    log.critical('  time step %d of %d' % (i, p))
996
997                for name in quantity_names:
998                    if len(quantities[name].shape) == 2:
999                        Q = quantities[name][i,:] # Quantities at timestep i
1000                    else:
1001                        Q = quantities[name][:]   # No time dependency
1002
1003                    if verbose and i%((p+10)/10) == 0:
1004                        log.critical('    quantity %s, size=%d' % (name, len(Q)))
1005
1006                    # Interpolate
1007                    if triangles is not None and vertex_coordinates is not None:
1008                        result = interpol.interpolate(Q,
1009                                                      point_coordinates=\
1010                                                      self.interpolation_points,
1011                                                      verbose=False,
1012                                                      output_centroids=output_centroids)
1013                        self.centroids = interpol.centroids                                                         
1014                    elif triangles is None and vertex_coordinates is not None:
1015                        result = interpolate_polyline(Q,
1016                                                      vertex_coordinates,
1017                                                      gauge_neighbour_id,
1018                                                      interpolation_points=\
1019                                                          self.interpolation_points)
1020
1021                    #assert len(result), len(interpolation_points)
1022                    self.precomputed_values[name][i, :] = result                                   
1023                   
1024            # Report
1025            if verbose:
1026                log.critical(self.statistics())           
1027        else:
1028            # Store quantitites as is
1029            for name in quantity_names:
1030                self.precomputed_values[name] = quantities[name]
1031
1032    ##
1033    # @brief Override object representation method.
1034    def __repr__(self):
1035        # return 'Interpolation function (spatio-temporal)'
1036        return self.statistics()
1037
1038    ##
1039    # @brief Evaluate interpolation function
1040    # @param t Model time - must lie within existing timesteps.
1041    # @param point_id Index of one of the preprocessed points.
1042    # @param x ??
1043    # @param y ??
1044    # @return ??
1045    def __call__(self, t, point_id=None, x=None, y=None):
1046        """Evaluate f(t) or f(t, point_id)
1047
1048        Inputs:
1049          t:        time - Model time. Must lie within existing timesteps
1050          point_id: index of one of the preprocessed points.
1051
1052          If spatial info is present and all of point_id
1053          are None an exception is raised
1054
1055          If no spatial info is present, point_id arguments are ignored
1056          making f a function of time only.
1057
1058          FIXME: f(t, x, y) x, y could overrided location, point_id ignored
1059          FIXME: point_id could also be a slice
1060          FIXME: What if x and y are vectors?
1061          FIXME: What about f(x,y) without t?
1062        """
1063
1064        from math import pi, cos, sin, sqrt
1065
1066        if self.spatial is True:
1067            if point_id is None:
1068                if x is None or y is None:
1069                    msg = 'Either point_id or x and y must be specified'
1070                    raise Exception(msg)
1071            else:
1072                if self.interpolation_points is None:
1073                    msg = 'Interpolation_function must be instantiated ' + \
1074                          'with a list of interpolation points before ' + \
1075                          'parameter point_id can be used'
1076                    raise Exception(msg)
1077
1078        msg = 'Time interval [%.16f:%.16f]' % (self.time[0], self.time[-1])
1079        msg += ' does not match model time: %.16f\n' % t
1080        if t < self.time[0]: raise Modeltime_too_early(msg)
1081        if t > self.time[-1]: raise Modeltime_too_late(msg)
1082
1083        oldindex = self.index #Time index
1084
1085        # Find current time slot
1086        while t > self.time[self.index]: self.index += 1
1087        while t < self.time[self.index]: self.index -= 1
1088
1089        if t == self.time[self.index]:
1090            # Protect against case where t == T[-1] (last time)
1091            #  - also works in general when t == T[i]
1092            ratio = 0
1093        else:
1094            # t is now between index and index+1
1095            ratio = ((t - self.time[self.index]) /
1096                         (self.time[self.index+1] - self.time[self.index]))
1097
1098        # Compute interpolated values
1099        q = num.zeros(len(self.quantity_names), num.float)
1100        for i, name in enumerate(self.quantity_names):
1101            Q = self.precomputed_values[name]
1102
1103            if self.spatial is False:
1104                # If there is no spatial info
1105                assert len(Q.shape) == 1
1106
1107                Q0 = Q[self.index]
1108                if ratio > 0: Q1 = Q[self.index+1]
1109            else:
1110                if x is not None and y is not None:
1111                    # Interpolate to x, y
1112                    raise 'x,y interpolation not yet implemented'
1113                else:
1114                    # Use precomputed point
1115                    Q0 = Q[self.index, point_id]
1116                    if ratio > 0:
1117                        Q1 = Q[self.index+1, point_id]
1118
1119            # Linear temporal interpolation
1120            if ratio > 0:
1121                if Q0 == NAN and Q1 == NAN:
1122                    q[i] = Q0
1123                else:
1124                    q[i] = Q0 + ratio*(Q1 - Q0)
1125            else:
1126                q[i] = Q0
1127
1128        # Return vector of interpolated values
1129        # FIXME:
1130        if self.spatial is True:
1131            return q
1132        else:
1133            # Replicate q according to x and y
1134            # This is e.g used for Wind_stress
1135            if x is None or y is None:
1136                return q
1137            else:
1138                try:
1139                    N = len(x)
1140                except:
1141                    return q
1142                else:
1143                    # x is a vector - Create one constant column for each value
1144                    N = len(x)
1145                    assert len(y) == N, 'x and y must have same length'
1146                    res = []
1147                    for col in q:
1148                        res.append(col*num.ones(N, num.float))
1149
1150                return res
1151
1152    ##
1153    # @brief Return model time as a vector of timesteps.
1154    def get_time(self):
1155        """Return model time as a vector of timesteps
1156        """
1157        return self.time
1158
1159    ##
1160    # @brief Output statistics about interpolation_function.
1161    # @return The statistics string.
1162    def statistics(self):
1163        """Output statistics about interpolation_function
1164        """
1165
1166        vertex_coordinates = self.vertex_coordinates
1167        interpolation_points = self.interpolation_points
1168        quantity_names = self.quantity_names
1169        #quantities = self.quantities
1170        precomputed_values = self.precomputed_values
1171
1172        x = vertex_coordinates[:,0]
1173        y = vertex_coordinates[:,1]
1174
1175        str =  '------------------------------------------------\n'
1176        str += 'Interpolation_function (spatio-temporal) statistics:\n'
1177        str += '  Extent:\n'
1178        str += '    x in [%f, %f], len(x) == %d\n'\
1179               %(min(x), max(x), len(x))
1180        str += '    y in [%f, %f], len(y) == %d\n'\
1181               %(min(y), max(y), len(y))
1182        str += '    t in [%f, %f], len(t) == %d\n'\
1183               %(min(self.time), max(self.time), len(self.time))
1184        str += '  Quantities:\n'
1185        for name in quantity_names:
1186            minq, maxq = self.quantities_range[name]
1187            str += '    %s in [%f, %f]\n' %(name, minq, maxq)
1188            #q = quantities[name][:].flatten()
1189            #str += '    %s in [%f, %f]\n' %(name, min(q), max(q))
1190
1191        if interpolation_points is not None:
1192            str += '  Interpolation points (xi, eta):'\
1193                   ' number of points == %d\n' %interpolation_points.shape[0]
1194            str += '    xi in [%f, %f]\n' %(min(interpolation_points[:,0]),
1195                                            max(interpolation_points[:,0]))
1196            str += '    eta in [%f, %f]\n' %(min(interpolation_points[:,1]),
1197                                             max(interpolation_points[:,1]))
1198            str += '  Interpolated quantities (over all timesteps):\n'
1199
1200            for name in quantity_names:
1201                q = precomputed_values[name][:].flatten()
1202                str += '    %s at interpolation points in [%f, %f]\n'\
1203                       %(name, min(q), max(q))
1204        str += '------------------------------------------------\n'
1205
1206        return str
1207
1208
1209##
1210# @brief ??
1211# @param sww_file ??
1212# @param time ??
1213# @param interpolation_points ??
1214# @param quantity_names ??
1215# @param verbose ??
1216# @note Obsolete.  Use file_function() in utils.
1217def interpolate_sww(sww_file, time, interpolation_points,
1218                    quantity_names=None, verbose=False):
1219    """
1220    obsolete.
1221    use file_function in utils
1222    """
1223
1224    #open sww file
1225    x, y, volumes, time, quantities = read_sww(sww_file)
1226    log.critical("x=%s" % str(x))
1227    log.critical("y=%s" % str(y))
1228
1229    log.critical("time=%s" % str(time))
1230    log.critical("quantities=%s" % str(quantities))
1231
1232    #Add the x and y together
1233    vertex_coordinates = num.concatenate((x[:,num.newaxis], y[:,num.newaxis]),
1234                                         axis=1)
1235
1236    #Will return the quantity values at the specified times and locations
1237    interp = Interpolation_interface(time,
1238                                     quantities,
1239                                     quantity_names=quantity_names,
1240                                     vertex_coordinates=vertex_coordinates,
1241                                     triangles=volumes,
1242                                     interpolation_points=interpolation_points,
1243                                     verbose=verbose)
1244
1245
1246##
1247# @brief ??
1248# @param file_name Name of the .SWW file to read.
1249def read_sww(file_name):
1250    """
1251    obsolete - Nothing should be calling this
1252
1253    Read in an sww file.
1254
1255    Input;
1256    file_name - the sww file
1257
1258    Output;
1259    x - Vector of x values
1260    y - Vector of y values
1261    z - Vector of bed elevation
1262    volumes - Array.  Each row has 3 values, representing
1263    the vertices that define the volume
1264    time - Vector of the times where there is stage information
1265    stage - array with respect to time and vertices (x,y)
1266    """
1267
1268    msg = 'Function read_sww in interpolat.py is obsolete'
1269    raise Exception, msg
1270
1271    #FIXME Have this reader as part of data_manager?
1272
1273    from Scientific.IO.NetCDF import NetCDFFile
1274    import tempfile
1275    import sys
1276    import os
1277
1278    #Check contents
1279    #Get NetCDF
1280
1281    # see if the file is there.  Throw a QUIET IO error if it isn't
1282    # I don't think I could implement the above
1283
1284    #throws prints to screen if file not present
1285    junk = tempfile.mktemp(".txt")
1286    fd = open(junk,'w')
1287    stdout = sys.stdout
1288    sys.stdout = fd
1289    fid = NetCDFFile(file_name, netcdf_mode_r)
1290    sys.stdout = stdout
1291    fd.close()
1292    #clean up
1293    os.remove(junk)
1294
1295    # Get the variables
1296    x = fid.variables['x'][:]
1297    y = fid.variables['y'][:]
1298    volumes = fid.variables['volumes'][:]
1299    time = fid.variables['time'][:]
1300
1301    keys = fid.variables.keys()
1302    keys.remove("x")
1303    keys.remove("y")
1304    keys.remove("volumes")
1305    keys.remove("time")
1306     #Turn NetCDF objects into numeric arrays
1307    quantities = {}
1308    for name in keys:
1309        quantities[name] = fid.variables[name][:]
1310
1311    fid.close()
1312    return x, y, volumes, time, quantities
1313
1314
1315#-------------------------------------------------------------
1316if __name__ == "__main__":
1317    names = ["x","y"]
1318    someiterable = [[1,2],[3,4]]
1319    csvwriter = writer(file("some.csv", "wb"))
1320    csvwriter.writerow(names)
1321    for row in someiterable:
1322        csvwriter.writerow(row)
Note: See TracBrowser for help on using the repository browser.