1 | #!/usr/bin/env python |
---|
2 | |
---|
3 | #TEST |
---|
4 | |
---|
5 | #import time, os |
---|
6 | |
---|
7 | |
---|
8 | import sys |
---|
9 | import os |
---|
10 | import unittest |
---|
11 | from math import sqrt |
---|
12 | import tempfile |
---|
13 | import csv |
---|
14 | |
---|
15 | from Scientific.IO.NetCDF import NetCDFFile |
---|
16 | |
---|
17 | import Numeric as num |
---|
18 | |
---|
19 | |
---|
20 | |
---|
21 | # ANUGA code imports |
---|
22 | from interpolate import * |
---|
23 | from anuga.coordinate_transforms.geo_reference import Geo_reference |
---|
24 | from anuga.shallow_water import Domain, Transmissive_boundary |
---|
25 | from anuga.utilities.numerical_tools import mean, NAN |
---|
26 | from anuga.shallow_water.data_manager import get_dataobject |
---|
27 | from anuga.geospatial_data.geospatial_data import Geospatial_data |
---|
28 | from anuga.pmesh.mesh import Mesh |
---|
29 | |
---|
30 | def distance(x, y): |
---|
31 | return sqrt(num.sum((num.array(x)-num.array(y))**2)) |
---|
32 | |
---|
33 | def linear_function(point): |
---|
34 | point = num.array(point) |
---|
35 | return point[:,0]+point[:,1] |
---|
36 | |
---|
37 | |
---|
38 | class Test_Interpolate(unittest.TestCase): |
---|
39 | |
---|
40 | def setUp(self): |
---|
41 | |
---|
42 | import time |
---|
43 | from mesh_factory import rectangular |
---|
44 | |
---|
45 | |
---|
46 | #Create basic mesh |
---|
47 | points, vertices, boundary = rectangular(2, 2) |
---|
48 | |
---|
49 | #Create shallow water domain |
---|
50 | domain = Domain(points, vertices, boundary) |
---|
51 | domain.default_order=2 |
---|
52 | |
---|
53 | |
---|
54 | #Set some field values |
---|
55 | domain.set_quantity('elevation', lambda x,y: -x) |
---|
56 | domain.set_quantity('friction', 0.03) |
---|
57 | |
---|
58 | |
---|
59 | ###################### |
---|
60 | # Boundary conditions |
---|
61 | B = Transmissive_boundary(domain) |
---|
62 | domain.set_boundary( {'left': B, 'right': B, 'top': B, 'bottom': B}) |
---|
63 | |
---|
64 | |
---|
65 | ###################### |
---|
66 | #Initial condition - with jumps |
---|
67 | |
---|
68 | bed = domain.quantities['elevation'].vertex_values |
---|
69 | stage = num.zeros(bed.shape, num.Float) |
---|
70 | |
---|
71 | h = 0.3 |
---|
72 | for i in range(stage.shape[0]): |
---|
73 | if i % 2 == 0: |
---|
74 | stage[i,:] = bed[i,:] + h |
---|
75 | else: |
---|
76 | stage[i,:] = bed[i,:] |
---|
77 | |
---|
78 | domain.set_quantity('stage', stage) |
---|
79 | |
---|
80 | domain.distribute_to_vertices_and_edges() |
---|
81 | |
---|
82 | |
---|
83 | self.domain = domain |
---|
84 | |
---|
85 | C = domain.get_vertex_coordinates() |
---|
86 | self.X = C[:,0:6:2].copy() |
---|
87 | self.Y = C[:,1:6:2].copy() |
---|
88 | |
---|
89 | self.F = bed |
---|
90 | |
---|
91 | |
---|
92 | |
---|
93 | def tearDown(self): |
---|
94 | pass |
---|
95 | |
---|
96 | def test_datapoint_at_centroid(self): |
---|
97 | a = [0.0, 0.0] |
---|
98 | b = [0.0, 2.0] |
---|
99 | c = [2.0,0.0] |
---|
100 | points = [a, b, c] |
---|
101 | vertices = [ [1,0,2] ] #bac |
---|
102 | |
---|
103 | data = [ [2.0/3, 2.0/3] ] #Use centroid as one data point |
---|
104 | |
---|
105 | interp = Interpolate(points, vertices) |
---|
106 | A, _, _ = interp._build_interpolation_matrix_A(data) |
---|
107 | assert num.allclose(A.todense(), [[1./3, 1./3, 1./3]]) |
---|
108 | |
---|
109 | |
---|
110 | |
---|
111 | def test_simple_interpolation_example(self): |
---|
112 | |
---|
113 | from mesh_factory import rectangular |
---|
114 | from shallow_water import Domain |
---|
115 | from abstract_2d_finite_volumes.quantity import Quantity |
---|
116 | |
---|
117 | # Create basic mesh |
---|
118 | points, vertices, boundary = rectangular(1, 3) |
---|
119 | |
---|
120 | # Create shallow water domain |
---|
121 | domain = Domain(points, vertices, boundary) |
---|
122 | |
---|
123 | #---------------- |
---|
124 | #Constant values |
---|
125 | #---------------- |
---|
126 | quantity = Quantity(domain,[[0,0,0],[1,1,1],[2,2,2],[3,3,3], |
---|
127 | [4,4,4],[5,5,5]]) |
---|
128 | |
---|
129 | |
---|
130 | x, y, vertex_values, triangles = quantity.get_vertex_values(xy=True, smooth=False) |
---|
131 | vertex_coordinates = num.concatenate( (x[:, num.NewAxis], y[:, num.NewAxis]), axis=1 ) |
---|
132 | # FIXME: This concat should roll into get_vertex_values |
---|
133 | |
---|
134 | |
---|
135 | # Get interpolated values at centroids |
---|
136 | interpolation_points = domain.get_centroid_coordinates() |
---|
137 | answer = quantity.get_values(location='centroids') |
---|
138 | |
---|
139 | I = Interpolate(vertex_coordinates, triangles) |
---|
140 | result = I.interpolate(vertex_values, interpolation_points) |
---|
141 | assert num.allclose(result, answer) |
---|
142 | |
---|
143 | |
---|
144 | #---------------- |
---|
145 | # Variable values |
---|
146 | #---------------- |
---|
147 | quantity = Quantity(domain,[[0,1,2],[3,1,7],[2,1,2],[3,3,7], |
---|
148 | [1,4,-9],[2,5,0]]) |
---|
149 | |
---|
150 | x, y, vertex_values, triangles = quantity.get_vertex_values(xy=True, smooth=False) |
---|
151 | vertex_coordinates = num.concatenate( (x[:, num.NewAxis], y[:, num.NewAxis]), axis=1 ) |
---|
152 | # FIXME: This concat should roll into get_vertex_values |
---|
153 | |
---|
154 | |
---|
155 | # Get interpolated values at centroids |
---|
156 | interpolation_points = domain.get_centroid_coordinates() |
---|
157 | answer = quantity.get_values(location='centroids') |
---|
158 | |
---|
159 | I = Interpolate(vertex_coordinates, triangles) |
---|
160 | result = I.interpolate(vertex_values, interpolation_points) |
---|
161 | assert num.allclose(result, answer) |
---|
162 | |
---|
163 | |
---|
164 | def test_simple_interpolation_example_using_direct_interface(self): |
---|
165 | |
---|
166 | from mesh_factory import rectangular |
---|
167 | from shallow_water import Domain |
---|
168 | from abstract_2d_finite_volumes.quantity import Quantity |
---|
169 | |
---|
170 | # Create basic mesh |
---|
171 | points, vertices, boundary = rectangular(1, 3) |
---|
172 | |
---|
173 | # Create shallow water domain |
---|
174 | domain = Domain(points, vertices, boundary) |
---|
175 | |
---|
176 | #---------------- |
---|
177 | # Constant values |
---|
178 | #---------------- |
---|
179 | quantity = Quantity(domain,[[0,0,0],[1,1,1],[2,2,2],[3,3,3], |
---|
180 | [4,4,4],[5,5,5]]) |
---|
181 | |
---|
182 | |
---|
183 | x, y, vertex_values, triangles = quantity.get_vertex_values(xy=True, smooth=False) |
---|
184 | vertex_coordinates = num.concatenate( (x[:, num.NewAxis], y[:, num.NewAxis]), axis=1 ) |
---|
185 | # FIXME: This concat should roll into get_vertex_values |
---|
186 | |
---|
187 | |
---|
188 | # Get interpolated values at centroids |
---|
189 | interpolation_points = domain.get_centroid_coordinates() |
---|
190 | answer = quantity.get_values(location='centroids') |
---|
191 | |
---|
192 | result = interpolate(vertex_coordinates, triangles, vertex_values, interpolation_points) |
---|
193 | assert num.allclose(result, answer) |
---|
194 | |
---|
195 | |
---|
196 | #---------------- |
---|
197 | # Variable values |
---|
198 | #---------------- |
---|
199 | quantity = Quantity(domain,[[0,1,2],[3,1,7],[2,1,2],[3,3,7], |
---|
200 | [1,4,-9],[2,5,0]]) |
---|
201 | |
---|
202 | x, y, vertex_values, triangles = quantity.get_vertex_values(xy=True, smooth=False) |
---|
203 | vertex_coordinates = num.concatenate( (x[:, num.NewAxis], y[:, num.NewAxis]), axis=1 ) |
---|
204 | # FIXME: This concat should roll into get_vertex_values |
---|
205 | |
---|
206 | |
---|
207 | # Get interpolated values at centroids |
---|
208 | interpolation_points = domain.get_centroid_coordinates() |
---|
209 | answer = quantity.get_values(location='centroids') |
---|
210 | |
---|
211 | result = interpolate(vertex_coordinates, triangles, |
---|
212 | vertex_values, interpolation_points) |
---|
213 | assert num.allclose(result, answer) |
---|
214 | |
---|
215 | |
---|
216 | def test_simple_interpolation_example_using_direct_interface_and_caching(self): |
---|
217 | |
---|
218 | from mesh_factory import rectangular |
---|
219 | from shallow_water import Domain |
---|
220 | from abstract_2d_finite_volumes.quantity import Quantity |
---|
221 | |
---|
222 | # Create basic mesh |
---|
223 | points, vertices, boundary = rectangular(1, 3) |
---|
224 | |
---|
225 | # Create shallow water domain |
---|
226 | domain = Domain(points, vertices, boundary) |
---|
227 | |
---|
228 | #---------------- |
---|
229 | # First call |
---|
230 | #---------------- |
---|
231 | quantity = Quantity(domain,[[0,1,2],[3,1,7],[2,1,2],[3,3,7], |
---|
232 | [1,4,-9],[2,5,0]]) |
---|
233 | |
---|
234 | x, y, vertex_values, triangles = quantity.get_vertex_values(xy=True, smooth=False) |
---|
235 | vertex_coordinates = num.concatenate( (x[:, num.NewAxis], y[:, num.NewAxis]), axis=1 ) |
---|
236 | # FIXME: This concat should roll into get_vertex_values |
---|
237 | |
---|
238 | |
---|
239 | # Get interpolated values at centroids |
---|
240 | interpolation_points = domain.get_centroid_coordinates() |
---|
241 | answer = quantity.get_values(location='centroids') |
---|
242 | |
---|
243 | result = interpolate(vertex_coordinates, triangles, |
---|
244 | vertex_values, interpolation_points, |
---|
245 | use_cache=True, |
---|
246 | verbose=False) |
---|
247 | assert num.allclose(result, answer) |
---|
248 | |
---|
249 | # Second call using the cache |
---|
250 | result = interpolate(vertex_coordinates, triangles, |
---|
251 | vertex_values, interpolation_points, |
---|
252 | use_cache=True, |
---|
253 | verbose=False) |
---|
254 | assert num.allclose(result, answer) |
---|
255 | |
---|
256 | |
---|
257 | def test_quad_tree(self): |
---|
258 | p0 = [-10.0, -10.0] |
---|
259 | p1 = [20.0, -10.0] |
---|
260 | p2 = [-10.0, 20.0] |
---|
261 | p3 = [10.0, 50.0] |
---|
262 | p4 = [30.0, 30.0] |
---|
263 | p5 = [50.0, 10.0] |
---|
264 | p6 = [40.0, 60.0] |
---|
265 | p7 = [60.0, 40.0] |
---|
266 | p8 = [-66.0, 20.0] |
---|
267 | p9 = [10.0, -66.0] |
---|
268 | |
---|
269 | points = [p0, p1, p2, p3, p4, p5, p6, p7, p8, p9] |
---|
270 | triangles = [ [0, 1, 2], |
---|
271 | [3, 2, 4], |
---|
272 | [4, 2, 1], |
---|
273 | [4, 1, 5], |
---|
274 | [3, 4, 6], |
---|
275 | [6, 4, 7], |
---|
276 | [7, 4, 5], |
---|
277 | [8, 0, 2], |
---|
278 | [0, 9, 1]] |
---|
279 | |
---|
280 | data = [ [4,4] ] |
---|
281 | interp = Interpolate(points, triangles, |
---|
282 | max_vertices_per_cell = 4) |
---|
283 | #print "PDSG - interp.get_A()", interp.get_A() |
---|
284 | answer = [ [ 0.06666667, 0.46666667, 0.46666667, 0., |
---|
285 | 0., 0. , 0., 0., 0., 0.]] |
---|
286 | |
---|
287 | A,_,_ = interp._build_interpolation_matrix_A(data) |
---|
288 | assert num.allclose(A.todense(), answer) |
---|
289 | |
---|
290 | #interp.set_point_coordinates([[-30, -30]]) #point outside of mesh |
---|
291 | #print "PDSG - interp.get_A()", interp.get_A() |
---|
292 | data = [[-30, -30]] |
---|
293 | answer = [ [ 0.0, 0.0, 0.0, 0., |
---|
294 | 0., 0. , 0., 0., 0., 0.]] |
---|
295 | |
---|
296 | A,_,_ = interp._build_interpolation_matrix_A(data) |
---|
297 | assert num.allclose(A.todense(), answer) |
---|
298 | |
---|
299 | |
---|
300 | #point outside of quad tree root cell |
---|
301 | #interp.set_point_coordinates([[-70, -70]]) |
---|
302 | #print "PDSG - interp.get_A()", interp.get_A() |
---|
303 | data = [[-70, -70]] |
---|
304 | answer = [ [ 0.0, 0.0, 0.0, 0., |
---|
305 | 0., 0. , 0., 0., 0., 0.]] |
---|
306 | |
---|
307 | A,_,_ = interp._build_interpolation_matrix_A(data) |
---|
308 | assert num.allclose(A.todense(), answer) |
---|
309 | |
---|
310 | |
---|
311 | def test_datapoints_at_vertices(self): |
---|
312 | #Test that data points coinciding with vertices yield a diagonal matrix |
---|
313 | |
---|
314 | |
---|
315 | a = [0.0, 0.0] |
---|
316 | b = [0.0, 2.0] |
---|
317 | c = [2.0,0.0] |
---|
318 | points = [a, b, c] |
---|
319 | vertices = [ [1,0,2] ] #bac |
---|
320 | |
---|
321 | data = points #Use data at vertices |
---|
322 | |
---|
323 | interp = Interpolate(points, vertices) |
---|
324 | answer = [[1., 0., 0.], |
---|
325 | [0., 1., 0.], |
---|
326 | [0., 0., 1.]] |
---|
327 | |
---|
328 | A,_,_ = interp._build_interpolation_matrix_A(data) |
---|
329 | assert num.allclose(A.todense(), answer) |
---|
330 | |
---|
331 | |
---|
332 | def test_datapoints_on_edge_midpoints(self): |
---|
333 | #Try datapoints midway on edges - |
---|
334 | #each point should affect two matrix entries equally |
---|
335 | |
---|
336 | |
---|
337 | a = [0.0, 0.0] |
---|
338 | b = [0.0, 2.0] |
---|
339 | c = [2.0,0.0] |
---|
340 | points = [a, b, c] |
---|
341 | vertices = [ [1,0,2] ] #bac |
---|
342 | |
---|
343 | data = [ [0., 1.], [1., 0.], [1., 1.] ] |
---|
344 | answer = [[0.5, 0.5, 0.0], #Affects vertex 1 and 0 |
---|
345 | [0.5, 0.0, 0.5], #Affects vertex 0 and 2 |
---|
346 | [0.0, 0.5, 0.5]] |
---|
347 | interp = Interpolate(points, vertices) |
---|
348 | |
---|
349 | A,_,_ = interp._build_interpolation_matrix_A(data) |
---|
350 | assert num.allclose(A.todense(), answer) |
---|
351 | |
---|
352 | def test_datapoints_on_edges(self): |
---|
353 | #Try datapoints on edges - |
---|
354 | #each point should affect two matrix entries in proportion |
---|
355 | |
---|
356 | |
---|
357 | a = [0.0, 0.0] |
---|
358 | b = [0.0, 2.0] |
---|
359 | c = [2.0,0.0] |
---|
360 | points = [a, b, c] |
---|
361 | vertices = [ [1,0,2] ] #bac |
---|
362 | |
---|
363 | data = [ [0., 1.5], [1.5, 0.], [1.5, 0.5] ] |
---|
364 | answer = [[0.25, 0.75, 0.0], #Affects vertex 1 and 0 |
---|
365 | [0.25, 0.0, 0.75], #Affects vertex 0 and 2 |
---|
366 | [0.0, 0.25, 0.75]] |
---|
367 | |
---|
368 | interp = Interpolate(points, vertices) |
---|
369 | |
---|
370 | A,_,_ = interp._build_interpolation_matrix_A(data) |
---|
371 | assert num.allclose(A.todense(), answer) |
---|
372 | |
---|
373 | |
---|
374 | def test_arbitrary_datapoints(self): |
---|
375 | #Try arbitrary datapoints |
---|
376 | |
---|
377 | |
---|
378 | a = [0.0, 0.0] |
---|
379 | b = [0.0, 2.0] |
---|
380 | c = [2.0,0.0] |
---|
381 | points = [a, b, c] |
---|
382 | vertices = [ [1,0,2] ] #bac |
---|
383 | |
---|
384 | data = [ [0.2, 1.5], [0.123, 1.768], [1.43, 0.44] ] |
---|
385 | |
---|
386 | interp = Interpolate(points, vertices) |
---|
387 | #print "interp.get_A()", interp.get_A() |
---|
388 | |
---|
389 | A,_,_ = interp._build_interpolation_matrix_A(data) |
---|
390 | results = A.todense() |
---|
391 | assert num.allclose(num.sum(results, axis=1), 1.0) |
---|
392 | |
---|
393 | def test_arbitrary_datapoints_some_outside(self): |
---|
394 | #Try arbitrary datapoints one outside the triangle. |
---|
395 | #That one should be ignored |
---|
396 | |
---|
397 | |
---|
398 | a = [0.0, 0.0] |
---|
399 | b = [0.0, 2.0] |
---|
400 | c = [2.0,0.0] |
---|
401 | points = [a, b, c] |
---|
402 | vertices = [ [1,0,2] ] #bac |
---|
403 | |
---|
404 | data = [ [0.2, 1.5], [0.123, 1.768], [1.43, 0.44], [5.0, 7.0]] |
---|
405 | |
---|
406 | interp = Interpolate(points, vertices) |
---|
407 | |
---|
408 | A,_,_ = interp._build_interpolation_matrix_A(data) |
---|
409 | results = A.todense() |
---|
410 | assert num.allclose(num.sum(results, axis=1), [1,1,1,0]) |
---|
411 | |
---|
412 | |
---|
413 | |
---|
414 | # this causes a memory error in scipy.sparse |
---|
415 | def test_more_triangles(self): |
---|
416 | |
---|
417 | a = [-1.0, 0.0] |
---|
418 | b = [3.0, 4.0] |
---|
419 | c = [4.0,1.0] |
---|
420 | d = [-3.0, 2.0] #3 |
---|
421 | e = [-1.0,-2.0] |
---|
422 | f = [1.0, -2.0] #5 |
---|
423 | |
---|
424 | points = [a, b, c, d,e,f] |
---|
425 | triangles = [[0,1,3],[1,0,2],[0,4,5], [0,5,2]] #abd bac aef afc |
---|
426 | |
---|
427 | #Data points |
---|
428 | data = [ [-3., 2.0], [-2, 1], [0.0, 1], [0, 3], [2, 3], [-1.0/3,-4./3] ] |
---|
429 | interp = Interpolate(points, triangles) |
---|
430 | |
---|
431 | answer = [[0.0, 0.0, 0.0, 1.0, 0.0, 0.0], #Affects point d |
---|
432 | [0.5, 0.0, 0.0, 0.5, 0.0, 0.0], #Affects points a and d |
---|
433 | [0.75, 0.25, 0.0, 0.0, 0.0, 0.0], #Affects points a and b |
---|
434 | [0.0, 0.5, 0.0, 0.5, 0.0, 0.0], #Affects points a and d |
---|
435 | [0.25, 0.75, 0.0, 0.0, 0.0, 0.0], #Affects points a and b |
---|
436 | [1./3, 0.0, 0.0, 0.0, 1./3, 1./3]] #Affects points a, e and f |
---|
437 | |
---|
438 | |
---|
439 | A,_,_ = interp._build_interpolation_matrix_A(data) |
---|
440 | A = A.todense() |
---|
441 | for i in range(A.shape[0]): |
---|
442 | for j in range(A.shape[1]): |
---|
443 | if not num.allclose(A[i,j], answer[i][j]): |
---|
444 | print i,j,':',A[i,j], answer[i][j] |
---|
445 | |
---|
446 | |
---|
447 | #results = interp._build_interpolation_matrix_A(data).todense() |
---|
448 | |
---|
449 | assert num.allclose(A, answer) |
---|
450 | |
---|
451 | def test_geo_ref(self): |
---|
452 | v0 = [0.0, 0.0] |
---|
453 | v1 = [0.0, 5.0] |
---|
454 | v2 = [5.0, 0.0] |
---|
455 | |
---|
456 | vertices_absolute = [v0, v1, v2] |
---|
457 | triangles = [ [1,0,2] ] #bac |
---|
458 | |
---|
459 | geo = Geo_reference(57,100, 500) |
---|
460 | |
---|
461 | vertices = geo.change_points_geo_ref(vertices_absolute) |
---|
462 | #print "vertices",vertices |
---|
463 | |
---|
464 | d0 = [1.0, 1.0] |
---|
465 | d1 = [1.0, 2.0] |
---|
466 | d2 = [3.0, 1.0] |
---|
467 | point_coords = [ d0, d1, d2] |
---|
468 | |
---|
469 | interp = Interpolate(vertices, triangles, mesh_origin=geo) |
---|
470 | f = linear_function(vertices_absolute) |
---|
471 | z = interp.interpolate(f, point_coords) |
---|
472 | answer = linear_function(point_coords) |
---|
473 | |
---|
474 | #print "z",z |
---|
475 | #print "answer",answer |
---|
476 | assert num.allclose(z, answer) |
---|
477 | |
---|
478 | |
---|
479 | z = interp.interpolate(f, point_coords, start_blocking_len = 2) |
---|
480 | answer = linear_function(point_coords) |
---|
481 | |
---|
482 | #print "z",z |
---|
483 | #print "answer",answer |
---|
484 | assert num.allclose(z, answer) |
---|
485 | |
---|
486 | |
---|
487 | def test_sigma_epsilon(self): |
---|
488 | """ |
---|
489 | def test_sigma_epsilon(self): |
---|
490 | Testing ticket 168. I could not reduce the bug to this small |
---|
491 | test though. |
---|
492 | |
---|
493 | """ |
---|
494 | v0 = [22031.25, 59687.5] |
---|
495 | v1 = [22500., 60000.] |
---|
496 | v2 = [22350.31640625, 59716.71484375] |
---|
497 | |
---|
498 | vertices = [v0, v1, v2] |
---|
499 | triangles = [ [1,0,2] ] #bac |
---|
500 | |
---|
501 | |
---|
502 | point_coords = [[22050., 59700.]] |
---|
503 | |
---|
504 | interp = Interpolate(vertices, triangles) |
---|
505 | f = linear_function(vertices) |
---|
506 | z = interp.interpolate(f, point_coords) |
---|
507 | answer = linear_function(point_coords) |
---|
508 | |
---|
509 | #print "z",z |
---|
510 | #print "answer",answer |
---|
511 | assert num.allclose(z, answer) |
---|
512 | |
---|
513 | |
---|
514 | z = interp.interpolate(f, point_coords, start_blocking_len = 2) |
---|
515 | answer = linear_function(point_coords) |
---|
516 | |
---|
517 | #print "z",z |
---|
518 | #print "answer",answer |
---|
519 | assert num.allclose(z, answer) |
---|
520 | |
---|
521 | |
---|
522 | def test_Geospatial_verts(self): |
---|
523 | v0 = [0.0, 0.0] |
---|
524 | v1 = [0.0, 5.0] |
---|
525 | v2 = [5.0, 0.0] |
---|
526 | |
---|
527 | vertices_absolute = [v0, v1, v2] |
---|
528 | triangles = [ [1,0,2] ] #bac |
---|
529 | |
---|
530 | geo = Geo_reference(57,100, 500) |
---|
531 | vertices = geo.change_points_geo_ref(vertices_absolute) |
---|
532 | geopoints = Geospatial_data(vertices,geo_reference = geo) |
---|
533 | #print "vertices",vertices |
---|
534 | |
---|
535 | d0 = [1.0, 1.0] |
---|
536 | d1 = [1.0, 2.0] |
---|
537 | d2 = [3.0, 1.0] |
---|
538 | point_coords = [ d0, d1, d2] |
---|
539 | |
---|
540 | interp = Interpolate(geopoints, triangles) |
---|
541 | f = linear_function(vertices_absolute) |
---|
542 | z = interp.interpolate(f, point_coords) |
---|
543 | answer = linear_function(point_coords) |
---|
544 | |
---|
545 | #print "z",z |
---|
546 | #print "answer",answer |
---|
547 | assert num.allclose(z, answer) |
---|
548 | |
---|
549 | z = interp.interpolate(f, point_coords, start_blocking_len = 2) |
---|
550 | answer = linear_function(point_coords) |
---|
551 | |
---|
552 | #print "z",z |
---|
553 | #print "answer",answer |
---|
554 | assert num.allclose(z, answer) |
---|
555 | |
---|
556 | def test_interpolate_attributes_to_points(self): |
---|
557 | v0 = [0.0, 0.0] |
---|
558 | v1 = [0.0, 5.0] |
---|
559 | v2 = [5.0, 0.0] |
---|
560 | |
---|
561 | vertices = [v0, v1, v2] |
---|
562 | triangles = [ [1,0,2] ] #bac |
---|
563 | |
---|
564 | d0 = [1.0, 1.0] |
---|
565 | d1 = [1.0, 2.0] |
---|
566 | d2 = [3.0, 1.0] |
---|
567 | point_coords = [ d0, d1, d2] |
---|
568 | |
---|
569 | interp = Interpolate(vertices, triangles) |
---|
570 | f = linear_function(vertices) |
---|
571 | z = interp.interpolate(f, point_coords) |
---|
572 | answer = linear_function(point_coords) |
---|
573 | |
---|
574 | #print "z",z |
---|
575 | #print "answer",answer |
---|
576 | assert num.allclose(z, answer) |
---|
577 | |
---|
578 | |
---|
579 | z = interp.interpolate(f, point_coords, start_blocking_len = 2) |
---|
580 | answer = linear_function(point_coords) |
---|
581 | |
---|
582 | #print "z",z |
---|
583 | #print "answer",answer |
---|
584 | assert num.allclose(z, answer) |
---|
585 | |
---|
586 | def test_interpolate_attributes_to_pointsII(self): |
---|
587 | a = [-1.0, 0.0] |
---|
588 | b = [3.0, 4.0] |
---|
589 | c = [4.0, 1.0] |
---|
590 | d = [-3.0, 2.0] #3 |
---|
591 | e = [-1.0, -2.0] |
---|
592 | f = [1.0, -2.0] #5 |
---|
593 | |
---|
594 | vertices = [a, b, c, d,e,f] |
---|
595 | triangles = [[0,1,3], [1,0,2], [0,4,5], [0,5,2]] #abd bac aef afc |
---|
596 | |
---|
597 | |
---|
598 | point_coords = [[-2.0, 2.0], |
---|
599 | [-1.0, 1.0], |
---|
600 | [0.0, 2.0], |
---|
601 | [1.0, 1.0], |
---|
602 | [2.0, 1.0], |
---|
603 | [0.0, 0.0], |
---|
604 | [1.0, 0.0], |
---|
605 | [0.0, -1.0], |
---|
606 | [-0.2, -0.5], |
---|
607 | [-0.9, -1.5], |
---|
608 | [0.5, -1.9], |
---|
609 | [3.0, 1.0]] |
---|
610 | |
---|
611 | interp = Interpolate(vertices, triangles) |
---|
612 | f = linear_function(vertices) |
---|
613 | z = interp.interpolate(f, point_coords) |
---|
614 | answer = linear_function(point_coords) |
---|
615 | #print "z",z |
---|
616 | #print "answer",answer |
---|
617 | assert num.allclose(z, answer) |
---|
618 | |
---|
619 | z = interp.interpolate(f, point_coords, start_blocking_len = 2) |
---|
620 | answer = linear_function(point_coords) |
---|
621 | |
---|
622 | #print "z",z |
---|
623 | #print "answer",answer |
---|
624 | assert num.allclose(z, answer) |
---|
625 | |
---|
626 | def test_interpolate_attributes_to_pointsIII(self): |
---|
627 | #Test linear interpolation of known values at vertices to |
---|
628 | #new points inside a triangle |
---|
629 | |
---|
630 | a = [0.0, 0.0] |
---|
631 | b = [0.0, 5.0] |
---|
632 | c = [5.0, 0.0] |
---|
633 | d = [5.0, 5.0] |
---|
634 | |
---|
635 | vertices = [a, b, c, d] |
---|
636 | triangles = [ [1,0,2], [2,3,1] ] #bac, cdb |
---|
637 | |
---|
638 | #Points within triangle 1 |
---|
639 | d0 = [1.0, 1.0] |
---|
640 | d1 = [1.0, 2.0] |
---|
641 | d2 = [3.0, 1.0] |
---|
642 | |
---|
643 | #Point within triangle 2 |
---|
644 | d3 = [4.0, 3.0] |
---|
645 | |
---|
646 | #Points on common edge |
---|
647 | d4 = [2.5, 2.5] |
---|
648 | d5 = [4.0, 1.0] |
---|
649 | |
---|
650 | #Point on common vertex |
---|
651 | d6 = [0., 5.] |
---|
652 | |
---|
653 | point_coords = [d0, d1, d2, d3, d4, d5, d6] |
---|
654 | |
---|
655 | interp = Interpolate(vertices, triangles) |
---|
656 | |
---|
657 | #Known values at vertices |
---|
658 | #Functions are x+y, x+2y, 2x+y, x-y-5 |
---|
659 | f = [ [0., 0., 0., -5.], # (0,0) |
---|
660 | [5., 10., 5., -10.], # (0,5) |
---|
661 | [5., 5., 10.0, 0.], # (5,0) |
---|
662 | [10., 15., 15., -5.]] # (5,5) |
---|
663 | |
---|
664 | z = interp.interpolate(f, point_coords) |
---|
665 | answer = [ [2., 3., 3., -5.], # (1,1) |
---|
666 | [3., 5., 4., -6.], # (1,2) |
---|
667 | [4., 5., 7., -3.], # (3,1) |
---|
668 | [7., 10., 11., -4.], # (4,3) |
---|
669 | [5., 7.5, 7.5, -5.], # (2.5, 2.5) |
---|
670 | [5., 6., 9., -2.], # (4,1) |
---|
671 | [5., 10., 5., -10.]] # (0,5) |
---|
672 | |
---|
673 | #print "***********" |
---|
674 | #print "z",z |
---|
675 | #print "answer",answer |
---|
676 | #print "***********" |
---|
677 | |
---|
678 | assert num.allclose(z, answer) |
---|
679 | |
---|
680 | |
---|
681 | z = interp.interpolate(f, point_coords, start_blocking_len = 2) |
---|
682 | |
---|
683 | #print "z",z |
---|
684 | #print "answer",answer |
---|
685 | assert num.allclose(z, answer) |
---|
686 | |
---|
687 | def test_interpolate_point_outside_of_mesh(self): |
---|
688 | #Test linear interpolation of known values at vertices to |
---|
689 | #new points inside a triangle |
---|
690 | |
---|
691 | a = [0.0, 0.0] |
---|
692 | b = [0.0, 5.0] |
---|
693 | c = [5.0, 0.0] |
---|
694 | d = [5.0, 5.0] |
---|
695 | |
---|
696 | vertices = [a, b, c, d] |
---|
697 | triangles = [ [1,0,2], [2,3,1] ] #bac, cdb |
---|
698 | |
---|
699 | #Far away point |
---|
700 | d7 = [-1., -1.] |
---|
701 | |
---|
702 | point_coords = [ d7] |
---|
703 | interp = Interpolate(vertices, triangles) |
---|
704 | |
---|
705 | #Known values at vertices |
---|
706 | #Functions are x+y, x+2y, 2x+y, x-y-5 |
---|
707 | f = [ [0., 0., 0., -5.], # (0,0) |
---|
708 | [5., 10., 5., -10.], # (0,5) |
---|
709 | [5., 5., 10.0, 0.], # (5,0) |
---|
710 | [10., 15., 15., -5.]] # (5,5) |
---|
711 | |
---|
712 | z = interp.interpolate(f, point_coords) #, verbose=True) |
---|
713 | answer = num.array([ [NAN, NAN, NAN, NAN]]) # (-1,-1) |
---|
714 | |
---|
715 | #print "***********" |
---|
716 | #print "z",z |
---|
717 | #print "answer",answer |
---|
718 | #print "***********" |
---|
719 | |
---|
720 | #Should an error message be returned if points are outside |
---|
721 | # of the mesh? |
---|
722 | # A warning message is printed, if verbose is on. |
---|
723 | |
---|
724 | for i in range(4): |
---|
725 | self.failUnless( z[0,i] == answer[0,i], 'Fail!') |
---|
726 | |
---|
727 | z = interp.interpolate(f, point_coords, start_blocking_len = 2) |
---|
728 | |
---|
729 | #print "z",z |
---|
730 | #print "answer",answer |
---|
731 | |
---|
732 | for i in range(4): |
---|
733 | self.failUnless( z[0,i] == answer[0,i], 'Fail!') |
---|
734 | |
---|
735 | |
---|
736 | def test_interpolate_attributes_to_pointsIV(self): |
---|
737 | a = [-1.0, 0.0] |
---|
738 | b = [3.0, 4.0] |
---|
739 | c = [4.0, 1.0] |
---|
740 | d = [-3.0, 2.0] #3 |
---|
741 | e = [-1.0, -2.0] |
---|
742 | f = [1.0, -2.0] #5 |
---|
743 | |
---|
744 | vertices = [a, b, c, d,e,f] |
---|
745 | triangles = [[0,1,3], [1,0,2], [0,4,5], [0,5,2]] #abd bac aef afc |
---|
746 | |
---|
747 | |
---|
748 | point_coords = [[-2.0, 2.0], |
---|
749 | [-1.0, 1.0], |
---|
750 | [0.0, 2.0], |
---|
751 | [1.0, 1.0], |
---|
752 | [2.0, 1.0], |
---|
753 | [0.0, 0.0], |
---|
754 | [1.0, 0.0], |
---|
755 | [0.0, -1.0], |
---|
756 | [-0.2, -0.5], |
---|
757 | [-0.9, -1.5], |
---|
758 | [0.5, -1.9], |
---|
759 | [3.0, 1.0]] |
---|
760 | |
---|
761 | interp = Interpolate(vertices, triangles) |
---|
762 | f = num.array([linear_function(vertices),2*linear_function(vertices)]) |
---|
763 | f = num.transpose(f) |
---|
764 | #print "f",f |
---|
765 | z = interp.interpolate(f, point_coords) |
---|
766 | answer = [linear_function(point_coords), |
---|
767 | 2*linear_function(point_coords) ] |
---|
768 | answer = num.transpose(answer) |
---|
769 | #print "z",z |
---|
770 | #print "answer",answer |
---|
771 | assert num.allclose(z, answer) |
---|
772 | |
---|
773 | z = interp.interpolate(f, point_coords, start_blocking_len = 2) |
---|
774 | |
---|
775 | #print "z",z |
---|
776 | #print "answer",answer |
---|
777 | assert num.allclose(z, answer) |
---|
778 | |
---|
779 | def test_interpolate_blocking(self): |
---|
780 | a = [-1.0, 0.0] |
---|
781 | b = [3.0, 4.0] |
---|
782 | c = [4.0, 1.0] |
---|
783 | d = [-3.0, 2.0] #3 |
---|
784 | e = [-1.0, -2.0] |
---|
785 | f = [1.0, -2.0] #5 |
---|
786 | |
---|
787 | vertices = [a, b, c, d,e,f] |
---|
788 | triangles = [[0,1,3], [1,0,2], [0,4,5], [0,5,2]] #abd bac aef afc |
---|
789 | |
---|
790 | |
---|
791 | point_coords = [[-2.0, 2.0], |
---|
792 | [-1.0, 1.0], |
---|
793 | [0.0, 2.0], |
---|
794 | [1.0, 1.0], |
---|
795 | [2.0, 1.0], |
---|
796 | [0.0, 0.0], |
---|
797 | [1.0, 0.0], |
---|
798 | [0.0, -1.0], |
---|
799 | [-0.2, -0.5], |
---|
800 | [-0.9, -1.5], |
---|
801 | [0.5, -1.9], |
---|
802 | [3.0, 1.0]] |
---|
803 | |
---|
804 | interp = Interpolate(vertices, triangles) |
---|
805 | f = num.array([linear_function(vertices),2*linear_function(vertices)]) |
---|
806 | f = num.transpose(f) |
---|
807 | #print "f",f |
---|
808 | for blocking_max in range(len(point_coords)+2): |
---|
809 | #if True: |
---|
810 | # blocking_max = 5 |
---|
811 | z = interp.interpolate(f, point_coords, |
---|
812 | start_blocking_len=blocking_max) |
---|
813 | answer = [linear_function(point_coords), |
---|
814 | 2*linear_function(point_coords) ] |
---|
815 | answer = num.transpose(answer) |
---|
816 | #print "z",z |
---|
817 | #print "answer",answer |
---|
818 | assert num.allclose(z, answer) |
---|
819 | |
---|
820 | f = num.array([linear_function(vertices),2*linear_function(vertices), |
---|
821 | 2*linear_function(vertices) - 100]) |
---|
822 | f = num.transpose(f) |
---|
823 | #print "f",f |
---|
824 | for blocking_max in range(len(point_coords)+2): |
---|
825 | #if True: |
---|
826 | # blocking_max = 5 |
---|
827 | z = interp.interpolate(f, point_coords, |
---|
828 | start_blocking_len=blocking_max) |
---|
829 | answer = num.array([linear_function(point_coords), |
---|
830 | 2*linear_function(point_coords) , |
---|
831 | 2*linear_function(point_coords)-100]) |
---|
832 | z = num.transpose(z) |
---|
833 | #print "z",z |
---|
834 | #print "answer",answer |
---|
835 | assert num.allclose(z, answer) |
---|
836 | |
---|
837 | def test_interpolate_geo_spatial(self): |
---|
838 | a = [-1.0, 0.0] |
---|
839 | b = [3.0, 4.0] |
---|
840 | c = [4.0, 1.0] |
---|
841 | d = [-3.0, 2.0] #3 |
---|
842 | e = [-1.0, -2.0] |
---|
843 | f = [1.0, -2.0] #5 |
---|
844 | |
---|
845 | vertices = [a, b, c, d,e,f] |
---|
846 | triangles = [[0,1,3], [1,0,2], [0,4,5], [0,5,2]] #abd bac aef afc |
---|
847 | |
---|
848 | |
---|
849 | point_coords_absolute = [[-2.0, 2.0], |
---|
850 | [-1.0, 1.0], |
---|
851 | [0.0, 2.0], |
---|
852 | [1.0, 1.0], |
---|
853 | [2.0, 1.0], |
---|
854 | [0.0, 0.0], |
---|
855 | [1.0, 0.0], |
---|
856 | [0.0, -1.0], |
---|
857 | [-0.2, -0.5], |
---|
858 | [-0.9, -1.5], |
---|
859 | [0.5, -1.9], |
---|
860 | [3.0, 1.0]] |
---|
861 | |
---|
862 | geo = Geo_reference(57,100, 500) |
---|
863 | point_coords = geo.change_points_geo_ref(point_coords_absolute) |
---|
864 | point_coords = Geospatial_data(point_coords,geo_reference = geo) |
---|
865 | |
---|
866 | interp = Interpolate(vertices, triangles) |
---|
867 | f = num.array([linear_function(vertices),2*linear_function(vertices)]) |
---|
868 | f = num.transpose(f) |
---|
869 | #print "f",f |
---|
870 | for blocking_max in range(14): |
---|
871 | #if True: |
---|
872 | # blocking_max = 5 |
---|
873 | z = interp.interpolate(f, point_coords, |
---|
874 | start_blocking_len=blocking_max) |
---|
875 | answer = [linear_function(point_coords.get_data_points( \ |
---|
876 | absolute = True)), |
---|
877 | 2*linear_function(point_coords.get_data_points( \ |
---|
878 | absolute = True)) ] |
---|
879 | answer = num.transpose(answer) |
---|
880 | #print "z",z |
---|
881 | #print "answer",answer |
---|
882 | assert num.allclose(z, answer) |
---|
883 | |
---|
884 | f = num.array([linear_function(vertices),2*linear_function(vertices), |
---|
885 | 2*linear_function(vertices) - 100]) |
---|
886 | f = num.transpose(f) |
---|
887 | #print "f",f |
---|
888 | for blocking_max in range(14): |
---|
889 | #if True: |
---|
890 | # blocking_max = 5 |
---|
891 | z = interp.interpolate(f, point_coords, |
---|
892 | start_blocking_len=blocking_max) |
---|
893 | answer = num.array([linear_function(point_coords.get_data_points( \ |
---|
894 | absolute = True)), |
---|
895 | 2*linear_function(point_coords.get_data_points( \ |
---|
896 | absolute = True)) , |
---|
897 | 2*linear_function(point_coords.get_data_points( \ |
---|
898 | absolute = True))-100]) |
---|
899 | z = num.transpose(z) |
---|
900 | #print "z",z |
---|
901 | #print "answer",answer |
---|
902 | assert num.allclose(z, answer) |
---|
903 | |
---|
904 | z = interp.interpolate(f, point_coords, start_blocking_len = 2) |
---|
905 | |
---|
906 | #print "z",z |
---|
907 | #print "answer",answer |
---|
908 | assert num.allclose(z, answer) |
---|
909 | |
---|
910 | def test_interpolate_geo_spatial(self): |
---|
911 | a = [-1.0, 0.0] |
---|
912 | b = [3.0, 4.0] |
---|
913 | c = [4.0, 1.0] |
---|
914 | d = [-3.0, 2.0] #3 |
---|
915 | e = [-1.0, -2.0] |
---|
916 | f = [1.0, -2.0] #5 |
---|
917 | |
---|
918 | vertices = [a, b, c, d,e,f] |
---|
919 | triangles = [[0,1,3], [1,0,2], [0,4,5], [0,5,2]] #abd bac aef afc |
---|
920 | |
---|
921 | |
---|
922 | point_coords_absolute = [[-2.0, 2.0], |
---|
923 | [-1.0, 1.0], |
---|
924 | [0.0, 2.0], |
---|
925 | [1.0, 1.0], |
---|
926 | [2.0, 1.0], |
---|
927 | [0.0, 0.0], |
---|
928 | [1.0, 0.0], |
---|
929 | [0.0, -1.0], |
---|
930 | [-0.2, -0.5], |
---|
931 | [-0.9, -1.5], |
---|
932 | [0.5, -1.9], |
---|
933 | [3.0, 1.0]] |
---|
934 | |
---|
935 | geo = Geo_reference(57,100, 500) |
---|
936 | point_coords = geo.change_points_geo_ref(point_coords_absolute) |
---|
937 | point_coords = Geospatial_data(point_coords,geo_reference = geo) |
---|
938 | |
---|
939 | interp = Interpolate(vertices, triangles) |
---|
940 | f = num.array([linear_function(vertices),2*linear_function(vertices)]) |
---|
941 | f = num.transpose(f) |
---|
942 | #print "f",f |
---|
943 | z = interp.interpolate_block(f, point_coords) |
---|
944 | answer = [linear_function(point_coords.get_data_points( \ |
---|
945 | absolute = True)), |
---|
946 | 2*linear_function(point_coords.get_data_points( \ |
---|
947 | absolute = True)) ] |
---|
948 | answer = num.transpose(answer) |
---|
949 | #print "z",z |
---|
950 | #print "answer",answer |
---|
951 | assert num.allclose(z, answer) |
---|
952 | |
---|
953 | z = interp.interpolate(f, point_coords, start_blocking_len = 2) |
---|
954 | |
---|
955 | #print "z",z |
---|
956 | #print "answer",answer |
---|
957 | assert num.allclose(z, answer) |
---|
958 | |
---|
959 | |
---|
960 | def test_interpolate_reuse_if_None(self): |
---|
961 | a = [-1.0, 0.0] |
---|
962 | b = [3.0, 4.0] |
---|
963 | c = [4.0, 1.0] |
---|
964 | d = [-3.0, 2.0] #3 |
---|
965 | e = [-1.0, -2.0] |
---|
966 | f = [1.0, -2.0] #5 |
---|
967 | |
---|
968 | vertices = [a, b, c, d,e,f] |
---|
969 | triangles = [[0,1,3], [1,0,2], [0,4,5], [0,5,2]] #abd bac aef afc |
---|
970 | |
---|
971 | |
---|
972 | point_coords = [[-2.0, 2.0], |
---|
973 | [-1.0, 1.0], |
---|
974 | [0.0, 2.0], |
---|
975 | [1.0, 1.0], |
---|
976 | [2.0, 1.0], |
---|
977 | [0.0, 0.0], |
---|
978 | [1.0, 0.0], |
---|
979 | [0.0, -1.0], |
---|
980 | [-0.2, -0.5], |
---|
981 | [-0.9, -1.5], |
---|
982 | [0.5, -1.9], |
---|
983 | [3.0, 1.0]] |
---|
984 | |
---|
985 | interp = Interpolate(vertices, triangles) |
---|
986 | f = num.array([linear_function(vertices),2*linear_function(vertices)]) |
---|
987 | f = num.transpose(f) |
---|
988 | z = interp.interpolate(f, point_coords, |
---|
989 | start_blocking_len=20) |
---|
990 | answer = [linear_function(point_coords), |
---|
991 | 2*linear_function(point_coords) ] |
---|
992 | answer = num.transpose(answer) |
---|
993 | #print "z",z |
---|
994 | #print "answer",answer |
---|
995 | assert num.allclose(z, answer) |
---|
996 | assert num.allclose(interp._A_can_be_reused, True) |
---|
997 | |
---|
998 | z = interp.interpolate(f) |
---|
999 | assert num.allclose(z, answer) |
---|
1000 | |
---|
1001 | # This causes blocking to occur. |
---|
1002 | z = interp.interpolate(f, start_blocking_len=10) |
---|
1003 | assert num.allclose(z, answer) |
---|
1004 | assert num.allclose(interp._A_can_be_reused, False) |
---|
1005 | |
---|
1006 | #A is recalculated |
---|
1007 | z = interp.interpolate(f) |
---|
1008 | assert num.allclose(z, answer) |
---|
1009 | assert num.allclose(interp._A_can_be_reused, True) |
---|
1010 | |
---|
1011 | interp = Interpolate(vertices, triangles) |
---|
1012 | #Must raise an exception, no points specified |
---|
1013 | try: |
---|
1014 | z = interp.interpolate(f) |
---|
1015 | except: |
---|
1016 | pass |
---|
1017 | |
---|
1018 | def xxtest_interpolate_reuse_if_same(self): |
---|
1019 | |
---|
1020 | # This on tests that repeated identical interpolation |
---|
1021 | # points makes use of precomputed matrix (Ole) |
---|
1022 | # This is not really a test and is disabled for now |
---|
1023 | |
---|
1024 | a = [-1.0, 0.0] |
---|
1025 | b = [3.0, 4.0] |
---|
1026 | c = [4.0, 1.0] |
---|
1027 | d = [-3.0, 2.0] #3 |
---|
1028 | e = [-1.0, -2.0] |
---|
1029 | f = [1.0, -2.0] #5 |
---|
1030 | |
---|
1031 | vertices = [a, b, c, d,e,f] |
---|
1032 | triangles = [[0,1,3], [1,0,2], [0,4,5], [0,5,2]] #abd bac aef afc |
---|
1033 | |
---|
1034 | |
---|
1035 | point_coords = [[-2.0, 2.0], |
---|
1036 | [-1.0, 1.0], |
---|
1037 | [0.0, 2.0], |
---|
1038 | [1.0, 1.0], |
---|
1039 | [2.0, 1.0], |
---|
1040 | [0.0, 0.0], |
---|
1041 | [1.0, 0.0], |
---|
1042 | [0.0, -1.0], |
---|
1043 | [-0.2, -0.5], |
---|
1044 | [-0.9, -1.5], |
---|
1045 | [0.5, -1.9], |
---|
1046 | [3.0, 1.0]] |
---|
1047 | |
---|
1048 | interp = Interpolate(vertices, triangles) |
---|
1049 | f = num.array([linear_function(vertices), 2*linear_function(vertices)]) |
---|
1050 | f = num.transpose(f) |
---|
1051 | z = interp.interpolate(f, point_coords) |
---|
1052 | answer = [linear_function(point_coords), |
---|
1053 | 2*linear_function(point_coords) ] |
---|
1054 | answer = num.transpose(answer) |
---|
1055 | |
---|
1056 | assert num.allclose(z, answer) |
---|
1057 | assert num.allclose(interp._A_can_be_reused, True) |
---|
1058 | |
---|
1059 | |
---|
1060 | z = interp.interpolate(f) # None |
---|
1061 | assert num.allclose(z, answer) |
---|
1062 | z = interp.interpolate(f, point_coords) # Repeated (not really a test) |
---|
1063 | assert num.allclose(z, answer) |
---|
1064 | |
---|
1065 | |
---|
1066 | |
---|
1067 | def test_interpolation_interface_time_only(self): |
---|
1068 | |
---|
1069 | # Test spatio-temporal interpolation |
---|
1070 | # Test that spatio temporal function performs the correct |
---|
1071 | # interpolations in both time and space |
---|
1072 | |
---|
1073 | |
---|
1074 | |
---|
1075 | #Three timesteps |
---|
1076 | time = [1.0, 5.0, 6.0] |
---|
1077 | |
---|
1078 | |
---|
1079 | #One quantity |
---|
1080 | Q = num.zeros( (3,6), num.Float ) |
---|
1081 | |
---|
1082 | #Linear in time and space |
---|
1083 | a = [0.0, 0.0] |
---|
1084 | b = [0.0, 2.0] |
---|
1085 | c = [2.0, 0.0] |
---|
1086 | d = [0.0, 4.0] |
---|
1087 | e = [2.0, 2.0] |
---|
1088 | f = [4.0, 0.0] |
---|
1089 | |
---|
1090 | points = [a, b, c, d, e, f] |
---|
1091 | |
---|
1092 | for i, t in enumerate(time): |
---|
1093 | Q[i, :] = t*linear_function(points) |
---|
1094 | |
---|
1095 | |
---|
1096 | #Check basic interpolation of one quantity using averaging |
---|
1097 | #(no interpolation points or spatial info) |
---|
1098 | I = Interpolation_function(time, [mean(Q[0,:]), |
---|
1099 | mean(Q[1,:]), |
---|
1100 | mean(Q[2,:])]) |
---|
1101 | |
---|
1102 | |
---|
1103 | |
---|
1104 | #Check temporal interpolation |
---|
1105 | for i in [0,1,2]: |
---|
1106 | assert num.allclose(I(time[i]), mean(Q[i,:])) |
---|
1107 | |
---|
1108 | #Midway |
---|
1109 | assert num.allclose(I( (time[0] + time[1])/2 ), |
---|
1110 | (I(time[0]) + I(time[1]))/2 ) |
---|
1111 | |
---|
1112 | assert num.allclose(I( (time[1] + time[2])/2 ), |
---|
1113 | (I(time[1]) + I(time[2]))/2 ) |
---|
1114 | |
---|
1115 | assert num.allclose(I( (time[0] + time[2])/2 ), |
---|
1116 | (I(time[0]) + I(time[2]))/2 ) |
---|
1117 | |
---|
1118 | #1/3 |
---|
1119 | assert num.allclose(I( (time[0] + time[2])/3 ), |
---|
1120 | (I(time[0]) + I(time[2]))/3 ) |
---|
1121 | |
---|
1122 | |
---|
1123 | #Out of bounds checks |
---|
1124 | try: |
---|
1125 | I(time[0]-1) |
---|
1126 | except: |
---|
1127 | pass |
---|
1128 | else: |
---|
1129 | raise 'Should raise exception' |
---|
1130 | |
---|
1131 | try: |
---|
1132 | I(time[-1]+1) |
---|
1133 | except: |
---|
1134 | pass |
---|
1135 | else: |
---|
1136 | raise 'Should raise exception' |
---|
1137 | |
---|
1138 | |
---|
1139 | |
---|
1140 | |
---|
1141 | def test_interpolation_interface_spatial_only(self): |
---|
1142 | # Test spatio-temporal interpolation with constant time |
---|
1143 | |
---|
1144 | #Three timesteps |
---|
1145 | time = [1.0, 5.0, 6.0] |
---|
1146 | |
---|
1147 | #Setup mesh used to represent fitted function |
---|
1148 | a = [0.0, 0.0] |
---|
1149 | b = [0.0, 2.0] |
---|
1150 | c = [2.0, 0.0] |
---|
1151 | d = [0.0, 4.0] |
---|
1152 | e = [2.0, 2.0] |
---|
1153 | f = [4.0, 0.0] |
---|
1154 | |
---|
1155 | points = [a, b, c, d, e, f] |
---|
1156 | #bac, bce, ecf, dbe |
---|
1157 | triangles = [[1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
1158 | |
---|
1159 | |
---|
1160 | #New datapoints where interpolated values are sought |
---|
1161 | interpolation_points = [[ 0.0, 0.0], |
---|
1162 | [ 0.5, 0.5], |
---|
1163 | [ 0.7, 0.7], |
---|
1164 | [ 1.0, 0.5], |
---|
1165 | [ 2.0, 0.4], |
---|
1166 | [ 2.8, 1.2]] |
---|
1167 | |
---|
1168 | |
---|
1169 | #One quantity linear in space |
---|
1170 | Q = linear_function(points) |
---|
1171 | |
---|
1172 | |
---|
1173 | #Check interpolation of one quantity using interpolaton points |
---|
1174 | I = Interpolation_function(time, Q, |
---|
1175 | vertex_coordinates = points, |
---|
1176 | triangles = triangles, |
---|
1177 | interpolation_points = interpolation_points, |
---|
1178 | verbose = False) |
---|
1179 | |
---|
1180 | |
---|
1181 | answer = linear_function(interpolation_points) |
---|
1182 | |
---|
1183 | t = time[0] |
---|
1184 | for j in range(50): #t in [1, 6] |
---|
1185 | for id in range(len(interpolation_points)): |
---|
1186 | assert num.allclose(I(t, id), answer[id]) |
---|
1187 | t += 0.1 |
---|
1188 | |
---|
1189 | try: |
---|
1190 | I(1) |
---|
1191 | except: |
---|
1192 | pass |
---|
1193 | else: |
---|
1194 | raise 'Should raise exception' |
---|
1195 | |
---|
1196 | |
---|
1197 | def test_interpolation_interface(self): |
---|
1198 | # Test spatio-temporal interpolation |
---|
1199 | # Test that spatio temporal function performs the correct |
---|
1200 | # interpolations in both time and space |
---|
1201 | |
---|
1202 | #Three timesteps |
---|
1203 | time = [1.0, 5.0, 6.0] |
---|
1204 | |
---|
1205 | #Setup mesh used to represent fitted function |
---|
1206 | a = [0.0, 0.0] |
---|
1207 | b = [0.0, 2.0] |
---|
1208 | c = [2.0, 0.0] |
---|
1209 | d = [0.0, 4.0] |
---|
1210 | e = [2.0, 2.0] |
---|
1211 | f = [4.0, 0.0] |
---|
1212 | |
---|
1213 | points = [a, b, c, d, e, f] |
---|
1214 | #bac, bce, ecf, dbe |
---|
1215 | triangles = [[1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
1216 | |
---|
1217 | |
---|
1218 | #New datapoints where interpolated values are sought |
---|
1219 | interpolation_points = [[ 0.0, 0.0], |
---|
1220 | [ 0.5, 0.5], |
---|
1221 | [ 0.7, 0.7], |
---|
1222 | [ 1.0, 0.5], |
---|
1223 | [ 2.0, 0.4], |
---|
1224 | [ 2.8, 1.2]] |
---|
1225 | |
---|
1226 | #One quantity |
---|
1227 | Q = num.zeros( (3,6), num.Float ) |
---|
1228 | |
---|
1229 | #Linear in time and space |
---|
1230 | for i, t in enumerate(time): |
---|
1231 | Q[i, :] = t*linear_function(points) |
---|
1232 | |
---|
1233 | #Check interpolation of one quantity using interpolaton points) |
---|
1234 | I = Interpolation_function(time, Q, |
---|
1235 | vertex_coordinates = points, |
---|
1236 | triangles = triangles, |
---|
1237 | interpolation_points = interpolation_points, |
---|
1238 | verbose = False) |
---|
1239 | |
---|
1240 | answer = linear_function(interpolation_points) |
---|
1241 | |
---|
1242 | t = time[0] |
---|
1243 | for j in range(50): #t in [1, 6] |
---|
1244 | for id in range(len(interpolation_points)): |
---|
1245 | assert num.allclose(I(t, id), t*answer[id]) |
---|
1246 | t += 0.1 |
---|
1247 | |
---|
1248 | try: |
---|
1249 | I(1) |
---|
1250 | except: |
---|
1251 | pass |
---|
1252 | else: |
---|
1253 | raise 'Should raise exception' |
---|
1254 | |
---|
1255 | |
---|
1256 | |
---|
1257 | def test_interpolation_interface_with_time_thinning(self): |
---|
1258 | # Test spatio-temporal interpolation |
---|
1259 | # Test that spatio temporal function performs the correct |
---|
1260 | # interpolations in both time and space |
---|
1261 | |
---|
1262 | # Eight timesteps |
---|
1263 | time = [1.0, 2.0, 4.0, 5.0, 7.0, 8.0, 9.0, 10.0] |
---|
1264 | |
---|
1265 | # Setup mesh used to represent fitted function |
---|
1266 | a = [0.0, 0.0] |
---|
1267 | b = [0.0, 2.0] |
---|
1268 | c = [2.0, 0.0] |
---|
1269 | d = [0.0, 4.0] |
---|
1270 | e = [2.0, 2.0] |
---|
1271 | f = [4.0, 0.0] |
---|
1272 | |
---|
1273 | points = [a, b, c, d, e, f] |
---|
1274 | # bac, bce, ecf, dbe |
---|
1275 | triangles = [[1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
1276 | |
---|
1277 | |
---|
1278 | # New datapoints where interpolated values are sought |
---|
1279 | interpolation_points = [[ 0.0, 0.0], |
---|
1280 | [ 0.5, 0.5], |
---|
1281 | [ 0.7, 0.7], |
---|
1282 | [ 1.0, 0.5], |
---|
1283 | [ 2.0, 0.4], |
---|
1284 | [ 2.8, 1.2]] |
---|
1285 | |
---|
1286 | # One quantity |
---|
1287 | Q = num.zeros((8,6), num.Float) |
---|
1288 | |
---|
1289 | # Linear in time and space |
---|
1290 | for i, t in enumerate(time): |
---|
1291 | Q[i, :] = t*linear_function(points) |
---|
1292 | |
---|
1293 | # Check interpolation of one quantity using interpolaton points) using default |
---|
1294 | # time_thinning of 1 |
---|
1295 | I = Interpolation_function(time, Q, |
---|
1296 | vertex_coordinates=points, |
---|
1297 | triangles=triangles, |
---|
1298 | interpolation_points=interpolation_points, |
---|
1299 | verbose=False) |
---|
1300 | |
---|
1301 | answer = linear_function(interpolation_points) |
---|
1302 | |
---|
1303 | |
---|
1304 | t = time[0] |
---|
1305 | for j in range(90): #t in [1, 10] |
---|
1306 | for id in range(len(interpolation_points)): |
---|
1307 | assert num.allclose(I(t, id), t*answer[id]) |
---|
1308 | t += 0.1 |
---|
1309 | |
---|
1310 | |
---|
1311 | # Now check time_thinning |
---|
1312 | I = Interpolation_function(time, Q, |
---|
1313 | vertex_coordinates=points, |
---|
1314 | triangles=triangles, |
---|
1315 | interpolation_points=interpolation_points, |
---|
1316 | time_thinning=2, |
---|
1317 | verbose=False) |
---|
1318 | |
---|
1319 | |
---|
1320 | assert len(I.time) == 4 |
---|
1321 | assert( num.allclose(I.time, [1.0, 4.0, 7.0, 9.0] )) |
---|
1322 | |
---|
1323 | answer = linear_function(interpolation_points) |
---|
1324 | |
---|
1325 | t = time[0] |
---|
1326 | for j in range(80): #t in [1, 9] |
---|
1327 | for id in range(len(interpolation_points)): |
---|
1328 | assert num.allclose(I(t, id), t*answer[id]) |
---|
1329 | t += 0.1 |
---|
1330 | |
---|
1331 | |
---|
1332 | |
---|
1333 | def test_interpolation_precompute_points(self): |
---|
1334 | # looking at a discrete mesh |
---|
1335 | # |
---|
1336 | |
---|
1337 | #Three timesteps |
---|
1338 | time = [0.0, 60.0] |
---|
1339 | |
---|
1340 | #Setup mesh used to represent fitted function |
---|
1341 | points = [[ 15., -20.], |
---|
1342 | [ 15., 10.], |
---|
1343 | [ 0., -20.], |
---|
1344 | [ 0., 10.], |
---|
1345 | [ 0., -20.], |
---|
1346 | [ 15., 10.]] |
---|
1347 | |
---|
1348 | triangles = [[0, 1, 2], |
---|
1349 | [3, 4, 5]] |
---|
1350 | |
---|
1351 | #New datapoints where interpolated values are sought |
---|
1352 | interpolation_points = [[ 1., 0.], [0.,1.]] |
---|
1353 | |
---|
1354 | #One quantity |
---|
1355 | Q = num.zeros( (2,6), num.Float ) |
---|
1356 | |
---|
1357 | #Linear in time and space |
---|
1358 | for i, t in enumerate(time): |
---|
1359 | Q[i, :] = t*linear_function(points) |
---|
1360 | #print "Q", Q |
---|
1361 | |
---|
1362 | |
---|
1363 | |
---|
1364 | interp = Interpolate(points, triangles) |
---|
1365 | f = num.array([linear_function(points),2*linear_function(points)]) |
---|
1366 | f = num.transpose(f) |
---|
1367 | #print "f",f |
---|
1368 | z = interp.interpolate(f, interpolation_points) |
---|
1369 | answer = [linear_function(interpolation_points), |
---|
1370 | 2*linear_function(interpolation_points) ] |
---|
1371 | answer = num.transpose(answer) |
---|
1372 | #print "z",z |
---|
1373 | #print "answer",answer |
---|
1374 | assert num.allclose(z, answer) |
---|
1375 | |
---|
1376 | |
---|
1377 | #Check interpolation of one quantity using interpolaton points) |
---|
1378 | I = Interpolation_function(time, Q, |
---|
1379 | vertex_coordinates = points, |
---|
1380 | triangles = triangles, |
---|
1381 | interpolation_points = interpolation_points, |
---|
1382 | verbose = False) |
---|
1383 | |
---|
1384 | #print "I.precomputed_values", I.precomputed_values |
---|
1385 | |
---|
1386 | msg = 'Interpolation failed' |
---|
1387 | assert num.allclose(I.precomputed_values['Attribute'][1], [60, 60]), msg |
---|
1388 | #self.failUnless( I.precomputed_values['Attribute'][1] == 60.0, |
---|
1389 | # ' failed') |
---|
1390 | |
---|
1391 | def test_interpolation_function_outside_point(self): |
---|
1392 | # Test spatio-temporal interpolation |
---|
1393 | # Test that spatio temporal function performs the correct |
---|
1394 | # interpolations in both time and space |
---|
1395 | |
---|
1396 | # Three timesteps |
---|
1397 | time = [1.0, 5.0, 6.0] |
---|
1398 | |
---|
1399 | # Setup mesh used to represent fitted function |
---|
1400 | a = [0.0, 0.0] |
---|
1401 | b = [0.0, 2.0] |
---|
1402 | c = [2.0, 0.0] |
---|
1403 | d = [0.0, 4.0] |
---|
1404 | e = [2.0, 2.0] |
---|
1405 | f = [4.0, 0.0] |
---|
1406 | |
---|
1407 | points = [a, b, c, d, e, f] |
---|
1408 | #bac, bce, ecf, dbe |
---|
1409 | triangles = [[1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
1410 | |
---|
1411 | |
---|
1412 | # New datapoints where interpolated values are sought |
---|
1413 | interpolation_points = [[ 0.0, 0.0], |
---|
1414 | [ 0.5, 0.5], |
---|
1415 | [ 0.7, 0.7], |
---|
1416 | [ 1.0, 0.5], |
---|
1417 | [ 2.0, 0.4], |
---|
1418 | [ 545354534, 4354354353]] # outside the mesh |
---|
1419 | |
---|
1420 | # One quantity |
---|
1421 | Q = num.zeros( (3,6), num.Float ) |
---|
1422 | |
---|
1423 | # Linear in time and space |
---|
1424 | for i, t in enumerate(time): |
---|
1425 | Q[i, :] = t*linear_function(points) |
---|
1426 | |
---|
1427 | # Check interpolation of one quantity using interpolaton points) |
---|
1428 | |
---|
1429 | I = Interpolation_function(time, Q, |
---|
1430 | vertex_coordinates = points, |
---|
1431 | triangles = triangles, |
---|
1432 | interpolation_points = interpolation_points, |
---|
1433 | verbose = False) |
---|
1434 | |
---|
1435 | |
---|
1436 | assert num.alltrue(I.precomputed_values['Attribute'][:,4] != NAN) |
---|
1437 | assert num.sometrue(I.precomputed_values['Attribute'][:,5] == NAN) |
---|
1438 | |
---|
1439 | #X = I.precomputed_values['Attribute'][1,:] |
---|
1440 | #print X |
---|
1441 | #print take(X, X == NAN) |
---|
1442 | #print where(X == NAN, range(len(X)), 0) |
---|
1443 | |
---|
1444 | answer = linear_function(interpolation_points) |
---|
1445 | |
---|
1446 | t = time[0] |
---|
1447 | for j in range(50): #t in [1, 6] |
---|
1448 | for id in range(len(interpolation_points)-1): |
---|
1449 | assert num.allclose(I(t, id), t*answer[id]) |
---|
1450 | t += 0.1 |
---|
1451 | |
---|
1452 | # Now test the point outside the mesh |
---|
1453 | t = time[0] |
---|
1454 | for j in range(50): #t in [1, 6] |
---|
1455 | self.failUnless(I(t, 5) == NAN, 'Fail!') |
---|
1456 | t += 0.1 |
---|
1457 | |
---|
1458 | try: |
---|
1459 | I(1) |
---|
1460 | except: |
---|
1461 | pass |
---|
1462 | else: |
---|
1463 | raise 'Should raise exception' |
---|
1464 | |
---|
1465 | |
---|
1466 | def test_interpolation_function_time(self): |
---|
1467 | #Test a long time series with an error in it (this did cause an |
---|
1468 | #error once) |
---|
1469 | |
---|
1470 | |
---|
1471 | time = num.array(\ |
---|
1472 | [0.00000000e+00, 5.00000000e-02, 1.00000000e-01, 1.50000000e-01, |
---|
1473 | 2.00000000e-01, 2.50000000e-01, 3.00000000e-01, 3.50000000e-01, |
---|
1474 | 4.00000000e-01, 4.50000000e-01, 5.00000000e-01, 5.50000000e-01, |
---|
1475 | 6.00000000e-01, 6.50000000e-01, 7.00000000e-01, 7.50000000e-01, |
---|
1476 | 8.00000000e-01, 8.50000000e-01, 9.00000000e-01, 9.50000000e-01, |
---|
1477 | 1.00000000e-00, 1.05000000e+00, 1.10000000e+00, 1.15000000e+00, |
---|
1478 | 1.20000000e+00, 1.25000000e+00, 1.30000000e+00, 1.35000000e+00, |
---|
1479 | 1.40000000e+00, 1.45000000e+00, 1.50000000e+00, 1.55000000e+00, |
---|
1480 | 1.60000000e+00, 1.65000000e+00, 1.70000000e+00, 1.75000000e+00, |
---|
1481 | 1.80000000e+00, 1.85000000e+00, 1.90000000e+00, 1.95000000e+00, |
---|
1482 | 2.00000000e+00, 2.05000000e+00, 2.10000000e+00, 2.15000000e+00, |
---|
1483 | 2.20000000e+00, 2.25000000e+00, 2.30000000e+00, 2.35000000e+00, |
---|
1484 | 2.40000000e+00, 2.45000000e+00, 2.50000000e+00, 2.55000000e+00, |
---|
1485 | 2.60000000e+00, 2.65000000e+00, 2.70000000e+00, 2.75000000e+00, |
---|
1486 | 2.80000000e+00, 2.85000000e+00, 2.90000000e+00, 2.95000000e+00, |
---|
1487 | 3.00000000e+00, 3.05000000e+00, 9.96920997e+36, 3.15000000e+00, |
---|
1488 | 3.20000000e+00, 3.25000000e+00, 3.30000000e+00, 3.35000000e+00, |
---|
1489 | 3.40000000e+00, 3.45000000e+00, 3.50000000e+00, 3.55000000e+00, |
---|
1490 | 3.60000000e+00, 3.65000000e+00, 3.70000000e+00, 3.75000000e+00, |
---|
1491 | 3.80000000e+00, 3.85000000e+00, 3.90000000e+00, 3.95000000e+00, |
---|
1492 | 4.00000000e+00, 4.05000000e+00, 4.10000000e+00, 4.15000000e+00, |
---|
1493 | 4.20000000e+00, 4.25000000e+00, 4.30000000e+00, 4.35000000e+00, |
---|
1494 | 4.40000000e+00, 4.45000000e+00, 4.50000000e+00, 4.55000000e+00, |
---|
1495 | 4.60000000e+00, 4.65000000e+00, 4.70000000e+00, 4.75000000e+00, |
---|
1496 | 4.80000000e+00, 4.85000000e+00, 4.90000000e+00, 4.95000000e+00, |
---|
1497 | 5.00000000e+00, 5.05000000e+00, 5.10000000e+00, 5.15000000e+00, |
---|
1498 | 5.20000000e+00, 5.25000000e+00, 5.30000000e+00, 5.35000000e+00, |
---|
1499 | 5.40000000e+00, 5.45000000e+00, 5.50000000e+00, 5.55000000e+00, |
---|
1500 | 5.60000000e+00, 5.65000000e+00, 5.70000000e+00, 5.75000000e+00, |
---|
1501 | 5.80000000e+00, 5.85000000e+00, 5.90000000e+00, 5.95000000e+00, |
---|
1502 | 6.00000000e+00, 6.05000000e+00, 6.10000000e+00, 6.15000000e+00, |
---|
1503 | 6.20000000e+00, 6.25000000e+00, 6.30000000e+00, 6.35000000e+00, |
---|
1504 | 6.40000000e+00, 6.45000000e+00, 6.50000000e+00, 6.55000000e+00, |
---|
1505 | 6.60000000e+00, 6.65000000e+00, 6.70000000e+00, 6.75000000e+00, |
---|
1506 | 6.80000000e+00, 6.85000000e+00, 6.90000000e+00, 6.95000000e+00, |
---|
1507 | 7.00000000e+00, 7.05000000e+00, 7.10000000e+00, 7.15000000e+00, |
---|
1508 | 7.20000000e+00, 7.25000000e+00, 7.30000000e+00, 7.35000000e+00, |
---|
1509 | 7.40000000e+00, 7.45000000e+00, 7.50000000e+00, 7.55000000e+00, |
---|
1510 | 7.60000000e+00, 7.65000000e+00, 7.70000000e+00, 7.75000000e+00, |
---|
1511 | 7.80000000e+00, 7.85000000e+00, 7.90000000e+00, 7.95000000e+00, |
---|
1512 | 8.00000000e+00, 8.05000000e+00, 8.10000000e+00, 8.15000000e+00, |
---|
1513 | 8.20000000e+00, 8.25000000e+00, 8.30000000e+00, 8.35000000e+00, |
---|
1514 | 8.40000000e+00, 8.45000000e+00, 8.50000000e+00, 8.55000000e+00, |
---|
1515 | 8.60000000e+00, 8.65000000e+00, 8.70000000e+00, 8.75000000e+00, |
---|
1516 | 8.80000000e+00, 8.85000000e+00, 8.90000000e+00, 8.95000000e+00, |
---|
1517 | 9.00000000e+00, 9.05000000e+00, 9.10000000e+00, 9.15000000e+00, |
---|
1518 | 9.20000000e+00, 9.25000000e+00, 9.30000000e+00, 9.35000000e+00, |
---|
1519 | 9.40000000e+00, 9.45000000e+00, 9.50000000e+00, 9.55000000e+00, |
---|
1520 | 9.60000000e+00, 9.65000000e+00, 9.70000000e+00, 9.75000000e+00, |
---|
1521 | 9.80000000e+00, 9.85000000e+00, 9.90000000e+00, 9.95000000e+00, |
---|
1522 | 1.00000000e+01, 1.00500000e+01, 1.01000000e+01, 1.01500000e+01, |
---|
1523 | 1.02000000e+01, 1.02500000e+01, 1.03000000e+01, 1.03500000e+01, |
---|
1524 | 1.04000000e+01, 1.04500000e+01, 1.05000000e+01, 1.05500000e+01, |
---|
1525 | 1.06000000e+01, 1.06500000e+01, 1.07000000e+01, 1.07500000e+01, |
---|
1526 | 1.08000000e+01, 1.08500000e+01, 1.09000000e+01, 1.09500000e+01, |
---|
1527 | 1.10000000e+01, 1.10500000e+01, 1.11000000e+01, 1.11500000e+01, |
---|
1528 | 1.12000000e+01, 1.12500000e+01, 1.13000000e+01, 1.13500000e+01, |
---|
1529 | 1.14000000e+01, 1.14500000e+01, 1.15000000e+01, 1.15500000e+01, |
---|
1530 | 1.16000000e+01, 1.16500000e+01, 1.17000000e+01, 1.17500000e+01, |
---|
1531 | 1.18000000e+01, 1.18500000e+01, 1.19000000e+01, 1.19500000e+01, |
---|
1532 | 1.20000000e+01, 1.20500000e+01, 1.21000000e+01, 1.21500000e+01, |
---|
1533 | 1.22000000e+01, 1.22500000e+01, 1.23000000e+01, 1.23500000e+01, |
---|
1534 | 1.24000000e+01, 1.24500000e+01, 1.25000000e+01, 1.25500000e+01, |
---|
1535 | 1.26000000e+01, 1.26500000e+01, 1.27000000e+01, 1.27500000e+01, |
---|
1536 | 1.28000000e+01, 1.28500000e+01, 1.29000000e+01, 1.29500000e+01, |
---|
1537 | 1.30000000e+01, 1.30500000e+01, 1.31000000e+01, 1.31500000e+01, |
---|
1538 | 1.32000000e+01, 1.32500000e+01, 1.33000000e+01, 1.33500000e+01, |
---|
1539 | 1.34000000e+01, 1.34500000e+01, 1.35000000e+01, 1.35500000e+01, |
---|
1540 | 1.36000000e+01, 1.36500000e+01, 1.37000000e+01, 1.37500000e+01, |
---|
1541 | 1.38000000e+01, 1.38500000e+01, 1.39000000e+01, 1.39500000e+01, |
---|
1542 | 1.40000000e+01, 1.40500000e+01, 1.41000000e+01, 1.41500000e+01, |
---|
1543 | 1.42000000e+01, 1.42500000e+01, 1.43000000e+01, 1.43500000e+01, |
---|
1544 | 1.44000000e+01, 1.44500000e+01, 1.45000000e+01, 1.45500000e+01, |
---|
1545 | 1.46000000e+01, 1.46500000e+01, 1.47000000e+01, 1.47500000e+01, |
---|
1546 | 1.48000000e+01, 1.48500000e+01, 1.49000000e+01, 1.49500000e+01, |
---|
1547 | 1.50000000e+01, 1.50500000e+01, 1.51000000e+01, 1.51500000e+01, |
---|
1548 | 1.52000000e+01, 1.52500000e+01, 1.53000000e+01, 1.53500000e+01, |
---|
1549 | 1.54000000e+01, 1.54500000e+01, 1.55000000e+01, 1.55500000e+01, |
---|
1550 | 1.56000000e+01, 1.56500000e+01, 1.57000000e+01, 1.57500000e+01, |
---|
1551 | 1.58000000e+01, 1.58500000e+01, 1.59000000e+01, 1.59500000e+01, |
---|
1552 | 1.60000000e+01, 1.60500000e+01, 1.61000000e+01, 1.61500000e+01, |
---|
1553 | 1.62000000e+01, 1.62500000e+01, 1.63000000e+01, 1.63500000e+01, |
---|
1554 | 1.64000000e+01, 1.64500000e+01, 1.65000000e+01, 1.65500000e+01, |
---|
1555 | 1.66000000e+01, 1.66500000e+01, 1.67000000e+01, 1.67500000e+01, |
---|
1556 | 1.68000000e+01, 1.68500000e+01, 1.69000000e+01, 1.69500000e+01, |
---|
1557 | 1.70000000e+01, 1.70500000e+01, 1.71000000e+01, 1.71500000e+01, |
---|
1558 | 1.72000000e+01, 1.72500000e+01, 1.73000000e+01, 1.73500000e+01, |
---|
1559 | 1.74000000e+01, 1.74500000e+01, 1.75000000e+01, 1.75500000e+01, |
---|
1560 | 1.76000000e+01, 1.76500000e+01, 1.77000000e+01, 1.77500000e+01, |
---|
1561 | 1.78000000e+01, 1.78500000e+01, 1.79000000e+01, 1.79500000e+01, |
---|
1562 | 1.80000000e+01, 1.80500000e+01, 1.81000000e+01, 1.81500000e+01, |
---|
1563 | 1.82000000e+01, 1.82500000e+01, 1.83000000e+01, 1.83500000e+01, |
---|
1564 | 1.84000000e+01, 1.84500000e+01, 1.85000000e+01, 1.85500000e+01, |
---|
1565 | 1.86000000e+01, 1.86500000e+01, 1.87000000e+01, 1.87500000e+01, |
---|
1566 | 1.88000000e+01, 1.88500000e+01, 1.89000000e+01, 1.89500000e+01, |
---|
1567 | 1.90000000e+01, 1.90500000e+01, 1.91000000e+01, 1.91500000e+01, |
---|
1568 | 1.92000000e+01, 1.92500000e+01, 1.93000000e+01, 1.93500000e+01, |
---|
1569 | 1.94000000e+01, 1.94500000e+01, 1.95000000e+01, 1.95500000e+01, |
---|
1570 | 1.96000000e+01, 1.96500000e+01, 1.97000000e+01, 1.97500000e+01, |
---|
1571 | 1.98000000e+01, 1.98500000e+01, 1.99000000e+01, 1.99500000e+01, |
---|
1572 | 2.00000000e+01, 2.00500000e+01, 2.01000000e+01, 2.01500000e+01, |
---|
1573 | 2.02000000e+01, 2.02500000e+01, 2.03000000e+01, 2.03500000e+01, |
---|
1574 | 2.04000000e+01, 2.04500000e+01, 2.05000000e+01, 2.05500000e+01, |
---|
1575 | 2.06000000e+01, 2.06500000e+01, 2.07000000e+01, 2.07500000e+01, |
---|
1576 | 2.08000000e+01, 2.08500000e+01, 2.09000000e+01, 2.09500000e+01, |
---|
1577 | 2.10000000e+01, 2.10500000e+01, 2.11000000e+01, 2.11500000e+01, |
---|
1578 | 2.12000000e+01, 2.12500000e+01, 2.13000000e+01, 2.13500000e+01, |
---|
1579 | 2.14000000e+01, 2.14500000e+01, 2.15000000e+01, 2.15500000e+01, |
---|
1580 | 2.16000000e+01, 2.16500000e+01, 2.17000000e+01, 2.17500000e+01, |
---|
1581 | 2.18000000e+01, 2.18500000e+01, 2.19000000e+01, 2.19500000e+01, |
---|
1582 | 2.20000000e+01, 2.20500000e+01, 2.21000000e+01, 2.21500000e+01, |
---|
1583 | 2.22000000e+01, 2.22500000e+01, 2.23000000e+01, 2.23500000e+01, |
---|
1584 | 2.24000000e+01, 2.24500000e+01, 2.25000000e+01]) |
---|
1585 | |
---|
1586 | #print 'Diff', time[1:] - time[:-1] |
---|
1587 | |
---|
1588 | #Setup mesh used to represent fitted function |
---|
1589 | a = [0.0, 0.0] |
---|
1590 | b = [0.0, 2.0] |
---|
1591 | c = [2.0, 0.0] |
---|
1592 | d = [0.0, 4.0] |
---|
1593 | e = [2.0, 2.0] |
---|
1594 | f = [4.0, 0.0] |
---|
1595 | |
---|
1596 | points = [a, b, c, d, e, f] |
---|
1597 | #bac, bce, ecf, dbe |
---|
1598 | triangles = [[1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
1599 | |
---|
1600 | |
---|
1601 | #New datapoints where interpolated values are sought |
---|
1602 | interpolation_points = [[ 0.0, 0.0], |
---|
1603 | [ 0.5, 0.5], |
---|
1604 | [ 0.7, 0.7], |
---|
1605 | [ 1.0, 0.5], |
---|
1606 | [ 2.0, 0.4], |
---|
1607 | [ 545354534, 4354354353]] # outside the mesh |
---|
1608 | |
---|
1609 | #One quantity |
---|
1610 | Q = num.zeros( (len(time),6), num.Float ) |
---|
1611 | |
---|
1612 | #Linear in time and space |
---|
1613 | for i, t in enumerate(time): |
---|
1614 | Q[i, :] = t*linear_function(points) |
---|
1615 | |
---|
1616 | #Check interpolation of one quantity using interpolaton points) |
---|
1617 | try: |
---|
1618 | I = Interpolation_function(time, Q, |
---|
1619 | vertex_coordinates = points, |
---|
1620 | triangles = triangles, |
---|
1621 | interpolation_points = interpolation_points, |
---|
1622 | verbose = False) |
---|
1623 | except: |
---|
1624 | pass |
---|
1625 | else: |
---|
1626 | raise 'Should raise exception due to time being non-monotoneous' |
---|
1627 | |
---|
1628 | |
---|
1629 | def test_points_outside_the_polygon(self): |
---|
1630 | a = [-1.0, 0.0] |
---|
1631 | b = [3.0, 4.0] |
---|
1632 | c = [4.0, 1.0] |
---|
1633 | d = [-3.0, 2.0] #3 |
---|
1634 | e = [-1.0, -2.0] |
---|
1635 | f = [1.0, -2.0] #5 |
---|
1636 | |
---|
1637 | vertices = [a, b, c, d,e,f] |
---|
1638 | triangles = [[0,1,3], [1,0,2], [0,4,5], [0,5,2]] #abd bac aef afc |
---|
1639 | |
---|
1640 | point_coords = [[-2.0, 2.0], |
---|
1641 | [-1.0, 1.0], |
---|
1642 | [9999.0, 9999.0], # point Outside poly |
---|
1643 | [-9999.0, 1.0], # point Outside poly |
---|
1644 | [2.0, 1.0], |
---|
1645 | [0.0, 0.0], |
---|
1646 | [1.0, 0.0], |
---|
1647 | [0.0, -1.0], |
---|
1648 | [-0.2, -0.5], |
---|
1649 | [-0.9, -1.5], |
---|
1650 | [0.5, -1.9], |
---|
1651 | [999999, 9999999]] # point Outside poly |
---|
1652 | geo_data = Geospatial_data(data_points = point_coords) |
---|
1653 | |
---|
1654 | interp = Interpolate(vertices, triangles) |
---|
1655 | f = num.array([linear_function(vertices),2*linear_function(vertices)]) |
---|
1656 | f = num.transpose(f) |
---|
1657 | #print "f",f |
---|
1658 | z = interp.interpolate(f, geo_data) |
---|
1659 | #z = interp.interpolate(f, point_coords) |
---|
1660 | answer = [linear_function(point_coords), |
---|
1661 | 2*linear_function(point_coords) ] |
---|
1662 | answer = num.transpose(answer) |
---|
1663 | answer[2,:] = [NAN, NAN] |
---|
1664 | answer[3,:] = [NAN, NAN] |
---|
1665 | answer[11,:] = [NAN, NAN] |
---|
1666 | #print "z",z |
---|
1667 | #print "answer _ fixed",answer |
---|
1668 | assert num.allclose(z[0:1], answer[0:1]) |
---|
1669 | assert num.allclose(z[4:10], answer[4:10]) |
---|
1670 | for i in [2,3,11]: |
---|
1671 | self.failUnless( z[i,1] == answer[11,1], 'Fail!') |
---|
1672 | self.failUnless( z[i,0] == answer[11,0], 'Fail!') |
---|
1673 | |
---|
1674 | def test_interpolate_sww2csv(self): |
---|
1675 | |
---|
1676 | def elevation_function(x, y): |
---|
1677 | return -x |
---|
1678 | |
---|
1679 | # Create mesh |
---|
1680 | mesh_file = tempfile.mktemp(".tsh") |
---|
1681 | points = [[0.0,0.0],[6.0,0.0],[6.0,6.0],[0.0,6.0]] |
---|
1682 | m = Mesh() |
---|
1683 | m.add_vertices(points) |
---|
1684 | m.auto_segment() |
---|
1685 | m.generate_mesh(verbose=False) |
---|
1686 | m.export_mesh_file(mesh_file) |
---|
1687 | |
---|
1688 | # Create shallow water domain |
---|
1689 | domain = Domain(mesh_file) |
---|
1690 | os.remove(mesh_file) |
---|
1691 | |
---|
1692 | domain.default_order = 2 |
---|
1693 | |
---|
1694 | # This test was made before tight_slope_limiters were introduced |
---|
1695 | # Since were are testing interpolation values this is OK |
---|
1696 | domain.tight_slope_limiters = 0 |
---|
1697 | |
---|
1698 | # Set some field values |
---|
1699 | domain.set_quantity('elevation', elevation_function) |
---|
1700 | domain.set_quantity('friction', 0.03) |
---|
1701 | domain.set_quantity('xmomentum', 3.0) |
---|
1702 | domain.set_quantity('ymomentum', 4.0) |
---|
1703 | |
---|
1704 | ###################### |
---|
1705 | # Boundary conditions |
---|
1706 | B = Transmissive_boundary(domain) |
---|
1707 | domain.set_boundary( {'exterior': B}) |
---|
1708 | |
---|
1709 | # This call mangles the stage values. |
---|
1710 | domain.distribute_to_vertices_and_edges() |
---|
1711 | domain.set_quantity('stage', 1.0) |
---|
1712 | |
---|
1713 | |
---|
1714 | domain.set_name('datatest' + str(time.time())) |
---|
1715 | domain.format = 'sww' |
---|
1716 | domain.smooth = True |
---|
1717 | domain.reduction = mean |
---|
1718 | |
---|
1719 | sww = get_dataobject(domain) |
---|
1720 | sww.store_connectivity() |
---|
1721 | sww.store_timestep(['stage', 'xmomentum', 'ymomentum']) |
---|
1722 | domain.set_quantity('stage', 10.0) # This is automatically limited |
---|
1723 | # So it will not be less than the elevation |
---|
1724 | domain.time = 2. |
---|
1725 | sww.store_timestep(['stage', 'xmomentum', 'ymomentum']) |
---|
1726 | |
---|
1727 | # Test the function |
---|
1728 | points = [[5.0,1.],[0.5,2.]] |
---|
1729 | depth_file = tempfile.mktemp(".csv") |
---|
1730 | velocity_x_file = tempfile.mktemp(".csv") |
---|
1731 | velocity_y_file = tempfile.mktemp(".csv") |
---|
1732 | interpolate_sww2csv(sww.filename, points, depth_file, |
---|
1733 | velocity_x_file, |
---|
1734 | velocity_y_file, |
---|
1735 | verbose=False) |
---|
1736 | |
---|
1737 | depth_answers_array = [[0.0, 6.0, 1.5], [2.0, 15., 10.5]] |
---|
1738 | velocity_x_answers_array = [[0.0, 3./6.0, 3./1.5], |
---|
1739 | [2.0, 3./15., 3/10.5]] |
---|
1740 | velocity_y_answers_array = [[0.0, 4./6.0, 4./1.5], |
---|
1741 | [2.0, 4./15., 4./10.5]] |
---|
1742 | depth_file_handle = file(depth_file) |
---|
1743 | depth_reader = csv.reader(depth_file_handle) |
---|
1744 | depth_reader.next() |
---|
1745 | velocity_x_file_handle = file(velocity_x_file) |
---|
1746 | velocity_x_reader = csv.reader(velocity_x_file_handle) |
---|
1747 | velocity_x_reader.next() |
---|
1748 | for depths, velocitys, depth_answers, velocity_answers in map(None, |
---|
1749 | depth_reader, |
---|
1750 | velocity_x_reader, |
---|
1751 | depth_answers_array, |
---|
1752 | velocity_x_answers_array): |
---|
1753 | for i in range(len(depths)): |
---|
1754 | #print "depths",depths[i] |
---|
1755 | #print "depth_answers",depth_answers[i] |
---|
1756 | #print "velocitys",velocitys[i] |
---|
1757 | #print "velocity_answers_array", velocity_answers[i] |
---|
1758 | msg = 'Interpolation failed' |
---|
1759 | assert num.allclose(float(depths[i]), depth_answers[i]), msg |
---|
1760 | assert num.allclose(float(velocitys[i]), velocity_answers[i]), msg |
---|
1761 | |
---|
1762 | velocity_y_file_handle = file(velocity_y_file) |
---|
1763 | velocity_y_reader = csv.reader(velocity_y_file_handle) |
---|
1764 | velocity_y_reader.next() |
---|
1765 | for velocitys, velocity_answers in map(None, |
---|
1766 | velocity_y_reader, |
---|
1767 | velocity_y_answers_array): |
---|
1768 | for i in range(len(depths)): |
---|
1769 | #print "depths",depths[i] |
---|
1770 | #print "depth_answers",depth_answers[i] |
---|
1771 | #print "velocitys",velocitys[i] |
---|
1772 | #print "velocity_answers_array", velocity_answers[i] |
---|
1773 | msg = 'Interpolation failed' |
---|
1774 | assert num.allclose(float(depths[i]), depth_answers[i]), msg |
---|
1775 | assert num.allclose(float(velocitys[i]), velocity_answers[i]), msg |
---|
1776 | |
---|
1777 | # clean up |
---|
1778 | depth_file_handle.close() |
---|
1779 | velocity_y_file_handle.close() |
---|
1780 | velocity_x_file_handle.close() |
---|
1781 | #print "sww.filename",sww.filename |
---|
1782 | os.remove(sww.filename) |
---|
1783 | os.remove(depth_file) |
---|
1784 | os.remove(velocity_x_file) |
---|
1785 | os.remove(velocity_y_file) |
---|
1786 | |
---|
1787 | |
---|
1788 | def test_interpolate_one_point_many_triangles(self): |
---|
1789 | # this test has 10 triangles that share the same vert. |
---|
1790 | # If the number of points per cell in a quad tree is less |
---|
1791 | # than 10 it will crash. |
---|
1792 | z0 = [2.0, 5.0] |
---|
1793 | z1 = [2.0, 5.0] |
---|
1794 | z2 = [2.0, 5.0] |
---|
1795 | z3 = [2.0, 5.0] |
---|
1796 | z4 = [2.0, 5.0] |
---|
1797 | z5 = [2.0, 5.0] |
---|
1798 | z6 = [2.0, 5.0] |
---|
1799 | z7 = [2.0, 5.0] |
---|
1800 | z8 = [2.0, 5.0] |
---|
1801 | z9 = [2.0, 5.0] |
---|
1802 | z10 = [2.0, 5.0] |
---|
1803 | |
---|
1804 | v0 = [0.0, 0.0] |
---|
1805 | v1 = [1.0, 0.0] |
---|
1806 | v2 = [2.0, 0.0] |
---|
1807 | v3 = [3.0, 0.0] |
---|
1808 | v4 = [4.0, 0.0] |
---|
1809 | v5 = [0.0, 10.0] |
---|
1810 | v6 = [1.0, 10.0] |
---|
1811 | v7 = [2.0, 10.0] |
---|
1812 | v8 = [3.0, 10.0] |
---|
1813 | v9 = [4.0, 10.0] |
---|
1814 | |
---|
1815 | vertices = [z0,v0, v1, v2, v3,v4 ,v5, v6, v7, v8, v9, |
---|
1816 | z1, z2, z3, z4, z5, z6, z7, z8, z9] |
---|
1817 | triangles = [ |
---|
1818 | [11,1,2], |
---|
1819 | [12,2,3], |
---|
1820 | [13,3,4], |
---|
1821 | [14,4,5], |
---|
1822 | [7,6,15], |
---|
1823 | [8,7,16], |
---|
1824 | [9,8,17], |
---|
1825 | [10,9,18], |
---|
1826 | [6,1,19], |
---|
1827 | [5,10,0] |
---|
1828 | ] |
---|
1829 | |
---|
1830 | d0 = [1.0, 1.0] |
---|
1831 | d1 = [1.0, 2.0] |
---|
1832 | d2 = [3.0, 1.0] |
---|
1833 | point_coords = [ d0, d1, d2] |
---|
1834 | try: |
---|
1835 | interp = Interpolate(vertices, triangles) |
---|
1836 | except RuntimeError: |
---|
1837 | self.failUnless(0 ==1, 'quad fails with 10 verts at the same \ |
---|
1838 | position. Real problems have had 9. \ |
---|
1839 | Should be able to handle 13.') |
---|
1840 | f = linear_function(vertices) |
---|
1841 | z = interp.interpolate(f, point_coords) |
---|
1842 | answer = linear_function(point_coords) |
---|
1843 | |
---|
1844 | #print "z",z |
---|
1845 | #print "answer",answer |
---|
1846 | assert num.allclose(z, answer) |
---|
1847 | |
---|
1848 | |
---|
1849 | def test_interpolate_polyline(self): |
---|
1850 | """test_interpolate_polyline(self): |
---|
1851 | |
---|
1852 | This test is added under the assumption that the function interpolate_polyline implemented by |
---|
1853 | John Jakeman works. It has been exercised somewhat by tests of sts boundary, but never before separately. |
---|
1854 | """ |
---|
1855 | |
---|
1856 | a = [-1.0, 0.0] |
---|
1857 | b = [3.0, 4.0] |
---|
1858 | c = [4.0, 1.0] |
---|
1859 | d = [-3.0, 2.0] #3 |
---|
1860 | e = [-1.0, -2.0] |
---|
1861 | f = [1.0, -2.0] #5 |
---|
1862 | |
---|
1863 | vertices = [a, b, c, d,e,f] |
---|
1864 | triangles = [[0,1,3], [1,0,2], [0,4,5], [0,5,2]] #abd bac aef afc |
---|
1865 | |
---|
1866 | |
---|
1867 | point_coords = [[-2.0, 2.0], |
---|
1868 | [-1.0, 1.0], |
---|
1869 | [0.0, 2.0], |
---|
1870 | [1.0, 1.0], |
---|
1871 | [2.0, 1.0], |
---|
1872 | [0.0, 0.0], |
---|
1873 | [1.0, 0.0], |
---|
1874 | [0.0, -1.0], |
---|
1875 | [-0.2, -0.5], |
---|
1876 | [-0.9, -1.5], |
---|
1877 | [0.5, -1.9], |
---|
1878 | [3.0, 1.0]] |
---|
1879 | |
---|
1880 | interp = Interpolate(vertices, triangles) |
---|
1881 | |
---|
1882 | |
---|
1883 | f = num.array([58.06150614, 58.06150614, 58.06150614]) |
---|
1884 | vertex_coordinates = num.array([[0., 0., ], |
---|
1885 | [4.04092634, 1106.11074699], |
---|
1886 | [8.08836552, 2212.16910609]]) |
---|
1887 | gauge_neighbour_id = [1, 2, -1] |
---|
1888 | point_coordinates = num.array([[2.21870766e+03, 1.09802864e+03], |
---|
1889 | [1.62739645e+03, 2.20626983e+03], |
---|
1890 | [5.20084967e+02, 2.21030386e+03], |
---|
1891 | [6.06464546e+00, 1.65913993e+03], |
---|
1892 | [1.61934862e+03, -5.88143836e+00], |
---|
1893 | [5.11996623e+02, -1.85956061e+00], |
---|
1894 | [2.02046270e+00, 5.53055373e+02]]) |
---|
1895 | |
---|
1896 | z_ref = [0., 0., 0., 58.06150614, 0., 0., 58.06150614] |
---|
1897 | |
---|
1898 | z = interp.interpolate_polyline(f, vertex_coordinates, gauge_neighbour_id, point_coordinates) |
---|
1899 | assert num.allclose(z, z_ref) |
---|
1900 | |
---|
1901 | # Another f |
---|
1902 | f = num.array([58.06150614, 158.06150614, 258.06150614]) |
---|
1903 | z_ref = [0., 0., 0., 208.06150645, 0., 0., 108.0615061] |
---|
1904 | z = interp.interpolate_polyline(f, vertex_coordinates, gauge_neighbour_id, point_coordinates) |
---|
1905 | assert num.allclose(z, z_ref) |
---|
1906 | |
---|
1907 | |
---|
1908 | # Other and simpler numbers |
---|
1909 | f = num.array([1, 5, 13]) |
---|
1910 | vertex_coordinates = num.array([[0., 0., ], |
---|
1911 | [4., 4.], |
---|
1912 | [8., 8.]]) |
---|
1913 | point_coordinates = num.array([[0.1, 0.1], |
---|
1914 | [3.5, 3.5], |
---|
1915 | [4.0, 4.0], |
---|
1916 | [5.2, 5.2], |
---|
1917 | [7.0, 7.0], |
---|
1918 | [8.3, 8.3]]) |
---|
1919 | gauge_neighbour_id = [1, 2, -1] |
---|
1920 | |
---|
1921 | z = interp.interpolate_polyline(f, vertex_coordinates, gauge_neighbour_id, point_coordinates) |
---|
1922 | z_ref = [1.1, 4.5, 5., 7.4, 11., 0.] |
---|
1923 | #print z |
---|
1924 | assert num.allclose(z, z_ref) |
---|
1925 | |
---|
1926 | #------------------------------------------------------------- |
---|
1927 | if __name__ == "__main__": |
---|
1928 | suite = unittest.makeSuite(Test_Interpolate,'test') |
---|
1929 | #suite = unittest.makeSuite(Test_Interpolate,'test_interpolate_one_point_many_triangles') |
---|
1930 | runner = unittest.TextTestRunner(verbosity=1) |
---|
1931 | runner.run(suite) |
---|
1932 | |
---|
1933 | |
---|
1934 | |
---|
1935 | |
---|
1936 | |
---|