1 | """datamanager.py - input output for AnuGA |
---|
2 | |
---|
3 | |
---|
4 | This module takes care of reading and writing datafiles such as topograhies, |
---|
5 | model output, etc |
---|
6 | |
---|
7 | |
---|
8 | Formats used within AnuGA: |
---|
9 | |
---|
10 | .sww: Netcdf format for storing model output f(t,x,y) |
---|
11 | .tms: Netcdf format for storing time series f(t) |
---|
12 | |
---|
13 | .xya: ASCII format for storing arbitrary points and associated attributes |
---|
14 | .pts: NetCDF format for storing arbitrary points and associated attributes |
---|
15 | |
---|
16 | .asc: ASCII format of regular DEMs as output from ArcView |
---|
17 | .prj: Associated ArcView file giving more meta data for asc format |
---|
18 | .ers: ERMapper header format of regular DEMs for ArcView |
---|
19 | |
---|
20 | .dem: NetCDF representation of regular DEM data |
---|
21 | |
---|
22 | .tsh: ASCII format for storing meshes and associated boundary and region info |
---|
23 | .msh: NetCDF format for storing meshes and associated boundary and region info |
---|
24 | |
---|
25 | .nc: Native ferret NetCDF format |
---|
26 | .geo: Houdinis ascii geometry format (?) |
---|
27 | |
---|
28 | |
---|
29 | A typical dataflow can be described as follows |
---|
30 | |
---|
31 | Manually created files: |
---|
32 | ASC, PRJ: Digital elevation models (gridded) |
---|
33 | TSH: Triangular meshes (e.g. created from anuga.pmesh) |
---|
34 | NC Model outputs for use as boundary conditions (e.g from MOST) |
---|
35 | |
---|
36 | |
---|
37 | AUTOMATICALLY CREATED FILES: |
---|
38 | |
---|
39 | ASC, PRJ -> DEM -> PTS: Conversion of DEM's to native pts file |
---|
40 | |
---|
41 | NC -> SWW: Conversion of MOST bundary files to boundary sww |
---|
42 | |
---|
43 | PTS + TSH -> TSH with elevation: Least squares fit |
---|
44 | |
---|
45 | TSH -> SWW: Conversion of TSH to sww viewable using Swollen |
---|
46 | |
---|
47 | TSH + Boundary SWW -> SWW: Simluation using abstract_2d_finite_volumes |
---|
48 | |
---|
49 | """ |
---|
50 | |
---|
51 | import exceptions |
---|
52 | class TitleValueError(exceptions.Exception): pass |
---|
53 | class DataMissingValuesError(exceptions.Exception): pass |
---|
54 | class DataFileNotOpenError(exceptions.Exception): pass |
---|
55 | class DataTimeError(exceptions.Exception): pass |
---|
56 | class DataDomainError(exceptions.Exception): pass |
---|
57 | |
---|
58 | |
---|
59 | |
---|
60 | import csv |
---|
61 | import os |
---|
62 | from struct import unpack |
---|
63 | import array as p_array |
---|
64 | |
---|
65 | from Numeric import concatenate, array, Float, Int, Int32, resize, sometrue, \ |
---|
66 | searchsorted, zeros, allclose, around, reshape, transpose |
---|
67 | from Scientific.IO.NetCDF import NetCDFFile |
---|
68 | |
---|
69 | |
---|
70 | from anuga.coordinate_transforms.geo_reference import Geo_reference |
---|
71 | from anuga.geospatial_data.geospatial_data import Geospatial_data |
---|
72 | from anuga.config import minimum_storable_height as default_minimum_storable_height |
---|
73 | from anuga.utilities.numerical_tools import ensure_numeric |
---|
74 | from anuga.caching.caching import myhash |
---|
75 | from anuga.utilities.anuga_exceptions import ANUGAError |
---|
76 | |
---|
77 | def make_filename(s): |
---|
78 | """Transform argument string into a suitable filename |
---|
79 | """ |
---|
80 | |
---|
81 | s = s.strip() |
---|
82 | s = s.replace(' ', '_') |
---|
83 | s = s.replace('(', '') |
---|
84 | s = s.replace(')', '') |
---|
85 | s = s.replace('__', '_') |
---|
86 | |
---|
87 | return s |
---|
88 | |
---|
89 | |
---|
90 | def check_dir(path, verbose=None): |
---|
91 | """Check that specified path exists. |
---|
92 | If path does not exist it will be created if possible |
---|
93 | |
---|
94 | USAGE: |
---|
95 | checkdir(path, verbose): |
---|
96 | |
---|
97 | ARGUMENTS: |
---|
98 | path -- Directory |
---|
99 | verbose -- Flag verbose output (default: None) |
---|
100 | |
---|
101 | RETURN VALUE: |
---|
102 | Verified path including trailing separator |
---|
103 | |
---|
104 | """ |
---|
105 | |
---|
106 | import os, sys |
---|
107 | import os.path |
---|
108 | |
---|
109 | if sys.platform in ['nt', 'dos', 'win32', 'what else?']: |
---|
110 | unix = 0 |
---|
111 | else: |
---|
112 | unix = 1 |
---|
113 | |
---|
114 | |
---|
115 | if path[-1] != os.sep: |
---|
116 | path = path + os.sep # Add separator for directories |
---|
117 | |
---|
118 | path = os.path.expanduser(path) # Expand ~ or ~user in pathname |
---|
119 | if not (os.access(path,os.R_OK and os.W_OK) or path == ''): |
---|
120 | try: |
---|
121 | exitcode=os.mkdir(path) |
---|
122 | |
---|
123 | # Change access rights if possible |
---|
124 | # |
---|
125 | if unix: |
---|
126 | exitcode=os.system('chmod 775 '+path) |
---|
127 | else: |
---|
128 | pass # FIXME: What about acces rights under Windows? |
---|
129 | |
---|
130 | if verbose: print 'MESSAGE: Directory', path, 'created.' |
---|
131 | |
---|
132 | except: |
---|
133 | print 'WARNING: Directory', path, 'could not be created.' |
---|
134 | if unix: |
---|
135 | path = '/tmp/' |
---|
136 | else: |
---|
137 | path = 'C:' |
---|
138 | |
---|
139 | print 'Using directory %s instead' %path |
---|
140 | |
---|
141 | return(path) |
---|
142 | |
---|
143 | |
---|
144 | |
---|
145 | def del_dir(path): |
---|
146 | """Recursively delete directory path and all its contents |
---|
147 | """ |
---|
148 | |
---|
149 | import os |
---|
150 | |
---|
151 | if os.path.isdir(path): |
---|
152 | for file in os.listdir(path): |
---|
153 | X = os.path.join(path, file) |
---|
154 | |
---|
155 | |
---|
156 | if os.path.isdir(X) and not os.path.islink(X): |
---|
157 | del_dir(X) |
---|
158 | else: |
---|
159 | try: |
---|
160 | os.remove(X) |
---|
161 | except: |
---|
162 | print "Could not remove file %s" %X |
---|
163 | |
---|
164 | os.rmdir(path) |
---|
165 | |
---|
166 | |
---|
167 | |
---|
168 | def create_filename(datadir, filename, format, size=None, time=None): |
---|
169 | |
---|
170 | import os |
---|
171 | #from anuga.config import data_dir |
---|
172 | |
---|
173 | FN = check_dir(datadir) + filename |
---|
174 | |
---|
175 | if size is not None: |
---|
176 | FN += '_size%d' %size |
---|
177 | |
---|
178 | if time is not None: |
---|
179 | FN += '_time%.2f' %time |
---|
180 | |
---|
181 | FN += '.' + format |
---|
182 | return FN |
---|
183 | |
---|
184 | |
---|
185 | def get_files(datadir, filename, format, size): |
---|
186 | """Get all file (names) with gven name, size and format |
---|
187 | """ |
---|
188 | |
---|
189 | import glob |
---|
190 | |
---|
191 | import os |
---|
192 | #from anuga.config import data_dir |
---|
193 | |
---|
194 | dir = check_dir(datadir) |
---|
195 | |
---|
196 | pattern = dir + os.sep + filename + '_size=%d*.%s' %(size, format) |
---|
197 | return glob.glob(pattern) |
---|
198 | |
---|
199 | |
---|
200 | |
---|
201 | #Generic class for storing output to e.g. visualisation or checkpointing |
---|
202 | class Data_format: |
---|
203 | """Generic interface to data formats |
---|
204 | """ |
---|
205 | |
---|
206 | |
---|
207 | def __init__(self, domain, extension, mode = 'w'): |
---|
208 | assert mode in ['r', 'w', 'a'], '''Mode %s must be either:''' %mode +\ |
---|
209 | ''' 'w' (write)'''+\ |
---|
210 | ''' 'r' (read)''' +\ |
---|
211 | ''' 'a' (append)''' |
---|
212 | |
---|
213 | #Create filename |
---|
214 | self.filename = create_filename(domain.get_datadir(), |
---|
215 | domain.get_name(), extension) |
---|
216 | |
---|
217 | #print 'F', self.filename |
---|
218 | self.timestep = 0 |
---|
219 | self.domain = domain |
---|
220 | |
---|
221 | |
---|
222 | |
---|
223 | # Exclude ghosts in case this is a parallel domain |
---|
224 | self.number_of_nodes = domain.number_of_full_nodes |
---|
225 | self.number_of_volumes = domain.number_of_full_triangles |
---|
226 | #self.number_of_volumes = len(domain) |
---|
227 | |
---|
228 | |
---|
229 | |
---|
230 | |
---|
231 | #FIXME: Should we have a general set_precision function? |
---|
232 | |
---|
233 | |
---|
234 | |
---|
235 | #Class for storing output to e.g. visualisation |
---|
236 | class Data_format_sww(Data_format): |
---|
237 | """Interface to native NetCDF format (.sww) for storing model output |
---|
238 | |
---|
239 | There are two kinds of data |
---|
240 | |
---|
241 | 1: Constant data: Vertex coordinates and field values. Stored once |
---|
242 | 2: Variable data: Conserved quantities. Stored once per timestep. |
---|
243 | |
---|
244 | All data is assumed to reside at vertex locations. |
---|
245 | """ |
---|
246 | |
---|
247 | |
---|
248 | def __init__(self, domain, mode = 'w',\ |
---|
249 | max_size = 2000000000, |
---|
250 | recursion = False): |
---|
251 | from Scientific.IO.NetCDF import NetCDFFile |
---|
252 | from Numeric import Int, Float, Float32 |
---|
253 | |
---|
254 | self.precision = Float32 #Use single precision for quantities |
---|
255 | if hasattr(domain, 'max_size'): |
---|
256 | self.max_size = domain.max_size #file size max is 2Gig |
---|
257 | else: |
---|
258 | self.max_size = max_size |
---|
259 | self.recursion = recursion |
---|
260 | self.mode = mode |
---|
261 | |
---|
262 | Data_format.__init__(self, domain, 'sww', mode) |
---|
263 | |
---|
264 | if hasattr(domain, 'minimum_storable_height'): |
---|
265 | self.minimum_storable_height = domain.minimum_storable_height |
---|
266 | else: |
---|
267 | self.minimum_storable_height = default_minimum_storable_height |
---|
268 | |
---|
269 | # NetCDF file definition |
---|
270 | fid = NetCDFFile(self.filename, mode) |
---|
271 | |
---|
272 | if mode == 'w': |
---|
273 | |
---|
274 | #Create new file |
---|
275 | fid.institution = 'Geoscience Australia' |
---|
276 | fid.description = 'Output from anuga.abstract_2d_finite_volumes suitable for plotting' |
---|
277 | |
---|
278 | if domain.smooth: |
---|
279 | fid.smoothing = 'Yes' |
---|
280 | else: |
---|
281 | fid.smoothing = 'No' |
---|
282 | |
---|
283 | fid.order = domain.default_order |
---|
284 | |
---|
285 | if hasattr(domain, 'texture'): |
---|
286 | fid.texture = domain.texture |
---|
287 | #else: |
---|
288 | # fid.texture = 'None' |
---|
289 | |
---|
290 | #Reference point |
---|
291 | #Start time in seconds since the epoch (midnight 1/1/1970) |
---|
292 | #FIXME: Use Georef |
---|
293 | fid.starttime = domain.starttime |
---|
294 | |
---|
295 | # dimension definitions |
---|
296 | fid.createDimension('number_of_volumes', self.number_of_volumes) |
---|
297 | fid.createDimension('number_of_vertices', 3) |
---|
298 | |
---|
299 | if domain.smooth is True: |
---|
300 | #fid.createDimension('number_of_points', len(domain.vertexlist)) |
---|
301 | fid.createDimension('number_of_points', self.domain.number_of_full_nodes) |
---|
302 | |
---|
303 | # FIXME(Ole): This will cause sww files for paralle domains to |
---|
304 | # have ghost nodes stored (but not used by triangles). |
---|
305 | # To clean this up, we have to change get_vertex_values and friends in |
---|
306 | # quantity.py (but I can't be bothered right now) |
---|
307 | else: |
---|
308 | fid.createDimension('number_of_points', 3*self.number_of_volumes) |
---|
309 | |
---|
310 | fid.createDimension('number_of_timesteps', None) #extensible |
---|
311 | |
---|
312 | # variable definitions |
---|
313 | fid.createVariable('x', self.precision, ('number_of_points',)) |
---|
314 | fid.createVariable('y', self.precision, ('number_of_points',)) |
---|
315 | fid.createVariable('elevation', self.precision, ('number_of_points',)) |
---|
316 | if domain.geo_reference is not None: |
---|
317 | domain.geo_reference.write_NetCDF(fid) |
---|
318 | |
---|
319 | #FIXME: Backwards compatibility |
---|
320 | fid.createVariable('z', self.precision, ('number_of_points',)) |
---|
321 | ################################# |
---|
322 | |
---|
323 | fid.createVariable('volumes', Int, ('number_of_volumes', |
---|
324 | 'number_of_vertices')) |
---|
325 | |
---|
326 | fid.createVariable('time', Float, # Always use full precision lest two timesteps |
---|
327 | # close to each other may appear as the same step |
---|
328 | ('number_of_timesteps',)) |
---|
329 | |
---|
330 | fid.createVariable('stage', self.precision, |
---|
331 | ('number_of_timesteps', |
---|
332 | 'number_of_points')) |
---|
333 | |
---|
334 | fid.createVariable('xmomentum', self.precision, |
---|
335 | ('number_of_timesteps', |
---|
336 | 'number_of_points')) |
---|
337 | |
---|
338 | fid.createVariable('ymomentum', self.precision, |
---|
339 | ('number_of_timesteps', |
---|
340 | 'number_of_points')) |
---|
341 | |
---|
342 | #Close |
---|
343 | fid.close() |
---|
344 | |
---|
345 | |
---|
346 | def store_connectivity(self): |
---|
347 | """Specialisation of store_connectivity for net CDF format |
---|
348 | |
---|
349 | Writes x,y,z coordinates of triangles constituting |
---|
350 | the bed elevation. |
---|
351 | """ |
---|
352 | |
---|
353 | from Scientific.IO.NetCDF import NetCDFFile |
---|
354 | |
---|
355 | from Numeric import concatenate, Int |
---|
356 | |
---|
357 | domain = self.domain |
---|
358 | |
---|
359 | #Get NetCDF |
---|
360 | fid = NetCDFFile(self.filename, 'a') #Open existing file for append |
---|
361 | |
---|
362 | # Get the variables |
---|
363 | x = fid.variables['x'] |
---|
364 | y = fid.variables['y'] |
---|
365 | z = fid.variables['elevation'] |
---|
366 | |
---|
367 | volumes = fid.variables['volumes'] |
---|
368 | |
---|
369 | # Get X, Y and bed elevation Z |
---|
370 | Q = domain.quantities['elevation'] |
---|
371 | X,Y,Z,V = Q.get_vertex_values(xy=True, |
---|
372 | precision=self.precision) |
---|
373 | |
---|
374 | volumes[:] = V.astype(volumes.typecode()) |
---|
375 | x[:] = X |
---|
376 | y[:] = Y |
---|
377 | z[:] = Z |
---|
378 | |
---|
379 | #FIXME: Backwards compatibility |
---|
380 | z = fid.variables['z'] |
---|
381 | z[:] = Z |
---|
382 | ################################ |
---|
383 | |
---|
384 | |
---|
385 | |
---|
386 | #Close |
---|
387 | fid.close() |
---|
388 | |
---|
389 | def store_timestep(self, names): |
---|
390 | """Store time and named quantities to file |
---|
391 | """ |
---|
392 | from Scientific.IO.NetCDF import NetCDFFile |
---|
393 | import types |
---|
394 | from time import sleep |
---|
395 | from os import stat |
---|
396 | |
---|
397 | from Numeric import choose |
---|
398 | |
---|
399 | #Get NetCDF |
---|
400 | retries = 0 |
---|
401 | file_open = False |
---|
402 | while not file_open and retries < 10: |
---|
403 | try: |
---|
404 | fid = NetCDFFile(self.filename, 'a') #Open existing file |
---|
405 | except IOError: |
---|
406 | #This could happen if someone was reading the file. |
---|
407 | #In that case, wait a while and try again |
---|
408 | msg = 'Warning (store_timestep): File %s could not be opened'\ |
---|
409 | %self.filename |
---|
410 | msg += ' - trying step %s again' %self.domain.time |
---|
411 | print msg |
---|
412 | retries += 1 |
---|
413 | sleep(1) |
---|
414 | else: |
---|
415 | file_open = True |
---|
416 | |
---|
417 | if not file_open: |
---|
418 | msg = 'File %s could not be opened for append' %self.filename |
---|
419 | raise DataFileNotOpenError, msg |
---|
420 | |
---|
421 | |
---|
422 | |
---|
423 | #Check to see if the file is already too big: |
---|
424 | time = fid.variables['time'] |
---|
425 | i = len(time)+1 |
---|
426 | file_size = stat(self.filename)[6] |
---|
427 | file_size_increase = file_size/i |
---|
428 | if file_size + file_size_increase > self.max_size*(2**self.recursion): |
---|
429 | #in order to get the file name and start time correct, |
---|
430 | #I change the domian.filename and domain.starttime. |
---|
431 | #This is the only way to do this without changing |
---|
432 | #other modules (I think). |
---|
433 | |
---|
434 | #write a filename addon that won't break swollens reader |
---|
435 | #(10.sww is bad) |
---|
436 | filename_ext = '_time_%s'%self.domain.time |
---|
437 | filename_ext = filename_ext.replace('.', '_') |
---|
438 | #remember the old filename, then give domain a |
---|
439 | #name with the extension |
---|
440 | old_domain_filename = self.domain.get_name() |
---|
441 | if not self.recursion: |
---|
442 | self.domain.set_name(old_domain_filename+filename_ext) |
---|
443 | |
---|
444 | |
---|
445 | #change the domain starttime to the current time |
---|
446 | old_domain_starttime = self.domain.starttime |
---|
447 | self.domain.starttime = self.domain.time |
---|
448 | |
---|
449 | #build a new data_structure. |
---|
450 | next_data_structure=\ |
---|
451 | Data_format_sww(self.domain, mode=self.mode,\ |
---|
452 | max_size = self.max_size,\ |
---|
453 | recursion = self.recursion+1) |
---|
454 | if not self.recursion: |
---|
455 | print ' file_size = %s'%file_size |
---|
456 | print ' saving file to %s'%next_data_structure.filename |
---|
457 | #set up the new data_structure |
---|
458 | self.domain.writer = next_data_structure |
---|
459 | |
---|
460 | #FIXME - could be cleaner to use domain.store_timestep etc. |
---|
461 | next_data_structure.store_connectivity() |
---|
462 | next_data_structure.store_timestep(names) |
---|
463 | fid.sync() |
---|
464 | fid.close() |
---|
465 | |
---|
466 | #restore the old starttime and filename |
---|
467 | self.domain.starttime = old_domain_starttime |
---|
468 | self.domain.set_name(old_domain_filename) |
---|
469 | else: |
---|
470 | self.recursion = False |
---|
471 | domain = self.domain |
---|
472 | |
---|
473 | # Get the variables |
---|
474 | time = fid.variables['time'] |
---|
475 | stage = fid.variables['stage'] |
---|
476 | xmomentum = fid.variables['xmomentum'] |
---|
477 | ymomentum = fid.variables['ymomentum'] |
---|
478 | i = len(time) |
---|
479 | |
---|
480 | #Store time |
---|
481 | time[i] = self.domain.time |
---|
482 | |
---|
483 | |
---|
484 | if type(names) not in [types.ListType, types.TupleType]: |
---|
485 | names = [names] |
---|
486 | |
---|
487 | for name in names: |
---|
488 | # Get quantity |
---|
489 | Q = domain.quantities[name] |
---|
490 | A,V = Q.get_vertex_values(xy = False, |
---|
491 | precision = self.precision) |
---|
492 | |
---|
493 | |
---|
494 | #FIXME: Make this general (see below) |
---|
495 | if name == 'stage': |
---|
496 | z = fid.variables['elevation'] |
---|
497 | #print z[:] |
---|
498 | #print A-z[:] |
---|
499 | |
---|
500 | |
---|
501 | A = choose(A-z[:] >= self.minimum_storable_height, |
---|
502 | (z[:], A)) |
---|
503 | stage[i,:] = A.astype(self.precision) |
---|
504 | elif name == 'xmomentum': |
---|
505 | xmomentum[i,:] = A.astype(self.precision) |
---|
506 | elif name == 'ymomentum': |
---|
507 | ymomentum[i,:] = A.astype(self.precision) |
---|
508 | |
---|
509 | #As in.... |
---|
510 | #eval( name + '[i,:] = A.astype(self.precision)' ) |
---|
511 | #FIXME: But we need a UNIT test for that before refactoring |
---|
512 | |
---|
513 | |
---|
514 | |
---|
515 | #Flush and close |
---|
516 | fid.sync() |
---|
517 | fid.close() |
---|
518 | |
---|
519 | |
---|
520 | |
---|
521 | #Class for handling checkpoints data |
---|
522 | class Data_format_cpt(Data_format): |
---|
523 | """Interface to native NetCDF format (.cpt) |
---|
524 | """ |
---|
525 | |
---|
526 | |
---|
527 | def __init__(self, domain, mode = 'w'): |
---|
528 | from Scientific.IO.NetCDF import NetCDFFile |
---|
529 | from Numeric import Int, Float, Float |
---|
530 | |
---|
531 | self.precision = Float #Use full precision |
---|
532 | |
---|
533 | Data_format.__init__(self, domain, 'sww', mode) |
---|
534 | |
---|
535 | |
---|
536 | # NetCDF file definition |
---|
537 | fid = NetCDFFile(self.filename, mode) |
---|
538 | |
---|
539 | if mode == 'w': |
---|
540 | #Create new file |
---|
541 | fid.institution = 'Geoscience Australia' |
---|
542 | fid.description = 'Checkpoint data' |
---|
543 | #fid.smooth = domain.smooth |
---|
544 | fid.order = domain.default_order |
---|
545 | |
---|
546 | # dimension definitions |
---|
547 | fid.createDimension('number_of_volumes', self.number_of_volumes) |
---|
548 | fid.createDimension('number_of_vertices', 3) |
---|
549 | |
---|
550 | #Store info at all vertices (no smoothing) |
---|
551 | fid.createDimension('number_of_points', 3*self.number_of_volumes) |
---|
552 | fid.createDimension('number_of_timesteps', None) #extensible |
---|
553 | |
---|
554 | # variable definitions |
---|
555 | |
---|
556 | #Mesh |
---|
557 | fid.createVariable('x', self.precision, ('number_of_points',)) |
---|
558 | fid.createVariable('y', self.precision, ('number_of_points',)) |
---|
559 | |
---|
560 | |
---|
561 | fid.createVariable('volumes', Int, ('number_of_volumes', |
---|
562 | 'number_of_vertices')) |
---|
563 | |
---|
564 | fid.createVariable('time', self.precision, |
---|
565 | ('number_of_timesteps',)) |
---|
566 | |
---|
567 | #Allocate space for all quantities |
---|
568 | for name in domain.quantities.keys(): |
---|
569 | fid.createVariable(name, self.precision, |
---|
570 | ('number_of_timesteps', |
---|
571 | 'number_of_points')) |
---|
572 | |
---|
573 | #Close |
---|
574 | fid.close() |
---|
575 | |
---|
576 | |
---|
577 | def store_checkpoint(self): |
---|
578 | """ |
---|
579 | Write x,y coordinates of triangles. |
---|
580 | Write connectivity ( |
---|
581 | constituting |
---|
582 | the bed elevation. |
---|
583 | """ |
---|
584 | |
---|
585 | from Scientific.IO.NetCDF import NetCDFFile |
---|
586 | |
---|
587 | from Numeric import concatenate |
---|
588 | |
---|
589 | domain = self.domain |
---|
590 | |
---|
591 | #Get NetCDF |
---|
592 | fid = NetCDFFile(self.filename, 'a') #Open existing file for append |
---|
593 | |
---|
594 | # Get the variables |
---|
595 | x = fid.variables['x'] |
---|
596 | y = fid.variables['y'] |
---|
597 | |
---|
598 | volumes = fid.variables['volumes'] |
---|
599 | |
---|
600 | # Get X, Y and bed elevation Z |
---|
601 | Q = domain.quantities['elevation'] |
---|
602 | X,Y,Z,V = Q.get_vertex_values(xy=True, |
---|
603 | precision = self.precision) |
---|
604 | |
---|
605 | |
---|
606 | |
---|
607 | x[:] = X.astype(self.precision) |
---|
608 | y[:] = Y.astype(self.precision) |
---|
609 | z[:] = Z.astype(self.precision) |
---|
610 | |
---|
611 | volumes[:] = V |
---|
612 | |
---|
613 | #Close |
---|
614 | fid.close() |
---|
615 | |
---|
616 | |
---|
617 | def store_timestep(self, name): |
---|
618 | """Store time and named quantity to file |
---|
619 | """ |
---|
620 | from Scientific.IO.NetCDF import NetCDFFile |
---|
621 | from time import sleep |
---|
622 | |
---|
623 | #Get NetCDF |
---|
624 | retries = 0 |
---|
625 | file_open = False |
---|
626 | while not file_open and retries < 10: |
---|
627 | try: |
---|
628 | fid = NetCDFFile(self.filename, 'a') #Open existing file |
---|
629 | except IOError: |
---|
630 | #This could happen if someone was reading the file. |
---|
631 | #In that case, wait a while and try again |
---|
632 | msg = 'Warning (store_timestep): File %s could not be opened'\ |
---|
633 | %self.filename |
---|
634 | msg += ' - trying again' |
---|
635 | print msg |
---|
636 | retries += 1 |
---|
637 | sleep(1) |
---|
638 | else: |
---|
639 | file_open = True |
---|
640 | |
---|
641 | if not file_open: |
---|
642 | msg = 'File %s could not be opened for append' %self.filename |
---|
643 | raise DataFileNotOPenError, msg |
---|
644 | |
---|
645 | |
---|
646 | domain = self.domain |
---|
647 | |
---|
648 | # Get the variables |
---|
649 | time = fid.variables['time'] |
---|
650 | stage = fid.variables['stage'] |
---|
651 | i = len(time) |
---|
652 | |
---|
653 | #Store stage |
---|
654 | time[i] = self.domain.time |
---|
655 | |
---|
656 | # Get quantity |
---|
657 | Q = domain.quantities[name] |
---|
658 | A,V = Q.get_vertex_values(xy=False, |
---|
659 | precision = self.precision) |
---|
660 | |
---|
661 | stage[i,:] = A.astype(self.precision) |
---|
662 | |
---|
663 | #Flush and close |
---|
664 | fid.sync() |
---|
665 | fid.close() |
---|
666 | |
---|
667 | |
---|
668 | |
---|
669 | |
---|
670 | |
---|
671 | #Function for storing xya output |
---|
672 | #FIXME Not done yet for this version |
---|
673 | #This is obsolete. Use geo_spatial_data instead |
---|
674 | class Data_format_xya(Data_format): |
---|
675 | """Generic interface to data formats |
---|
676 | """ |
---|
677 | |
---|
678 | |
---|
679 | def __init__(self, domain, mode = 'w'): |
---|
680 | from Scientific.IO.NetCDF import NetCDFFile |
---|
681 | from Numeric import Int, Float, Float32 |
---|
682 | |
---|
683 | self.precision = Float32 #Use single precision |
---|
684 | |
---|
685 | Data_format.__init__(self, domain, 'xya', mode) |
---|
686 | |
---|
687 | |
---|
688 | |
---|
689 | #FIXME -This is the old xya format |
---|
690 | def store_all(self): |
---|
691 | """Specialisation of store all for xya format |
---|
692 | |
---|
693 | Writes x,y,z coordinates of triangles constituting |
---|
694 | the bed elevation. |
---|
695 | """ |
---|
696 | |
---|
697 | from Numeric import concatenate |
---|
698 | |
---|
699 | domain = self.domain |
---|
700 | |
---|
701 | fd = open(self.filename, 'w') |
---|
702 | |
---|
703 | |
---|
704 | if domain.smooth is True: |
---|
705 | number_of_points = len(domain.vertexlist) |
---|
706 | else: |
---|
707 | number_of_points = 3*self.number_of_volumes |
---|
708 | |
---|
709 | numVertAttrib = 3 #Three attributes is what is assumed by the xya format |
---|
710 | |
---|
711 | fd.write(str(number_of_points) + " " + str(numVertAttrib) +\ |
---|
712 | " # <vertex #> <x> <y> [attributes]" + "\n") |
---|
713 | |
---|
714 | |
---|
715 | # Get X, Y, bed elevation and friction (index=0,1) |
---|
716 | X,Y,A,V = domain.get_vertex_values(xy=True, value_array='field_values', |
---|
717 | indices = (0,1), precision = self.precision) |
---|
718 | |
---|
719 | bed_eles = A[:,0] |
---|
720 | fricts = A[:,1] |
---|
721 | |
---|
722 | # Get stage (index=0) |
---|
723 | B,V = domain.get_vertex_values(xy=False, value_array='conserved_quantities', |
---|
724 | indices = (0,), precision = self.precision) |
---|
725 | |
---|
726 | stages = B[:,0] |
---|
727 | |
---|
728 | #<vertex #> <x> <y> [attributes] |
---|
729 | for x, y, bed_ele, stage, frict in map(None, X, Y, bed_eles, |
---|
730 | stages, fricts): |
---|
731 | |
---|
732 | s = '%.6f %.6f %.6f %.6f %.6f\n' %(x, y, bed_ele, stage, frict) |
---|
733 | fd.write(s) |
---|
734 | |
---|
735 | #close |
---|
736 | fd.close() |
---|
737 | |
---|
738 | |
---|
739 | def store_timestep(self, t, V0, V1, V2): |
---|
740 | """Store time, water heights (and momentums) to file |
---|
741 | """ |
---|
742 | pass |
---|
743 | |
---|
744 | |
---|
745 | #### NED is national exposure database |
---|
746 | |
---|
747 | LAT_TITLE = 'LATITUDE' |
---|
748 | LONG_TITLE = 'LONGITUDE' |
---|
749 | X_TITLE = 'x' |
---|
750 | Y_TITLE = 'y' |
---|
751 | class Exposure_csv: |
---|
752 | def __init__(self,file_name, latitude_title=LAT_TITLE, |
---|
753 | longitude_title=LONG_TITLE, is_x_y_locations=None, |
---|
754 | x_title=X_TITLE, y_title=Y_TITLE, |
---|
755 | refine_polygon=None): |
---|
756 | """ |
---|
757 | This class is for handling the exposure csv file. |
---|
758 | It reads the file in and converts the lats and longs to a geospatial |
---|
759 | data object. |
---|
760 | Use the methods to read and write columns. |
---|
761 | |
---|
762 | The format of the csv files it reads is; |
---|
763 | The first row is a title row. |
---|
764 | comma's are the delimiters |
---|
765 | each column is a 'set' of data |
---|
766 | |
---|
767 | Feel free to use/expand it to read other csv files. |
---|
768 | |
---|
769 | |
---|
770 | It is not for adding and deleting rows |
---|
771 | |
---|
772 | Can geospatial handle string attributes? It's not made for them. |
---|
773 | Currently it can't load and save string att's. |
---|
774 | |
---|
775 | So just use geospatial to hold the x, y and georef? Bad, since |
---|
776 | different att's are in diferent structures. Not so bad, the info |
---|
777 | to write if the .csv file is saved is in attribute_dic |
---|
778 | |
---|
779 | The location info is in the geospatial attribute. |
---|
780 | |
---|
781 | |
---|
782 | """ |
---|
783 | self._file_name = file_name |
---|
784 | self._geospatial = None # |
---|
785 | |
---|
786 | # self._attribute_dic is a dictionary. |
---|
787 | #The keys are the column titles. |
---|
788 | #The values are lists of column data |
---|
789 | |
---|
790 | # self._title_index_dic is a dictionary. |
---|
791 | #The keys are the column titles. |
---|
792 | #The values are the index positions of file columns. |
---|
793 | self._attribute_dic, self._title_index_dic = \ |
---|
794 | self._load_exposure_csv(self._file_name) |
---|
795 | try: |
---|
796 | lats = self._attribute_dic[latitude_title] |
---|
797 | longs = self._attribute_dic[longitude_title] |
---|
798 | |
---|
799 | except KeyError: |
---|
800 | # maybe a warning.. |
---|
801 | #Let's see if this works.. |
---|
802 | if False != is_x_y_locations: |
---|
803 | is_x_y_locations = True |
---|
804 | pass |
---|
805 | else: |
---|
806 | self._geospatial = Geospatial_data(latitudes = lats, |
---|
807 | longitudes = longs) |
---|
808 | |
---|
809 | if is_x_y_locations is True: |
---|
810 | if self._geospatial is not None: |
---|
811 | pass #fixme throw an error |
---|
812 | try: |
---|
813 | xs = self._attribute_dic[x_title] |
---|
814 | ys = self._attribute_dic[y_title] |
---|
815 | points = [[float(i),float(j)] for i,j in map(None,xs,ys)] |
---|
816 | except KeyError: |
---|
817 | # maybe a warning.. |
---|
818 | msg = "Could not find location information." |
---|
819 | raise TitleValueError, msg |
---|
820 | else: |
---|
821 | self._geospatial = Geospatial_data(data_points=points) |
---|
822 | |
---|
823 | # create a list of points that are in the refining_polygon |
---|
824 | # described by a list of indexes representing the points |
---|
825 | |
---|
826 | def __cmp__(self, other): |
---|
827 | #print "self._attribute_dic",self._attribute_dic |
---|
828 | #print "other._attribute_dic",other._attribute_dic |
---|
829 | #print "self._title_index_dic", self._title_index_dic |
---|
830 | #print "other._title_index_dic", other._title_index_dic |
---|
831 | |
---|
832 | #check that a is an instance of this class |
---|
833 | if isinstance(self, type(other)): |
---|
834 | result = cmp(self._attribute_dic, other._attribute_dic) |
---|
835 | if result <>0: |
---|
836 | return result |
---|
837 | # The order of the columns is important. Therefore.. |
---|
838 | result = cmp(self._title_index_dic, other._title_index_dic) |
---|
839 | if result <>0: |
---|
840 | return result |
---|
841 | for self_ls, other_ls in map(None,self._attribute_dic, \ |
---|
842 | other._attribute_dic): |
---|
843 | result = cmp(self._attribute_dic[self_ls], |
---|
844 | other._attribute_dic[other_ls]) |
---|
845 | if result <>0: |
---|
846 | return result |
---|
847 | return 0 |
---|
848 | else: |
---|
849 | return 1 |
---|
850 | |
---|
851 | def _load_exposure_csv(self, file_name): |
---|
852 | """ |
---|
853 | Load in the csv as a dic, title as key and column info as value, . |
---|
854 | Also, create a dic, title as key and column index as value. |
---|
855 | """ |
---|
856 | # |
---|
857 | attribute_dic = {} |
---|
858 | title_index_dic = {} |
---|
859 | titles_stripped = [] # list of titles |
---|
860 | |
---|
861 | reader = csv.reader(file(file_name)) |
---|
862 | |
---|
863 | # Read in and manipulate the title info |
---|
864 | titles = reader.next() |
---|
865 | for i,title in enumerate(titles): |
---|
866 | titles_stripped.append(title.strip()) |
---|
867 | title_index_dic[title.strip()] = i |
---|
868 | title_count = len(titles_stripped) |
---|
869 | #print "title_index_dic",title_index_dic |
---|
870 | |
---|
871 | |
---|
872 | #create a dic of colum values, indexed by column title |
---|
873 | for line in reader: |
---|
874 | if len(line) <> title_count: |
---|
875 | raise IOError #FIXME make this nicer |
---|
876 | for i, value in enumerate(line): |
---|
877 | attribute_dic.setdefault(titles_stripped[i],[]).append(value) |
---|
878 | |
---|
879 | return attribute_dic, title_index_dic |
---|
880 | |
---|
881 | def get_column(self, column_name, use_refind_polygon=False): |
---|
882 | """ |
---|
883 | Given a column name return a list of the column values |
---|
884 | |
---|
885 | Note, the type of the values will be String! |
---|
886 | do this to change a list of strings to a list of floats |
---|
887 | time = [float(x) for x in time] |
---|
888 | |
---|
889 | Not implemented: |
---|
890 | if use_refind_polygon is True, only return values in the |
---|
891 | refined polygon |
---|
892 | """ |
---|
893 | if not self._attribute_dic.has_key(column_name): |
---|
894 | msg = 'Therer is no column called %s!' %column_name |
---|
895 | raise TitleValueError, msg |
---|
896 | return self._attribute_dic[column_name] |
---|
897 | |
---|
898 | |
---|
899 | def get_value(self, value_column_name, |
---|
900 | known_column_name, |
---|
901 | known_values, |
---|
902 | use_refind_polygon=False): |
---|
903 | """ |
---|
904 | Do linear interpolation on the known_colum, using the known_value, |
---|
905 | to return a value of the column_value_name. |
---|
906 | """ |
---|
907 | pass |
---|
908 | |
---|
909 | |
---|
910 | def get_location(self, use_refind_polygon=False): |
---|
911 | """ |
---|
912 | Return a geospatial object which describes the |
---|
913 | locations of the location file. |
---|
914 | |
---|
915 | Note, if there is not location info, this returns None. |
---|
916 | |
---|
917 | Not implemented: |
---|
918 | if use_refind_polygon is True, only return values in the |
---|
919 | refined polygon |
---|
920 | """ |
---|
921 | return self._geospatial |
---|
922 | |
---|
923 | def set_column(self, column_name, column_values, overwrite=False): |
---|
924 | """ |
---|
925 | Add a column to the 'end' (with the right most column being the end) |
---|
926 | of the csv file. |
---|
927 | |
---|
928 | Set overwrite to True if you want to overwrite a column. |
---|
929 | |
---|
930 | Note, in column_name white space is removed and case is not checked. |
---|
931 | Precondition |
---|
932 | The column_name and column_values cannot have comma's in it. |
---|
933 | """ |
---|
934 | |
---|
935 | value_row_count = \ |
---|
936 | len(self._attribute_dic[self._title_index_dic.keys()[0]]) |
---|
937 | if len(column_values) <> value_row_count: |
---|
938 | msg = 'The number of column values must equal the number of rows.' |
---|
939 | raise DataMissingValuesError, msg |
---|
940 | |
---|
941 | if self._attribute_dic.has_key(column_name): |
---|
942 | if not overwrite: |
---|
943 | msg = 'Column name %s already in use!' %column_name |
---|
944 | raise TitleValueError, msg |
---|
945 | else: |
---|
946 | # New title. Add it to the title index. |
---|
947 | self._title_index_dic[column_name] = len(self._title_index_dic) |
---|
948 | self._attribute_dic[column_name] = column_values |
---|
949 | #print "self._title_index_dic[column_name]",self._title_index_dic |
---|
950 | |
---|
951 | def save(self, file_name=None): |
---|
952 | """ |
---|
953 | Save the exposure csv file |
---|
954 | """ |
---|
955 | if file_name is None: |
---|
956 | file_name = self._file_name |
---|
957 | |
---|
958 | fd = open(file_name,'wb') |
---|
959 | writer = csv.writer(fd) |
---|
960 | |
---|
961 | #Write the title to a cvs file |
---|
962 | line = [None]* len(self._title_index_dic) |
---|
963 | for title in self._title_index_dic.iterkeys(): |
---|
964 | line[self._title_index_dic[title]]= title |
---|
965 | writer.writerow(line) |
---|
966 | |
---|
967 | # Write the values to a cvs file |
---|
968 | value_row_count = \ |
---|
969 | len(self._attribute_dic[self._title_index_dic.keys()[0]]) |
---|
970 | for row_i in range(value_row_count): |
---|
971 | line = [None]* len(self._title_index_dic) |
---|
972 | for title in self._title_index_dic.iterkeys(): |
---|
973 | line[self._title_index_dic[title]]= \ |
---|
974 | self._attribute_dic[title][row_i] |
---|
975 | writer.writerow(line) |
---|
976 | |
---|
977 | |
---|
978 | #Auxiliary |
---|
979 | def write_obj(filename,x,y,z): |
---|
980 | """Store x,y,z vectors into filename (obj format) |
---|
981 | Vectors are assumed to have dimension (M,3) where |
---|
982 | M corresponds to the number elements. |
---|
983 | triangles are assumed to be disconnected |
---|
984 | |
---|
985 | The three numbers in each vector correspond to three vertices, |
---|
986 | |
---|
987 | e.g. the x coordinate of vertex 1 of element i is in x[i,1] |
---|
988 | |
---|
989 | """ |
---|
990 | #print 'Writing obj to %s' % filename |
---|
991 | |
---|
992 | import os.path |
---|
993 | |
---|
994 | root, ext = os.path.splitext(filename) |
---|
995 | if ext == '.obj': |
---|
996 | FN = filename |
---|
997 | else: |
---|
998 | FN = filename + '.obj' |
---|
999 | |
---|
1000 | |
---|
1001 | outfile = open(FN, 'wb') |
---|
1002 | outfile.write("# Triangulation as an obj file\n") |
---|
1003 | |
---|
1004 | M, N = x.shape |
---|
1005 | assert N==3 #Assuming three vertices per element |
---|
1006 | |
---|
1007 | for i in range(M): |
---|
1008 | for j in range(N): |
---|
1009 | outfile.write("v %f %f %f\n" % (x[i,j],y[i,j],z[i,j])) |
---|
1010 | |
---|
1011 | for i in range(M): |
---|
1012 | base = i*N |
---|
1013 | outfile.write("f %d %d %d\n" % (base+1,base+2,base+3)) |
---|
1014 | |
---|
1015 | outfile.close() |
---|
1016 | |
---|
1017 | |
---|
1018 | ######################################################### |
---|
1019 | #Conversion routines |
---|
1020 | ######################################################## |
---|
1021 | |
---|
1022 | def sww2obj(basefilename, size): |
---|
1023 | """Convert netcdf based data output to obj |
---|
1024 | """ |
---|
1025 | from Scientific.IO.NetCDF import NetCDFFile |
---|
1026 | |
---|
1027 | from Numeric import Float, zeros |
---|
1028 | |
---|
1029 | #Get NetCDF |
---|
1030 | FN = create_filename('.', basefilename, 'sww', size) |
---|
1031 | print 'Reading from ', FN |
---|
1032 | fid = NetCDFFile(FN, 'r') #Open existing file for read |
---|
1033 | |
---|
1034 | |
---|
1035 | # Get the variables |
---|
1036 | x = fid.variables['x'] |
---|
1037 | y = fid.variables['y'] |
---|
1038 | z = fid.variables['elevation'] |
---|
1039 | time = fid.variables['time'] |
---|
1040 | stage = fid.variables['stage'] |
---|
1041 | |
---|
1042 | M = size #Number of lines |
---|
1043 | xx = zeros((M,3), Float) |
---|
1044 | yy = zeros((M,3), Float) |
---|
1045 | zz = zeros((M,3), Float) |
---|
1046 | |
---|
1047 | for i in range(M): |
---|
1048 | for j in range(3): |
---|
1049 | xx[i,j] = x[i+j*M] |
---|
1050 | yy[i,j] = y[i+j*M] |
---|
1051 | zz[i,j] = z[i+j*M] |
---|
1052 | |
---|
1053 | #Write obj for bathymetry |
---|
1054 | FN = create_filename('.', basefilename, 'obj', size) |
---|
1055 | write_obj(FN,xx,yy,zz) |
---|
1056 | |
---|
1057 | |
---|
1058 | #Now read all the data with variable information, combine with |
---|
1059 | #x,y info and store as obj |
---|
1060 | |
---|
1061 | for k in range(len(time)): |
---|
1062 | t = time[k] |
---|
1063 | print 'Processing timestep %f' %t |
---|
1064 | |
---|
1065 | for i in range(M): |
---|
1066 | for j in range(3): |
---|
1067 | zz[i,j] = stage[k,i+j*M] |
---|
1068 | |
---|
1069 | |
---|
1070 | #Write obj for variable data |
---|
1071 | #FN = create_filename(basefilename, 'obj', size, time=t) |
---|
1072 | FN = create_filename('.', basefilename[:5], 'obj', size, time=t) |
---|
1073 | write_obj(FN,xx,yy,zz) |
---|
1074 | |
---|
1075 | |
---|
1076 | def dat2obj(basefilename): |
---|
1077 | """Convert line based data output to obj |
---|
1078 | FIXME: Obsolete? |
---|
1079 | """ |
---|
1080 | |
---|
1081 | import glob, os |
---|
1082 | from anuga.config import data_dir |
---|
1083 | |
---|
1084 | |
---|
1085 | #Get bathymetry and x,y's |
---|
1086 | lines = open(data_dir+os.sep+basefilename+'_geometry.dat', 'r').readlines() |
---|
1087 | |
---|
1088 | from Numeric import zeros, Float |
---|
1089 | |
---|
1090 | M = len(lines) #Number of lines |
---|
1091 | x = zeros((M,3), Float) |
---|
1092 | y = zeros((M,3), Float) |
---|
1093 | z = zeros((M,3), Float) |
---|
1094 | |
---|
1095 | ##i = 0 |
---|
1096 | for i, line in enumerate(lines): |
---|
1097 | tokens = line.split() |
---|
1098 | values = map(float,tokens) |
---|
1099 | |
---|
1100 | for j in range(3): |
---|
1101 | x[i,j] = values[j*3] |
---|
1102 | y[i,j] = values[j*3+1] |
---|
1103 | z[i,j] = values[j*3+2] |
---|
1104 | |
---|
1105 | ##i += 1 |
---|
1106 | |
---|
1107 | |
---|
1108 | #Write obj for bathymetry |
---|
1109 | write_obj(data_dir+os.sep+basefilename+'_geometry',x,y,z) |
---|
1110 | |
---|
1111 | |
---|
1112 | #Now read all the data files with variable information, combine with |
---|
1113 | #x,y info |
---|
1114 | #and store as obj |
---|
1115 | |
---|
1116 | files = glob.glob(data_dir+os.sep+basefilename+'*.dat') |
---|
1117 | |
---|
1118 | for filename in files: |
---|
1119 | print 'Processing %s' % filename |
---|
1120 | |
---|
1121 | lines = open(data_dir+os.sep+filename,'r').readlines() |
---|
1122 | assert len(lines) == M |
---|
1123 | root, ext = os.path.splitext(filename) |
---|
1124 | |
---|
1125 | #Get time from filename |
---|
1126 | i0 = filename.find('_time=') |
---|
1127 | if i0 == -1: |
---|
1128 | #Skip bathymetry file |
---|
1129 | continue |
---|
1130 | |
---|
1131 | i0 += 6 #Position where time starts |
---|
1132 | i1 = filename.find('.dat') |
---|
1133 | |
---|
1134 | if i1 > i0: |
---|
1135 | t = float(filename[i0:i1]) |
---|
1136 | else: |
---|
1137 | raise DataTimeError, 'Hmmmm' |
---|
1138 | |
---|
1139 | |
---|
1140 | |
---|
1141 | ##i = 0 |
---|
1142 | for i, line in enumerate(lines): |
---|
1143 | tokens = line.split() |
---|
1144 | values = map(float,tokens) |
---|
1145 | |
---|
1146 | for j in range(3): |
---|
1147 | z[i,j] = values[j] |
---|
1148 | |
---|
1149 | ##i += 1 |
---|
1150 | |
---|
1151 | #Write obj for variable data |
---|
1152 | write_obj(data_dir+os.sep+basefilename+'_time=%.4f' %t,x,y,z) |
---|
1153 | |
---|
1154 | |
---|
1155 | def filter_netcdf(filename1, filename2, first=0, last=None, step = 1): |
---|
1156 | """Read netcdf filename1, pick timesteps first:step:last and save to |
---|
1157 | nettcdf file filename2 |
---|
1158 | """ |
---|
1159 | from Scientific.IO.NetCDF import NetCDFFile |
---|
1160 | |
---|
1161 | #Get NetCDF |
---|
1162 | infile = NetCDFFile(filename1, 'r') #Open existing file for read |
---|
1163 | outfile = NetCDFFile(filename2, 'w') #Open new file |
---|
1164 | |
---|
1165 | |
---|
1166 | #Copy dimensions |
---|
1167 | for d in infile.dimensions: |
---|
1168 | outfile.createDimension(d, infile.dimensions[d]) |
---|
1169 | |
---|
1170 | for name in infile.variables: |
---|
1171 | var = infile.variables[name] |
---|
1172 | outfile.createVariable(name, var.typecode(), var.dimensions) |
---|
1173 | |
---|
1174 | |
---|
1175 | #Copy the static variables |
---|
1176 | for name in infile.variables: |
---|
1177 | if name == 'time' or name == 'stage': |
---|
1178 | pass |
---|
1179 | else: |
---|
1180 | #Copy |
---|
1181 | outfile.variables[name][:] = infile.variables[name][:] |
---|
1182 | |
---|
1183 | #Copy selected timesteps |
---|
1184 | time = infile.variables['time'] |
---|
1185 | stage = infile.variables['stage'] |
---|
1186 | |
---|
1187 | newtime = outfile.variables['time'] |
---|
1188 | newstage = outfile.variables['stage'] |
---|
1189 | |
---|
1190 | if last is None: |
---|
1191 | last = len(time) |
---|
1192 | |
---|
1193 | selection = range(first, last, step) |
---|
1194 | for i, j in enumerate(selection): |
---|
1195 | print 'Copying timestep %d of %d (%f)' %(j, last-first, time[j]) |
---|
1196 | newtime[i] = time[j] |
---|
1197 | newstage[i,:] = stage[j,:] |
---|
1198 | |
---|
1199 | #Close |
---|
1200 | infile.close() |
---|
1201 | outfile.close() |
---|
1202 | |
---|
1203 | |
---|
1204 | #Get data objects |
---|
1205 | def get_dataobject(domain, mode='w'): |
---|
1206 | """Return instance of class of given format using filename |
---|
1207 | """ |
---|
1208 | |
---|
1209 | cls = eval('Data_format_%s' %domain.format) |
---|
1210 | return cls(domain, mode) |
---|
1211 | |
---|
1212 | #FIXME move into geospatial. There should only be one method that |
---|
1213 | # reads xya, and writes pts. |
---|
1214 | def xya2pts(basename_in, basename_out=None, verbose=False, |
---|
1215 | #easting_min=None, easting_max=None, |
---|
1216 | #northing_min=None, northing_max=None, |
---|
1217 | stride = 1, |
---|
1218 | attribute_name = 'elevation', |
---|
1219 | z_func = None): |
---|
1220 | """Read points data from ascii (.xya) |
---|
1221 | |
---|
1222 | Example: |
---|
1223 | |
---|
1224 | x(m) y(m) z(m) |
---|
1225 | 0.00000e+00 0.00000e+00 1.3535000e-01 |
---|
1226 | 0.00000e+00 1.40000e-02 1.3535000e-01 |
---|
1227 | |
---|
1228 | |
---|
1229 | |
---|
1230 | Convert to NetCDF pts format which is |
---|
1231 | |
---|
1232 | points: (Nx2) Float array |
---|
1233 | elevation: N Float array |
---|
1234 | |
---|
1235 | Only lines that contain three numeric values are processed |
---|
1236 | |
---|
1237 | If z_func is specified, it will be applied to the third field |
---|
1238 | """ |
---|
1239 | |
---|
1240 | import os |
---|
1241 | #from Scientific.IO.NetCDF import NetCDFFile |
---|
1242 | from Numeric import Float, arrayrange, concatenate |
---|
1243 | |
---|
1244 | root, ext = os.path.splitext(basename_in) |
---|
1245 | |
---|
1246 | if ext == '': ext = '.xya' |
---|
1247 | |
---|
1248 | #Get NetCDF |
---|
1249 | infile = open(root + ext, 'r') #Open existing xya file for read |
---|
1250 | |
---|
1251 | if verbose: print 'Reading xya points from %s' %(root + ext) |
---|
1252 | |
---|
1253 | points = [] |
---|
1254 | attribute = [] |
---|
1255 | for i, line in enumerate(infile.readlines()): |
---|
1256 | |
---|
1257 | if i % stride != 0: continue |
---|
1258 | |
---|
1259 | fields = line.split() |
---|
1260 | |
---|
1261 | try: |
---|
1262 | assert len(fields) == 3 |
---|
1263 | except: |
---|
1264 | print 'WARNING: Line %d doesn\'t have 3 elements: %s' %(i, line) |
---|
1265 | |
---|
1266 | try: |
---|
1267 | x = float( fields[0] ) |
---|
1268 | y = float( fields[1] ) |
---|
1269 | z = float( fields[2] ) |
---|
1270 | except: |
---|
1271 | continue |
---|
1272 | |
---|
1273 | points.append( [x, y] ) |
---|
1274 | |
---|
1275 | if callable(z_func): |
---|
1276 | attribute.append(z_func(z)) |
---|
1277 | else: |
---|
1278 | attribute.append(z) |
---|
1279 | |
---|
1280 | |
---|
1281 | #Get output file |
---|
1282 | if basename_out == None: |
---|
1283 | ptsname = root + '.pts' |
---|
1284 | else: |
---|
1285 | ptsname = basename_out + '.pts' |
---|
1286 | |
---|
1287 | if verbose: print 'Store to NetCDF file %s' %ptsname |
---|
1288 | write_ptsfile(ptsname, points, attribute, attribute_name) |
---|
1289 | |
---|
1290 | |
---|
1291 | |
---|
1292 | ######Obsoleted by export_points in load_mesh |
---|
1293 | def write_ptsfile(ptsname, points, attribute, attribute_name = None, |
---|
1294 | zone=None, xllcorner=None, yllcorner=None): |
---|
1295 | """Write points and associated attribute to pts (NetCDF) format |
---|
1296 | """ |
---|
1297 | |
---|
1298 | print 'WARNING: write_ptsfile is obsolete. Use export_points from load_mesh.loadASCII instead.' |
---|
1299 | |
---|
1300 | from Numeric import Float |
---|
1301 | |
---|
1302 | if attribute_name is None: |
---|
1303 | attribute_name = 'attribute' |
---|
1304 | |
---|
1305 | |
---|
1306 | from Scientific.IO.NetCDF import NetCDFFile |
---|
1307 | |
---|
1308 | # NetCDF file definition |
---|
1309 | outfile = NetCDFFile(ptsname, 'w') |
---|
1310 | |
---|
1311 | |
---|
1312 | #Create new file |
---|
1313 | outfile.institution = 'Geoscience Australia' |
---|
1314 | outfile.description = 'NetCDF pts format for compact and '\ |
---|
1315 | 'portable storage of spatial point data' |
---|
1316 | |
---|
1317 | |
---|
1318 | #Georeferencing |
---|
1319 | from anuga.coordinate_transforms.geo_reference import Geo_reference |
---|
1320 | if zone is None: |
---|
1321 | assert xllcorner is None, 'xllcorner must be None' |
---|
1322 | assert yllcorner is None, 'yllcorner must be None' |
---|
1323 | Geo_reference().write_NetCDF(outfile) |
---|
1324 | else: |
---|
1325 | Geo_reference(zone, xllcorner, yllcorner).write_NetCDF(outfile) |
---|
1326 | |
---|
1327 | |
---|
1328 | |
---|
1329 | outfile.createDimension('number_of_points', len(points)) |
---|
1330 | outfile.createDimension('number_of_dimensions', 2) #This is 2d data |
---|
1331 | |
---|
1332 | # variable definitions |
---|
1333 | outfile.createVariable('points', Float, ('number_of_points', |
---|
1334 | 'number_of_dimensions')) |
---|
1335 | outfile.createVariable(attribute_name, Float, ('number_of_points',)) |
---|
1336 | |
---|
1337 | # Get handles to the variables |
---|
1338 | nc_points = outfile.variables['points'] |
---|
1339 | nc_attribute = outfile.variables[attribute_name] |
---|
1340 | |
---|
1341 | #Store data |
---|
1342 | nc_points[:, :] = points |
---|
1343 | nc_attribute[:] = attribute |
---|
1344 | |
---|
1345 | outfile.close() |
---|
1346 | |
---|
1347 | |
---|
1348 | def dem2pts(basename_in, basename_out=None, |
---|
1349 | easting_min=None, easting_max=None, |
---|
1350 | northing_min=None, northing_max=None, |
---|
1351 | use_cache=False, verbose=False,): |
---|
1352 | """Read Digitial Elevation model from the following NetCDF format (.dem) |
---|
1353 | |
---|
1354 | Example: |
---|
1355 | |
---|
1356 | ncols 3121 |
---|
1357 | nrows 1800 |
---|
1358 | xllcorner 722000 |
---|
1359 | yllcorner 5893000 |
---|
1360 | cellsize 25 |
---|
1361 | NODATA_value -9999 |
---|
1362 | 138.3698 137.4194 136.5062 135.5558 .......... |
---|
1363 | |
---|
1364 | Convert to NetCDF pts format which is |
---|
1365 | |
---|
1366 | points: (Nx2) Float array |
---|
1367 | elevation: N Float array |
---|
1368 | """ |
---|
1369 | |
---|
1370 | |
---|
1371 | |
---|
1372 | kwargs = {'basename_out': basename_out, |
---|
1373 | 'easting_min': easting_min, |
---|
1374 | 'easting_max': easting_max, |
---|
1375 | 'northing_min': northing_min, |
---|
1376 | 'northing_max': northing_max, |
---|
1377 | 'verbose': verbose} |
---|
1378 | |
---|
1379 | if use_cache is True: |
---|
1380 | from caching import cache |
---|
1381 | result = cache(_dem2pts, basename_in, kwargs, |
---|
1382 | dependencies = [basename_in + '.dem'], |
---|
1383 | verbose = verbose) |
---|
1384 | |
---|
1385 | else: |
---|
1386 | result = apply(_dem2pts, [basename_in], kwargs) |
---|
1387 | |
---|
1388 | return result |
---|
1389 | |
---|
1390 | |
---|
1391 | def _dem2pts(basename_in, basename_out=None, verbose=False, |
---|
1392 | easting_min=None, easting_max=None, |
---|
1393 | northing_min=None, northing_max=None): |
---|
1394 | """Read Digitial Elevation model from the following NetCDF format (.dem) |
---|
1395 | |
---|
1396 | Internal function. See public function dem2pts for details. |
---|
1397 | """ |
---|
1398 | |
---|
1399 | #FIXME: Can this be written feasibly using write_pts? |
---|
1400 | |
---|
1401 | import os |
---|
1402 | from Scientific.IO.NetCDF import NetCDFFile |
---|
1403 | from Numeric import Float, zeros, reshape, sum |
---|
1404 | |
---|
1405 | root = basename_in |
---|
1406 | |
---|
1407 | #Get NetCDF |
---|
1408 | infile = NetCDFFile(root + '.dem', 'r') #Open existing netcdf file for read |
---|
1409 | |
---|
1410 | if verbose: print 'Reading DEM from %s' %(root + '.dem') |
---|
1411 | |
---|
1412 | ncols = infile.ncols[0] |
---|
1413 | nrows = infile.nrows[0] |
---|
1414 | xllcorner = infile.xllcorner[0] #Easting of lower left corner |
---|
1415 | yllcorner = infile.yllcorner[0] #Northing of lower left corner |
---|
1416 | cellsize = infile.cellsize[0] |
---|
1417 | NODATA_value = infile.NODATA_value[0] |
---|
1418 | dem_elevation = infile.variables['elevation'] |
---|
1419 | |
---|
1420 | zone = infile.zone[0] |
---|
1421 | false_easting = infile.false_easting[0] |
---|
1422 | false_northing = infile.false_northing[0] |
---|
1423 | |
---|
1424 | #Text strings |
---|
1425 | projection = infile.projection |
---|
1426 | datum = infile.datum |
---|
1427 | units = infile.units |
---|
1428 | |
---|
1429 | |
---|
1430 | #Get output file |
---|
1431 | if basename_out == None: |
---|
1432 | ptsname = root + '.pts' |
---|
1433 | else: |
---|
1434 | ptsname = basename_out + '.pts' |
---|
1435 | |
---|
1436 | if verbose: print 'Store to NetCDF file %s' %ptsname |
---|
1437 | # NetCDF file definition |
---|
1438 | outfile = NetCDFFile(ptsname, 'w') |
---|
1439 | |
---|
1440 | #Create new file |
---|
1441 | outfile.institution = 'Geoscience Australia' |
---|
1442 | outfile.description = 'NetCDF pts format for compact and portable storage ' +\ |
---|
1443 | 'of spatial point data' |
---|
1444 | #assign default values |
---|
1445 | if easting_min is None: easting_min = xllcorner |
---|
1446 | if easting_max is None: easting_max = xllcorner + ncols*cellsize |
---|
1447 | if northing_min is None: northing_min = yllcorner |
---|
1448 | if northing_max is None: northing_max = yllcorner + nrows*cellsize |
---|
1449 | |
---|
1450 | #compute offsets to update georeferencing |
---|
1451 | easting_offset = xllcorner - easting_min |
---|
1452 | northing_offset = yllcorner - northing_min |
---|
1453 | |
---|
1454 | #Georeferencing |
---|
1455 | outfile.zone = zone |
---|
1456 | outfile.xllcorner = easting_min #Easting of lower left corner |
---|
1457 | outfile.yllcorner = northing_min #Northing of lower left corner |
---|
1458 | outfile.false_easting = false_easting |
---|
1459 | outfile.false_northing = false_northing |
---|
1460 | |
---|
1461 | outfile.projection = projection |
---|
1462 | outfile.datum = datum |
---|
1463 | outfile.units = units |
---|
1464 | |
---|
1465 | |
---|
1466 | #Grid info (FIXME: probably not going to be used, but heck) |
---|
1467 | outfile.ncols = ncols |
---|
1468 | outfile.nrows = nrows |
---|
1469 | |
---|
1470 | dem_elevation_r = reshape(dem_elevation, (nrows, ncols)) |
---|
1471 | totalnopoints = nrows*ncols |
---|
1472 | |
---|
1473 | # calculating number of NODATA_values for each row in clipped region |
---|
1474 | #FIXME: use array operations to do faster |
---|
1475 | nn = 0 |
---|
1476 | k = 0 |
---|
1477 | i1_0 = 0 |
---|
1478 | j1_0 = 0 |
---|
1479 | thisj = 0 |
---|
1480 | thisi = 0 |
---|
1481 | for i in range(nrows): |
---|
1482 | y = (nrows-i-1)*cellsize + yllcorner |
---|
1483 | for j in range(ncols): |
---|
1484 | x = j*cellsize + xllcorner |
---|
1485 | if easting_min <= x <= easting_max and \ |
---|
1486 | northing_min <= y <= northing_max: |
---|
1487 | thisj = j |
---|
1488 | thisi = i |
---|
1489 | if dem_elevation_r[i,j] == NODATA_value: nn += 1 |
---|
1490 | |
---|
1491 | if k == 0: |
---|
1492 | i1_0 = i |
---|
1493 | j1_0 = j |
---|
1494 | k += 1 |
---|
1495 | |
---|
1496 | index1 = j1_0 |
---|
1497 | index2 = thisj |
---|
1498 | |
---|
1499 | # dimension definitions |
---|
1500 | nrows_in_bounding_box = int(round((northing_max-northing_min)/cellsize)) |
---|
1501 | ncols_in_bounding_box = int(round((easting_max-easting_min)/cellsize)) |
---|
1502 | |
---|
1503 | clippednopoints = (thisi+1-i1_0)*(thisj+1-j1_0) |
---|
1504 | nopoints = clippednopoints-nn |
---|
1505 | |
---|
1506 | clipped_dem_elev = dem_elevation_r[i1_0:thisi+1,j1_0:thisj+1] |
---|
1507 | |
---|
1508 | if verbose: |
---|
1509 | print 'There are %d values in the elevation' %totalnopoints |
---|
1510 | print 'There are %d values in the clipped elevation' %clippednopoints |
---|
1511 | print 'There are %d NODATA_values in the clipped elevation' %nn |
---|
1512 | |
---|
1513 | outfile.createDimension('number_of_points', nopoints) |
---|
1514 | outfile.createDimension('number_of_dimensions', 2) #This is 2d data |
---|
1515 | |
---|
1516 | # variable definitions |
---|
1517 | outfile.createVariable('points', Float, ('number_of_points', |
---|
1518 | 'number_of_dimensions')) |
---|
1519 | outfile.createVariable('elevation', Float, ('number_of_points',)) |
---|
1520 | |
---|
1521 | # Get handles to the variables |
---|
1522 | points = outfile.variables['points'] |
---|
1523 | elevation = outfile.variables['elevation'] |
---|
1524 | |
---|
1525 | lenv = index2-index1+1 |
---|
1526 | #Store data |
---|
1527 | global_index = 0 |
---|
1528 | #for i in range(nrows): |
---|
1529 | for i in range(i1_0,thisi+1,1): |
---|
1530 | if verbose and i%((nrows+10)/10)==0: |
---|
1531 | print 'Processing row %d of %d' %(i, nrows) |
---|
1532 | |
---|
1533 | lower_index = global_index |
---|
1534 | |
---|
1535 | v = dem_elevation_r[i,index1:index2+1] |
---|
1536 | no_NODATA = sum(v == NODATA_value) |
---|
1537 | if no_NODATA > 0: |
---|
1538 | newcols = lenv - no_NODATA #ncols_in_bounding_box - no_NODATA |
---|
1539 | else: |
---|
1540 | newcols = lenv #ncols_in_bounding_box |
---|
1541 | |
---|
1542 | telev = zeros(newcols, Float) |
---|
1543 | tpoints = zeros((newcols, 2), Float) |
---|
1544 | |
---|
1545 | local_index = 0 |
---|
1546 | |
---|
1547 | y = (nrows-i-1)*cellsize + yllcorner |
---|
1548 | #for j in range(ncols): |
---|
1549 | for j in range(j1_0,index2+1,1): |
---|
1550 | |
---|
1551 | x = j*cellsize + xllcorner |
---|
1552 | if easting_min <= x <= easting_max and \ |
---|
1553 | northing_min <= y <= northing_max and \ |
---|
1554 | dem_elevation_r[i,j] <> NODATA_value: |
---|
1555 | tpoints[local_index, :] = [x-easting_min,y-northing_min] |
---|
1556 | telev[local_index] = dem_elevation_r[i, j] |
---|
1557 | global_index += 1 |
---|
1558 | local_index += 1 |
---|
1559 | |
---|
1560 | upper_index = global_index |
---|
1561 | |
---|
1562 | if upper_index == lower_index + newcols: |
---|
1563 | points[lower_index:upper_index, :] = tpoints |
---|
1564 | elevation[lower_index:upper_index] = telev |
---|
1565 | |
---|
1566 | assert global_index == nopoints, 'index not equal to number of points' |
---|
1567 | |
---|
1568 | infile.close() |
---|
1569 | outfile.close() |
---|
1570 | |
---|
1571 | |
---|
1572 | |
---|
1573 | def _read_hecras_cross_sections(lines): |
---|
1574 | """Return block of surface lines for each cross section |
---|
1575 | Starts with SURFACE LINE, |
---|
1576 | Ends with END CROSS-SECTION |
---|
1577 | """ |
---|
1578 | |
---|
1579 | points = [] |
---|
1580 | |
---|
1581 | reading_surface = False |
---|
1582 | for i, line in enumerate(lines): |
---|
1583 | |
---|
1584 | if len(line.strip()) == 0: #Ignore blanks |
---|
1585 | continue |
---|
1586 | |
---|
1587 | if lines[i].strip().startswith('SURFACE LINE'): |
---|
1588 | reading_surface = True |
---|
1589 | continue |
---|
1590 | |
---|
1591 | if lines[i].strip().startswith('END') and reading_surface: |
---|
1592 | yield points |
---|
1593 | reading_surface = False |
---|
1594 | points = [] |
---|
1595 | |
---|
1596 | if reading_surface: |
---|
1597 | fields = line.strip().split(',') |
---|
1598 | easting = float(fields[0]) |
---|
1599 | northing = float(fields[1]) |
---|
1600 | elevation = float(fields[2]) |
---|
1601 | points.append([easting, northing, elevation]) |
---|
1602 | |
---|
1603 | |
---|
1604 | |
---|
1605 | |
---|
1606 | def hecras_cross_sections2pts(basename_in, |
---|
1607 | basename_out=None, |
---|
1608 | verbose=False): |
---|
1609 | """Read HEC-RAS Elevation datal from the following ASCII format (.sdf) |
---|
1610 | |
---|
1611 | Example: |
---|
1612 | |
---|
1613 | |
---|
1614 | # RAS export file created on Mon 15Aug2005 11:42 |
---|
1615 | # by HEC-RAS Version 3.1.1 |
---|
1616 | |
---|
1617 | BEGIN HEADER: |
---|
1618 | UNITS: METRIC |
---|
1619 | DTM TYPE: TIN |
---|
1620 | DTM: v:\1\cit\perth_topo\river_tin |
---|
1621 | STREAM LAYER: c:\local\hecras\21_02_03\up_canning_cent3d.shp |
---|
1622 | CROSS-SECTION LAYER: c:\local\hecras\21_02_03\up_can_xs3d.shp |
---|
1623 | MAP PROJECTION: UTM |
---|
1624 | PROJECTION ZONE: 50 |
---|
1625 | DATUM: AGD66 |
---|
1626 | VERTICAL DATUM: |
---|
1627 | NUMBER OF REACHES: 19 |
---|
1628 | NUMBER OF CROSS-SECTIONS: 14206 |
---|
1629 | END HEADER: |
---|
1630 | |
---|
1631 | |
---|
1632 | Only the SURFACE LINE data of the following form will be utilised |
---|
1633 | |
---|
1634 | CROSS-SECTION: |
---|
1635 | STREAM ID:Southern-Wungong |
---|
1636 | REACH ID:Southern-Wungong |
---|
1637 | STATION:19040.* |
---|
1638 | CUT LINE: |
---|
1639 | 405548.671603161 , 6438142.7594925 |
---|
1640 | 405734.536092045 , 6438326.10404912 |
---|
1641 | 405745.130459356 , 6438331.48627354 |
---|
1642 | 405813.89633823 , 6438368.6272789 |
---|
1643 | SURFACE LINE: |
---|
1644 | 405548.67, 6438142.76, 35.37 |
---|
1645 | 405552.24, 6438146.28, 35.41 |
---|
1646 | 405554.78, 6438148.78, 35.44 |
---|
1647 | 405555.80, 6438149.79, 35.44 |
---|
1648 | 405559.37, 6438153.31, 35.45 |
---|
1649 | 405560.88, 6438154.81, 35.44 |
---|
1650 | 405562.93, 6438156.83, 35.42 |
---|
1651 | 405566.50, 6438160.35, 35.38 |
---|
1652 | 405566.99, 6438160.83, 35.37 |
---|
1653 | ... |
---|
1654 | END CROSS-SECTION |
---|
1655 | |
---|
1656 | Convert to NetCDF pts format which is |
---|
1657 | |
---|
1658 | points: (Nx2) Float array |
---|
1659 | elevation: N Float array |
---|
1660 | """ |
---|
1661 | |
---|
1662 | #FIXME: Can this be written feasibly using write_pts? |
---|
1663 | |
---|
1664 | import os |
---|
1665 | from Scientific.IO.NetCDF import NetCDFFile |
---|
1666 | from Numeric import Float, zeros, reshape |
---|
1667 | |
---|
1668 | root = basename_in |
---|
1669 | |
---|
1670 | #Get ASCII file |
---|
1671 | infile = open(root + '.sdf', 'r') #Open SDF file for read |
---|
1672 | |
---|
1673 | if verbose: print 'Reading DEM from %s' %(root + '.sdf') |
---|
1674 | |
---|
1675 | lines = infile.readlines() |
---|
1676 | infile.close() |
---|
1677 | |
---|
1678 | if verbose: print 'Converting to pts format' |
---|
1679 | |
---|
1680 | i = 0 |
---|
1681 | while lines[i].strip() == '' or lines[i].strip().startswith('#'): |
---|
1682 | i += 1 |
---|
1683 | |
---|
1684 | assert lines[i].strip().upper() == 'BEGIN HEADER:' |
---|
1685 | i += 1 |
---|
1686 | |
---|
1687 | assert lines[i].strip().upper().startswith('UNITS:') |
---|
1688 | units = lines[i].strip().split()[1] |
---|
1689 | i += 1 |
---|
1690 | |
---|
1691 | assert lines[i].strip().upper().startswith('DTM TYPE:') |
---|
1692 | i += 1 |
---|
1693 | |
---|
1694 | assert lines[i].strip().upper().startswith('DTM:') |
---|
1695 | i += 1 |
---|
1696 | |
---|
1697 | assert lines[i].strip().upper().startswith('STREAM') |
---|
1698 | i += 1 |
---|
1699 | |
---|
1700 | assert lines[i].strip().upper().startswith('CROSS') |
---|
1701 | i += 1 |
---|
1702 | |
---|
1703 | assert lines[i].strip().upper().startswith('MAP PROJECTION:') |
---|
1704 | projection = lines[i].strip().split(':')[1] |
---|
1705 | i += 1 |
---|
1706 | |
---|
1707 | assert lines[i].strip().upper().startswith('PROJECTION ZONE:') |
---|
1708 | zone = int(lines[i].strip().split(':')[1]) |
---|
1709 | i += 1 |
---|
1710 | |
---|
1711 | assert lines[i].strip().upper().startswith('DATUM:') |
---|
1712 | datum = lines[i].strip().split(':')[1] |
---|
1713 | i += 1 |
---|
1714 | |
---|
1715 | assert lines[i].strip().upper().startswith('VERTICAL DATUM:') |
---|
1716 | i += 1 |
---|
1717 | |
---|
1718 | assert lines[i].strip().upper().startswith('NUMBER OF REACHES:') |
---|
1719 | i += 1 |
---|
1720 | |
---|
1721 | assert lines[i].strip().upper().startswith('NUMBER OF CROSS-SECTIONS:') |
---|
1722 | number_of_cross_sections = int(lines[i].strip().split(':')[1]) |
---|
1723 | i += 1 |
---|
1724 | |
---|
1725 | |
---|
1726 | #Now read all points |
---|
1727 | points = [] |
---|
1728 | elevation = [] |
---|
1729 | for j, entries in enumerate(_read_hecras_cross_sections(lines[i:])): |
---|
1730 | for k, entry in enumerate(entries): |
---|
1731 | points.append(entry[:2]) |
---|
1732 | elevation.append(entry[2]) |
---|
1733 | |
---|
1734 | |
---|
1735 | msg = 'Actual #number_of_cross_sections == %d, Reported as %d'\ |
---|
1736 | %(j+1, number_of_cross_sections) |
---|
1737 | assert j+1 == number_of_cross_sections, msg |
---|
1738 | |
---|
1739 | #Get output file |
---|
1740 | if basename_out == None: |
---|
1741 | ptsname = root + '.pts' |
---|
1742 | else: |
---|
1743 | ptsname = basename_out + '.pts' |
---|
1744 | |
---|
1745 | #FIXME (DSG-ON): use loadASCII export_points_file |
---|
1746 | if verbose: print 'Store to NetCDF file %s' %ptsname |
---|
1747 | # NetCDF file definition |
---|
1748 | outfile = NetCDFFile(ptsname, 'w') |
---|
1749 | |
---|
1750 | #Create new file |
---|
1751 | outfile.institution = 'Geoscience Australia' |
---|
1752 | outfile.description = 'NetCDF pts format for compact and portable ' +\ |
---|
1753 | 'storage of spatial point data derived from HEC-RAS' |
---|
1754 | |
---|
1755 | #Georeferencing |
---|
1756 | outfile.zone = zone |
---|
1757 | outfile.xllcorner = 0.0 |
---|
1758 | outfile.yllcorner = 0.0 |
---|
1759 | outfile.false_easting = 500000 #FIXME: Use defaults from e.g. config.py |
---|
1760 | outfile.false_northing = 1000000 |
---|
1761 | |
---|
1762 | outfile.projection = projection |
---|
1763 | outfile.datum = datum |
---|
1764 | outfile.units = units |
---|
1765 | |
---|
1766 | |
---|
1767 | outfile.createDimension('number_of_points', len(points)) |
---|
1768 | outfile.createDimension('number_of_dimensions', 2) #This is 2d data |
---|
1769 | |
---|
1770 | # variable definitions |
---|
1771 | outfile.createVariable('points', Float, ('number_of_points', |
---|
1772 | 'number_of_dimensions')) |
---|
1773 | outfile.createVariable('elevation', Float, ('number_of_points',)) |
---|
1774 | |
---|
1775 | # Get handles to the variables |
---|
1776 | outfile.variables['points'][:] = points |
---|
1777 | outfile.variables['elevation'][:] = elevation |
---|
1778 | |
---|
1779 | outfile.close() |
---|
1780 | |
---|
1781 | |
---|
1782 | |
---|
1783 | def sww2dem(basename_in, basename_out = None, |
---|
1784 | quantity = None, |
---|
1785 | timestep = None, |
---|
1786 | reduction = None, |
---|
1787 | cellsize = 10, |
---|
1788 | NODATA_value = -9999, |
---|
1789 | easting_min = None, |
---|
1790 | easting_max = None, |
---|
1791 | northing_min = None, |
---|
1792 | northing_max = None, |
---|
1793 | verbose = False, |
---|
1794 | origin = None, |
---|
1795 | datum = 'WGS84', |
---|
1796 | format = 'ers'): |
---|
1797 | |
---|
1798 | """Read SWW file and convert to Digitial Elevation model format (.asc or .ers) |
---|
1799 | |
---|
1800 | Example (ASC): |
---|
1801 | |
---|
1802 | ncols 3121 |
---|
1803 | nrows 1800 |
---|
1804 | xllcorner 722000 |
---|
1805 | yllcorner 5893000 |
---|
1806 | cellsize 25 |
---|
1807 | NODATA_value -9999 |
---|
1808 | 138.3698 137.4194 136.5062 135.5558 .......... |
---|
1809 | |
---|
1810 | Also write accompanying file with same basename_in but extension .prj |
---|
1811 | used to fix the UTM zone, datum, false northings and eastings. |
---|
1812 | |
---|
1813 | The prj format is assumed to be as |
---|
1814 | |
---|
1815 | Projection UTM |
---|
1816 | Zone 56 |
---|
1817 | Datum WGS84 |
---|
1818 | Zunits NO |
---|
1819 | Units METERS |
---|
1820 | Spheroid WGS84 |
---|
1821 | Xshift 0.0000000000 |
---|
1822 | Yshift 10000000.0000000000 |
---|
1823 | Parameters |
---|
1824 | |
---|
1825 | |
---|
1826 | The parameter quantity must be the name of an existing quantity or |
---|
1827 | an expression involving existing quantities. The default is |
---|
1828 | 'elevation'. |
---|
1829 | |
---|
1830 | if timestep (an index) is given, output quantity at that timestep |
---|
1831 | |
---|
1832 | if reduction is given use that to reduce quantity over all timesteps. |
---|
1833 | |
---|
1834 | datum |
---|
1835 | |
---|
1836 | format can be either 'asc' or 'ers' |
---|
1837 | """ |
---|
1838 | |
---|
1839 | import sys |
---|
1840 | from Numeric import array, Float, concatenate, NewAxis, zeros, reshape, sometrue |
---|
1841 | from Numeric import array2string |
---|
1842 | |
---|
1843 | from anuga.utilities.polygon import inside_polygon, outside_polygon, separate_points_by_polygon |
---|
1844 | from anuga.abstract_2d_finite_volumes.util import apply_expression_to_dictionary |
---|
1845 | |
---|
1846 | msg = 'Format must be either asc or ers' |
---|
1847 | assert format.lower() in ['asc', 'ers'], msg |
---|
1848 | |
---|
1849 | |
---|
1850 | false_easting = 500000 |
---|
1851 | false_northing = 10000000 |
---|
1852 | |
---|
1853 | if quantity is None: |
---|
1854 | quantity = 'elevation' |
---|
1855 | |
---|
1856 | if reduction is None: |
---|
1857 | reduction = max |
---|
1858 | |
---|
1859 | if basename_out is None: |
---|
1860 | basename_out = basename_in + '_%s' %quantity |
---|
1861 | |
---|
1862 | swwfile = basename_in + '.sww' |
---|
1863 | demfile = basename_out + '.' + format |
---|
1864 | # Note the use of a .ers extension is optional (write_ermapper_grid will |
---|
1865 | # deal with either option |
---|
1866 | |
---|
1867 | #Read sww file |
---|
1868 | if verbose: print 'Reading from %s' %swwfile |
---|
1869 | from Scientific.IO.NetCDF import NetCDFFile |
---|
1870 | fid = NetCDFFile(swwfile) |
---|
1871 | |
---|
1872 | #Get extent and reference |
---|
1873 | x = fid.variables['x'][:] |
---|
1874 | y = fid.variables['y'][:] |
---|
1875 | volumes = fid.variables['volumes'][:] |
---|
1876 | if timestep is not None: |
---|
1877 | times = fid.variables['time'][timestep] |
---|
1878 | else: |
---|
1879 | times = fid.variables['time'][:] |
---|
1880 | |
---|
1881 | number_of_timesteps = fid.dimensions['number_of_timesteps'] |
---|
1882 | number_of_points = fid.dimensions['number_of_points'] |
---|
1883 | |
---|
1884 | if origin is None: |
---|
1885 | |
---|
1886 | #Get geo_reference |
---|
1887 | #sww files don't have to have a geo_ref |
---|
1888 | try: |
---|
1889 | geo_reference = Geo_reference(NetCDFObject=fid) |
---|
1890 | except AttributeError, e: |
---|
1891 | geo_reference = Geo_reference() #Default georef object |
---|
1892 | |
---|
1893 | xllcorner = geo_reference.get_xllcorner() |
---|
1894 | yllcorner = geo_reference.get_yllcorner() |
---|
1895 | zone = geo_reference.get_zone() |
---|
1896 | else: |
---|
1897 | zone = origin[0] |
---|
1898 | xllcorner = origin[1] |
---|
1899 | yllcorner = origin[2] |
---|
1900 | |
---|
1901 | |
---|
1902 | |
---|
1903 | #FIXME: Refactor using code from file_function.statistics |
---|
1904 | #Something like print swwstats(swwname) |
---|
1905 | if verbose: |
---|
1906 | print '------------------------------------------------' |
---|
1907 | print 'Statistics of SWW file:' |
---|
1908 | print ' Name: %s' %swwfile |
---|
1909 | print ' Reference:' |
---|
1910 | print ' Lower left corner: [%f, %f]'\ |
---|
1911 | %(xllcorner, yllcorner) |
---|
1912 | if timestep is not None: |
---|
1913 | print ' Time: %f' %(times) |
---|
1914 | else: |
---|
1915 | print ' Start time: %f' %fid.starttime[0] |
---|
1916 | print ' Extent:' |
---|
1917 | print ' x [m] in [%f, %f], len(x) == %d'\ |
---|
1918 | %(min(x.flat), max(x.flat), len(x.flat)) |
---|
1919 | print ' y [m] in [%f, %f], len(y) == %d'\ |
---|
1920 | %(min(y.flat), max(y.flat), len(y.flat)) |
---|
1921 | if timestep is not None: |
---|
1922 | print ' t [s] = %f, len(t) == %d' %(times, 1) |
---|
1923 | else: |
---|
1924 | print ' t [s] in [%f, %f], len(t) == %d'\ |
---|
1925 | %(min(times), max(times), len(times)) |
---|
1926 | print ' Quantities [SI units]:' |
---|
1927 | for name in ['stage', 'xmomentum', 'ymomentum']: |
---|
1928 | q = fid.variables[name][:].flat |
---|
1929 | if timestep is not None: |
---|
1930 | q = q[timestep*len(x):(timestep+1)*len(x)] |
---|
1931 | if verbose: print ' %s in [%f, %f]' %(name, min(q), max(q)) |
---|
1932 | for name in ['elevation']: |
---|
1933 | q = fid.variables[name][:].flat |
---|
1934 | if verbose: print ' %s in [%f, %f]' %(name, min(q), max(q)) |
---|
1935 | |
---|
1936 | # Get quantity and reduce if applicable |
---|
1937 | if verbose: print 'Processing quantity %s' %quantity |
---|
1938 | |
---|
1939 | # Turn NetCDF objects into Numeric arrays |
---|
1940 | quantity_dict = {} |
---|
1941 | for name in fid.variables.keys(): |
---|
1942 | quantity_dict[name] = fid.variables[name][:] |
---|
1943 | |
---|
1944 | |
---|
1945 | # Convert quantity expression to quantities found in sww file |
---|
1946 | q = apply_expression_to_dictionary(quantity, quantity_dict) |
---|
1947 | |
---|
1948 | if len(q.shape) == 2: |
---|
1949 | #q has a time component and needs to be reduced along |
---|
1950 | #the temporal dimension |
---|
1951 | if verbose: print 'Reducing quantity %s' %quantity |
---|
1952 | q_reduced = zeros( number_of_points, Float ) |
---|
1953 | |
---|
1954 | if timestep is not None: |
---|
1955 | for k in range(number_of_points): |
---|
1956 | q_reduced[k] = q[timestep,k] |
---|
1957 | else: |
---|
1958 | for k in range(number_of_points): |
---|
1959 | q_reduced[k] = reduction( q[:,k] ) |
---|
1960 | |
---|
1961 | q = q_reduced |
---|
1962 | |
---|
1963 | #Post condition: Now q has dimension: number_of_points |
---|
1964 | assert len(q.shape) == 1 |
---|
1965 | assert q.shape[0] == number_of_points |
---|
1966 | |
---|
1967 | |
---|
1968 | if verbose: |
---|
1969 | print 'Processed values for %s are in [%f, %f]' %(quantity, min(q), max(q)) |
---|
1970 | |
---|
1971 | |
---|
1972 | #Create grid and update xll/yll corner and x,y |
---|
1973 | |
---|
1974 | #Relative extent |
---|
1975 | if easting_min is None: |
---|
1976 | xmin = min(x) |
---|
1977 | else: |
---|
1978 | xmin = easting_min - xllcorner |
---|
1979 | |
---|
1980 | if easting_max is None: |
---|
1981 | xmax = max(x) |
---|
1982 | else: |
---|
1983 | xmax = easting_max - xllcorner |
---|
1984 | |
---|
1985 | if northing_min is None: |
---|
1986 | ymin = min(y) |
---|
1987 | else: |
---|
1988 | ymin = northing_min - yllcorner |
---|
1989 | |
---|
1990 | if northing_max is None: |
---|
1991 | ymax = max(y) |
---|
1992 | else: |
---|
1993 | ymax = northing_max - yllcorner |
---|
1994 | |
---|
1995 | |
---|
1996 | |
---|
1997 | if verbose: print 'Creating grid' |
---|
1998 | ncols = int((xmax-xmin)/cellsize)+1 |
---|
1999 | nrows = int((ymax-ymin)/cellsize)+1 |
---|
2000 | |
---|
2001 | |
---|
2002 | #New absolute reference and coordinates |
---|
2003 | newxllcorner = xmin+xllcorner |
---|
2004 | newyllcorner = ymin+yllcorner |
---|
2005 | |
---|
2006 | x = x+xllcorner-newxllcorner |
---|
2007 | y = y+yllcorner-newyllcorner |
---|
2008 | |
---|
2009 | vertex_points = concatenate ((x[:, NewAxis] ,y[:, NewAxis]), axis = 1) |
---|
2010 | assert len(vertex_points.shape) == 2 |
---|
2011 | |
---|
2012 | grid_points = zeros ( (ncols*nrows, 2), Float ) |
---|
2013 | |
---|
2014 | |
---|
2015 | for i in xrange(nrows): |
---|
2016 | if format.lower() == 'asc': |
---|
2017 | yg = i*cellsize |
---|
2018 | else: |
---|
2019 | #this will flip the order of the y values for ers |
---|
2020 | yg = (nrows-i)*cellsize |
---|
2021 | |
---|
2022 | for j in xrange(ncols): |
---|
2023 | xg = j*cellsize |
---|
2024 | k = i*ncols + j |
---|
2025 | |
---|
2026 | grid_points[k,0] = xg |
---|
2027 | grid_points[k,1] = yg |
---|
2028 | |
---|
2029 | #Interpolate |
---|
2030 | #from least_squares import Interpolation |
---|
2031 | from anuga.fit_interpolate.interpolate import Interpolate |
---|
2032 | |
---|
2033 | interp = Interpolate(vertex_points, volumes, verbose = verbose) |
---|
2034 | |
---|
2035 | #Interpolate using quantity values |
---|
2036 | if verbose: print 'Interpolating' |
---|
2037 | grid_values = interp.interpolate(q, grid_points).flat |
---|
2038 | |
---|
2039 | |
---|
2040 | if verbose: |
---|
2041 | print 'Interpolated values are in [%f, %f]' %(min(grid_values), |
---|
2042 | max(grid_values)) |
---|
2043 | |
---|
2044 | #Assign NODATA_value to all points outside bounding polygon (from interpolation mesh) |
---|
2045 | P = interp.mesh.get_boundary_polygon() |
---|
2046 | outside_indices = outside_polygon(grid_points, P, closed=True) |
---|
2047 | |
---|
2048 | for i in outside_indices: |
---|
2049 | grid_values[i] = NODATA_value |
---|
2050 | |
---|
2051 | |
---|
2052 | |
---|
2053 | |
---|
2054 | if format.lower() == 'ers': |
---|
2055 | # setup ERS header information |
---|
2056 | grid_values = reshape(grid_values,(nrows, ncols)) |
---|
2057 | header = {} |
---|
2058 | header['datum'] = '"' + datum + '"' |
---|
2059 | # FIXME The use of hardwired UTM and zone number needs to be made optional |
---|
2060 | # FIXME Also need an automatic test for coordinate type (i.e. EN or LL) |
---|
2061 | header['projection'] = '"UTM-' + str(zone) + '"' |
---|
2062 | header['coordinatetype'] = 'EN' |
---|
2063 | if header['coordinatetype'] == 'LL': |
---|
2064 | header['longitude'] = str(newxllcorner) |
---|
2065 | header['latitude'] = str(newyllcorner) |
---|
2066 | elif header['coordinatetype'] == 'EN': |
---|
2067 | header['eastings'] = str(newxllcorner) |
---|
2068 | header['northings'] = str(newyllcorner) |
---|
2069 | header['nullcellvalue'] = str(NODATA_value) |
---|
2070 | header['xdimension'] = str(cellsize) |
---|
2071 | header['ydimension'] = str(cellsize) |
---|
2072 | header['value'] = '"' + quantity + '"' |
---|
2073 | #header['celltype'] = 'IEEE8ByteReal' #FIXME: Breaks unit test |
---|
2074 | |
---|
2075 | |
---|
2076 | #Write |
---|
2077 | if verbose: print 'Writing %s' %demfile |
---|
2078 | import ermapper_grids |
---|
2079 | ermapper_grids.write_ermapper_grid(demfile, grid_values, header) |
---|
2080 | |
---|
2081 | fid.close() |
---|
2082 | else: |
---|
2083 | #Write to Ascii format |
---|
2084 | |
---|
2085 | #Write prj file |
---|
2086 | prjfile = basename_out + '.prj' |
---|
2087 | |
---|
2088 | if verbose: print 'Writing %s' %prjfile |
---|
2089 | prjid = open(prjfile, 'w') |
---|
2090 | prjid.write('Projection %s\n' %'UTM') |
---|
2091 | prjid.write('Zone %d\n' %zone) |
---|
2092 | prjid.write('Datum %s\n' %datum) |
---|
2093 | prjid.write('Zunits NO\n') |
---|
2094 | prjid.write('Units METERS\n') |
---|
2095 | prjid.write('Spheroid %s\n' %datum) |
---|
2096 | prjid.write('Xshift %d\n' %false_easting) |
---|
2097 | prjid.write('Yshift %d\n' %false_northing) |
---|
2098 | prjid.write('Parameters\n') |
---|
2099 | prjid.close() |
---|
2100 | |
---|
2101 | |
---|
2102 | |
---|
2103 | if verbose: print 'Writing %s' %demfile |
---|
2104 | |
---|
2105 | ascid = open(demfile, 'w') |
---|
2106 | |
---|
2107 | ascid.write('ncols %d\n' %ncols) |
---|
2108 | ascid.write('nrows %d\n' %nrows) |
---|
2109 | ascid.write('xllcorner %d\n' %newxllcorner) |
---|
2110 | ascid.write('yllcorner %d\n' %newyllcorner) |
---|
2111 | ascid.write('cellsize %f\n' %cellsize) |
---|
2112 | ascid.write('NODATA_value %d\n' %NODATA_value) |
---|
2113 | |
---|
2114 | |
---|
2115 | #Get bounding polygon from mesh |
---|
2116 | #P = interp.mesh.get_boundary_polygon() |
---|
2117 | #inside_indices = inside_polygon(grid_points, P) |
---|
2118 | |
---|
2119 | for i in range(nrows): |
---|
2120 | if verbose and i%((nrows+10)/10)==0: |
---|
2121 | print 'Doing row %d of %d' %(i, nrows) |
---|
2122 | |
---|
2123 | base_index = (nrows-i-1)*ncols |
---|
2124 | |
---|
2125 | slice = grid_values[base_index:base_index+ncols] |
---|
2126 | s = array2string(slice, max_line_width=sys.maxint) |
---|
2127 | ascid.write(s[1:-1] + '\n') |
---|
2128 | |
---|
2129 | |
---|
2130 | #print |
---|
2131 | #for j in range(ncols): |
---|
2132 | # index = base_index+j# |
---|
2133 | # print grid_values[index], |
---|
2134 | # ascid.write('%f ' %grid_values[index]) |
---|
2135 | #ascid.write('\n') |
---|
2136 | |
---|
2137 | #Close |
---|
2138 | ascid.close() |
---|
2139 | fid.close() |
---|
2140 | |
---|
2141 | #Backwards compatibility |
---|
2142 | def sww2asc(basename_in, basename_out = None, |
---|
2143 | quantity = None, |
---|
2144 | timestep = None, |
---|
2145 | reduction = None, |
---|
2146 | cellsize = 10, |
---|
2147 | verbose = False, |
---|
2148 | origin = None): |
---|
2149 | print 'sww2asc will soon be obsoleted - please use sww2dem' |
---|
2150 | sww2dem(basename_in, |
---|
2151 | basename_out = basename_out, |
---|
2152 | quantity = quantity, |
---|
2153 | timestep = timestep, |
---|
2154 | reduction = reduction, |
---|
2155 | cellsize = cellsize, |
---|
2156 | verbose = verbose, |
---|
2157 | origin = origin, |
---|
2158 | datum = 'WGS84', |
---|
2159 | format = 'asc') |
---|
2160 | |
---|
2161 | def sww2ers(basename_in, basename_out = None, |
---|
2162 | quantity = None, |
---|
2163 | timestep = None, |
---|
2164 | reduction = None, |
---|
2165 | cellsize = 10, |
---|
2166 | verbose = False, |
---|
2167 | origin = None, |
---|
2168 | datum = 'WGS84'): |
---|
2169 | print 'sww2ers will soon be obsoleted - please use sww2dem' |
---|
2170 | sww2dem(basename_in, |
---|
2171 | basename_out = basename_out, |
---|
2172 | quantity = quantity, |
---|
2173 | timestep = timestep, |
---|
2174 | reduction = reduction, |
---|
2175 | cellsize = cellsize, |
---|
2176 | verbose = verbose, |
---|
2177 | origin = origin, |
---|
2178 | datum = datum, |
---|
2179 | format = 'ers') |
---|
2180 | ################################# END COMPATIBILITY ############## |
---|
2181 | |
---|
2182 | |
---|
2183 | |
---|
2184 | def sww2pts(basename_in, basename_out=None, |
---|
2185 | data_points=None, |
---|
2186 | quantity=None, |
---|
2187 | timestep=None, |
---|
2188 | reduction=None, |
---|
2189 | NODATA_value=-9999, |
---|
2190 | verbose=False, |
---|
2191 | origin=None): |
---|
2192 | #datum = 'WGS84') |
---|
2193 | |
---|
2194 | |
---|
2195 | """Read SWW file and convert to interpolated values at selected points |
---|
2196 | |
---|
2197 | The parameter quantity' must be the name of an existing quantity or |
---|
2198 | an expression involving existing quantities. The default is |
---|
2199 | 'elevation'. |
---|
2200 | |
---|
2201 | if timestep (an index) is given, output quantity at that timestep |
---|
2202 | |
---|
2203 | if reduction is given use that to reduce quantity over all timesteps. |
---|
2204 | |
---|
2205 | data_points (Nx2 array) give locations of points where quantity is to be computed. |
---|
2206 | |
---|
2207 | """ |
---|
2208 | |
---|
2209 | import sys |
---|
2210 | from Numeric import array, Float, concatenate, NewAxis, zeros, reshape, sometrue |
---|
2211 | from Numeric import array2string |
---|
2212 | |
---|
2213 | from anuga.utilities.polygon import inside_polygon, outside_polygon, separate_points_by_polygon |
---|
2214 | from anuga.abstract_2d_finite_volumes.util import apply_expression_to_dictionary |
---|
2215 | |
---|
2216 | from anuga.geospatial_data.geospatial_data import Geospatial_data |
---|
2217 | |
---|
2218 | if quantity is None: |
---|
2219 | quantity = 'elevation' |
---|
2220 | |
---|
2221 | if reduction is None: |
---|
2222 | reduction = max |
---|
2223 | |
---|
2224 | if basename_out is None: |
---|
2225 | basename_out = basename_in + '_%s' %quantity |
---|
2226 | |
---|
2227 | swwfile = basename_in + '.sww' |
---|
2228 | ptsfile = basename_out + '.pts' |
---|
2229 | |
---|
2230 | # Read sww file |
---|
2231 | if verbose: print 'Reading from %s' %swwfile |
---|
2232 | from Scientific.IO.NetCDF import NetCDFFile |
---|
2233 | fid = NetCDFFile(swwfile) |
---|
2234 | |
---|
2235 | # Get extent and reference |
---|
2236 | x = fid.variables['x'][:] |
---|
2237 | y = fid.variables['y'][:] |
---|
2238 | volumes = fid.variables['volumes'][:] |
---|
2239 | |
---|
2240 | number_of_timesteps = fid.dimensions['number_of_timesteps'] |
---|
2241 | number_of_points = fid.dimensions['number_of_points'] |
---|
2242 | if origin is None: |
---|
2243 | |
---|
2244 | # Get geo_reference |
---|
2245 | # sww files don't have to have a geo_ref |
---|
2246 | try: |
---|
2247 | geo_reference = Geo_reference(NetCDFObject=fid) |
---|
2248 | except AttributeError, e: |
---|
2249 | geo_reference = Geo_reference() #Default georef object |
---|
2250 | |
---|
2251 | xllcorner = geo_reference.get_xllcorner() |
---|
2252 | yllcorner = geo_reference.get_yllcorner() |
---|
2253 | zone = geo_reference.get_zone() |
---|
2254 | else: |
---|
2255 | zone = origin[0] |
---|
2256 | xllcorner = origin[1] |
---|
2257 | yllcorner = origin[2] |
---|
2258 | |
---|
2259 | |
---|
2260 | |
---|
2261 | # FIXME: Refactor using code from file_function.statistics |
---|
2262 | # Something like print swwstats(swwname) |
---|
2263 | if verbose: |
---|
2264 | x = fid.variables['x'][:] |
---|
2265 | y = fid.variables['y'][:] |
---|
2266 | times = fid.variables['time'][:] |
---|
2267 | print '------------------------------------------------' |
---|
2268 | print 'Statistics of SWW file:' |
---|
2269 | print ' Name: %s' %swwfile |
---|
2270 | print ' Reference:' |
---|
2271 | print ' Lower left corner: [%f, %f]'\ |
---|
2272 | %(xllcorner, yllcorner) |
---|
2273 | print ' Start time: %f' %fid.starttime[0] |
---|
2274 | print ' Extent:' |
---|
2275 | print ' x [m] in [%f, %f], len(x) == %d'\ |
---|
2276 | %(min(x.flat), max(x.flat), len(x.flat)) |
---|
2277 | print ' y [m] in [%f, %f], len(y) == %d'\ |
---|
2278 | %(min(y.flat), max(y.flat), len(y.flat)) |
---|
2279 | print ' t [s] in [%f, %f], len(t) == %d'\ |
---|
2280 | %(min(times), max(times), len(times)) |
---|
2281 | print ' Quantities [SI units]:' |
---|
2282 | for name in ['stage', 'xmomentum', 'ymomentum', 'elevation']: |
---|
2283 | q = fid.variables[name][:].flat |
---|
2284 | print ' %s in [%f, %f]' %(name, min(q), max(q)) |
---|
2285 | |
---|
2286 | |
---|
2287 | |
---|
2288 | # Get quantity and reduce if applicable |
---|
2289 | if verbose: print 'Processing quantity %s' %quantity |
---|
2290 | |
---|
2291 | # Turn NetCDF objects into Numeric arrays |
---|
2292 | quantity_dict = {} |
---|
2293 | for name in fid.variables.keys(): |
---|
2294 | quantity_dict[name] = fid.variables[name][:] |
---|
2295 | |
---|
2296 | |
---|
2297 | |
---|
2298 | # Convert quantity expression to quantities found in sww file |
---|
2299 | q = apply_expression_to_dictionary(quantity, quantity_dict) |
---|
2300 | |
---|
2301 | |
---|
2302 | |
---|
2303 | if len(q.shape) == 2: |
---|
2304 | # q has a time component and needs to be reduced along |
---|
2305 | # the temporal dimension |
---|
2306 | if verbose: print 'Reducing quantity %s' %quantity |
---|
2307 | q_reduced = zeros( number_of_points, Float ) |
---|
2308 | |
---|
2309 | for k in range(number_of_points): |
---|
2310 | q_reduced[k] = reduction( q[:,k] ) |
---|
2311 | |
---|
2312 | q = q_reduced |
---|
2313 | |
---|
2314 | # Post condition: Now q has dimension: number_of_points |
---|
2315 | assert len(q.shape) == 1 |
---|
2316 | assert q.shape[0] == number_of_points |
---|
2317 | |
---|
2318 | |
---|
2319 | if verbose: |
---|
2320 | print 'Processed values for %s are in [%f, %f]' %(quantity, min(q), max(q)) |
---|
2321 | |
---|
2322 | |
---|
2323 | # Create grid and update xll/yll corner and x,y |
---|
2324 | vertex_points = concatenate ((x[:, NewAxis] ,y[:, NewAxis]), axis = 1) |
---|
2325 | assert len(vertex_points.shape) == 2 |
---|
2326 | |
---|
2327 | # Interpolate |
---|
2328 | from anuga.fit_interpolate.interpolate import Interpolate |
---|
2329 | interp = Interpolate(vertex_points, volumes, verbose = verbose) |
---|
2330 | |
---|
2331 | # Interpolate using quantity values |
---|
2332 | if verbose: print 'Interpolating' |
---|
2333 | interpolated_values = interp.interpolate(q, data_points).flat |
---|
2334 | |
---|
2335 | |
---|
2336 | if verbose: |
---|
2337 | print 'Interpolated values are in [%f, %f]' %(min(interpolated_values), |
---|
2338 | max(interpolated_values)) |
---|
2339 | |
---|
2340 | # Assign NODATA_value to all points outside bounding polygon (from interpolation mesh) |
---|
2341 | P = interp.mesh.get_boundary_polygon() |
---|
2342 | outside_indices = outside_polygon(data_points, P, closed=True) |
---|
2343 | |
---|
2344 | for i in outside_indices: |
---|
2345 | interpolated_values[i] = NODATA_value |
---|
2346 | |
---|
2347 | |
---|
2348 | # Store results |
---|
2349 | G = Geospatial_data(data_points=data_points, |
---|
2350 | attributes=interpolated_values) |
---|
2351 | |
---|
2352 | G.export_points_file(ptsfile, absolute = True) |
---|
2353 | |
---|
2354 | fid.close() |
---|
2355 | |
---|
2356 | |
---|
2357 | def convert_dem_from_ascii2netcdf(basename_in, basename_out = None, |
---|
2358 | use_cache = False, |
---|
2359 | verbose = False): |
---|
2360 | """Read Digitial Elevation model from the following ASCII format (.asc) |
---|
2361 | |
---|
2362 | Example: |
---|
2363 | |
---|
2364 | ncols 3121 |
---|
2365 | nrows 1800 |
---|
2366 | xllcorner 722000 |
---|
2367 | yllcorner 5893000 |
---|
2368 | cellsize 25 |
---|
2369 | NODATA_value -9999 |
---|
2370 | 138.3698 137.4194 136.5062 135.5558 .......... |
---|
2371 | |
---|
2372 | Convert basename_in + '.asc' to NetCDF format (.dem) |
---|
2373 | mimicking the ASCII format closely. |
---|
2374 | |
---|
2375 | |
---|
2376 | An accompanying file with same basename_in but extension .prj must exist |
---|
2377 | and is used to fix the UTM zone, datum, false northings and eastings. |
---|
2378 | |
---|
2379 | The prj format is assumed to be as |
---|
2380 | |
---|
2381 | Projection UTM |
---|
2382 | Zone 56 |
---|
2383 | Datum WGS84 |
---|
2384 | Zunits NO |
---|
2385 | Units METERS |
---|
2386 | Spheroid WGS84 |
---|
2387 | Xshift 0.0000000000 |
---|
2388 | Yshift 10000000.0000000000 |
---|
2389 | Parameters |
---|
2390 | """ |
---|
2391 | |
---|
2392 | |
---|
2393 | |
---|
2394 | kwargs = {'basename_out': basename_out, 'verbose': verbose} |
---|
2395 | |
---|
2396 | if use_cache is True: |
---|
2397 | from caching import cache |
---|
2398 | result = cache(_convert_dem_from_ascii2netcdf, basename_in, kwargs, |
---|
2399 | dependencies = [basename_in + '.asc'], |
---|
2400 | verbose = verbose) |
---|
2401 | |
---|
2402 | else: |
---|
2403 | result = apply(_convert_dem_from_ascii2netcdf, [basename_in], kwargs) |
---|
2404 | |
---|
2405 | return result |
---|
2406 | |
---|
2407 | |
---|
2408 | |
---|
2409 | |
---|
2410 | |
---|
2411 | |
---|
2412 | def _convert_dem_from_ascii2netcdf(basename_in, basename_out = None, |
---|
2413 | verbose = False): |
---|
2414 | """Read Digitial Elevation model from the following ASCII format (.asc) |
---|
2415 | |
---|
2416 | Internal function. See public function convert_dem_from_ascii2netcdf for details. |
---|
2417 | """ |
---|
2418 | |
---|
2419 | import os |
---|
2420 | from Scientific.IO.NetCDF import NetCDFFile |
---|
2421 | from Numeric import Float, array |
---|
2422 | |
---|
2423 | #root, ext = os.path.splitext(basename_in) |
---|
2424 | root = basename_in |
---|
2425 | |
---|
2426 | ########################################### |
---|
2427 | # Read Meta data |
---|
2428 | if verbose: print 'Reading METADATA from %s' %root + '.prj' |
---|
2429 | metadatafile = open(root + '.prj') |
---|
2430 | metalines = metadatafile.readlines() |
---|
2431 | metadatafile.close() |
---|
2432 | |
---|
2433 | L = metalines[0].strip().split() |
---|
2434 | assert L[0].strip().lower() == 'projection' |
---|
2435 | projection = L[1].strip() #TEXT |
---|
2436 | |
---|
2437 | L = metalines[1].strip().split() |
---|
2438 | assert L[0].strip().lower() == 'zone' |
---|
2439 | zone = int(L[1].strip()) |
---|
2440 | |
---|
2441 | L = metalines[2].strip().split() |
---|
2442 | assert L[0].strip().lower() == 'datum' |
---|
2443 | datum = L[1].strip() #TEXT |
---|
2444 | |
---|
2445 | L = metalines[3].strip().split() |
---|
2446 | assert L[0].strip().lower() == 'zunits' #IGNORE |
---|
2447 | zunits = L[1].strip() #TEXT |
---|
2448 | |
---|
2449 | L = metalines[4].strip().split() |
---|
2450 | assert L[0].strip().lower() == 'units' |
---|
2451 | units = L[1].strip() #TEXT |
---|
2452 | |
---|
2453 | L = metalines[5].strip().split() |
---|
2454 | assert L[0].strip().lower() == 'spheroid' #IGNORE |
---|
2455 | spheroid = L[1].strip() #TEXT |
---|
2456 | |
---|
2457 | L = metalines[6].strip().split() |
---|
2458 | assert L[0].strip().lower() == 'xshift' |
---|
2459 | false_easting = float(L[1].strip()) |
---|
2460 | |
---|
2461 | L = metalines[7].strip().split() |
---|
2462 | assert L[0].strip().lower() == 'yshift' |
---|
2463 | false_northing = float(L[1].strip()) |
---|
2464 | |
---|
2465 | #print false_easting, false_northing, zone, datum |
---|
2466 | |
---|
2467 | |
---|
2468 | ########################################### |
---|
2469 | #Read DEM data |
---|
2470 | |
---|
2471 | datafile = open(basename_in + '.asc') |
---|
2472 | |
---|
2473 | if verbose: print 'Reading DEM from %s' %(basename_in + '.asc') |
---|
2474 | lines = datafile.readlines() |
---|
2475 | datafile.close() |
---|
2476 | |
---|
2477 | if verbose: print 'Got', len(lines), ' lines' |
---|
2478 | |
---|
2479 | ncols = int(lines[0].split()[1].strip()) |
---|
2480 | nrows = int(lines[1].split()[1].strip()) |
---|
2481 | xllcorner = float(lines[2].split()[1].strip()) |
---|
2482 | yllcorner = float(lines[3].split()[1].strip()) |
---|
2483 | cellsize = float(lines[4].split()[1].strip()) |
---|
2484 | NODATA_value = int(lines[5].split()[1].strip()) |
---|
2485 | |
---|
2486 | assert len(lines) == nrows + 6 |
---|
2487 | |
---|
2488 | |
---|
2489 | ########################################## |
---|
2490 | |
---|
2491 | |
---|
2492 | if basename_out == None: |
---|
2493 | netcdfname = root + '.dem' |
---|
2494 | else: |
---|
2495 | netcdfname = basename_out + '.dem' |
---|
2496 | |
---|
2497 | if verbose: print 'Store to NetCDF file %s' %netcdfname |
---|
2498 | # NetCDF file definition |
---|
2499 | fid = NetCDFFile(netcdfname, 'w') |
---|
2500 | |
---|
2501 | #Create new file |
---|
2502 | fid.institution = 'Geoscience Australia' |
---|
2503 | fid.description = 'NetCDF DEM format for compact and portable storage ' +\ |
---|
2504 | 'of spatial point data' |
---|
2505 | |
---|
2506 | fid.ncols = ncols |
---|
2507 | fid.nrows = nrows |
---|
2508 | fid.xllcorner = xllcorner |
---|
2509 | fid.yllcorner = yllcorner |
---|
2510 | fid.cellsize = cellsize |
---|
2511 | fid.NODATA_value = NODATA_value |
---|
2512 | |
---|
2513 | fid.zone = zone |
---|
2514 | fid.false_easting = false_easting |
---|
2515 | fid.false_northing = false_northing |
---|
2516 | fid.projection = projection |
---|
2517 | fid.datum = datum |
---|
2518 | fid.units = units |
---|
2519 | |
---|
2520 | |
---|
2521 | # dimension definitions |
---|
2522 | fid.createDimension('number_of_rows', nrows) |
---|
2523 | fid.createDimension('number_of_columns', ncols) |
---|
2524 | |
---|
2525 | # variable definitions |
---|
2526 | fid.createVariable('elevation', Float, ('number_of_rows', |
---|
2527 | 'number_of_columns')) |
---|
2528 | |
---|
2529 | # Get handles to the variables |
---|
2530 | elevation = fid.variables['elevation'] |
---|
2531 | |
---|
2532 | #Store data |
---|
2533 | n = len(lines[6:]) |
---|
2534 | for i, line in enumerate(lines[6:]): |
---|
2535 | fields = line.split() |
---|
2536 | if verbose and i%((n+10)/10)==0: |
---|
2537 | print 'Processing row %d of %d' %(i, nrows) |
---|
2538 | |
---|
2539 | elevation[i, :] = array([float(x) for x in fields]) |
---|
2540 | |
---|
2541 | fid.close() |
---|
2542 | |
---|
2543 | |
---|
2544 | |
---|
2545 | |
---|
2546 | |
---|
2547 | def ferret2sww(basename_in, basename_out = None, |
---|
2548 | verbose = False, |
---|
2549 | minlat = None, maxlat = None, |
---|
2550 | minlon = None, maxlon = None, |
---|
2551 | mint = None, maxt = None, mean_stage = 0, |
---|
2552 | origin = None, zscale = 1, |
---|
2553 | fail_on_NaN = True, |
---|
2554 | NaN_filler = 0, |
---|
2555 | elevation = None, |
---|
2556 | inverted_bathymetry = True |
---|
2557 | ): #FIXME: Bathymetry should be obtained |
---|
2558 | #from MOST somehow. |
---|
2559 | #Alternatively from elsewhere |
---|
2560 | #or, as a last resort, |
---|
2561 | #specified here. |
---|
2562 | #The value of -100 will work |
---|
2563 | #for the Wollongong tsunami |
---|
2564 | #scenario but is very hacky |
---|
2565 | """Convert MOST and 'Ferret' NetCDF format for wave propagation to |
---|
2566 | sww format native to abstract_2d_finite_volumes. |
---|
2567 | |
---|
2568 | Specify only basename_in and read files of the form |
---|
2569 | basefilename_ha.nc, basefilename_ua.nc, basefilename_va.nc containing |
---|
2570 | relative height, x-velocity and y-velocity, respectively. |
---|
2571 | |
---|
2572 | Also convert latitude and longitude to UTM. All coordinates are |
---|
2573 | assumed to be given in the GDA94 datum. |
---|
2574 | |
---|
2575 | min's and max's: If omitted - full extend is used. |
---|
2576 | To include a value min may equal it, while max must exceed it. |
---|
2577 | Lat and lon are assuemd to be in decimal degrees |
---|
2578 | |
---|
2579 | origin is a 3-tuple with geo referenced |
---|
2580 | UTM coordinates (zone, easting, northing) |
---|
2581 | |
---|
2582 | nc format has values organised as HA[TIME, LATITUDE, LONGITUDE] |
---|
2583 | which means that longitude is the fastest |
---|
2584 | varying dimension (row major order, so to speak) |
---|
2585 | |
---|
2586 | ferret2sww uses grid points as vertices in a triangular grid |
---|
2587 | counting vertices from lower left corner upwards, then right |
---|
2588 | """ |
---|
2589 | |
---|
2590 | import os |
---|
2591 | from Scientific.IO.NetCDF import NetCDFFile |
---|
2592 | from Numeric import Float, Int, Int32, searchsorted, zeros, array |
---|
2593 | from Numeric import allclose, around |
---|
2594 | |
---|
2595 | precision = Float |
---|
2596 | |
---|
2597 | msg = 'Must use latitudes and longitudes for minlat, maxlon etc' |
---|
2598 | |
---|
2599 | if minlat != None: |
---|
2600 | assert -90 < minlat < 90 , msg |
---|
2601 | if maxlat != None: |
---|
2602 | assert -90 < maxlat < 90 , msg |
---|
2603 | if minlon != None: |
---|
2604 | assert -180 < minlon < 180 , msg |
---|
2605 | if maxlon != None: |
---|
2606 | assert -180 < maxlon < 180 , msg |
---|
2607 | |
---|
2608 | |
---|
2609 | #Get NetCDF data |
---|
2610 | if verbose: print 'Reading files %s_*.nc' %basename_in |
---|
2611 | #print "basename_in + '_ha.nc'",basename_in + '_ha.nc' |
---|
2612 | file_h = NetCDFFile(basename_in + '_ha.nc', 'r') #Wave amplitude (cm) |
---|
2613 | file_u = NetCDFFile(basename_in + '_ua.nc', 'r') #Velocity (x) (cm/s) |
---|
2614 | file_v = NetCDFFile(basename_in + '_va.nc', 'r') #Velocity (y) (cm/s) |
---|
2615 | file_e = NetCDFFile(basename_in + '_e.nc', 'r') #Elevation (z) (m) |
---|
2616 | |
---|
2617 | if basename_out is None: |
---|
2618 | swwname = basename_in + '.sww' |
---|
2619 | else: |
---|
2620 | swwname = basename_out + '.sww' |
---|
2621 | |
---|
2622 | # Get dimensions of file_h |
---|
2623 | for dimension in file_h.dimensions.keys(): |
---|
2624 | if dimension[:3] == 'LON': |
---|
2625 | dim_h_longitude = dimension |
---|
2626 | if dimension[:3] == 'LAT': |
---|
2627 | dim_h_latitude = dimension |
---|
2628 | if dimension[:4] == 'TIME': |
---|
2629 | dim_h_time = dimension |
---|
2630 | |
---|
2631 | # print 'long:', dim_h_longitude |
---|
2632 | # print 'lats:', dim_h_latitude |
---|
2633 | # print 'times:', dim_h_time |
---|
2634 | |
---|
2635 | times = file_h.variables[dim_h_time] |
---|
2636 | latitudes = file_h.variables[dim_h_latitude] |
---|
2637 | longitudes = file_h.variables[dim_h_longitude] |
---|
2638 | |
---|
2639 | # get dimensions for file_e |
---|
2640 | for dimension in file_e.dimensions.keys(): |
---|
2641 | if dimension[:3] == 'LON': |
---|
2642 | dim_e_longitude = dimension |
---|
2643 | if dimension[:3] == 'LAT': |
---|
2644 | dim_e_latitude = dimension |
---|
2645 | |
---|
2646 | # get dimensions for file_u |
---|
2647 | for dimension in file_u.dimensions.keys(): |
---|
2648 | if dimension[:3] == 'LON': |
---|
2649 | dim_u_longitude = dimension |
---|
2650 | if dimension[:3] == 'LAT': |
---|
2651 | dim_u_latitude = dimension |
---|
2652 | if dimension[:4] == 'TIME': |
---|
2653 | dim_u_time = dimension |
---|
2654 | |
---|
2655 | # get dimensions for file_v |
---|
2656 | for dimension in file_v.dimensions.keys(): |
---|
2657 | if dimension[:3] == 'LON': |
---|
2658 | dim_v_longitude = dimension |
---|
2659 | if dimension[:3] == 'LAT': |
---|
2660 | dim_v_latitude = dimension |
---|
2661 | if dimension[:4] == 'TIME': |
---|
2662 | dim_v_time = dimension |
---|
2663 | |
---|
2664 | |
---|
2665 | #Precision used by most for lat/lon is 4 or 5 decimals |
---|
2666 | e_lat = around(file_e.variables[dim_e_latitude][:], 5) |
---|
2667 | e_lon = around(file_e.variables[dim_e_longitude][:], 5) |
---|
2668 | |
---|
2669 | #Check that files are compatible |
---|
2670 | assert allclose(latitudes, file_u.variables[dim_u_latitude]) |
---|
2671 | assert allclose(latitudes, file_v.variables[dim_v_latitude]) |
---|
2672 | assert allclose(latitudes, e_lat) |
---|
2673 | |
---|
2674 | assert allclose(longitudes, file_u.variables[dim_u_longitude]) |
---|
2675 | assert allclose(longitudes, file_v.variables[dim_v_longitude]) |
---|
2676 | assert allclose(longitudes, e_lon) |
---|
2677 | |
---|
2678 | if mint == None: |
---|
2679 | jmin = 0 |
---|
2680 | else: |
---|
2681 | jmin = searchsorted(times, mint) |
---|
2682 | |
---|
2683 | if maxt == None: |
---|
2684 | jmax=len(times) |
---|
2685 | else: |
---|
2686 | jmax = searchsorted(times, maxt) |
---|
2687 | |
---|
2688 | kmin, kmax, lmin, lmax = _get_min_max_indexes(latitudes[:], |
---|
2689 | longitudes[:], |
---|
2690 | minlat, maxlat, |
---|
2691 | minlon, maxlon) |
---|
2692 | |
---|
2693 | |
---|
2694 | # print' j', jmin, jmax |
---|
2695 | times = times[jmin:jmax] |
---|
2696 | latitudes = latitudes[kmin:kmax] |
---|
2697 | longitudes = longitudes[lmin:lmax] |
---|
2698 | |
---|
2699 | |
---|
2700 | if verbose: print 'cropping' |
---|
2701 | zname = 'ELEVATION' |
---|
2702 | |
---|
2703 | amplitudes = file_h.variables['HA'][jmin:jmax, kmin:kmax, lmin:lmax] |
---|
2704 | uspeed = file_u.variables['UA'][jmin:jmax, kmin:kmax, lmin:lmax] #Lon |
---|
2705 | vspeed = file_v.variables['VA'][jmin:jmax, kmin:kmax, lmin:lmax] #Lat |
---|
2706 | elevations = file_e.variables[zname][kmin:kmax, lmin:lmax] |
---|
2707 | |
---|
2708 | # if latitudes2[0]==latitudes[0] and latitudes2[-1]==latitudes[-1]: |
---|
2709 | # elevations = file_e.variables['ELEVATION'][kmin:kmax, lmin:lmax] |
---|
2710 | # elif latitudes2[0]==latitudes[-1] and latitudes2[-1]==latitudes[0]: |
---|
2711 | # from Numeric import asarray |
---|
2712 | # elevations=elevations.tolist() |
---|
2713 | # elevations.reverse() |
---|
2714 | # elevations=asarray(elevations) |
---|
2715 | # else: |
---|
2716 | # from Numeric import asarray |
---|
2717 | # elevations=elevations.tolist() |
---|
2718 | # elevations.reverse() |
---|
2719 | # elevations=asarray(elevations) |
---|
2720 | # 'print hmmm' |
---|
2721 | |
---|
2722 | |
---|
2723 | |
---|
2724 | #Get missing values |
---|
2725 | nan_ha = file_h.variables['HA'].missing_value[0] |
---|
2726 | nan_ua = file_u.variables['UA'].missing_value[0] |
---|
2727 | nan_va = file_v.variables['VA'].missing_value[0] |
---|
2728 | if hasattr(file_e.variables[zname],'missing_value'): |
---|
2729 | nan_e = file_e.variables[zname].missing_value[0] |
---|
2730 | else: |
---|
2731 | nan_e = None |
---|
2732 | |
---|
2733 | #Cleanup |
---|
2734 | from Numeric import sometrue |
---|
2735 | |
---|
2736 | missing = (amplitudes == nan_ha) |
---|
2737 | if sometrue (missing): |
---|
2738 | if fail_on_NaN: |
---|
2739 | msg = 'NetCDFFile %s contains missing values'\ |
---|
2740 | %(basename_in+'_ha.nc') |
---|
2741 | raise DataMissingValuesError, msg |
---|
2742 | else: |
---|
2743 | amplitudes = amplitudes*(missing==0) + missing*NaN_filler |
---|
2744 | |
---|
2745 | missing = (uspeed == nan_ua) |
---|
2746 | if sometrue (missing): |
---|
2747 | if fail_on_NaN: |
---|
2748 | msg = 'NetCDFFile %s contains missing values'\ |
---|
2749 | %(basename_in+'_ua.nc') |
---|
2750 | raise DataMissingValuesError, msg |
---|
2751 | else: |
---|
2752 | uspeed = uspeed*(missing==0) + missing*NaN_filler |
---|
2753 | |
---|
2754 | missing = (vspeed == nan_va) |
---|
2755 | if sometrue (missing): |
---|
2756 | if fail_on_NaN: |
---|
2757 | msg = 'NetCDFFile %s contains missing values'\ |
---|
2758 | %(basename_in+'_va.nc') |
---|
2759 | raise DataMissingValuesError, msg |
---|
2760 | else: |
---|
2761 | vspeed = vspeed*(missing==0) + missing*NaN_filler |
---|
2762 | |
---|
2763 | |
---|
2764 | missing = (elevations == nan_e) |
---|
2765 | if sometrue (missing): |
---|
2766 | if fail_on_NaN: |
---|
2767 | msg = 'NetCDFFile %s contains missing values'\ |
---|
2768 | %(basename_in+'_e.nc') |
---|
2769 | raise DataMissingValuesError, msg |
---|
2770 | else: |
---|
2771 | elevations = elevations*(missing==0) + missing*NaN_filler |
---|
2772 | |
---|
2773 | ####### |
---|
2774 | |
---|
2775 | |
---|
2776 | |
---|
2777 | number_of_times = times.shape[0] |
---|
2778 | number_of_latitudes = latitudes.shape[0] |
---|
2779 | number_of_longitudes = longitudes.shape[0] |
---|
2780 | |
---|
2781 | assert amplitudes.shape[0] == number_of_times |
---|
2782 | assert amplitudes.shape[1] == number_of_latitudes |
---|
2783 | assert amplitudes.shape[2] == number_of_longitudes |
---|
2784 | |
---|
2785 | if verbose: |
---|
2786 | print '------------------------------------------------' |
---|
2787 | print 'Statistics:' |
---|
2788 | print ' Extent (lat/lon):' |
---|
2789 | print ' lat in [%f, %f], len(lat) == %d'\ |
---|
2790 | %(min(latitudes.flat), max(latitudes.flat), |
---|
2791 | len(latitudes.flat)) |
---|
2792 | print ' lon in [%f, %f], len(lon) == %d'\ |
---|
2793 | %(min(longitudes.flat), max(longitudes.flat), |
---|
2794 | len(longitudes.flat)) |
---|
2795 | print ' t in [%f, %f], len(t) == %d'\ |
---|
2796 | %(min(times.flat), max(times.flat), len(times.flat)) |
---|
2797 | |
---|
2798 | q = amplitudes.flat |
---|
2799 | name = 'Amplitudes (ha) [cm]' |
---|
2800 | print ' %s in [%f, %f]' %(name, min(q), max(q)) |
---|
2801 | |
---|
2802 | q = uspeed.flat |
---|
2803 | name = 'Speeds (ua) [cm/s]' |
---|
2804 | print ' %s in [%f, %f]' %(name, min(q), max(q)) |
---|
2805 | |
---|
2806 | q = vspeed.flat |
---|
2807 | name = 'Speeds (va) [cm/s]' |
---|
2808 | print ' %s in [%f, %f]' %(name, min(q), max(q)) |
---|
2809 | |
---|
2810 | q = elevations.flat |
---|
2811 | name = 'Elevations (e) [m]' |
---|
2812 | print ' %s in [%f, %f]' %(name, min(q), max(q)) |
---|
2813 | |
---|
2814 | |
---|
2815 | #print number_of_latitudes, number_of_longitudes |
---|
2816 | number_of_points = number_of_latitudes*number_of_longitudes |
---|
2817 | number_of_volumes = (number_of_latitudes-1)*(number_of_longitudes-1)*2 |
---|
2818 | |
---|
2819 | |
---|
2820 | file_h.close() |
---|
2821 | file_u.close() |
---|
2822 | file_v.close() |
---|
2823 | file_e.close() |
---|
2824 | |
---|
2825 | |
---|
2826 | # NetCDF file definition |
---|
2827 | outfile = NetCDFFile(swwname, 'w') |
---|
2828 | |
---|
2829 | #Create new file |
---|
2830 | outfile.institution = 'Geoscience Australia' |
---|
2831 | outfile.description = 'Converted from Ferret files: %s, %s, %s, %s'\ |
---|
2832 | %(basename_in + '_ha.nc', |
---|
2833 | basename_in + '_ua.nc', |
---|
2834 | basename_in + '_va.nc', |
---|
2835 | basename_in + '_e.nc') |
---|
2836 | |
---|
2837 | |
---|
2838 | #For sww compatibility |
---|
2839 | outfile.smoothing = 'Yes' |
---|
2840 | outfile.order = 1 |
---|
2841 | |
---|
2842 | #Start time in seconds since the epoch (midnight 1/1/1970) |
---|
2843 | outfile.starttime = starttime = times[0] |
---|
2844 | times = times - starttime #Store relative times |
---|
2845 | |
---|
2846 | # dimension definitions |
---|
2847 | outfile.createDimension('number_of_volumes', number_of_volumes) |
---|
2848 | |
---|
2849 | outfile.createDimension('number_of_vertices', 3) |
---|
2850 | outfile.createDimension('number_of_points', number_of_points) |
---|
2851 | |
---|
2852 | |
---|
2853 | #outfile.createDimension('number_of_timesteps', len(times)) |
---|
2854 | outfile.createDimension('number_of_timesteps', len(times)) |
---|
2855 | |
---|
2856 | # variable definitions |
---|
2857 | outfile.createVariable('x', precision, ('number_of_points',)) |
---|
2858 | outfile.createVariable('y', precision, ('number_of_points',)) |
---|
2859 | outfile.createVariable('elevation', precision, ('number_of_points',)) |
---|
2860 | |
---|
2861 | #FIXME: Backwards compatibility |
---|
2862 | outfile.createVariable('z', precision, ('number_of_points',)) |
---|
2863 | ################################# |
---|
2864 | |
---|
2865 | outfile.createVariable('volumes', Int, ('number_of_volumes', |
---|
2866 | 'number_of_vertices')) |
---|
2867 | |
---|
2868 | outfile.createVariable('time', precision, |
---|
2869 | ('number_of_timesteps',)) |
---|
2870 | |
---|
2871 | outfile.createVariable('stage', precision, |
---|
2872 | ('number_of_timesteps', |
---|
2873 | 'number_of_points')) |
---|
2874 | |
---|
2875 | outfile.createVariable('xmomentum', precision, |
---|
2876 | ('number_of_timesteps', |
---|
2877 | 'number_of_points')) |
---|
2878 | |
---|
2879 | outfile.createVariable('ymomentum', precision, |
---|
2880 | ('number_of_timesteps', |
---|
2881 | 'number_of_points')) |
---|
2882 | |
---|
2883 | |
---|
2884 | #Store |
---|
2885 | from anuga.coordinate_transforms.redfearn import redfearn |
---|
2886 | x = zeros(number_of_points, Float) #Easting |
---|
2887 | y = zeros(number_of_points, Float) #Northing |
---|
2888 | |
---|
2889 | |
---|
2890 | if verbose: print 'Making triangular grid' |
---|
2891 | #Check zone boundaries |
---|
2892 | refzone, _, _ = redfearn(latitudes[0],longitudes[0]) |
---|
2893 | |
---|
2894 | vertices = {} |
---|
2895 | i = 0 |
---|
2896 | for k, lat in enumerate(latitudes): #Y direction |
---|
2897 | for l, lon in enumerate(longitudes): #X direction |
---|
2898 | |
---|
2899 | vertices[l,k] = i |
---|
2900 | |
---|
2901 | zone, easting, northing = redfearn(lat,lon) |
---|
2902 | |
---|
2903 | msg = 'Zone boundary crossed at longitude =', lon |
---|
2904 | #assert zone == refzone, msg |
---|
2905 | #print '%7.2f %7.2f %8.2f %8.2f' %(lon, lat, easting, northing) |
---|
2906 | x[i] = easting |
---|
2907 | y[i] = northing |
---|
2908 | i += 1 |
---|
2909 | |
---|
2910 | |
---|
2911 | #Construct 2 triangles per 'rectangular' element |
---|
2912 | volumes = [] |
---|
2913 | for l in range(number_of_longitudes-1): #X direction |
---|
2914 | for k in range(number_of_latitudes-1): #Y direction |
---|
2915 | v1 = vertices[l,k+1] |
---|
2916 | v2 = vertices[l,k] |
---|
2917 | v3 = vertices[l+1,k+1] |
---|
2918 | v4 = vertices[l+1,k] |
---|
2919 | |
---|
2920 | volumes.append([v1,v2,v3]) #Upper element |
---|
2921 | volumes.append([v4,v3,v2]) #Lower element |
---|
2922 | |
---|
2923 | volumes = array(volumes) |
---|
2924 | |
---|
2925 | if origin == None: |
---|
2926 | zone = refzone |
---|
2927 | xllcorner = min(x) |
---|
2928 | yllcorner = min(y) |
---|
2929 | else: |
---|
2930 | zone = origin[0] |
---|
2931 | xllcorner = origin[1] |
---|
2932 | yllcorner = origin[2] |
---|
2933 | |
---|
2934 | |
---|
2935 | outfile.xllcorner = xllcorner |
---|
2936 | outfile.yllcorner = yllcorner |
---|
2937 | outfile.zone = zone |
---|
2938 | |
---|
2939 | |
---|
2940 | if elevation is not None: |
---|
2941 | z = elevation |
---|
2942 | else: |
---|
2943 | if inverted_bathymetry: |
---|
2944 | z = -1*elevations |
---|
2945 | else: |
---|
2946 | z = elevations |
---|
2947 | #FIXME: z should be obtained from MOST and passed in here |
---|
2948 | |
---|
2949 | from Numeric import resize |
---|
2950 | z = resize(z,outfile.variables['z'][:].shape) |
---|
2951 | outfile.variables['x'][:] = x - xllcorner |
---|
2952 | outfile.variables['y'][:] = y - yllcorner |
---|
2953 | outfile.variables['z'][:] = z #FIXME HACK for bacwards compat. |
---|
2954 | outfile.variables['elevation'][:] = z |
---|
2955 | outfile.variables['time'][:] = times #Store time relative |
---|
2956 | outfile.variables['volumes'][:] = volumes.astype(Int32) #For Opteron 64 |
---|
2957 | |
---|
2958 | |
---|
2959 | |
---|
2960 | #Time stepping |
---|
2961 | stage = outfile.variables['stage'] |
---|
2962 | xmomentum = outfile.variables['xmomentum'] |
---|
2963 | ymomentum = outfile.variables['ymomentum'] |
---|
2964 | |
---|
2965 | if verbose: print 'Converting quantities' |
---|
2966 | n = len(times) |
---|
2967 | for j in range(n): |
---|
2968 | if verbose and j%((n+10)/10)==0: print ' Doing %d of %d' %(j, n) |
---|
2969 | i = 0 |
---|
2970 | for k in range(number_of_latitudes): #Y direction |
---|
2971 | for l in range(number_of_longitudes): #X direction |
---|
2972 | w = zscale*amplitudes[j,k,l]/100 + mean_stage |
---|
2973 | stage[j,i] = w |
---|
2974 | h = w - z[i] |
---|
2975 | xmomentum[j,i] = uspeed[j,k,l]/100*h |
---|
2976 | ymomentum[j,i] = vspeed[j,k,l]/100*h |
---|
2977 | i += 1 |
---|
2978 | |
---|
2979 | #outfile.close() |
---|
2980 | |
---|
2981 | #FIXME: Refactor using code from file_function.statistics |
---|
2982 | #Something like print swwstats(swwname) |
---|
2983 | if verbose: |
---|
2984 | x = outfile.variables['x'][:] |
---|
2985 | y = outfile.variables['y'][:] |
---|
2986 | times = outfile.variables['time'][:] |
---|
2987 | print '------------------------------------------------' |
---|
2988 | print 'Statistics of output file:' |
---|
2989 | print ' Name: %s' %swwname |
---|
2990 | print ' Reference:' |
---|
2991 | print ' Lower left corner: [%f, %f]'\ |
---|
2992 | %(xllcorner, yllcorner) |
---|
2993 | print ' Start time: %f' %starttime |
---|
2994 | print ' Extent:' |
---|
2995 | print ' x [m] in [%f, %f], len(x) == %d'\ |
---|
2996 | %(min(x.flat), max(x.flat), len(x.flat)) |
---|
2997 | print ' y [m] in [%f, %f], len(y) == %d'\ |
---|
2998 | %(min(y.flat), max(y.flat), len(y.flat)) |
---|
2999 | print ' t [s] in [%f, %f], len(t) == %d'\ |
---|
3000 | %(min(times), max(times), len(times)) |
---|
3001 | print ' Quantities [SI units]:' |
---|
3002 | for name in ['stage', 'xmomentum', 'ymomentum', 'elevation']: |
---|
3003 | q = outfile.variables[name][:].flat |
---|
3004 | print ' %s in [%f, %f]' %(name, min(q), max(q)) |
---|
3005 | |
---|
3006 | |
---|
3007 | |
---|
3008 | outfile.close() |
---|
3009 | |
---|
3010 | |
---|
3011 | |
---|
3012 | |
---|
3013 | |
---|
3014 | def timefile2netcdf(filename, quantity_names = None): |
---|
3015 | """Template for converting typical text files with time series to |
---|
3016 | NetCDF tms file. |
---|
3017 | |
---|
3018 | |
---|
3019 | The file format is assumed to be either two fields separated by a comma: |
---|
3020 | |
---|
3021 | time [DD/MM/YY hh:mm:ss], value0 value1 value2 ... |
---|
3022 | |
---|
3023 | E.g |
---|
3024 | |
---|
3025 | 31/08/04 00:00:00, 1.328223 0 0 |
---|
3026 | 31/08/04 00:15:00, 1.292912 0 0 |
---|
3027 | |
---|
3028 | will provide a time dependent function f(t) with three attributes |
---|
3029 | |
---|
3030 | filename is assumed to be the rootname with extenisons .txt and .sww |
---|
3031 | """ |
---|
3032 | |
---|
3033 | import time, calendar |
---|
3034 | from Numeric import array |
---|
3035 | from anuga.config import time_format |
---|
3036 | from anuga.utilities.numerical_tools import ensure_numeric |
---|
3037 | |
---|
3038 | |
---|
3039 | |
---|
3040 | fid = open(filename + '.txt') |
---|
3041 | line = fid.readline() |
---|
3042 | fid.close() |
---|
3043 | |
---|
3044 | fields = line.split(',') |
---|
3045 | msg = 'File %s must have the format date, value0 value1 value2 ...' |
---|
3046 | assert len(fields) == 2, msg |
---|
3047 | |
---|
3048 | try: |
---|
3049 | starttime = calendar.timegm(time.strptime(fields[0], time_format)) |
---|
3050 | except ValueError: |
---|
3051 | msg = 'First field in file %s must be' %filename |
---|
3052 | msg += ' date-time with format %s.\n' %time_format |
---|
3053 | msg += 'I got %s instead.' %fields[0] |
---|
3054 | raise DataTimeError, msg |
---|
3055 | |
---|
3056 | |
---|
3057 | #Split values |
---|
3058 | values = [] |
---|
3059 | for value in fields[1].split(): |
---|
3060 | values.append(float(value)) |
---|
3061 | |
---|
3062 | q = ensure_numeric(values) |
---|
3063 | |
---|
3064 | msg = 'ERROR: File must contain at least one independent value' |
---|
3065 | assert len(q.shape) == 1, msg |
---|
3066 | |
---|
3067 | |
---|
3068 | |
---|
3069 | #Read times proper |
---|
3070 | from Numeric import zeros, Float, alltrue |
---|
3071 | from anuga.config import time_format |
---|
3072 | import time, calendar |
---|
3073 | |
---|
3074 | fid = open(filename + '.txt') |
---|
3075 | lines = fid.readlines() |
---|
3076 | fid.close() |
---|
3077 | |
---|
3078 | N = len(lines) |
---|
3079 | d = len(q) |
---|
3080 | |
---|
3081 | T = zeros(N, Float) #Time |
---|
3082 | Q = zeros((N, d), Float) #Values |
---|
3083 | |
---|
3084 | for i, line in enumerate(lines): |
---|
3085 | fields = line.split(',') |
---|
3086 | realtime = calendar.timegm(time.strptime(fields[0], time_format)) |
---|
3087 | |
---|
3088 | T[i] = realtime - starttime |
---|
3089 | |
---|
3090 | for j, value in enumerate(fields[1].split()): |
---|
3091 | Q[i, j] = float(value) |
---|
3092 | |
---|
3093 | msg = 'File %s must list time as a monotonuosly ' %filename |
---|
3094 | msg += 'increasing sequence' |
---|
3095 | assert alltrue( T[1:] - T[:-1] > 0 ), msg |
---|
3096 | |
---|
3097 | |
---|
3098 | #Create NetCDF file |
---|
3099 | from Scientific.IO.NetCDF import NetCDFFile |
---|
3100 | |
---|
3101 | fid = NetCDFFile(filename + '.tms', 'w') |
---|
3102 | |
---|
3103 | |
---|
3104 | fid.institution = 'Geoscience Australia' |
---|
3105 | fid.description = 'Time series' |
---|
3106 | |
---|
3107 | |
---|
3108 | #Reference point |
---|
3109 | #Start time in seconds since the epoch (midnight 1/1/1970) |
---|
3110 | #FIXME: Use Georef |
---|
3111 | fid.starttime = starttime |
---|
3112 | |
---|
3113 | |
---|
3114 | # dimension definitions |
---|
3115 | #fid.createDimension('number_of_volumes', self.number_of_volumes) |
---|
3116 | #fid.createDimension('number_of_vertices', 3) |
---|
3117 | |
---|
3118 | |
---|
3119 | fid.createDimension('number_of_timesteps', len(T)) |
---|
3120 | |
---|
3121 | fid.createVariable('time', Float, ('number_of_timesteps',)) |
---|
3122 | |
---|
3123 | fid.variables['time'][:] = T |
---|
3124 | |
---|
3125 | for i in range(Q.shape[1]): |
---|
3126 | try: |
---|
3127 | name = quantity_names[i] |
---|
3128 | except: |
---|
3129 | name = 'Attribute%d'%i |
---|
3130 | |
---|
3131 | fid.createVariable(name, Float, ('number_of_timesteps',)) |
---|
3132 | fid.variables[name][:] = Q[:,i] |
---|
3133 | |
---|
3134 | fid.close() |
---|
3135 | |
---|
3136 | |
---|
3137 | def extent_sww(file_name): |
---|
3138 | """ |
---|
3139 | Read in an sww file. |
---|
3140 | |
---|
3141 | Input; |
---|
3142 | file_name - the sww file |
---|
3143 | |
---|
3144 | Output; |
---|
3145 | z - Vector of bed elevation |
---|
3146 | volumes - Array. Each row has 3 values, representing |
---|
3147 | the vertices that define the volume |
---|
3148 | time - Vector of the times where there is stage information |
---|
3149 | stage - array with respect to time and vertices (x,y) |
---|
3150 | """ |
---|
3151 | |
---|
3152 | |
---|
3153 | from Scientific.IO.NetCDF import NetCDFFile |
---|
3154 | |
---|
3155 | #Check contents |
---|
3156 | #Get NetCDF |
---|
3157 | fid = NetCDFFile(file_name, 'r') |
---|
3158 | |
---|
3159 | # Get the variables |
---|
3160 | x = fid.variables['x'][:] |
---|
3161 | y = fid.variables['y'][:] |
---|
3162 | stage = fid.variables['stage'][:] |
---|
3163 | #print "stage",stage |
---|
3164 | #print "stage.shap",stage.shape |
---|
3165 | #print "min(stage.flat), mpythonax(stage.flat)",min(stage.flat), max(stage.flat) |
---|
3166 | #print "min(stage)",min(stage) |
---|
3167 | |
---|
3168 | fid.close() |
---|
3169 | |
---|
3170 | return [min(x),max(x),min(y),max(y),min(stage.flat),max(stage.flat)] |
---|
3171 | |
---|
3172 | |
---|
3173 | def sww2domain(filename,boundary=None,t=None,\ |
---|
3174 | fail_if_NaN=True,NaN_filler=0\ |
---|
3175 | ,verbose = False,very_verbose = False): |
---|
3176 | """ |
---|
3177 | Usage: domain = sww2domain('file.sww',t=time (default = last time in file)) |
---|
3178 | |
---|
3179 | Boundary is not recommended if domain.smooth is not selected, as it |
---|
3180 | uses unique coordinates, but not unique boundaries. This means that |
---|
3181 | the boundary file will not be compatable with the coordinates, and will |
---|
3182 | give a different final boundary, or crash. |
---|
3183 | """ |
---|
3184 | NaN=9.969209968386869e+036 |
---|
3185 | #initialise NaN. |
---|
3186 | |
---|
3187 | from Scientific.IO.NetCDF import NetCDFFile |
---|
3188 | from shallow_water import Domain |
---|
3189 | from Numeric import asarray, transpose, resize |
---|
3190 | |
---|
3191 | if verbose: print 'Reading from ', filename |
---|
3192 | fid = NetCDFFile(filename, 'r') #Open existing file for read |
---|
3193 | time = fid.variables['time'] #Timesteps |
---|
3194 | if t is None: |
---|
3195 | t = time[-1] |
---|
3196 | time_interp = get_time_interp(time,t) |
---|
3197 | |
---|
3198 | # Get the variables as Numeric arrays |
---|
3199 | x = fid.variables['x'][:] #x-coordinates of vertices |
---|
3200 | y = fid.variables['y'][:] #y-coordinates of vertices |
---|
3201 | elevation = fid.variables['elevation'] #Elevation |
---|
3202 | stage = fid.variables['stage'] #Water level |
---|
3203 | xmomentum = fid.variables['xmomentum'] #Momentum in the x-direction |
---|
3204 | ymomentum = fid.variables['ymomentum'] #Momentum in the y-direction |
---|
3205 | |
---|
3206 | starttime = fid.starttime[0] |
---|
3207 | volumes = fid.variables['volumes'][:] #Connectivity |
---|
3208 | coordinates=transpose(asarray([x.tolist(),y.tolist()])) |
---|
3209 | |
---|
3210 | conserved_quantities = [] |
---|
3211 | interpolated_quantities = {} |
---|
3212 | other_quantities = [] |
---|
3213 | |
---|
3214 | # get geo_reference |
---|
3215 | #sww files don't have to have a geo_ref |
---|
3216 | try: |
---|
3217 | geo_reference = Geo_reference(NetCDFObject=fid) |
---|
3218 | except: #AttributeError, e: |
---|
3219 | geo_reference = None |
---|
3220 | |
---|
3221 | if verbose: print ' getting quantities' |
---|
3222 | for quantity in fid.variables.keys(): |
---|
3223 | dimensions = fid.variables[quantity].dimensions |
---|
3224 | if 'number_of_timesteps' in dimensions: |
---|
3225 | conserved_quantities.append(quantity) |
---|
3226 | interpolated_quantities[quantity]=\ |
---|
3227 | interpolated_quantity(fid.variables[quantity][:],time_interp) |
---|
3228 | else: other_quantities.append(quantity) |
---|
3229 | |
---|
3230 | other_quantities.remove('x') |
---|
3231 | other_quantities.remove('y') |
---|
3232 | other_quantities.remove('z') |
---|
3233 | other_quantities.remove('volumes') |
---|
3234 | |
---|
3235 | conserved_quantities.remove('time') |
---|
3236 | |
---|
3237 | if verbose: print ' building domain' |
---|
3238 | # From domain.Domain: |
---|
3239 | # domain = Domain(coordinates, volumes,\ |
---|
3240 | # conserved_quantities = conserved_quantities,\ |
---|
3241 | # other_quantities = other_quantities,zone=zone,\ |
---|
3242 | # xllcorner=xllcorner, yllcorner=yllcorner) |
---|
3243 | |
---|
3244 | # From shallow_water.Domain: |
---|
3245 | coordinates=coordinates.tolist() |
---|
3246 | volumes=volumes.tolist() |
---|
3247 | #FIXME:should this be in mesh?(peter row) |
---|
3248 | if fid.smoothing == 'Yes': unique = False |
---|
3249 | else: unique = True |
---|
3250 | if unique: |
---|
3251 | coordinates,volumes,boundary=weed(coordinates,volumes,boundary) |
---|
3252 | |
---|
3253 | |
---|
3254 | try: |
---|
3255 | domain = Domain(coordinates, volumes, boundary) |
---|
3256 | except AssertionError, e: |
---|
3257 | fid.close() |
---|
3258 | msg = 'Domain could not be created: %s. Perhaps use "fail_if_NaN=False and NaN_filler = ..."' %e |
---|
3259 | raise DataDomainError, msg |
---|
3260 | |
---|
3261 | if not boundary is None: |
---|
3262 | domain.boundary = boundary |
---|
3263 | |
---|
3264 | domain.geo_reference = geo_reference |
---|
3265 | |
---|
3266 | domain.starttime=float(starttime)+float(t) |
---|
3267 | domain.time=0.0 |
---|
3268 | |
---|
3269 | for quantity in other_quantities: |
---|
3270 | try: |
---|
3271 | NaN = fid.variables[quantity].missing_value |
---|
3272 | except: |
---|
3273 | pass #quantity has no missing_value number |
---|
3274 | X = fid.variables[quantity][:] |
---|
3275 | if very_verbose: |
---|
3276 | print ' ',quantity |
---|
3277 | print ' NaN =',NaN |
---|
3278 | print ' max(X)' |
---|
3279 | print ' ',max(X) |
---|
3280 | print ' max(X)==NaN' |
---|
3281 | print ' ',max(X)==NaN |
---|
3282 | print '' |
---|
3283 | if (max(X)==NaN) or (min(X)==NaN): |
---|
3284 | if fail_if_NaN: |
---|
3285 | msg = 'quantity "%s" contains no_data entry'%quantity |
---|
3286 | raise DataMissingValuesError, msg |
---|
3287 | else: |
---|
3288 | data = (X<>NaN) |
---|
3289 | X = (X*data)+(data==0)*NaN_filler |
---|
3290 | if unique: |
---|
3291 | X = resize(X,(len(X)/3,3)) |
---|
3292 | domain.set_quantity(quantity,X) |
---|
3293 | # |
---|
3294 | for quantity in conserved_quantities: |
---|
3295 | try: |
---|
3296 | NaN = fid.variables[quantity].missing_value |
---|
3297 | except: |
---|
3298 | pass #quantity has no missing_value number |
---|
3299 | X = interpolated_quantities[quantity] |
---|
3300 | if very_verbose: |
---|
3301 | print ' ',quantity |
---|
3302 | print ' NaN =',NaN |
---|
3303 | print ' max(X)' |
---|
3304 | print ' ',max(X) |
---|
3305 | print ' max(X)==NaN' |
---|
3306 | print ' ',max(X)==NaN |
---|
3307 | print '' |
---|
3308 | if (max(X)==NaN) or (min(X)==NaN): |
---|
3309 | if fail_if_NaN: |
---|
3310 | msg = 'quantity "%s" contains no_data entry'%quantity |
---|
3311 | raise DataMissingValuesError, msg |
---|
3312 | else: |
---|
3313 | data = (X<>NaN) |
---|
3314 | X = (X*data)+(data==0)*NaN_filler |
---|
3315 | if unique: |
---|
3316 | X = resize(X,(X.shape[0]/3,3)) |
---|
3317 | domain.set_quantity(quantity,X) |
---|
3318 | |
---|
3319 | fid.close() |
---|
3320 | return domain |
---|
3321 | |
---|
3322 | def interpolated_quantity(saved_quantity,time_interp): |
---|
3323 | |
---|
3324 | #given an index and ratio, interpolate quantity with respect to time. |
---|
3325 | index,ratio = time_interp |
---|
3326 | Q = saved_quantity |
---|
3327 | if ratio > 0: |
---|
3328 | q = (1-ratio)*Q[index]+ ratio*Q[index+1] |
---|
3329 | else: |
---|
3330 | q = Q[index] |
---|
3331 | #Return vector of interpolated values |
---|
3332 | return q |
---|
3333 | |
---|
3334 | def get_time_interp(time,t=None): |
---|
3335 | #Finds the ratio and index for time interpolation. |
---|
3336 | #It is borrowed from previous abstract_2d_finite_volumes code. |
---|
3337 | if t is None: |
---|
3338 | t=time[-1] |
---|
3339 | index = -1 |
---|
3340 | ratio = 0. |
---|
3341 | else: |
---|
3342 | T = time |
---|
3343 | tau = t |
---|
3344 | index=0 |
---|
3345 | msg = 'Time interval derived from file %s [%s:%s]'\ |
---|
3346 | %('FIXMEfilename', T[0], T[-1]) |
---|
3347 | msg += ' does not match model time: %s' %tau |
---|
3348 | if tau < time[0]: raise DataTimeError, msg |
---|
3349 | if tau > time[-1]: raise DataTimeError, msg |
---|
3350 | while tau > time[index]: index += 1 |
---|
3351 | while tau < time[index]: index -= 1 |
---|
3352 | if tau == time[index]: |
---|
3353 | #Protect against case where tau == time[-1] (last time) |
---|
3354 | # - also works in general when tau == time[i] |
---|
3355 | ratio = 0 |
---|
3356 | else: |
---|
3357 | #t is now between index and index+1 |
---|
3358 | ratio = (tau - time[index])/(time[index+1] - time[index]) |
---|
3359 | return (index,ratio) |
---|
3360 | |
---|
3361 | |
---|
3362 | def weed(coordinates,volumes,boundary = None): |
---|
3363 | if type(coordinates)=='array': |
---|
3364 | coordinates = coordinates.tolist() |
---|
3365 | if type(volumes)=='array': |
---|
3366 | volumes = volumes.tolist() |
---|
3367 | |
---|
3368 | unique = False |
---|
3369 | point_dict = {} |
---|
3370 | same_point = {} |
---|
3371 | for i in range(len(coordinates)): |
---|
3372 | point = tuple(coordinates[i]) |
---|
3373 | if point_dict.has_key(point): |
---|
3374 | unique = True |
---|
3375 | same_point[i]=point |
---|
3376 | #to change all point i references to point j |
---|
3377 | else: |
---|
3378 | point_dict[point]=i |
---|
3379 | same_point[i]=point |
---|
3380 | |
---|
3381 | coordinates = [] |
---|
3382 | i = 0 |
---|
3383 | for point in point_dict.keys(): |
---|
3384 | point = tuple(point) |
---|
3385 | coordinates.append(list(point)) |
---|
3386 | point_dict[point]=i |
---|
3387 | i+=1 |
---|
3388 | |
---|
3389 | |
---|
3390 | for volume in volumes: |
---|
3391 | for i in range(len(volume)): |
---|
3392 | index = volume[i] |
---|
3393 | if index>-1: |
---|
3394 | volume[i]=point_dict[same_point[index]] |
---|
3395 | |
---|
3396 | new_boundary = {} |
---|
3397 | if not boundary is None: |
---|
3398 | for segment in boundary.keys(): |
---|
3399 | point0 = point_dict[same_point[segment[0]]] |
---|
3400 | point1 = point_dict[same_point[segment[1]]] |
---|
3401 | label = boundary[segment] |
---|
3402 | #FIXME should the bounday attributes be concaterated |
---|
3403 | #('exterior, pond') or replaced ('pond')(peter row) |
---|
3404 | |
---|
3405 | if new_boundary.has_key((point0,point1)): |
---|
3406 | new_boundary[(point0,point1)]=new_boundary[(point0,point1)]#\ |
---|
3407 | #+','+label |
---|
3408 | |
---|
3409 | elif new_boundary.has_key((point1,point0)): |
---|
3410 | new_boundary[(point1,point0)]=new_boundary[(point1,point0)]#\ |
---|
3411 | #+','+label |
---|
3412 | else: new_boundary[(point0,point1)]=label |
---|
3413 | |
---|
3414 | boundary = new_boundary |
---|
3415 | |
---|
3416 | return coordinates,volumes,boundary |
---|
3417 | |
---|
3418 | |
---|
3419 | def decimate_dem(basename_in, stencil, cellsize_new, basename_out=None, |
---|
3420 | verbose=False): |
---|
3421 | """Read Digitial Elevation model from the following NetCDF format (.dem) |
---|
3422 | |
---|
3423 | Example: |
---|
3424 | |
---|
3425 | ncols 3121 |
---|
3426 | nrows 1800 |
---|
3427 | xllcorner 722000 |
---|
3428 | yllcorner 5893000 |
---|
3429 | cellsize 25 |
---|
3430 | NODATA_value -9999 |
---|
3431 | 138.3698 137.4194 136.5062 135.5558 .......... |
---|
3432 | |
---|
3433 | Decimate data to cellsize_new using stencil and write to NetCDF dem format. |
---|
3434 | """ |
---|
3435 | |
---|
3436 | import os |
---|
3437 | from Scientific.IO.NetCDF import NetCDFFile |
---|
3438 | from Numeric import Float, zeros, sum, reshape, equal |
---|
3439 | |
---|
3440 | root = basename_in |
---|
3441 | inname = root + '.dem' |
---|
3442 | |
---|
3443 | #Open existing netcdf file to read |
---|
3444 | infile = NetCDFFile(inname, 'r') |
---|
3445 | if verbose: print 'Reading DEM from %s' %inname |
---|
3446 | |
---|
3447 | #Read metadata |
---|
3448 | ncols = infile.ncols[0] |
---|
3449 | nrows = infile.nrows[0] |
---|
3450 | xllcorner = infile.xllcorner[0] |
---|
3451 | yllcorner = infile.yllcorner[0] |
---|
3452 | cellsize = infile.cellsize[0] |
---|
3453 | NODATA_value = infile.NODATA_value[0] |
---|
3454 | zone = infile.zone[0] |
---|
3455 | false_easting = infile.false_easting[0] |
---|
3456 | false_northing = infile.false_northing[0] |
---|
3457 | projection = infile.projection |
---|
3458 | datum = infile.datum |
---|
3459 | units = infile.units |
---|
3460 | |
---|
3461 | dem_elevation = infile.variables['elevation'] |
---|
3462 | |
---|
3463 | #Get output file name |
---|
3464 | if basename_out == None: |
---|
3465 | outname = root + '_' + repr(cellsize_new) + '.dem' |
---|
3466 | else: |
---|
3467 | outname = basename_out + '.dem' |
---|
3468 | |
---|
3469 | if verbose: print 'Write decimated NetCDF file to %s' %outname |
---|
3470 | |
---|
3471 | #Determine some dimensions for decimated grid |
---|
3472 | (nrows_stencil, ncols_stencil) = stencil.shape |
---|
3473 | x_offset = ncols_stencil / 2 |
---|
3474 | y_offset = nrows_stencil / 2 |
---|
3475 | cellsize_ratio = int(cellsize_new / cellsize) |
---|
3476 | ncols_new = 1 + (ncols - ncols_stencil) / cellsize_ratio |
---|
3477 | nrows_new = 1 + (nrows - nrows_stencil) / cellsize_ratio |
---|
3478 | |
---|
3479 | #Open netcdf file for output |
---|
3480 | outfile = NetCDFFile(outname, 'w') |
---|
3481 | |
---|
3482 | #Create new file |
---|
3483 | outfile.institution = 'Geoscience Australia' |
---|
3484 | outfile.description = 'NetCDF DEM format for compact and portable storage ' +\ |
---|
3485 | 'of spatial point data' |
---|
3486 | #Georeferencing |
---|
3487 | outfile.zone = zone |
---|
3488 | outfile.projection = projection |
---|
3489 | outfile.datum = datum |
---|
3490 | outfile.units = units |
---|
3491 | |
---|
3492 | outfile.cellsize = cellsize_new |
---|
3493 | outfile.NODATA_value = NODATA_value |
---|
3494 | outfile.false_easting = false_easting |
---|
3495 | outfile.false_northing = false_northing |
---|
3496 | |
---|
3497 | outfile.xllcorner = xllcorner + (x_offset * cellsize) |
---|
3498 | outfile.yllcorner = yllcorner + (y_offset * cellsize) |
---|
3499 | outfile.ncols = ncols_new |
---|
3500 | outfile.nrows = nrows_new |
---|
3501 | |
---|
3502 | # dimension definition |
---|
3503 | outfile.createDimension('number_of_points', nrows_new*ncols_new) |
---|
3504 | |
---|
3505 | # variable definition |
---|
3506 | outfile.createVariable('elevation', Float, ('number_of_points',)) |
---|
3507 | |
---|
3508 | # Get handle to the variable |
---|
3509 | elevation = outfile.variables['elevation'] |
---|
3510 | |
---|
3511 | dem_elevation_r = reshape(dem_elevation, (nrows, ncols)) |
---|
3512 | |
---|
3513 | #Store data |
---|
3514 | global_index = 0 |
---|
3515 | for i in range(nrows_new): |
---|
3516 | if verbose: print 'Processing row %d of %d' %(i, nrows_new) |
---|
3517 | lower_index = global_index |
---|
3518 | telev = zeros(ncols_new, Float) |
---|
3519 | local_index = 0 |
---|
3520 | trow = i * cellsize_ratio |
---|
3521 | |
---|
3522 | for j in range(ncols_new): |
---|
3523 | tcol = j * cellsize_ratio |
---|
3524 | tmp = dem_elevation_r[trow:trow+nrows_stencil, tcol:tcol+ncols_stencil] |
---|
3525 | |
---|
3526 | #if dem contains 1 or more NODATA_values set value in |
---|
3527 | #decimated dem to NODATA_value, else compute decimated |
---|
3528 | #value using stencil |
---|
3529 | if sum(sum(equal(tmp, NODATA_value))) > 0: |
---|
3530 | telev[local_index] = NODATA_value |
---|
3531 | else: |
---|
3532 | telev[local_index] = sum(sum(tmp * stencil)) |
---|
3533 | |
---|
3534 | global_index += 1 |
---|
3535 | local_index += 1 |
---|
3536 | |
---|
3537 | upper_index = global_index |
---|
3538 | |
---|
3539 | elevation[lower_index:upper_index] = telev |
---|
3540 | |
---|
3541 | assert global_index == nrows_new*ncols_new, 'index not equal to number of points' |
---|
3542 | |
---|
3543 | infile.close() |
---|
3544 | outfile.close() |
---|
3545 | |
---|
3546 | |
---|
3547 | |
---|
3548 | |
---|
3549 | def tsh2sww(filename, verbose=False): #test_tsh2sww |
---|
3550 | """ |
---|
3551 | to check if a tsh/msh file 'looks' good. |
---|
3552 | """ |
---|
3553 | |
---|
3554 | from shallow_water import Domain |
---|
3555 | from anuga.abstract_2d_finite_volumes.pmesh2domain import pmesh_to_domain_instance |
---|
3556 | import time, os |
---|
3557 | #from data_manager import get_dataobject |
---|
3558 | from os import sep, path |
---|
3559 | from anuga.utilities.numerical_tools import mean |
---|
3560 | |
---|
3561 | if verbose == True:print 'Creating domain from', filename |
---|
3562 | domain = pmesh_to_domain_instance(filename, Domain) |
---|
3563 | if verbose == True:print "Number of triangles = ", len(domain) |
---|
3564 | |
---|
3565 | domain.smooth = True |
---|
3566 | domain.format = 'sww' #Native netcdf visualisation format |
---|
3567 | file_path, filename = path.split(filename) |
---|
3568 | filename, ext = path.splitext(filename) |
---|
3569 | domain.set_name(filename) |
---|
3570 | domain.reduction = mean |
---|
3571 | if verbose == True:print "file_path",file_path |
---|
3572 | if file_path == "":file_path = "." |
---|
3573 | domain.set_datadir(file_path) |
---|
3574 | |
---|
3575 | if verbose == True: |
---|
3576 | print "Output written to " + domain.get_datadir() + sep + \ |
---|
3577 | domain.get_name() + "." + domain.format |
---|
3578 | sww = get_dataobject(domain) |
---|
3579 | sww.store_connectivity() |
---|
3580 | sww.store_timestep('stage') |
---|
3581 | |
---|
3582 | |
---|
3583 | def asc_csiro2sww(bath_dir, |
---|
3584 | elevation_dir, |
---|
3585 | ucur_dir, |
---|
3586 | vcur_dir, |
---|
3587 | sww_file, |
---|
3588 | minlat = None, maxlat = None, |
---|
3589 | minlon = None, maxlon = None, |
---|
3590 | zscale=1, |
---|
3591 | mean_stage = 0, |
---|
3592 | fail_on_NaN = True, |
---|
3593 | elevation_NaN_filler = 0, |
---|
3594 | bath_prefix='ba', |
---|
3595 | elevation_prefix='el', |
---|
3596 | verbose=False): |
---|
3597 | """ |
---|
3598 | Produce an sww boundary file, from esri ascii data from CSIRO. |
---|
3599 | |
---|
3600 | Also convert latitude and longitude to UTM. All coordinates are |
---|
3601 | assumed to be given in the GDA94 datum. |
---|
3602 | |
---|
3603 | assume: |
---|
3604 | All files are in esri ascii format |
---|
3605 | |
---|
3606 | 4 types of information |
---|
3607 | bathymetry |
---|
3608 | elevation |
---|
3609 | u velocity |
---|
3610 | v velocity |
---|
3611 | |
---|
3612 | Assumptions |
---|
3613 | The metadata of all the files is the same |
---|
3614 | Each type is in a seperate directory |
---|
3615 | One bath file with extention .000 |
---|
3616 | The time period is less than 24hrs and uniform. |
---|
3617 | """ |
---|
3618 | from Scientific.IO.NetCDF import NetCDFFile |
---|
3619 | |
---|
3620 | from anuga.coordinate_transforms.redfearn import redfearn |
---|
3621 | |
---|
3622 | precision = Float # So if we want to change the precision its done here |
---|
3623 | |
---|
3624 | # go in to the bath dir and load the only file, |
---|
3625 | bath_files = os.listdir(bath_dir) |
---|
3626 | #print "bath_files",bath_files |
---|
3627 | |
---|
3628 | #fixme: make more general? |
---|
3629 | bath_file = bath_files[0] |
---|
3630 | bath_dir_file = bath_dir + os.sep + bath_file |
---|
3631 | bath_metadata,bath_grid = _read_asc(bath_dir_file) |
---|
3632 | #print "bath_metadata",bath_metadata |
---|
3633 | #print "bath_grid",bath_grid |
---|
3634 | |
---|
3635 | #Use the date.time of the bath file as a basis for |
---|
3636 | #the start time for other files |
---|
3637 | base_start = bath_file[-12:] |
---|
3638 | |
---|
3639 | #go into the elevation dir and load the 000 file |
---|
3640 | elevation_dir_file = elevation_dir + os.sep + elevation_prefix \ |
---|
3641 | + base_start |
---|
3642 | #elevation_metadata,elevation_grid = _read_asc(elevation_dir_file) |
---|
3643 | #print "elevation_dir_file",elevation_dir_file |
---|
3644 | #print "elevation_grid", elevation_grid |
---|
3645 | |
---|
3646 | elevation_files = os.listdir(elevation_dir) |
---|
3647 | ucur_files = os.listdir(ucur_dir) |
---|
3648 | vcur_files = os.listdir(vcur_dir) |
---|
3649 | elevation_files.sort() |
---|
3650 | # the first elevation file should be the |
---|
3651 | # file with the same base name as the bath data |
---|
3652 | #print "elevation_files",elevation_files |
---|
3653 | #print "'el' + base_start",'el' + base_start |
---|
3654 | assert elevation_files[0] == 'el' + base_start |
---|
3655 | |
---|
3656 | #assert bath_metadata == elevation_metadata |
---|
3657 | |
---|
3658 | |
---|
3659 | |
---|
3660 | number_of_latitudes = bath_grid.shape[0] |
---|
3661 | number_of_longitudes = bath_grid.shape[1] |
---|
3662 | #number_of_times = len(os.listdir(elevation_dir)) |
---|
3663 | #number_of_points = number_of_latitudes*number_of_longitudes |
---|
3664 | number_of_volumes = (number_of_latitudes-1)*(number_of_longitudes-1)*2 |
---|
3665 | |
---|
3666 | longitudes = [bath_metadata['xllcorner']+x*bath_metadata['cellsize'] \ |
---|
3667 | for x in range(number_of_longitudes)] |
---|
3668 | latitudes = [bath_metadata['yllcorner']+y*bath_metadata['cellsize'] \ |
---|
3669 | for y in range(number_of_latitudes)] |
---|
3670 | |
---|
3671 | # reverse order of lat, so the fist lat represents the first grid row |
---|
3672 | latitudes.reverse() |
---|
3673 | |
---|
3674 | #print "latitudes - before _get_min_max_indexes",latitudes |
---|
3675 | kmin, kmax, lmin, lmax = _get_min_max_indexes(latitudes[:],longitudes[:], |
---|
3676 | minlat=minlat, maxlat=maxlat, |
---|
3677 | minlon=minlon, maxlon=maxlon) |
---|
3678 | |
---|
3679 | |
---|
3680 | bath_grid = bath_grid[kmin:kmax,lmin:lmax] |
---|
3681 | #print "bath_grid",bath_grid |
---|
3682 | latitudes = latitudes[kmin:kmax] |
---|
3683 | longitudes = longitudes[lmin:lmax] |
---|
3684 | number_of_latitudes = len(latitudes) |
---|
3685 | number_of_longitudes = len(longitudes) |
---|
3686 | number_of_times = len(os.listdir(elevation_dir)) |
---|
3687 | number_of_points = number_of_latitudes*number_of_longitudes |
---|
3688 | number_of_volumes = (number_of_latitudes-1)*(number_of_longitudes-1)*2 |
---|
3689 | #print "number_of_points",number_of_points |
---|
3690 | |
---|
3691 | #Work out the times |
---|
3692 | if len(elevation_files) > 1: |
---|
3693 | # Assume: The time period is less than 24hrs. |
---|
3694 | time_period = (int(elevation_files[1][-3:]) - \ |
---|
3695 | int(elevation_files[0][-3:]))*60*60 |
---|
3696 | times = [x*time_period for x in range(len(elevation_files))] |
---|
3697 | else: |
---|
3698 | times = [0.0] |
---|
3699 | #print "times", times |
---|
3700 | #print "number_of_latitudes", number_of_latitudes |
---|
3701 | #print "number_of_longitudes", number_of_longitudes |
---|
3702 | #print "number_of_times", number_of_times |
---|
3703 | #print "latitudes", latitudes |
---|
3704 | #print "longitudes", longitudes |
---|
3705 | |
---|
3706 | |
---|
3707 | if verbose: |
---|
3708 | print '------------------------------------------------' |
---|
3709 | print 'Statistics:' |
---|
3710 | print ' Extent (lat/lon):' |
---|
3711 | print ' lat in [%f, %f], len(lat) == %d'\ |
---|
3712 | %(min(latitudes), max(latitudes), |
---|
3713 | len(latitudes)) |
---|
3714 | print ' lon in [%f, %f], len(lon) == %d'\ |
---|
3715 | %(min(longitudes), max(longitudes), |
---|
3716 | len(longitudes)) |
---|
3717 | print ' t in [%f, %f], len(t) == %d'\ |
---|
3718 | %(min(times), max(times), len(times)) |
---|
3719 | |
---|
3720 | ######### WRITE THE SWW FILE ############# |
---|
3721 | # NetCDF file definition |
---|
3722 | outfile = NetCDFFile(sww_file, 'w') |
---|
3723 | |
---|
3724 | #Create new file |
---|
3725 | outfile.institution = 'Geoscience Australia' |
---|
3726 | outfile.description = 'Converted from XXX' |
---|
3727 | |
---|
3728 | |
---|
3729 | #For sww compatibility |
---|
3730 | outfile.smoothing = 'Yes' |
---|
3731 | outfile.order = 1 |
---|
3732 | |
---|
3733 | #Start time in seconds since the epoch (midnight 1/1/1970) |
---|
3734 | outfile.starttime = starttime = times[0] |
---|
3735 | |
---|
3736 | |
---|
3737 | # dimension definitions |
---|
3738 | outfile.createDimension('number_of_volumes', number_of_volumes) |
---|
3739 | |
---|
3740 | outfile.createDimension('number_of_vertices', 3) |
---|
3741 | outfile.createDimension('number_of_points', number_of_points) |
---|
3742 | outfile.createDimension('number_of_timesteps', number_of_times) |
---|
3743 | |
---|
3744 | # variable definitions |
---|
3745 | outfile.createVariable('x', precision, ('number_of_points',)) |
---|
3746 | outfile.createVariable('y', precision, ('number_of_points',)) |
---|
3747 | outfile.createVariable('elevation', precision, ('number_of_points',)) |
---|
3748 | |
---|
3749 | #FIXME: Backwards compatibility |
---|
3750 | outfile.createVariable('z', precision, ('number_of_points',)) |
---|
3751 | ################################# |
---|
3752 | |
---|
3753 | outfile.createVariable('volumes', Int, ('number_of_volumes', |
---|
3754 | 'number_of_vertices')) |
---|
3755 | |
---|
3756 | outfile.createVariable('time', precision, |
---|
3757 | ('number_of_timesteps',)) |
---|
3758 | |
---|
3759 | outfile.createVariable('stage', precision, |
---|
3760 | ('number_of_timesteps', |
---|
3761 | 'number_of_points')) |
---|
3762 | |
---|
3763 | outfile.createVariable('xmomentum', precision, |
---|
3764 | ('number_of_timesteps', |
---|
3765 | 'number_of_points')) |
---|
3766 | |
---|
3767 | outfile.createVariable('ymomentum', precision, |
---|
3768 | ('number_of_timesteps', |
---|
3769 | 'number_of_points')) |
---|
3770 | |
---|
3771 | #Store |
---|
3772 | from anuga.coordinate_transforms.redfearn import redfearn |
---|
3773 | x = zeros(number_of_points, Float) #Easting |
---|
3774 | y = zeros(number_of_points, Float) #Northing |
---|
3775 | |
---|
3776 | if verbose: print 'Making triangular grid' |
---|
3777 | #Get zone of 1st point. |
---|
3778 | refzone, _, _ = redfearn(latitudes[0],longitudes[0]) |
---|
3779 | |
---|
3780 | vertices = {} |
---|
3781 | i = 0 |
---|
3782 | for k, lat in enumerate(latitudes): |
---|
3783 | for l, lon in enumerate(longitudes): |
---|
3784 | |
---|
3785 | vertices[l,k] = i |
---|
3786 | |
---|
3787 | zone, easting, northing = redfearn(lat,lon) |
---|
3788 | |
---|
3789 | msg = 'Zone boundary crossed at longitude =', lon |
---|
3790 | #assert zone == refzone, msg |
---|
3791 | #print '%7.2f %7.2f %8.2f %8.2f' %(lon, lat, easting, northing) |
---|
3792 | x[i] = easting |
---|
3793 | y[i] = northing |
---|
3794 | i += 1 |
---|
3795 | |
---|
3796 | |
---|
3797 | #Construct 2 triangles per 'rectangular' element |
---|
3798 | volumes = [] |
---|
3799 | for l in range(number_of_longitudes-1): #X direction |
---|
3800 | for k in range(number_of_latitudes-1): #Y direction |
---|
3801 | v1 = vertices[l,k+1] |
---|
3802 | v2 = vertices[l,k] |
---|
3803 | v3 = vertices[l+1,k+1] |
---|
3804 | v4 = vertices[l+1,k] |
---|
3805 | |
---|
3806 | #Note, this is different to the ferrit2sww code |
---|
3807 | #since the order of the lats is reversed. |
---|
3808 | volumes.append([v1,v3,v2]) #Upper element |
---|
3809 | volumes.append([v4,v2,v3]) #Lower element |
---|
3810 | |
---|
3811 | volumes = array(volumes) |
---|
3812 | |
---|
3813 | geo_ref = Geo_reference(refzone,min(x),min(y)) |
---|
3814 | geo_ref.write_NetCDF(outfile) |
---|
3815 | |
---|
3816 | # This will put the geo ref in the middle |
---|
3817 | #geo_ref = Geo_reference(refzone,(max(x)+min(x))/2.0,(max(x)+min(y))/2.) |
---|
3818 | |
---|
3819 | |
---|
3820 | if verbose: |
---|
3821 | print '------------------------------------------------' |
---|
3822 | print 'More Statistics:' |
---|
3823 | print ' Extent (/lon):' |
---|
3824 | print ' x in [%f, %f], len(lat) == %d'\ |
---|
3825 | %(min(x), max(x), |
---|
3826 | len(x)) |
---|
3827 | print ' y in [%f, %f], len(lon) == %d'\ |
---|
3828 | %(min(y), max(y), |
---|
3829 | len(y)) |
---|
3830 | print 'geo_ref: ',geo_ref |
---|
3831 | |
---|
3832 | z = resize(bath_grid,outfile.variables['z'][:].shape) |
---|
3833 | outfile.variables['x'][:] = x - geo_ref.get_xllcorner() |
---|
3834 | outfile.variables['y'][:] = y - geo_ref.get_yllcorner() |
---|
3835 | outfile.variables['z'][:] = z |
---|
3836 | outfile.variables['elevation'][:] = z #FIXME HACK |
---|
3837 | outfile.variables['volumes'][:] = volumes.astype(Int32) #On Opteron 64 |
---|
3838 | |
---|
3839 | # do this to create an ok sww file. |
---|
3840 | #outfile.variables['time'][:] = [0] #Store time relative |
---|
3841 | #outfile.variables['stage'] = z |
---|
3842 | # put the next line up in the code after outfile.order = 1 |
---|
3843 | #number_of_times = 1 |
---|
3844 | |
---|
3845 | stage = outfile.variables['stage'] |
---|
3846 | xmomentum = outfile.variables['xmomentum'] |
---|
3847 | ymomentum = outfile.variables['ymomentum'] |
---|
3848 | |
---|
3849 | outfile.variables['time'][:] = times #Store time relative |
---|
3850 | |
---|
3851 | if verbose: print 'Converting quantities' |
---|
3852 | n = number_of_times |
---|
3853 | for j in range(number_of_times): |
---|
3854 | # load in files |
---|
3855 | elevation_meta, elevation_grid = \ |
---|
3856 | _read_asc(elevation_dir + os.sep + elevation_files[j]) |
---|
3857 | |
---|
3858 | _, u_momentum_grid = _read_asc(ucur_dir + os.sep + ucur_files[j]) |
---|
3859 | _, v_momentum_grid = _read_asc(vcur_dir + os.sep + vcur_files[j]) |
---|
3860 | |
---|
3861 | #print "elevation_grid",elevation_grid |
---|
3862 | #cut matrix to desired size |
---|
3863 | elevation_grid = elevation_grid[kmin:kmax,lmin:lmax] |
---|
3864 | u_momentum_grid = u_momentum_grid[kmin:kmax,lmin:lmax] |
---|
3865 | v_momentum_grid = v_momentum_grid[kmin:kmax,lmin:lmax] |
---|
3866 | #print "elevation_grid",elevation_grid |
---|
3867 | # handle missing values |
---|
3868 | missing = (elevation_grid == elevation_meta['NODATA_value']) |
---|
3869 | if sometrue (missing): |
---|
3870 | if fail_on_NaN: |
---|
3871 | msg = 'File %s contains missing values'\ |
---|
3872 | %(elevation_files[j]) |
---|
3873 | raise DataMissingValuesError, msg |
---|
3874 | else: |
---|
3875 | elevation_grid = elevation_grid*(missing==0) + \ |
---|
3876 | missing*elevation_NaN_filler |
---|
3877 | |
---|
3878 | |
---|
3879 | if verbose and j%((n+10)/10)==0: print ' Doing %d of %d' %(j, n) |
---|
3880 | i = 0 |
---|
3881 | for k in range(number_of_latitudes): #Y direction |
---|
3882 | for l in range(number_of_longitudes): #X direction |
---|
3883 | w = zscale*elevation_grid[k,l] + mean_stage |
---|
3884 | stage[j,i] = w |
---|
3885 | h = w - z[i] |
---|
3886 | xmomentum[j,i] = u_momentum_grid[k,l]*h |
---|
3887 | ymomentum[j,i] = v_momentum_grid[k,l]*h |
---|
3888 | i += 1 |
---|
3889 | outfile.close() |
---|
3890 | |
---|
3891 | def _get_min_max_indexes(latitudes,longitudes, |
---|
3892 | minlat=None, maxlat=None, |
---|
3893 | minlon=None, maxlon=None): |
---|
3894 | """ |
---|
3895 | return max, min indexes (for slicing) of the lat and long arrays to cover the area |
---|
3896 | specified with min/max lat/long |
---|
3897 | |
---|
3898 | Think of the latitudes and longitudes describing a 2d surface. |
---|
3899 | The area returned is, if possible, just big enough to cover the |
---|
3900 | inputed max/min area. (This will not be possible if the max/min area |
---|
3901 | has a section outside of the latitudes/longitudes area.) |
---|
3902 | |
---|
3903 | assume latitudess & longitudes are sorted, |
---|
3904 | long - from low to high (west to east, eg 148 - 151) |
---|
3905 | lat - from high to low (north to south, eg -35 - -38) |
---|
3906 | """ |
---|
3907 | |
---|
3908 | # reverse order of lat, so it's in ascending order |
---|
3909 | try: |
---|
3910 | latitudes = latitudes.tolist() |
---|
3911 | except: |
---|
3912 | pass |
---|
3913 | |
---|
3914 | latitudes.reverse() |
---|
3915 | |
---|
3916 | largest_lat_index = len(latitudes)-1 |
---|
3917 | #Cut out a smaller extent. |
---|
3918 | if minlat == None: |
---|
3919 | lat_min_index = 0 |
---|
3920 | else: |
---|
3921 | lat_min_index = searchsorted(latitudes, minlat)-1 |
---|
3922 | if lat_min_index <0: |
---|
3923 | lat_min_index = 0 |
---|
3924 | |
---|
3925 | |
---|
3926 | if maxlat == None: |
---|
3927 | lat_max_index = largest_lat_index #len(latitudes) |
---|
3928 | else: |
---|
3929 | lat_max_index = searchsorted(latitudes, maxlat) |
---|
3930 | if lat_max_index > largest_lat_index: |
---|
3931 | lat_max_index = largest_lat_index |
---|
3932 | |
---|
3933 | if minlon == None: |
---|
3934 | lon_min_index = 0 |
---|
3935 | else: |
---|
3936 | lon_min_index = searchsorted(longitudes, minlon)-1 |
---|
3937 | if lon_min_index <0: |
---|
3938 | lon_min_index = 0 |
---|
3939 | |
---|
3940 | if maxlon == None: |
---|
3941 | lon_max_index = len(longitudes) |
---|
3942 | else: |
---|
3943 | lon_max_index = searchsorted(longitudes, maxlon) |
---|
3944 | |
---|
3945 | #Take into account that the latitude list was reversed |
---|
3946 | latitudes.reverse() # Python passes by reference, need to swap back |
---|
3947 | lat_min_index, lat_max_index = largest_lat_index - lat_max_index , \ |
---|
3948 | largest_lat_index - lat_min_index |
---|
3949 | lat_max_index = lat_max_index + 1 # taking into account how slicing works |
---|
3950 | lon_max_index = lon_max_index + 1 # taking into account how slicing works |
---|
3951 | |
---|
3952 | return lat_min_index, lat_max_index, lon_min_index, lon_max_index |
---|
3953 | |
---|
3954 | |
---|
3955 | def _read_asc(filename, verbose=False): |
---|
3956 | """Read esri file from the following ASCII format (.asc) |
---|
3957 | |
---|
3958 | Example: |
---|
3959 | |
---|
3960 | ncols 3121 |
---|
3961 | nrows 1800 |
---|
3962 | xllcorner 722000 |
---|
3963 | yllcorner 5893000 |
---|
3964 | cellsize 25 |
---|
3965 | NODATA_value -9999 |
---|
3966 | 138.3698 137.4194 136.5062 135.5558 .......... |
---|
3967 | |
---|
3968 | """ |
---|
3969 | |
---|
3970 | datafile = open(filename) |
---|
3971 | |
---|
3972 | if verbose: print 'Reading DEM from %s' %(filename) |
---|
3973 | lines = datafile.readlines() |
---|
3974 | datafile.close() |
---|
3975 | |
---|
3976 | if verbose: print 'Got', len(lines), ' lines' |
---|
3977 | |
---|
3978 | ncols = int(lines.pop(0).split()[1].strip()) |
---|
3979 | nrows = int(lines.pop(0).split()[1].strip()) |
---|
3980 | xllcorner = float(lines.pop(0).split()[1].strip()) |
---|
3981 | yllcorner = float(lines.pop(0).split()[1].strip()) |
---|
3982 | cellsize = float(lines.pop(0).split()[1].strip()) |
---|
3983 | NODATA_value = float(lines.pop(0).split()[1].strip()) |
---|
3984 | |
---|
3985 | assert len(lines) == nrows |
---|
3986 | |
---|
3987 | #Store data |
---|
3988 | grid = [] |
---|
3989 | |
---|
3990 | n = len(lines) |
---|
3991 | for i, line in enumerate(lines): |
---|
3992 | cells = line.split() |
---|
3993 | assert len(cells) == ncols |
---|
3994 | grid.append(array([float(x) for x in cells])) |
---|
3995 | grid = array(grid) |
---|
3996 | |
---|
3997 | return {'xllcorner':xllcorner, |
---|
3998 | 'yllcorner':yllcorner, |
---|
3999 | 'cellsize':cellsize, |
---|
4000 | 'NODATA_value':NODATA_value}, grid |
---|
4001 | |
---|
4002 | |
---|
4003 | |
---|
4004 | #### URS 2 SWW ### |
---|
4005 | |
---|
4006 | lon_name = 'LON' |
---|
4007 | lat_name = 'LAT' |
---|
4008 | time_name = 'TIME' |
---|
4009 | precision = Float # So if we want to change the precision its done here |
---|
4010 | class Write_nc: |
---|
4011 | """ |
---|
4012 | Write an nc file. |
---|
4013 | |
---|
4014 | Note, this should be checked to meet cdc netcdf conventions for gridded |
---|
4015 | data. http://www.cdc.noaa.gov/cdc/conventions/cdc_netcdf_standard.shtml |
---|
4016 | |
---|
4017 | """ |
---|
4018 | def __init__(self, |
---|
4019 | quantity_name, |
---|
4020 | file_name, |
---|
4021 | time_step_count, |
---|
4022 | time_step, |
---|
4023 | lon, |
---|
4024 | lat): |
---|
4025 | """ |
---|
4026 | time_step_count is the number of time steps. |
---|
4027 | time_step is the time step size |
---|
4028 | |
---|
4029 | pre-condition: quantity_name must be 'HA' 'UA'or 'VA'. |
---|
4030 | """ |
---|
4031 | self.quantity_name = quantity_name |
---|
4032 | quantity_units= {'HA':'METERS', |
---|
4033 | 'UA':'METERS/SECOND', |
---|
4034 | 'VA':'METERS/SECOND'} |
---|
4035 | |
---|
4036 | #self.file_name = file_name |
---|
4037 | self.time_step_count = time_step_count |
---|
4038 | self.time_step = time_step |
---|
4039 | |
---|
4040 | # NetCDF file definition |
---|
4041 | self.outfile = NetCDFFile(file_name, 'w') |
---|
4042 | outfile = self.outfile |
---|
4043 | |
---|
4044 | #Create new file |
---|
4045 | nc_lon_lat_header(outfile, lon, lat) |
---|
4046 | |
---|
4047 | # TIME |
---|
4048 | outfile.createDimension(time_name, None) |
---|
4049 | outfile.createVariable(time_name, precision, (time_name,)) |
---|
4050 | |
---|
4051 | #QUANTITY |
---|
4052 | outfile.createVariable(self.quantity_name, precision, |
---|
4053 | (time_name, lat_name, lon_name)) |
---|
4054 | outfile.variables[self.quantity_name].missing_value=-1.e+034 |
---|
4055 | outfile.variables[self.quantity_name].units= \ |
---|
4056 | quantity_units[self.quantity_name] |
---|
4057 | outfile.variables[lon_name][:]= ensure_numeric(lon) |
---|
4058 | outfile.variables[lat_name][:]= ensure_numeric(lat) |
---|
4059 | |
---|
4060 | #Assume no one will be wanting to read this, while we are writing |
---|
4061 | #outfile.close() |
---|
4062 | |
---|
4063 | def store_timestep(self, quantity_slice): |
---|
4064 | """ |
---|
4065 | quantity_slice is the data to be stored at this time step |
---|
4066 | """ |
---|
4067 | |
---|
4068 | outfile = self.outfile |
---|
4069 | |
---|
4070 | # Get the variables |
---|
4071 | time = outfile.variables[time_name] |
---|
4072 | quantity = outfile.variables[self.quantity_name] |
---|
4073 | |
---|
4074 | i = len(time) |
---|
4075 | |
---|
4076 | #Store time |
---|
4077 | time[i] = i*self.time_step #self.domain.time |
---|
4078 | quantity[i,:] = quantity_slice*100 # To convert from m to cm |
---|
4079 | # And m/s to cm/sec |
---|
4080 | |
---|
4081 | def close(self): |
---|
4082 | self.outfile.close() |
---|
4083 | |
---|
4084 | def urs2sww(basename_in='o', basename_out=None, verbose=False, |
---|
4085 | remove_nc_files=True, |
---|
4086 | minlat=None, maxlat=None, |
---|
4087 | minlon= None, maxlon=None, |
---|
4088 | mint=None, maxt=None, |
---|
4089 | mean_stage=0, |
---|
4090 | origin = None, |
---|
4091 | zscale=1, |
---|
4092 | fail_on_NaN=True, |
---|
4093 | NaN_filler=0, |
---|
4094 | elevation=None): |
---|
4095 | """ |
---|
4096 | Convert URS C binary format for wave propagation to |
---|
4097 | sww format native to abstract_2d_finite_volumes. |
---|
4098 | |
---|
4099 | Specify only basename_in and read files of the form |
---|
4100 | basefilename-z-mux, basefilename-e-mux and basefilename-n-mux containing |
---|
4101 | relative height, x-velocity and y-velocity, respectively. |
---|
4102 | |
---|
4103 | Also convert latitude and longitude to UTM. All coordinates are |
---|
4104 | assumed to be given in the GDA94 datum. The latitude and longitude |
---|
4105 | information is for a grid. |
---|
4106 | |
---|
4107 | min's and max's: If omitted - full extend is used. |
---|
4108 | To include a value min may equal it, while max must exceed it. |
---|
4109 | Lat and lon are assumed to be in decimal degrees. |
---|
4110 | NOTE: minlon is the most east boundary. |
---|
4111 | |
---|
4112 | origin is a 3-tuple with geo referenced |
---|
4113 | UTM coordinates (zone, easting, northing) |
---|
4114 | It will be the origin of the sww file. This shouldn't be used, |
---|
4115 | since all of anuga should be able to handle an arbitary origin. |
---|
4116 | |
---|
4117 | |
---|
4118 | URS C binary format has data orgainised as TIME, LONGITUDE, LATITUDE |
---|
4119 | which means that latitude is the fastest |
---|
4120 | varying dimension (row major order, so to speak) |
---|
4121 | |
---|
4122 | In URS C binary the latitudes and longitudes are in assending order. |
---|
4123 | """ |
---|
4124 | |
---|
4125 | if basename_out == None: |
---|
4126 | basename_out = basename_in |
---|
4127 | files_out = urs2nc(basename_in, basename_out) |
---|
4128 | ferret2sww(basename_out, |
---|
4129 | minlat=minlat, |
---|
4130 | maxlat=maxlat, |
---|
4131 | minlon=minlon, |
---|
4132 | maxlon=maxlon, |
---|
4133 | mint=mint, |
---|
4134 | maxt=maxt, |
---|
4135 | mean_stage=mean_stage, |
---|
4136 | origin=origin, |
---|
4137 | zscale=zscale, |
---|
4138 | fail_on_NaN=fail_on_NaN, |
---|
4139 | NaN_filler=NaN_filler, |
---|
4140 | inverted_bathymetry=True, |
---|
4141 | verbose=verbose) |
---|
4142 | #print "files_out",files_out |
---|
4143 | if remove_nc_files: |
---|
4144 | for file_out in files_out: |
---|
4145 | os.remove(file_out) |
---|
4146 | |
---|
4147 | def urs2nc(basename_in = 'o', basename_out = 'urs'): |
---|
4148 | """ |
---|
4149 | Convert the 3 urs files to 4 nc files. |
---|
4150 | |
---|
4151 | The name of the urs file names must be; |
---|
4152 | [basename_in]-z-mux |
---|
4153 | [basename_in]-e-mux |
---|
4154 | [basename_in]-n-mux |
---|
4155 | |
---|
4156 | """ |
---|
4157 | files_in = [basename_in+'-z-mux', |
---|
4158 | basename_in+'-e-mux', |
---|
4159 | basename_in+'-n-mux'] |
---|
4160 | files_out = [basename_out+'_ha.nc', |
---|
4161 | basename_out+'_ua.nc', |
---|
4162 | basename_out+'_va.nc'] |
---|
4163 | quantities = ['HA','UA','VA'] |
---|
4164 | |
---|
4165 | for file_name in files_in: |
---|
4166 | if os.access(file_name, os.F_OK) == 0 : |
---|
4167 | msg = 'File %s does not exist or is not accessible' %file_name |
---|
4168 | raise IOError, msg |
---|
4169 | |
---|
4170 | hashed_elevation = None |
---|
4171 | for file_in, file_out, quantity in map(None, files_in, |
---|
4172 | files_out, |
---|
4173 | quantities): |
---|
4174 | lonlatdep, lon, lat, depth = _binary_c2nc(file_in, |
---|
4175 | file_out, |
---|
4176 | quantity) |
---|
4177 | #print "lonlatdep", lonlatdep |
---|
4178 | if hashed_elevation == None: |
---|
4179 | elevation_file = basename_out+'_e.nc' |
---|
4180 | write_elevation_nc(elevation_file, |
---|
4181 | lon, |
---|
4182 | lat, |
---|
4183 | depth) |
---|
4184 | hashed_elevation = myhash(lonlatdep) |
---|
4185 | else: |
---|
4186 | msg = "The elevation information in the mux files is inconsistent" |
---|
4187 | assert hashed_elevation == myhash(lonlatdep), msg |
---|
4188 | files_out.append(elevation_file) |
---|
4189 | return files_out |
---|
4190 | |
---|
4191 | def _binary_c2nc(file_in, file_out, quantity): |
---|
4192 | """ |
---|
4193 | Reads in a quantity urs file and writes a quantity nc file. |
---|
4194 | additionally, returns the depth and lat, long info, |
---|
4195 | so it can be written to a file. |
---|
4196 | """ |
---|
4197 | columns = 3 # long, lat , depth |
---|
4198 | mux_file = open(file_in, 'rb') |
---|
4199 | |
---|
4200 | # Number of points/stations |
---|
4201 | (points_num,)= unpack('i',mux_file.read(4)) |
---|
4202 | |
---|
4203 | # nt, int - Number of time steps |
---|
4204 | (time_step_count,)= unpack('i',mux_file.read(4)) |
---|
4205 | |
---|
4206 | #dt, float - time step, seconds |
---|
4207 | (time_step,) = unpack('f', mux_file.read(4)) |
---|
4208 | |
---|
4209 | msg = "Bad data in the mux file." |
---|
4210 | if points_num < 0: |
---|
4211 | mux_file.close() |
---|
4212 | raise ANUGAError, msg |
---|
4213 | if time_step_count < 0: |
---|
4214 | mux_file.close() |
---|
4215 | raise ANUGAError, msg |
---|
4216 | if time_step < 0: |
---|
4217 | mux_file.close() |
---|
4218 | raise ANUGAError, msg |
---|
4219 | |
---|
4220 | lonlatdep = p_array.array('f') |
---|
4221 | lonlatdep.read(mux_file, columns * points_num) |
---|
4222 | lonlatdep = array(lonlatdep, typecode=Float) |
---|
4223 | lonlatdep = reshape(lonlatdep, (points_num, columns)) |
---|
4224 | |
---|
4225 | lon, lat, depth = lon_lat2grid(lonlatdep) |
---|
4226 | lon_sorted = list(lon) |
---|
4227 | lon_sorted.sort() |
---|
4228 | |
---|
4229 | if not lon == lon_sorted: |
---|
4230 | msg = "Longitudes in mux file are not in ascending order" |
---|
4231 | raise IOError, msg |
---|
4232 | lat_sorted = list(lat) |
---|
4233 | lat_sorted.sort() |
---|
4234 | |
---|
4235 | if not lat == lat_sorted: |
---|
4236 | msg = "Latitudes in mux file are not in ascending order" |
---|
4237 | |
---|
4238 | nc_file = Write_nc(quantity, |
---|
4239 | file_out, |
---|
4240 | time_step_count, |
---|
4241 | time_step, |
---|
4242 | lon, |
---|
4243 | lat) |
---|
4244 | |
---|
4245 | for i in range(time_step_count): |
---|
4246 | #Read in a time slice from mux file |
---|
4247 | hz_p_array = p_array.array('f') |
---|
4248 | hz_p_array.read(mux_file, points_num) |
---|
4249 | hz_p = array(hz_p_array, typecode=Float) |
---|
4250 | hz_p = reshape(hz_p, (len(lon), len(lat))) |
---|
4251 | hz_p = transpose(hz_p) #mux has lat varying fastest, nc has long v.f. |
---|
4252 | |
---|
4253 | #write time slice to nc file |
---|
4254 | nc_file.store_timestep(hz_p) |
---|
4255 | mux_file.close() |
---|
4256 | nc_file.close() |
---|
4257 | |
---|
4258 | return lonlatdep, lon, lat, depth |
---|
4259 | |
---|
4260 | |
---|
4261 | def write_elevation_nc(file_out, lon, lat, depth_vector): |
---|
4262 | """ |
---|
4263 | Write an nc elevation file. |
---|
4264 | """ |
---|
4265 | |
---|
4266 | # NetCDF file definition |
---|
4267 | outfile = NetCDFFile(file_out, 'w') |
---|
4268 | |
---|
4269 | #Create new file |
---|
4270 | nc_lon_lat_header(outfile, lon, lat) |
---|
4271 | |
---|
4272 | # ELEVATION |
---|
4273 | zname = 'ELEVATION' |
---|
4274 | outfile.createVariable(zname, precision, (lat_name, lon_name)) |
---|
4275 | outfile.variables[zname].units='CENTIMETERS' |
---|
4276 | outfile.variables[zname].missing_value=-1.e+034 |
---|
4277 | |
---|
4278 | outfile.variables[lon_name][:]= ensure_numeric(lon) |
---|
4279 | outfile.variables[lat_name][:]= ensure_numeric(lat) |
---|
4280 | |
---|
4281 | depth = reshape(depth_vector, ( len(lat), len(lon))) |
---|
4282 | outfile.variables[zname][:]= depth |
---|
4283 | |
---|
4284 | outfile.close() |
---|
4285 | |
---|
4286 | def nc_lon_lat_header(outfile, lon, lat): |
---|
4287 | """ |
---|
4288 | outfile is the netcdf file handle. |
---|
4289 | lon - a list/array of the longitudes |
---|
4290 | lat - a list/array of the latitudes |
---|
4291 | """ |
---|
4292 | |
---|
4293 | outfile.institution = 'Geoscience Australia' |
---|
4294 | outfile.description = 'Converted from URS binary C' |
---|
4295 | |
---|
4296 | # Longitude |
---|
4297 | outfile.createDimension(lon_name, len(lon)) |
---|
4298 | outfile.createVariable(lon_name, precision, (lon_name,)) |
---|
4299 | outfile.variables[lon_name].point_spacing='uneven' |
---|
4300 | outfile.variables[lon_name].units='degrees_east' |
---|
4301 | outfile.variables[lon_name].assignValue(lon) |
---|
4302 | |
---|
4303 | |
---|
4304 | # Latitude |
---|
4305 | outfile.createDimension(lat_name, len(lat)) |
---|
4306 | outfile.createVariable(lat_name, precision, (lat_name,)) |
---|
4307 | outfile.variables[lat_name].point_spacing='uneven' |
---|
4308 | outfile.variables[lat_name].units='degrees_north' |
---|
4309 | outfile.variables[lat_name].assignValue(lat) |
---|
4310 | |
---|
4311 | |
---|
4312 | |
---|
4313 | def lon_lat2grid(long_lat_dep): |
---|
4314 | """ |
---|
4315 | given a list of points that are assumed to be an a grid, |
---|
4316 | return the long's and lat's of the grid. |
---|
4317 | long_lat_dep is an array where each row is a position. |
---|
4318 | The first column is longitudes. |
---|
4319 | The second column is latitudes. |
---|
4320 | |
---|
4321 | The latitude is the fastest varying dimension - in mux files |
---|
4322 | """ |
---|
4323 | LONG = 0 |
---|
4324 | LAT = 1 |
---|
4325 | QUANTITY = 2 |
---|
4326 | |
---|
4327 | long_lat_dep = ensure_numeric(long_lat_dep, Float) |
---|
4328 | |
---|
4329 | num_points = long_lat_dep.shape[0] |
---|
4330 | this_rows_long = long_lat_dep[0,LONG] |
---|
4331 | |
---|
4332 | # Count the length of unique latitudes |
---|
4333 | i = 0 |
---|
4334 | while long_lat_dep[i,LONG] == this_rows_long and i < num_points: |
---|
4335 | i += 1 |
---|
4336 | # determine the lats and longsfrom the grid |
---|
4337 | lat = long_lat_dep[:i, LAT] |
---|
4338 | long = long_lat_dep[::i, LONG] |
---|
4339 | |
---|
4340 | lenlong = len(long) |
---|
4341 | lenlat = len(lat) |
---|
4342 | #print 'len lat', lat, len(lat) |
---|
4343 | #print 'len long', long, len(long) |
---|
4344 | |
---|
4345 | msg = 'Input data is not gridded' |
---|
4346 | assert num_points % lenlat == 0, msg |
---|
4347 | assert num_points % lenlong == 0, msg |
---|
4348 | |
---|
4349 | # Test that data is gridded |
---|
4350 | for i in range(lenlong): |
---|
4351 | msg = 'Data is not gridded. It must be for this operation' |
---|
4352 | first = i*lenlat |
---|
4353 | last = first + lenlat |
---|
4354 | |
---|
4355 | assert allclose(long_lat_dep[first:last,LAT], lat), msg |
---|
4356 | assert allclose(long_lat_dep[first:last,LONG], long[i]), msg |
---|
4357 | |
---|
4358 | |
---|
4359 | # print 'range long', min(long), max(long) |
---|
4360 | # print 'range lat', min(lat), max(lat) |
---|
4361 | # print 'ref long', min(long_lat_dep[:,0]), max(long_lat_dep[:,0]) |
---|
4362 | # print 'ref lat', min(long_lat_dep[:,1]), max(long_lat_dep[:,1]) |
---|
4363 | |
---|
4364 | |
---|
4365 | |
---|
4366 | msg = 'Out of range latitudes/longitudes' |
---|
4367 | for l in lat:assert -90 < l < 90 , msg |
---|
4368 | for l in long:assert -180 < l < 180 , msg |
---|
4369 | |
---|
4370 | # Changing quantity from lat being the fastest varying dimension to |
---|
4371 | # long being the fastest varying dimension |
---|
4372 | # FIXME - make this faster/do this a better way |
---|
4373 | # use numeric transpose, after reshaping the quantity vector |
---|
4374 | # quantity = zeros(len(long_lat_dep), Float) |
---|
4375 | quantity = zeros(num_points, Float) |
---|
4376 | |
---|
4377 | # print 'num',num_points |
---|
4378 | for lat_i, _ in enumerate(lat): |
---|
4379 | for long_i, _ in enumerate(long): |
---|
4380 | q_index = lat_i*lenlong+long_i |
---|
4381 | lld_index = long_i*lenlat+lat_i |
---|
4382 | # print 'lat_i', lat_i, 'long_i',long_i, 'q_index', q_index, 'lld_index', lld_index |
---|
4383 | temp = long_lat_dep[lld_index, QUANTITY] |
---|
4384 | quantity[q_index] = temp |
---|
4385 | |
---|
4386 | return long, lat, quantity |
---|
4387 | |
---|
4388 | #### END URS 2 SWW ### |
---|
4389 | #------------------------------------------------------------- |
---|
4390 | if __name__ == "__main__": |
---|
4391 | pass |
---|
4392 | |
---|