source: anuga_core/source/anuga/shallow_water/data_manager.py @ 5254

Last change on this file since 5254 was 5254, checked in by duncan, 17 years ago

Adding northern hemisphere tests for URS_points_needed.

File size: 196.2 KB
Line 
1"""datamanager.py - input output for AnuGA
2
3
4This module takes care of reading and writing datafiles such as topograhies,
5model output, etc
6
7
8Formats used within AnuGA:
9
10.sww: Netcdf format for storing model output f(t,x,y)
11.tms: Netcdf format for storing time series f(t)
12
13.csv: ASCII format for storing arbitrary points and associated attributes
14.pts: NetCDF format for storing arbitrary points and associated attributes
15
16.asc: ASCII format of regular DEMs as output from ArcView
17.prj: Associated ArcView file giving more meta data for asc format
18.ers: ERMapper header format of regular DEMs for ArcView
19
20.dem: NetCDF representation of regular DEM data
21
22.tsh: ASCII format for storing meshes and associated boundary and region info
23.msh: NetCDF format for storing meshes and associated boundary and region info
24
25.nc: Native ferret NetCDF format
26.geo: Houdinis ascii geometry format (?)
27
28
29A typical dataflow can be described as follows
30
31Manually created files:
32ASC, PRJ:     Digital elevation models (gridded)
33TSH:          Triangular meshes (e.g. created from anuga.pmesh)
34NC            Model outputs for use as boundary conditions (e.g from MOST)
35
36
37AUTOMATICALLY CREATED FILES:
38
39ASC, PRJ  ->  DEM  ->  PTS: Conversion of DEM's to native pts file
40
41NC -> SWW: Conversion of MOST bundary files to boundary sww
42
43PTS + TSH -> TSH with elevation: Least squares fit
44
45TSH -> SWW:  Conversion of TSH to sww viewable using Swollen
46
47TSH + Boundary SWW -> SWW: Simluation using abstract_2d_finite_volumes
48
49"""
50
51import exceptions
52class TitleValueError(exceptions.Exception): pass
53class DataMissingValuesError(exceptions.Exception): pass
54class DataFileNotOpenError(exceptions.Exception): pass
55class DataTimeError(exceptions.Exception): pass
56class DataDomainError(exceptions.Exception): pass
57class NewQuantity(exceptions.Exception): pass
58
59
60
61import csv
62import os, sys
63import shutil
64from struct import unpack
65import array as p_array
66#import time, os
67from os import sep, path, remove, mkdir, access, F_OK, W_OK, getcwd
68
69
70from Numeric import concatenate, array, Float, Int, Int32, resize, \
71     sometrue, searchsorted, zeros, allclose, around, reshape, \
72     transpose, sort, NewAxis, ArrayType, compress, take, arange, \
73     argmax, alltrue, shape, Float32, size
74
75import string
76
77from Scientific.IO.NetCDF import NetCDFFile
78#from shutil import copy
79from os.path import exists, basename, join
80from os import getcwd
81
82
83from anuga.coordinate_transforms.redfearn import redfearn, \
84     convert_from_latlon_to_utm
85from anuga.coordinate_transforms.geo_reference import Geo_reference, \
86     write_NetCDF_georeference, ensure_geo_reference
87from anuga.geospatial_data.geospatial_data import Geospatial_data,\
88     ensure_absolute
89from anuga.config import minimum_storable_height as default_minimum_storable_height
90from anuga.config import max_float
91from anuga.utilities.numerical_tools import ensure_numeric,  mean
92from anuga.caching.caching import myhash
93from anuga.utilities.anuga_exceptions import ANUGAError
94from anuga.shallow_water import Domain
95from anuga.abstract_2d_finite_volumes.pmesh2domain import \
96     pmesh_to_domain_instance
97from anuga.abstract_2d_finite_volumes.util import get_revision_number, \
98     remove_lone_verts, sww2timeseries, get_centroid_values
99from anuga.load_mesh.loadASCII import export_mesh_file
100from anuga.utilities.polygon import intersection
101
102
103# formula mappings
104
105quantity_formula = {'momentum':'(xmomentum**2 + ymomentum**2)**0.5',
106                    'depth':'stage-elevation',
107                    'speed': \
108 '(xmomentum**2 + ymomentum**2)**0.5/(stage-elevation+1.e-6/(stage-elevation))'}
109
110
111   
112def make_filename(s):
113    """Transform argument string into a Sexsuitable filename
114    """
115
116    s = s.strip()
117    s = s.replace(' ', '_')
118    s = s.replace('(', '')
119    s = s.replace(')', '')
120    s = s.replace('__', '_')
121
122    return s
123
124
125def check_dir(path, verbose=None):
126    """Check that specified path exists.
127    If path does not exist it will be created if possible
128
129    USAGE:
130       checkdir(path, verbose):
131
132    ARGUMENTS:
133        path -- Directory
134        verbose -- Flag verbose output (default: None)
135
136    RETURN VALUE:
137        Verified path including trailing separator
138
139    """
140
141    import os.path
142
143    if sys.platform in ['nt', 'dos', 'win32', 'what else?']:
144        unix = 0
145    else:
146        unix = 1
147
148
149    if path[-1] != os.sep:
150        path = path + os.sep  # Add separator for directories
151
152    path = os.path.expanduser(path) # Expand ~ or ~user in pathname
153    if not (os.access(path,os.R_OK and os.W_OK) or path == ''):
154        try:
155            exitcode=os.mkdir(path)
156
157            # Change access rights if possible
158            #
159            if unix:
160                exitcode=os.system('chmod 775 '+path)
161            else:
162                pass  # FIXME: What about acces rights under Windows?
163
164            if verbose: print 'MESSAGE: Directory', path, 'created.'
165
166        except:
167            print 'WARNING: Directory', path, 'could not be created.'
168            if unix:
169                path = '/tmp/'
170            else:
171                path = 'C:'
172
173            print 'Using directory %s instead' %path
174
175    return(path)
176
177
178
179def del_dir(path):
180    """Recursively delete directory path and all its contents
181    """
182
183    import os
184
185    if os.path.isdir(path):
186        for file in os.listdir(path):
187            X = os.path.join(path, file)
188
189
190            if os.path.isdir(X) and not os.path.islink(X):
191                del_dir(X)
192            else:
193                try:
194                    os.remove(X)
195                except:
196                    print "Could not remove file %s" %X
197
198        os.rmdir(path)
199       
200       
201# ANOTHER OPTION, IF NEED IN THE FUTURE, Nick B 7/2007   
202def rmgeneric(path, __func__,verbose=False):
203    ERROR_STR= """Error removing %(path)s, %(error)s """
204
205    try:
206        __func__(path)
207        if verbose: print 'Removed ', path
208    except OSError, (errno, strerror):
209        print ERROR_STR % {'path' : path, 'error': strerror }
210           
211def removeall(path,verbose=False):
212
213    if not os.path.isdir(path):
214        return
215   
216    files=os.listdir(path)
217
218    for x in files:
219        fullpath=os.path.join(path, x)
220        if os.path.isfile(fullpath):
221            f=os.remove
222            rmgeneric(fullpath, f)
223        elif os.path.isdir(fullpath):
224            removeall(fullpath)
225            f=os.rmdir
226            rmgeneric(fullpath, f,verbose)
227
228
229
230def create_filename(datadir, filename, format, size=None, time=None):
231
232    import os
233    #from anuga.config import data_dir
234
235    FN = check_dir(datadir) + filename
236
237    if size is not None:
238        FN += '_size%d' %size
239
240    if time is not None:
241        FN += '_time%.2f' %time
242
243    FN += '.' + format
244    return FN
245
246
247def get_files(datadir, filename, format, size):
248    """Get all file (names) with given name, size and format
249    """
250
251    import glob
252
253    import os
254    #from anuga.config import data_dir
255
256    dir = check_dir(datadir)
257
258    pattern = dir + os.sep + filename + '_size=%d*.%s' %(size, format)
259    return glob.glob(pattern)
260
261
262
263#Generic class for storing output to e.g. visualisation or checkpointing
264class Data_format:
265    """Generic interface to data formats
266    """
267
268
269    def __init__(self, domain, extension, mode = 'w'):
270        assert mode in ['r', 'w', 'a'], '''Mode %s must be either:''' %mode +\
271                                        '''   'w' (write)'''+\
272                                        '''   'r' (read)''' +\
273                                        '''   'a' (append)'''
274
275        #Create filename
276        self.filename = create_filename(domain.get_datadir(),
277                                        domain.get_name(), extension)
278
279        #print 'F', self.filename
280        self.timestep = 0
281        self.domain = domain
282       
283
284
285        # Exclude ghosts in case this is a parallel domain
286        self.number_of_nodes = domain.number_of_full_nodes       
287        self.number_of_volumes = domain.number_of_full_triangles
288        #self.number_of_volumes = len(domain)       
289
290
291
292
293        #FIXME: Should we have a general set_precision function?
294
295
296
297#Class for storing output to e.g. visualisation
298class Data_format_sww(Data_format):
299    """Interface to native NetCDF format (.sww) for storing model output
300
301    There are two kinds of data
302
303    1: Constant data: Vertex coordinates and field values. Stored once
304    2: Variable data: Conserved quantities. Stored once per timestep.
305
306    All data is assumed to reside at vertex locations.
307    """
308
309
310    def __init__(self, domain, mode = 'w',\
311                 max_size = 2000000000,
312                 recursion = False):
313        from Scientific.IO.NetCDF import NetCDFFile
314        from Numeric import Int, Float, Float32
315
316        self.precision = Float32 #Use single precision for quantities
317        if hasattr(domain, 'max_size'):
318            self.max_size = domain.max_size #file size max is 2Gig
319        else:
320            self.max_size = max_size
321        self.recursion = recursion
322        self.mode = mode
323
324        Data_format.__init__(self, domain, 'sww', mode)
325
326        if hasattr(domain, 'minimum_storable_height'):
327            self.minimum_storable_height = domain.minimum_storable_height
328        else:
329            self.minimum_storable_height = default_minimum_storable_height
330
331        # NetCDF file definition
332        fid = NetCDFFile(self.filename, mode)
333
334        if mode == 'w':
335            description = 'Output from anuga.abstract_2d_finite_volumes suitable for plotting'
336            self.writer = Write_sww()
337            self.writer.store_header(fid,
338                                     domain.starttime,
339                                     self.number_of_volumes,
340                                     self.domain.number_of_full_nodes,
341                                     description=description,
342                                     smoothing=domain.smooth,
343                                     order=domain.default_order,
344                                     sww_precision=self.precision)
345
346            # Extra optional information
347            if hasattr(domain, 'texture'):
348                fid.texture = domain.texture
349
350            if domain.quantities_to_be_monitored is not None:
351                fid.createDimension('singleton', 1)
352                fid.createDimension('two', 2)               
353
354                poly = domain.monitor_polygon
355                if poly is not None:
356                    N = len(poly)
357                    fid.createDimension('polygon_length', N)
358                    fid.createVariable('extrema.polygon',
359                                       self.precision,
360                                       ('polygon_length',
361                                        'two'))
362                    fid.variables['extrema.polygon'][:] = poly                                   
363
364                   
365                interval = domain.monitor_time_interval
366                if interval is not None:
367                    fid.createVariable('extrema.time_interval',
368                                       self.precision,
369                                       ('two',))
370                    fid.variables['extrema.time_interval'][:] = interval
371
372               
373                for q in domain.quantities_to_be_monitored:
374                    #print 'doing', q
375                    fid.createVariable(q+'.extrema', self.precision,
376                                       ('numbers_in_range',))
377                    fid.createVariable(q+'.min_location', self.precision,
378                                       ('numbers_in_range',))
379                    fid.createVariable(q+'.max_location', self.precision,
380                                       ('numbers_in_range',))
381                    fid.createVariable(q+'.min_time', self.precision,
382                                       ('singleton',))
383                    fid.createVariable(q+'.max_time', self.precision,
384                                       ('singleton',))
385
386                   
387        fid.close()
388
389
390    def store_connectivity(self):
391        """Specialisation of store_connectivity for net CDF format
392
393        Writes x,y,z coordinates of triangles constituting
394        the bed elevation.
395        """
396
397        from Scientific.IO.NetCDF import NetCDFFile
398
399        from Numeric import concatenate, Int
400
401        domain = self.domain
402
403        #Get NetCDF
404        fid = NetCDFFile(self.filename, 'a')  #Open existing file for append
405
406        # Get the variables
407        x = fid.variables['x']
408        y = fid.variables['y']
409        z = fid.variables['elevation']
410
411        volumes = fid.variables['volumes']
412
413        # Get X, Y and bed elevation Z
414        Q = domain.quantities['elevation']
415        X,Y,Z,V = Q.get_vertex_values(xy=True,
416                                      precision=self.precision)
417
418        #
419        points = concatenate( (X[:,NewAxis],Y[:,NewAxis]), axis=1 )
420        self.writer.store_triangulation(fid,
421                                        points,
422                                        V.astype(volumes.typecode()),
423                                        Z,
424                                        points_georeference= \
425                                        domain.geo_reference)
426
427        # Close
428        fid.close()
429
430
431    def store_timestep(self, names=None):
432        """Store time and named quantities to file
433        """
434       
435        from Scientific.IO.NetCDF import NetCDFFile
436        import types
437        from time import sleep
438        from os import stat
439
440        from Numeric import choose
441
442
443        if names is None:
444            # Standard shallow water wave equation quantitites in ANUGA
445            names = ['stage', 'xmomentum', 'ymomentum']
446       
447        # Get NetCDF       
448        retries = 0
449        file_open = False
450        while not file_open and retries < 10:
451            try:
452                fid = NetCDFFile(self.filename, 'a') # Open existing file
453            except IOError:
454                # This could happen if someone was reading the file.
455                # In that case, wait a while and try again
456                msg = 'Warning (store_timestep): File %s could not be opened'\
457                      %self.filename
458                msg += ' - trying step %s again' %self.domain.time
459                print msg
460                retries += 1
461                sleep(1)
462            else:
463                file_open = True
464
465        if not file_open:
466            msg = 'File %s could not be opened for append' %self.filename
467            raise DataFileNotOpenError, msg
468
469
470
471        # Check to see if the file is already too big:
472        time = fid.variables['time']
473        i = len(time)+1
474        file_size = stat(self.filename)[6]
475        file_size_increase =  file_size/i
476        if file_size + file_size_increase > self.max_size*(2**self.recursion):
477            # In order to get the file name and start time correct,
478            # I change the domain.filename and domain.starttime.
479            # This is the only way to do this without changing
480            # other modules (I think).
481
482            # Write a filename addon that won't break swollens reader
483            # (10.sww is bad)
484            filename_ext = '_time_%s'%self.domain.time
485            filename_ext = filename_ext.replace('.', '_')
486           
487            # Remember the old filename, then give domain a
488            # name with the extension
489            old_domain_filename = self.domain.get_name()
490            if not self.recursion:
491                self.domain.set_name(old_domain_filename+filename_ext)
492
493
494            # Change the domain starttime to the current time
495            old_domain_starttime = self.domain.starttime
496            self.domain.starttime = self.domain.time
497
498            # Build a new data_structure.
499            next_data_structure=\
500                Data_format_sww(self.domain, mode=self.mode,\
501                                max_size = self.max_size,\
502                                recursion = self.recursion+1)
503            if not self.recursion:
504                print '    file_size = %s'%file_size
505                print '    saving file to %s'%next_data_structure.filename
506            #set up the new data_structure
507            self.domain.writer = next_data_structure
508
509            #FIXME - could be cleaner to use domain.store_timestep etc.
510            next_data_structure.store_connectivity()
511            next_data_structure.store_timestep(names)
512            fid.sync()
513            fid.close()
514
515            #restore the old starttime and filename
516            self.domain.starttime = old_domain_starttime
517            self.domain.set_name(old_domain_filename)           
518        else:
519            self.recursion = False
520            domain = self.domain
521
522            # Get the variables
523            time = fid.variables['time']
524            stage = fid.variables['stage']
525            xmomentum = fid.variables['xmomentum']
526            ymomentum = fid.variables['ymomentum']
527            i = len(time)
528            if type(names) not in [types.ListType, types.TupleType]:
529                names = [names]
530
531            if 'stage' in names and 'xmomentum' in names and \
532               'ymomentum' in names:
533
534                # Get stage, elevation, depth and select only those
535                # values where minimum_storable_height is exceeded
536                Q = domain.quantities['stage']
537                A, _ = Q.get_vertex_values(xy = False,
538                                           precision = self.precision)
539                z = fid.variables['elevation']
540
541                storable_indices = A-z[:] >= self.minimum_storable_height
542                stage = choose(storable_indices, (z[:], A))
543               
544                # Define a zero vector of same size and type as A
545                # for use with momenta
546                null = zeros(size(A), A.typecode())
547               
548                # Get xmomentum where depth exceeds minimum_storable_height
549                Q = domain.quantities['xmomentum']
550                xmom, _ = Q.get_vertex_values(xy = False,
551                                              precision = self.precision)
552                xmomentum = choose(storable_indices, (null, xmom))
553               
554
555                # Get ymomentum where depth exceeds minimum_storable_height
556                Q = domain.quantities['ymomentum']
557                ymom, _ = Q.get_vertex_values(xy = False,
558                                              precision = self.precision)
559                ymomentum = choose(storable_indices, (null, ymom))               
560               
561                # Write quantities to NetCDF
562                self.writer.store_quantities(fid, 
563                                             time=self.domain.time,
564                                             sww_precision=self.precision,
565                                             stage=stage,
566                                             xmomentum=xmomentum,
567                                             ymomentum=ymomentum)
568            else:
569                msg = 'Quantities stored must be: stage, xmomentum, ymomentum.'
570                msg += ' Instead I got: ' + str(names)
571                raise Exception, msg
572           
573
574
575            # Update extrema if requested
576            domain = self.domain
577            if domain.quantities_to_be_monitored is not None:
578                for q, info in domain.quantities_to_be_monitored.items():
579
580                    if info['min'] is not None:
581                        fid.variables[q + '.extrema'][0] = info['min']
582                        fid.variables[q + '.min_location'][:] =\
583                                        info['min_location']
584                        fid.variables[q + '.min_time'][0] = info['min_time']
585                       
586                    if info['max'] is not None:
587                        fid.variables[q + '.extrema'][1] = info['max']
588                        fid.variables[q + '.max_location'][:] =\
589                                        info['max_location']
590                        fid.variables[q + '.max_time'][0] = info['max_time']
591
592           
593
594            # Flush and close
595            fid.sync()
596            fid.close()
597
598
599
600# Class for handling checkpoints data
601class Data_format_cpt(Data_format):
602    """Interface to native NetCDF format (.cpt)
603    """
604
605
606    def __init__(self, domain, mode = 'w'):
607        from Scientific.IO.NetCDF import NetCDFFile
608        from Numeric import Int, Float, Float
609
610        self.precision = Float #Use full precision
611
612        Data_format.__init__(self, domain, 'sww', mode)
613
614
615        # NetCDF file definition
616        fid = NetCDFFile(self.filename, mode)
617
618        if mode == 'w':
619            #Create new file
620            fid.institution = 'Geoscience Australia'
621            fid.description = 'Checkpoint data'
622            #fid.smooth = domain.smooth
623            fid.order = domain.default_order
624
625            # dimension definitions
626            fid.createDimension('number_of_volumes', self.number_of_volumes)
627            fid.createDimension('number_of_vertices', 3)
628
629            #Store info at all vertices (no smoothing)
630            fid.createDimension('number_of_points', 3*self.number_of_volumes)
631            fid.createDimension('number_of_timesteps', None) #extensible
632
633            # variable definitions
634
635            #Mesh
636            fid.createVariable('x', self.precision, ('number_of_points',))
637            fid.createVariable('y', self.precision, ('number_of_points',))
638
639
640            fid.createVariable('volumes', Int, ('number_of_volumes',
641                                                'number_of_vertices'))
642
643            fid.createVariable('time', self.precision,
644                               ('number_of_timesteps',))
645
646            #Allocate space for all quantities
647            for name in domain.quantities.keys():
648                fid.createVariable(name, self.precision,
649                                   ('number_of_timesteps',
650                                    'number_of_points'))
651
652        #Close
653        fid.close()
654
655
656    def store_checkpoint(self):
657        """
658        Write x,y coordinates of triangles.
659        Write connectivity (
660        constituting
661        the bed elevation.
662        """
663
664        from Scientific.IO.NetCDF import NetCDFFile
665
666        from Numeric import concatenate
667
668        domain = self.domain
669
670        #Get NetCDF
671        fid = NetCDFFile(self.filename, 'a')  #Open existing file for append
672
673        # Get the variables
674        x = fid.variables['x']
675        y = fid.variables['y']
676
677        volumes = fid.variables['volumes']
678
679        # Get X, Y and bed elevation Z
680        Q = domain.quantities['elevation']
681        X,Y,Z,V = Q.get_vertex_values(xy=True,
682                      precision = self.precision)
683
684
685
686        x[:] = X.astype(self.precision)
687        y[:] = Y.astype(self.precision)
688        z[:] = Z.astype(self.precision)
689
690        volumes[:] = V
691
692        #Close
693        fid.close()
694
695
696    def store_timestep(self, name):
697        """Store time and named quantity to file
698        """
699        from Scientific.IO.NetCDF import NetCDFFile
700        from time import sleep
701
702        #Get NetCDF
703        retries = 0
704        file_open = False
705        while not file_open and retries < 10:
706            try:
707                fid = NetCDFFile(self.filename, 'a') #Open existing file
708            except IOError:
709                #This could happen if someone was reading the file.
710                #In that case, wait a while and try again
711                msg = 'Warning (store_timestep): File %s could not be opened'\
712                  %self.filename
713                msg += ' - trying again'
714                print msg
715                retries += 1
716                sleep(1)
717            else:
718                file_open = True
719
720        if not file_open:
721            msg = 'File %s could not be opened for append' %self.filename
722            raise DataFileNotOPenError, msg
723
724
725        domain = self.domain
726
727        # Get the variables
728        time = fid.variables['time']
729        stage = fid.variables['stage']
730        i = len(time)
731
732        #Store stage
733        time[i] = self.domain.time
734
735        # Get quantity
736        Q = domain.quantities[name]
737        A,V = Q.get_vertex_values(xy=False,
738                                  precision = self.precision)
739
740        stage[i,:] = A.astype(self.precision)
741
742        #Flush and close
743        fid.sync()
744        fid.close()
745
746
747#### NED is national exposure database (name changed to NEXIS)
748   
749LAT_TITLE = 'LATITUDE'
750LONG_TITLE = 'LONGITUDE'
751X_TITLE = 'x'
752Y_TITLE = 'y'
753class Exposure_csv:
754    def __init__(self,file_name, latitude_title=LAT_TITLE,
755                 longitude_title=LONG_TITLE, is_x_y_locations=None,
756                 x_title=X_TITLE, y_title=Y_TITLE,
757                 refine_polygon=None, title_check_list=None):
758        """
759        This class is for handling the exposure csv file.
760        It reads the file in and converts the lats and longs to a geospatial
761        data object.
762        Use the methods to read and write columns.
763
764        The format of the csv files it reads is;
765           The first row is a title row.
766           comma's are the delimiters
767           each column is a 'set' of data
768
769        Feel free to use/expand it to read other csv files.
770           
771           
772        It is not for adding and deleting rows
773       
774        Can geospatial handle string attributes? It's not made for them.
775        Currently it can't load and save string att's.
776
777        So just use geospatial to hold the x, y and georef? Bad, since
778        different att's are in diferent structures.  Not so bad, the info
779        to write if the .csv file is saved is in attribute_dic
780
781        The location info is in the geospatial attribute.
782       
783       
784        """
785        self._file_name = file_name
786        self._geospatial = None #
787
788        # self._attribute_dic is a dictionary.
789        #The keys are the column titles.
790        #The values are lists of column data
791       
792        # self._title_index_dic is a dictionary.
793        #The keys are the column titles.
794        #The values are the index positions of file columns.
795        self._attribute_dic, self._title_index_dic = \
796            csv2dict(self._file_name, title_check_list=title_check_list)
797        try:
798            #Have code here that handles caps or lower
799            lats = self._attribute_dic[latitude_title]
800            longs = self._attribute_dic[longitude_title]
801           
802        except KeyError:
803            # maybe a warning..
804            #Let's see if this works..
805            if False != is_x_y_locations:
806                is_x_y_locations = True
807            pass
808        else:
809            self._geospatial = Geospatial_data(latitudes = lats,
810                 longitudes = longs)
811
812        if is_x_y_locations is True:
813            if self._geospatial is not None:
814                pass #fixme throw an error
815            try:
816                xs = self._attribute_dic[x_title]
817                ys = self._attribute_dic[y_title]
818                points = [[float(i),float(j)] for i,j in map(None,xs,ys)]
819            except KeyError:
820                # maybe a warning..
821                msg = "Could not find location information."
822                raise TitleValueError, msg
823            else:
824                self._geospatial = Geospatial_data(data_points=points)
825           
826        # create a list of points that are in the refining_polygon
827        # described by a list of indexes representing the points
828
829    def __cmp__(self, other):
830        #print "self._attribute_dic",self._attribute_dic
831        #print "other._attribute_dic",other._attribute_dic
832        #print "self._title_index_dic", self._title_index_dic
833        #print "other._title_index_dic", other._title_index_dic
834       
835        #check that a is an instance of this class
836        if isinstance(self, type(other)):
837            result = cmp(self._attribute_dic, other._attribute_dic)
838            if result <>0:
839                return result
840            # The order of the columns is important. Therefore..
841            result = cmp(self._title_index_dic, other._title_index_dic)
842            if result <>0:
843                return result
844            for self_ls, other_ls in map(None,self._attribute_dic, \
845                    other._attribute_dic):
846                result = cmp(self._attribute_dic[self_ls],
847                             other._attribute_dic[other_ls])
848                if result <>0:
849                    return result
850            return 0
851        else:
852            return 1
853   
854
855    def get_column(self, column_name, use_refind_polygon=False):
856        """
857        Given a column name return a list of the column values
858
859        Note, the type of the values will be String!
860        do this to change a list of strings to a list of floats
861        time = [float(x) for x in time]
862       
863        Not implemented:
864        if use_refind_polygon is True, only return values in the
865        refined polygon
866        """
867        if not self._attribute_dic.has_key(column_name):
868            msg = 'Therer is  no column called %s!' %column_name
869            raise TitleValueError, msg
870        return self._attribute_dic[column_name]
871
872
873    def get_value(self, value_column_name,
874                  known_column_name,
875                  known_values,
876                  use_refind_polygon=False):
877        """
878        Do linear interpolation on the known_colum, using the known_value,
879        to return a value of the column_value_name.
880        """
881        pass
882
883
884    def get_location(self, use_refind_polygon=False):
885        """
886        Return a geospatial object which describes the
887        locations of the location file.
888
889        Note, if there is not location info, this returns None.
890       
891        Not implemented:
892        if use_refind_polygon is True, only return values in the
893        refined polygon
894        """
895        return self._geospatial
896
897    def set_column(self, column_name, column_values, overwrite=False):
898        """
899        Add a column to the 'end' (with the right most column being the end)
900        of the csv file.
901
902        Set overwrite to True if you want to overwrite a column.
903       
904        Note, in column_name white space is removed and case is not checked.
905        Precondition
906        The column_name and column_values cannot have comma's in it.
907        """
908       
909        value_row_count = \
910            len(self._attribute_dic[self._title_index_dic.keys()[0]])
911        if len(column_values) <> value_row_count: 
912            msg = 'The number of column values must equal the number of rows.'
913            raise DataMissingValuesError, msg
914       
915        if self._attribute_dic.has_key(column_name):
916            if not overwrite:
917                msg = 'Column name %s already in use!' %column_name
918                raise TitleValueError, msg
919        else:
920            # New title.  Add it to the title index.
921            self._title_index_dic[column_name] = len(self._title_index_dic)
922        self._attribute_dic[column_name] = column_values
923        #print "self._title_index_dic[column_name]",self._title_index_dic
924
925    def save(self, file_name=None):
926        """
927        Save the exposure csv file
928        """
929        if file_name is None:
930            file_name = self._file_name
931       
932        fd = open(file_name,'wb')
933        writer = csv.writer(fd)
934       
935        #Write the title to a cvs file
936        line = [None]* len(self._title_index_dic)
937        for title in self._title_index_dic.iterkeys():
938            line[self._title_index_dic[title]]= title
939        writer.writerow(line)
940       
941        # Write the values to a cvs file
942        value_row_count = \
943            len(self._attribute_dic[self._title_index_dic.keys()[0]])
944        for row_i in range(value_row_count):
945            line = [None]* len(self._title_index_dic)
946            for title in self._title_index_dic.iterkeys():
947                line[self._title_index_dic[title]]= \
948                     self._attribute_dic[title][row_i]
949            writer.writerow(line)
950
951
952def csv2dict(file_name, title_check_list=None):
953    """
954    Load in the csv as a dic, title as key and column info as value, .
955    Also, create a dic, title as key and column index as value,
956    to keep track of the column order.
957
958    Two dictionaries are returned.
959   
960    WARNING: Vaules are returned as strings.
961    do this to change a list of strings to a list of floats
962        time = [float(x) for x in time]
963
964       
965    """
966   
967    #
968    attribute_dic = {}
969    title_index_dic = {}
970    titles_stripped = [] # list of titles
971    reader = csv.reader(file(file_name))
972
973    # Read in and manipulate the title info
974    titles = reader.next()
975    for i,title in enumerate(titles):
976        titles_stripped.append(title.strip())
977        title_index_dic[title.strip()] = i
978    title_count = len(titles_stripped)       
979    #print "title_index_dic",title_index_dic
980    if title_check_list is not None:
981        for title_check in title_check_list:
982            #msg = "Reading error.  This row is not present ", title_check
983            #assert title_index_dic.has_key(title_check), msg
984            if not title_index_dic.has_key(title_check):
985                #reader.close()
986                msg = "Reading error.  This row is not present ", \
987                      title_check                     
988                raise IOError, msg
989               
990   
991   
992    #create a dic of colum values, indexed by column title
993    for line in reader:
994        if len(line) <> title_count:
995            raise IOError #FIXME make this nicer
996        for i, value in enumerate(line):
997            attribute_dic.setdefault(titles_stripped[i],[]).append(value)
998       
999    return attribute_dic, title_index_dic
1000
1001
1002#Auxiliary
1003def write_obj(filename,x,y,z):
1004    """Store x,y,z vectors into filename (obj format)
1005       Vectors are assumed to have dimension (M,3) where
1006       M corresponds to the number elements.
1007       triangles are assumed to be disconnected
1008
1009       The three numbers in each vector correspond to three vertices,
1010
1011       e.g. the x coordinate of vertex 1 of element i is in x[i,1]
1012
1013    """
1014    #print 'Writing obj to %s' % filename
1015
1016    import os.path
1017
1018    root, ext = os.path.splitext(filename)
1019    if ext == '.obj':
1020        FN = filename
1021    else:
1022        FN = filename + '.obj'
1023
1024
1025    outfile = open(FN, 'wb')
1026    outfile.write("# Triangulation as an obj file\n")
1027
1028    M, N = x.shape
1029    assert N==3  #Assuming three vertices per element
1030
1031    for i in range(M):
1032        for j in range(N):
1033            outfile.write("v %f %f %f\n" % (x[i,j],y[i,j],z[i,j]))
1034
1035    for i in range(M):
1036        base = i*N
1037        outfile.write("f %d %d %d\n" % (base+1,base+2,base+3))
1038
1039    outfile.close()
1040
1041
1042#########################################################
1043#Conversion routines
1044########################################################
1045
1046def sww2obj(basefilename, size):
1047    """Convert netcdf based data output to obj
1048    """
1049    from Scientific.IO.NetCDF import NetCDFFile
1050
1051    from Numeric import Float, zeros
1052
1053    #Get NetCDF
1054    FN = create_filename('.', basefilename, 'sww', size)
1055    print 'Reading from ', FN
1056    fid = NetCDFFile(FN, 'r')  #Open existing file for read
1057
1058
1059    # Get the variables
1060    x = fid.variables['x']
1061    y = fid.variables['y']
1062    z = fid.variables['elevation']
1063    time = fid.variables['time']
1064    stage = fid.variables['stage']
1065
1066    M = size  #Number of lines
1067    xx = zeros((M,3), Float)
1068    yy = zeros((M,3), Float)
1069    zz = zeros((M,3), Float)
1070
1071    for i in range(M):
1072        for j in range(3):
1073            xx[i,j] = x[i+j*M]
1074            yy[i,j] = y[i+j*M]
1075            zz[i,j] = z[i+j*M]
1076
1077    #Write obj for bathymetry
1078    FN = create_filename('.', basefilename, 'obj', size)
1079    write_obj(FN,xx,yy,zz)
1080
1081
1082    #Now read all the data with variable information, combine with
1083    #x,y info and store as obj
1084
1085    for k in range(len(time)):
1086        t = time[k]
1087        print 'Processing timestep %f' %t
1088
1089        for i in range(M):
1090            for j in range(3):
1091                zz[i,j] = stage[k,i+j*M]
1092
1093
1094        #Write obj for variable data
1095        #FN = create_filename(basefilename, 'obj', size, time=t)
1096        FN = create_filename('.', basefilename[:5], 'obj', size, time=t)
1097        write_obj(FN,xx,yy,zz)
1098
1099
1100def dat2obj(basefilename):
1101    """Convert line based data output to obj
1102    FIXME: Obsolete?
1103    """
1104
1105    import glob, os
1106    from anuga.config import data_dir
1107
1108
1109    #Get bathymetry and x,y's
1110    lines = open(data_dir+os.sep+basefilename+'_geometry.dat', 'r').readlines()
1111
1112    from Numeric import zeros, Float
1113
1114    M = len(lines)  #Number of lines
1115    x = zeros((M,3), Float)
1116    y = zeros((M,3), Float)
1117    z = zeros((M,3), Float)
1118
1119    ##i = 0
1120    for i, line in enumerate(lines):
1121        tokens = line.split()
1122        values = map(float,tokens)
1123
1124        for j in range(3):
1125            x[i,j] = values[j*3]
1126            y[i,j] = values[j*3+1]
1127            z[i,j] = values[j*3+2]
1128
1129        ##i += 1
1130
1131
1132    #Write obj for bathymetry
1133    write_obj(data_dir+os.sep+basefilename+'_geometry',x,y,z)
1134
1135
1136    #Now read all the data files with variable information, combine with
1137    #x,y info
1138    #and store as obj
1139
1140    files = glob.glob(data_dir+os.sep+basefilename+'*.dat')
1141
1142    for filename in files:
1143        print 'Processing %s' % filename
1144
1145        lines = open(data_dir+os.sep+filename,'r').readlines()
1146        assert len(lines) == M
1147        root, ext = os.path.splitext(filename)
1148
1149        #Get time from filename
1150        i0 = filename.find('_time=')
1151        if i0 == -1:
1152            #Skip bathymetry file
1153            continue
1154
1155        i0 += 6  #Position where time starts
1156        i1 = filename.find('.dat')
1157
1158        if i1 > i0:
1159            t = float(filename[i0:i1])
1160        else:
1161            raise DataTimeError, 'Hmmmm'
1162
1163
1164
1165        ##i = 0
1166        for i, line in enumerate(lines):
1167            tokens = line.split()
1168            values = map(float,tokens)
1169
1170            for j in range(3):
1171                z[i,j] = values[j]
1172
1173            ##i += 1
1174
1175        #Write obj for variable data
1176        write_obj(data_dir+os.sep+basefilename+'_time=%.4f' %t,x,y,z)
1177
1178
1179def filter_netcdf(filename1, filename2, first=0, last=None, step = 1):
1180    """Read netcdf filename1, pick timesteps first:step:last and save to
1181    nettcdf file filename2
1182    """
1183    from Scientific.IO.NetCDF import NetCDFFile
1184
1185    #Get NetCDF
1186    infile = NetCDFFile(filename1, 'r')  #Open existing file for read
1187    outfile = NetCDFFile(filename2, 'w')  #Open new file
1188
1189
1190    #Copy dimensions
1191    for d in infile.dimensions:
1192        outfile.createDimension(d, infile.dimensions[d])
1193
1194    for name in infile.variables:
1195        var = infile.variables[name]
1196        outfile.createVariable(name, var.typecode(), var.dimensions)
1197
1198
1199    #Copy the static variables
1200    for name in infile.variables:
1201        if name == 'time' or name == 'stage':
1202            pass
1203        else:
1204            #Copy
1205            outfile.variables[name][:] = infile.variables[name][:]
1206
1207    #Copy selected timesteps
1208    time = infile.variables['time']
1209    stage = infile.variables['stage']
1210
1211    newtime = outfile.variables['time']
1212    newstage = outfile.variables['stage']
1213
1214    if last is None:
1215        last = len(time)
1216
1217    selection = range(first, last, step)
1218    for i, j in enumerate(selection):
1219        print 'Copying timestep %d of %d (%f)' %(j, last-first, time[j])
1220        newtime[i] = time[j]
1221        newstage[i,:] = stage[j,:]
1222
1223    #Close
1224    infile.close()
1225    outfile.close()
1226
1227
1228#Get data objects
1229def get_dataobject(domain, mode='w'):
1230    """Return instance of class of given format using filename
1231    """
1232
1233    cls = eval('Data_format_%s' %domain.format)
1234    return cls(domain, mode)
1235
1236
1237
1238
1239def dem2pts(basename_in, basename_out=None,
1240            easting_min=None, easting_max=None,
1241            northing_min=None, northing_max=None,
1242            use_cache=False, verbose=False,):
1243    """Read Digitial Elevation model from the following NetCDF format (.dem)
1244
1245    Example:
1246
1247    ncols         3121
1248    nrows         1800
1249    xllcorner     722000
1250    yllcorner     5893000
1251    cellsize      25
1252    NODATA_value  -9999
1253    138.3698 137.4194 136.5062 135.5558 ..........
1254
1255    Convert to NetCDF pts format which is
1256
1257    points:  (Nx2) Float array
1258    elevation: N Float array
1259    """
1260
1261
1262
1263    kwargs = {'basename_out': basename_out,
1264              'easting_min': easting_min,
1265              'easting_max': easting_max,
1266              'northing_min': northing_min,
1267              'northing_max': northing_max,
1268              'verbose': verbose}
1269
1270    if use_cache is True:
1271        from caching import cache
1272        result = cache(_dem2pts, basename_in, kwargs,
1273                       dependencies = [basename_in + '.dem'],
1274                       verbose = verbose)
1275
1276    else:
1277        result = apply(_dem2pts, [basename_in], kwargs)
1278
1279    return result
1280
1281
1282def _dem2pts(basename_in, basename_out=None, verbose=False,
1283            easting_min=None, easting_max=None,
1284            northing_min=None, northing_max=None):
1285    """Read Digitial Elevation model from the following NetCDF format (.dem)
1286
1287    Internal function. See public function dem2pts for details.
1288    """
1289
1290    # FIXME: Can this be written feasibly using write_pts?
1291
1292    import os
1293    from Scientific.IO.NetCDF import NetCDFFile
1294    from Numeric import Float, zeros, reshape, sum
1295
1296    root = basename_in
1297
1298    # Get NetCDF
1299    infile = NetCDFFile(root + '.dem', 'r')  # Open existing netcdf file for read
1300
1301    if verbose: print 'Reading DEM from %s' %(root + '.dem')
1302
1303    ncols = infile.ncols[0]
1304    nrows = infile.nrows[0]
1305    xllcorner = infile.xllcorner[0]  # Easting of lower left corner
1306    yllcorner = infile.yllcorner[0]  # Northing of lower left corner
1307    cellsize = infile.cellsize[0]
1308    NODATA_value = infile.NODATA_value[0]
1309    dem_elevation = infile.variables['elevation']
1310
1311    zone = infile.zone[0]
1312    false_easting = infile.false_easting[0]
1313    false_northing = infile.false_northing[0]
1314
1315    # Text strings
1316    projection = infile.projection
1317    datum = infile.datum
1318    units = infile.units
1319
1320
1321    # Get output file
1322    if basename_out == None:
1323        ptsname = root + '.pts'
1324    else:
1325        ptsname = basename_out + '.pts'
1326
1327    if verbose: print 'Store to NetCDF file %s' %ptsname
1328    # NetCDF file definition
1329    outfile = NetCDFFile(ptsname, 'w')
1330
1331    # Create new file
1332    outfile.institution = 'Geoscience Australia'
1333    outfile.description = 'NetCDF pts format for compact and portable storage ' +\
1334                      'of spatial point data'
1335    # Assign default values
1336    if easting_min is None: easting_min = xllcorner
1337    if easting_max is None: easting_max = xllcorner + ncols*cellsize
1338    if northing_min is None: northing_min = yllcorner
1339    if northing_max is None: northing_max = yllcorner + nrows*cellsize
1340
1341    # Compute offsets to update georeferencing
1342    easting_offset = xllcorner - easting_min
1343    northing_offset = yllcorner - northing_min
1344
1345    # Georeferencing
1346    outfile.zone = zone
1347    outfile.xllcorner = easting_min # Easting of lower left corner
1348    outfile.yllcorner = northing_min # Northing of lower left corner
1349    outfile.false_easting = false_easting
1350    outfile.false_northing = false_northing
1351
1352    outfile.projection = projection
1353    outfile.datum = datum
1354    outfile.units = units
1355
1356
1357    # Grid info (FIXME: probably not going to be used, but heck)
1358    outfile.ncols = ncols
1359    outfile.nrows = nrows
1360
1361    dem_elevation_r = reshape(dem_elevation, (nrows, ncols))
1362    totalnopoints = nrows*ncols
1363
1364    # Calculating number of NODATA_values for each row in clipped region
1365    # FIXME: use array operations to do faster
1366    nn = 0
1367    k = 0
1368    i1_0 = 0
1369    j1_0 = 0
1370    thisj = 0
1371    thisi = 0
1372    for i in range(nrows):
1373        y = (nrows-i-1)*cellsize + yllcorner
1374        for j in range(ncols):
1375            x = j*cellsize + xllcorner
1376            if easting_min <= x <= easting_max and \
1377               northing_min <= y <= northing_max:
1378                thisj = j
1379                thisi = i
1380                if dem_elevation_r[i,j] == NODATA_value: nn += 1
1381
1382                if k == 0:
1383                    i1_0 = i
1384                    j1_0 = j
1385                k += 1
1386
1387    index1 = j1_0
1388    index2 = thisj
1389
1390    # Dimension definitions
1391    nrows_in_bounding_box = int(round((northing_max-northing_min)/cellsize))
1392    ncols_in_bounding_box = int(round((easting_max-easting_min)/cellsize))
1393
1394    clippednopoints = (thisi+1-i1_0)*(thisj+1-j1_0)
1395    nopoints = clippednopoints-nn
1396
1397    clipped_dem_elev = dem_elevation_r[i1_0:thisi+1,j1_0:thisj+1]
1398
1399    if verbose:
1400        print 'There are %d values in the elevation' %totalnopoints
1401        print 'There are %d values in the clipped elevation' %clippednopoints
1402        print 'There are %d NODATA_values in the clipped elevation' %nn
1403
1404    outfile.createDimension('number_of_points', nopoints)
1405    outfile.createDimension('number_of_dimensions', 2) #This is 2d data
1406
1407    # Variable definitions
1408    outfile.createVariable('points', Float, ('number_of_points',
1409                                             'number_of_dimensions'))
1410    outfile.createVariable('elevation', Float, ('number_of_points',))
1411
1412    # Get handles to the variables
1413    points = outfile.variables['points']
1414    elevation = outfile.variables['elevation']
1415
1416    lenv = index2-index1+1
1417    # Store data
1418    global_index = 0
1419    # for i in range(nrows):
1420    for i in range(i1_0,thisi+1,1):
1421        if verbose and i%((nrows+10)/10)==0:
1422            print 'Processing row %d of %d' %(i, nrows)
1423
1424        lower_index = global_index
1425
1426        v = dem_elevation_r[i,index1:index2+1]
1427        no_NODATA = sum(v == NODATA_value)
1428        if no_NODATA > 0:
1429            newcols = lenv - no_NODATA # ncols_in_bounding_box - no_NODATA
1430        else:
1431            newcols = lenv # ncols_in_bounding_box
1432
1433        telev = zeros(newcols, Float)
1434        tpoints = zeros((newcols, 2), Float)
1435
1436        local_index = 0
1437
1438        y = (nrows-i-1)*cellsize + yllcorner
1439        #for j in range(ncols):
1440        for j in range(j1_0,index2+1,1):
1441
1442            x = j*cellsize + xllcorner
1443            if easting_min <= x <= easting_max and \
1444               northing_min <= y <= northing_max and \
1445               dem_elevation_r[i,j] <> NODATA_value:
1446                tpoints[local_index, :] = [x-easting_min,y-northing_min]
1447                telev[local_index] = dem_elevation_r[i, j]
1448                global_index += 1
1449                local_index += 1
1450
1451        upper_index = global_index
1452
1453        if upper_index == lower_index + newcols:
1454            points[lower_index:upper_index, :] = tpoints
1455            elevation[lower_index:upper_index] = telev
1456
1457    assert global_index == nopoints, 'index not equal to number of points'
1458
1459    infile.close()
1460    outfile.close()
1461
1462
1463
1464def _read_hecras_cross_sections(lines):
1465    """Return block of surface lines for each cross section
1466    Starts with SURFACE LINE,
1467    Ends with END CROSS-SECTION
1468    """
1469
1470    points = []
1471
1472    reading_surface = False
1473    for i, line in enumerate(lines):
1474
1475        if len(line.strip()) == 0:    #Ignore blanks
1476            continue
1477
1478        if lines[i].strip().startswith('SURFACE LINE'):
1479            reading_surface = True
1480            continue
1481
1482        if lines[i].strip().startswith('END') and reading_surface:
1483            yield points
1484            reading_surface = False
1485            points = []
1486
1487        if reading_surface:
1488            fields = line.strip().split(',')
1489            easting = float(fields[0])
1490            northing = float(fields[1])
1491            elevation = float(fields[2])
1492            points.append([easting, northing, elevation])
1493
1494
1495
1496
1497def hecras_cross_sections2pts(basename_in,
1498                              basename_out=None,
1499                              verbose=False):
1500    """Read HEC-RAS Elevation datal from the following ASCII format (.sdf)
1501
1502    Example:
1503
1504
1505# RAS export file created on Mon 15Aug2005 11:42
1506# by HEC-RAS Version 3.1.1
1507
1508BEGIN HEADER:
1509  UNITS: METRIC
1510  DTM TYPE: TIN
1511  DTM: v:\1\cit\perth_topo\river_tin
1512  STREAM LAYER: c:\local\hecras\21_02_03\up_canning_cent3d.shp
1513  CROSS-SECTION LAYER: c:\local\hecras\21_02_03\up_can_xs3d.shp
1514  MAP PROJECTION: UTM
1515  PROJECTION ZONE: 50
1516  DATUM: AGD66
1517  VERTICAL DATUM:
1518  NUMBER OF REACHES:  19
1519  NUMBER OF CROSS-SECTIONS:  14206
1520END HEADER:
1521
1522
1523Only the SURFACE LINE data of the following form will be utilised
1524
1525  CROSS-SECTION:
1526    STREAM ID:Southern-Wungong
1527    REACH ID:Southern-Wungong
1528    STATION:19040.*
1529    CUT LINE:
1530      405548.671603161 , 6438142.7594925
1531      405734.536092045 , 6438326.10404912
1532      405745.130459356 , 6438331.48627354
1533      405813.89633823 , 6438368.6272789
1534    SURFACE LINE:
1535     405548.67,   6438142.76,   35.37
1536     405552.24,   6438146.28,   35.41
1537     405554.78,   6438148.78,   35.44
1538     405555.80,   6438149.79,   35.44
1539     405559.37,   6438153.31,   35.45
1540     405560.88,   6438154.81,   35.44
1541     405562.93,   6438156.83,   35.42
1542     405566.50,   6438160.35,   35.38
1543     405566.99,   6438160.83,   35.37
1544     ...
1545   END CROSS-SECTION
1546
1547    Convert to NetCDF pts format which is
1548
1549    points:  (Nx2) Float array
1550    elevation: N Float array
1551    """
1552
1553    import os
1554    from Scientific.IO.NetCDF import NetCDFFile
1555    from Numeric import Float, zeros, reshape
1556
1557    root = basename_in
1558
1559    #Get ASCII file
1560    infile = open(root + '.sdf', 'r')  #Open SDF file for read
1561
1562    if verbose: print 'Reading DEM from %s' %(root + '.sdf')
1563
1564    lines = infile.readlines()
1565    infile.close()
1566
1567    if verbose: print 'Converting to pts format'
1568
1569    i = 0
1570    while lines[i].strip() == '' or lines[i].strip().startswith('#'):
1571        i += 1
1572
1573    assert lines[i].strip().upper() == 'BEGIN HEADER:'
1574    i += 1
1575
1576    assert lines[i].strip().upper().startswith('UNITS:')
1577    units = lines[i].strip().split()[1]
1578    i += 1
1579
1580    assert lines[i].strip().upper().startswith('DTM TYPE:')
1581    i += 1
1582
1583    assert lines[i].strip().upper().startswith('DTM:')
1584    i += 1
1585
1586    assert lines[i].strip().upper().startswith('STREAM')
1587    i += 1
1588
1589    assert lines[i].strip().upper().startswith('CROSS')
1590    i += 1
1591
1592    assert lines[i].strip().upper().startswith('MAP PROJECTION:')
1593    projection = lines[i].strip().split(':')[1]
1594    i += 1
1595
1596    assert lines[i].strip().upper().startswith('PROJECTION ZONE:')
1597    zone = int(lines[i].strip().split(':')[1])
1598    i += 1
1599
1600    assert lines[i].strip().upper().startswith('DATUM:')
1601    datum = lines[i].strip().split(':')[1]
1602    i += 1
1603
1604    assert lines[i].strip().upper().startswith('VERTICAL DATUM:')
1605    i += 1
1606
1607    assert lines[i].strip().upper().startswith('NUMBER OF REACHES:')
1608    i += 1
1609
1610    assert lines[i].strip().upper().startswith('NUMBER OF CROSS-SECTIONS:')
1611    number_of_cross_sections = int(lines[i].strip().split(':')[1])
1612    i += 1
1613
1614
1615    #Now read all points
1616    points = []
1617    elevation = []
1618    for j, entries in enumerate(_read_hecras_cross_sections(lines[i:])):
1619        for k, entry in enumerate(entries):
1620            points.append(entry[:2])
1621            elevation.append(entry[2])
1622
1623
1624    msg = 'Actual #number_of_cross_sections == %d, Reported as %d'\
1625          %(j+1, number_of_cross_sections)
1626    assert j+1 == number_of_cross_sections, msg
1627
1628    #Get output file
1629    if basename_out == None:
1630        ptsname = root + '.pts'
1631    else:
1632        ptsname = basename_out + '.pts'
1633
1634    geo_ref = Geo_reference(zone, 0, 0, datum, projection, units)
1635    geo = Geospatial_data(points, {"elevation":elevation},
1636                          verbose=verbose, geo_reference=geo_ref)
1637    geo.export_points_file(ptsname)
1638
1639def export_grid(basename_in, extra_name_out = None,
1640                quantities = None, # defaults to elevation
1641                timestep = None,
1642                reduction = None,
1643                cellsize = 10,
1644                NODATA_value = -9999,
1645                easting_min = None,
1646                easting_max = None,
1647                northing_min = None,
1648                northing_max = None,
1649                verbose = False,
1650                origin = None,
1651                datum = 'WGS84',
1652                format = 'ers'):
1653    """
1654   
1655    Wrapper for sww2dem. - see sww2dem to find out what most of the
1656    parameters do.
1657
1658    Quantities is a list of quantities.  Each quantity will be
1659    calculated for each sww file.
1660
1661    This returns the basenames of the files returned, which is made up
1662    of the dir and all of the file name, except the extension.
1663
1664    This function returns the names of the files produced.
1665
1666    It will also produce as many output files as there are input sww files.
1667    """
1668   
1669    if quantities is None:
1670        quantities = ['elevation']
1671       
1672    if type(quantities) is str:
1673            quantities = [quantities]
1674
1675    # How many sww files are there?
1676    dir, base = os.path.split(basename_in)
1677    #print "basename_in",basename_in
1678    #print "base",base
1679
1680    iterate_over = get_all_swwfiles(dir,base,verbose)
1681   
1682    if dir == "":
1683        dir = "." # Unix compatibility
1684   
1685    files_out = []
1686    #print 'sww_file',iterate_over
1687    for sww_file in iterate_over:
1688        for quantity in quantities:
1689            if extra_name_out is None:
1690                basename_out = sww_file + '_' + quantity
1691            else:
1692                basename_out = sww_file + '_' + quantity + '_' \
1693                               + extra_name_out
1694#            print "basename_out", basename_out
1695       
1696            file_out = sww2dem(dir+sep+sww_file, dir+sep+basename_out,
1697                               quantity, 
1698                               timestep,
1699                               reduction,
1700                               cellsize,
1701                               NODATA_value,
1702                               easting_min,
1703                               easting_max,
1704                               northing_min,
1705                               northing_max,
1706                               verbose,
1707                               origin,
1708                               datum,
1709                               format)
1710            files_out.append(file_out)
1711    #print "basenames_out after",basenames_out
1712    return files_out
1713
1714
1715def get_timeseries(production_dirs, output_dir, scenario_name, gauges_dir_name,
1716                   plot_quantity, generate_fig = False,
1717                   reportname = None, surface = False, time_min = None,
1718                   time_max = None, title_on = False, verbose = True,
1719                   nodes=None):
1720    """
1721    nodes - number of processes used.
1722
1723    warning - this function has no tests
1724    """
1725    if reportname == None:
1726        report = False
1727    else:
1728        report = True
1729       
1730    if nodes is None:
1731        is_parallel = False
1732    else:
1733        is_parallel = True
1734       
1735    # Generate figures
1736    swwfiles = {}
1737   
1738    if is_parallel is True:   
1739        for i in range(nodes):
1740            print 'Sending node %d of %d' %(i,nodes)
1741            swwfiles = {}
1742            if not reportname == None:
1743                reportname = report_name + '_%s' %(i)
1744            for label_id in production_dirs.keys():
1745                if label_id == 'boundaries':
1746                    swwfile = best_boundary_sww
1747                else:
1748                    file_loc = output_dir + label_id + sep
1749                    sww_extra = '_P%s_%s' %(i,nodes)
1750                    swwfile = file_loc + scenario_name + sww_extra + '.sww'
1751                    print 'swwfile',swwfile
1752                    swwfiles[swwfile] = label_id
1753
1754                texname, elev_output = sww2timeseries(swwfiles,
1755                                              gauges_dir_name,
1756                                              production_dirs,
1757                                              report = report,
1758                                              reportname = reportname,
1759                                              plot_quantity = plot_quantity,
1760                                              generate_fig = generate_fig,
1761                                              surface = surface,
1762                                              time_min = time_min,
1763                                              time_max = time_max,
1764                                              title_on = title_on,
1765                                              verbose = verbose)
1766    else:   
1767        for label_id in production_dirs.keys():       
1768            if label_id == 'boundaries':
1769                print 'boundaries'
1770                file_loc = project.boundaries_in_dir
1771                swwfile = project.boundaries_dir_name3 + '.sww'
1772                #  swwfile = boundary_dir_filename
1773            else:
1774                file_loc = output_dir + label_id + sep
1775                swwfile = file_loc + scenario_name + '.sww'
1776            swwfiles[swwfile] = label_id
1777       
1778        texname, elev_output = sww2timeseries(swwfiles,
1779                                              gauges_dir_name,
1780                                              production_dirs,
1781                                              report = report,
1782                                              reportname = reportname,
1783                                              plot_quantity = plot_quantity,
1784                                              generate_fig = generate_fig,
1785                                              surface = surface,
1786                                              time_min = time_min,
1787                                              time_max = time_max,
1788                                              title_on = title_on,
1789                                              verbose = verbose)
1790                                         
1791
1792   
1793def sww2dem(basename_in, basename_out = None,
1794            quantity = None, # defaults to elevation
1795            timestep = None,
1796            reduction = None,
1797            cellsize = 10,
1798            NODATA_value = -9999,
1799            easting_min = None,
1800            easting_max = None,
1801            northing_min = None,
1802            northing_max = None,
1803            verbose = False,
1804            origin = None,
1805            datum = 'WGS84',
1806            format = 'ers'):
1807
1808    """Read SWW file and convert to Digitial Elevation model format
1809    (.asc or .ers)
1810
1811    Example (ASC):
1812
1813    ncols         3121
1814    nrows         1800
1815    xllcorner     722000
1816    yllcorner     5893000
1817    cellsize      25
1818    NODATA_value  -9999
1819    138.3698 137.4194 136.5062 135.5558 ..........
1820
1821    Also write accompanying file with same basename_in but extension .prj
1822    used to fix the UTM zone, datum, false northings and eastings.
1823
1824    The prj format is assumed to be as
1825
1826    Projection    UTM
1827    Zone          56
1828    Datum         WGS84
1829    Zunits        NO
1830    Units         METERS
1831    Spheroid      WGS84
1832    Xshift        0.0000000000
1833    Yshift        10000000.0000000000
1834    Parameters
1835
1836
1837    The parameter quantity must be the name of an existing quantity or
1838    an expression involving existing quantities. The default is
1839    'elevation'. Quantity is not a list of quantities.
1840
1841    if timestep (an index) is given, output quantity at that timestep
1842
1843    if reduction is given use that to reduce quantity over all timesteps.
1844
1845    datum
1846
1847    format can be either 'asc' or 'ers'
1848    """
1849
1850    import sys
1851    from Numeric import array, Float, concatenate, NewAxis, zeros, reshape, \
1852         sometrue
1853    from Numeric import array2string
1854
1855    from anuga.utilities.polygon import inside_polygon, outside_polygon, \
1856         separate_points_by_polygon
1857    from anuga.abstract_2d_finite_volumes.util import \
1858         apply_expression_to_dictionary
1859
1860    msg = 'Format must be either asc or ers'
1861    assert format.lower() in ['asc', 'ers'], msg
1862
1863
1864    false_easting = 500000
1865    false_northing = 10000000
1866
1867    if quantity is None:
1868        quantity = 'elevation'
1869       
1870    if reduction is None:
1871        reduction = max
1872
1873    if basename_out is None:
1874        basename_out = basename_in + '_%s' %quantity
1875
1876    if quantity_formula.has_key(quantity):
1877        quantity = quantity_formula[quantity]
1878       
1879    swwfile = basename_in + '.sww'
1880    demfile = basename_out + '.' + format
1881    # Note the use of a .ers extension is optional (write_ermapper_grid will
1882    # deal with either option
1883   
1884    #if verbose: bye= nsuadsfd[0] # uncomment to check catching verbose errors
1885   
1886    # Read sww file
1887    if verbose: 
1888        print 'Reading from %s' %swwfile
1889        print 'Output directory is %s' %basename_out
1890   
1891    from Scientific.IO.NetCDF import NetCDFFile
1892    fid = NetCDFFile(swwfile)
1893
1894    #Get extent and reference
1895    x = fid.variables['x'][:]
1896    y = fid.variables['y'][:]
1897    volumes = fid.variables['volumes'][:]
1898    if timestep is not None:
1899        times = fid.variables['time'][timestep]
1900    else:
1901        times = fid.variables['time'][:]
1902
1903    number_of_timesteps = fid.dimensions['number_of_timesteps']
1904    number_of_points = fid.dimensions['number_of_points']
1905   
1906    if origin is None:
1907
1908        # Get geo_reference
1909        # sww files don't have to have a geo_ref
1910        try:
1911            geo_reference = Geo_reference(NetCDFObject=fid)
1912        except AttributeError, e:
1913            geo_reference = Geo_reference() # Default georef object
1914
1915        xllcorner = geo_reference.get_xllcorner()
1916        yllcorner = geo_reference.get_yllcorner()
1917        zone = geo_reference.get_zone()
1918    else:
1919        zone = origin[0]
1920        xllcorner = origin[1]
1921        yllcorner = origin[2]
1922
1923
1924
1925    # FIXME: Refactor using code from Interpolation_function.statistics
1926    # (in interpolate.py)
1927    # Something like print swwstats(swwname)
1928    if verbose:
1929        print '------------------------------------------------'
1930        print 'Statistics of SWW file:'
1931        print '  Name: %s' %swwfile
1932        print '  Reference:'
1933        print '    Lower left corner: [%f, %f]'\
1934              %(xllcorner, yllcorner)
1935        if timestep is not None:
1936            print '    Time: %f' %(times)
1937        else:
1938            print '    Start time: %f' %fid.starttime[0]
1939        print '  Extent:'
1940        print '    x [m] in [%f, %f], len(x) == %d'\
1941              %(min(x.flat), max(x.flat), len(x.flat))
1942        print '    y [m] in [%f, %f], len(y) == %d'\
1943              %(min(y.flat), max(y.flat), len(y.flat))
1944        if timestep is not None:
1945            print '    t [s] = %f, len(t) == %d' %(times, 1)
1946        else:
1947            print '    t [s] in [%f, %f], len(t) == %d'\
1948              %(min(times), max(times), len(times))
1949        print '  Quantities [SI units]:'
1950        # Comment out for reduced memory consumption
1951        for name in ['stage', 'xmomentum', 'ymomentum']:
1952            q = fid.variables[name][:].flat
1953            if timestep is not None:
1954                q = q[timestep*len(x):(timestep+1)*len(x)]
1955            if verbose: print '    %s in [%f, %f]' %(name, min(q), max(q))
1956        for name in ['elevation']:
1957            q = fid.variables[name][:].flat
1958            if verbose: print '    %s in [%f, %f]' %(name, min(q), max(q))
1959           
1960    # Get quantity and reduce if applicable
1961    if verbose: print 'Processing quantity %s' %quantity
1962
1963    # Turn NetCDF objects into Numeric arrays
1964    try:
1965        q = fid.variables[quantity][:] 
1966       
1967       
1968    except:
1969        quantity_dict = {}
1970        for name in fid.variables.keys():
1971            quantity_dict[name] = fid.variables[name][:] 
1972        #Convert quantity expression to quantities found in sww file   
1973        q = apply_expression_to_dictionary(quantity, quantity_dict)
1974    #print "q.shape",q.shape
1975    if len(q.shape) == 2:
1976        #q has a time component and needs to be reduced along
1977        #the temporal dimension
1978        if verbose: print 'Reducing quantity %s' %quantity
1979        q_reduced = zeros( number_of_points, Float )
1980       
1981        if timestep is not None:
1982            for k in range(number_of_points):
1983                q_reduced[k] = q[timestep,k] 
1984        else:
1985            for k in range(number_of_points):
1986                q_reduced[k] = reduction( q[:,k] )
1987
1988        q = q_reduced
1989
1990    #Post condition: Now q has dimension: number_of_points
1991    assert len(q.shape) == 1
1992    assert q.shape[0] == number_of_points
1993
1994    if verbose:
1995        print 'Processed values for %s are in [%f, %f]' %(quantity, min(q), max(q))
1996
1997
1998    #Create grid and update xll/yll corner and x,y
1999
2000    #Relative extent
2001    if easting_min is None:
2002        xmin = min(x)
2003    else:
2004        xmin = easting_min - xllcorner
2005
2006    if easting_max is None:
2007        xmax = max(x)
2008    else:
2009        xmax = easting_max - xllcorner
2010
2011    if northing_min is None:
2012        ymin = min(y)
2013    else:
2014        ymin = northing_min - yllcorner
2015
2016    if northing_max is None:
2017        ymax = max(y)
2018    else:
2019        ymax = northing_max - yllcorner
2020
2021
2022
2023    if verbose: print 'Creating grid'
2024    ncols = int((xmax-xmin)/cellsize)+1
2025    nrows = int((ymax-ymin)/cellsize)+1
2026   
2027
2028
2029    #New absolute reference and coordinates
2030    newxllcorner = xmin+xllcorner
2031    newyllcorner = ymin+yllcorner
2032
2033    x = x+xllcorner-newxllcorner
2034    y = y+yllcorner-newyllcorner
2035   
2036    vertex_points = concatenate ((x[:, NewAxis] ,y[:, NewAxis]), axis = 1)
2037    assert len(vertex_points.shape) == 2
2038
2039    grid_points = zeros ( (ncols*nrows, 2), Float )
2040
2041
2042    for i in xrange(nrows):
2043        if format.lower() == 'asc':
2044            yg = i*cellsize
2045        else:
2046        #this will flip the order of the y values for ers
2047            yg = (nrows-i)*cellsize
2048
2049        for j in xrange(ncols):
2050            xg = j*cellsize
2051            k = i*ncols + j
2052
2053            grid_points[k,0] = xg
2054            grid_points[k,1] = yg
2055
2056    #Interpolate
2057    from anuga.fit_interpolate.interpolate import Interpolate
2058
2059    # Remove loners from vertex_points, volumes here
2060    vertex_points, volumes = remove_lone_verts(vertex_points, volumes)
2061    #export_mesh_file('monkey.tsh',{'vertices':vertex_points, 'triangles':volumes})
2062    #import sys; sys.exit()
2063    interp = Interpolate(vertex_points, volumes, verbose = verbose)
2064
2065    #Interpolate using quantity values
2066    if verbose: print 'Interpolating'
2067    grid_values = interp.interpolate(q, grid_points).flat
2068
2069
2070    if verbose:
2071        print 'Interpolated values are in [%f, %f]' %(min(grid_values),
2072                                                      max(grid_values))
2073
2074    #Assign NODATA_value to all points outside bounding polygon (from interpolation mesh)
2075    P = interp.mesh.get_boundary_polygon()
2076    outside_indices = outside_polygon(grid_points, P, closed=True)
2077
2078    for i in outside_indices:
2079        grid_values[i] = NODATA_value
2080
2081
2082
2083
2084    if format.lower() == 'ers':
2085        # setup ERS header information
2086        grid_values = reshape(grid_values,(nrows, ncols))
2087        header = {}
2088        header['datum'] = '"' + datum + '"'
2089        # FIXME The use of hardwired UTM and zone number needs to be made optional
2090        # FIXME Also need an automatic test for coordinate type (i.e. EN or LL)
2091        header['projection'] = '"UTM-' + str(zone) + '"'
2092        header['coordinatetype'] = 'EN'
2093        if header['coordinatetype'] == 'LL':
2094            header['longitude'] = str(newxllcorner)
2095            header['latitude'] = str(newyllcorner)
2096        elif header['coordinatetype'] == 'EN':
2097            header['eastings'] = str(newxllcorner)
2098            header['northings'] = str(newyllcorner)
2099        header['nullcellvalue'] = str(NODATA_value)
2100        header['xdimension'] = str(cellsize)
2101        header['ydimension'] = str(cellsize)
2102        header['value'] = '"' + quantity + '"'
2103        #header['celltype'] = 'IEEE8ByteReal'  #FIXME: Breaks unit test
2104
2105
2106        #Write
2107        if verbose: print 'Writing %s' %demfile
2108        import ermapper_grids
2109        ermapper_grids.write_ermapper_grid(demfile, grid_values, header)
2110
2111        fid.close()
2112    else:
2113        #Write to Ascii format
2114
2115        #Write prj file
2116        prjfile = basename_out + '.prj'
2117
2118        if verbose: print 'Writing %s' %prjfile
2119        prjid = open(prjfile, 'w')
2120        prjid.write('Projection    %s\n' %'UTM')
2121        prjid.write('Zone          %d\n' %zone)
2122        prjid.write('Datum         %s\n' %datum)
2123        prjid.write('Zunits        NO\n')
2124        prjid.write('Units         METERS\n')
2125        prjid.write('Spheroid      %s\n' %datum)
2126        prjid.write('Xshift        %d\n' %false_easting)
2127        prjid.write('Yshift        %d\n' %false_northing)
2128        prjid.write('Parameters\n')
2129        prjid.close()
2130
2131
2132
2133        if verbose: print 'Writing %s' %demfile
2134
2135        ascid = open(demfile, 'w')
2136
2137        ascid.write('ncols         %d\n' %ncols)
2138        ascid.write('nrows         %d\n' %nrows)
2139        ascid.write('xllcorner     %d\n' %newxllcorner)
2140        ascid.write('yllcorner     %d\n' %newyllcorner)
2141        ascid.write('cellsize      %f\n' %cellsize)
2142        ascid.write('NODATA_value  %d\n' %NODATA_value)
2143
2144
2145        #Get bounding polygon from mesh
2146        #P = interp.mesh.get_boundary_polygon()
2147        #inside_indices = inside_polygon(grid_points, P)
2148
2149        for i in range(nrows):
2150            if verbose and i%((nrows+10)/10)==0:
2151                print 'Doing row %d of %d' %(i, nrows)
2152
2153            base_index = (nrows-i-1)*ncols
2154
2155            slice = grid_values[base_index:base_index+ncols]
2156            s = array2string(slice, max_line_width=sys.maxint)
2157            ascid.write(s[1:-1] + '\n')
2158
2159
2160            #print
2161            #for j in range(ncols):
2162            #    index = base_index+j#
2163            #    print grid_values[index],
2164            #    ascid.write('%f ' %grid_values[index])
2165            #ascid.write('\n')
2166
2167        #Close
2168        ascid.close()
2169        fid.close()
2170        return basename_out
2171
2172
2173#Backwards compatibility
2174def sww2asc(basename_in, basename_out = None,
2175            quantity = None,
2176            timestep = None,
2177            reduction = None,
2178            cellsize = 10,
2179            verbose = False,
2180            origin = None):
2181    print 'sww2asc will soon be obsoleted - please use sww2dem'
2182    sww2dem(basename_in,
2183            basename_out = basename_out,
2184            quantity = quantity,
2185            timestep = timestep,
2186            reduction = reduction,
2187            cellsize = cellsize,
2188            verbose = verbose,
2189            origin = origin,
2190        datum = 'WGS84',
2191        format = 'asc')
2192
2193def sww2ers(basename_in, basename_out = None,
2194            quantity = None,
2195            timestep = None,
2196            reduction = None,
2197            cellsize = 10,
2198            verbose = False,
2199            origin = None,
2200            datum = 'WGS84'):
2201    print 'sww2ers will soon be obsoleted - please use sww2dem'
2202    sww2dem(basename_in,
2203            basename_out = basename_out,
2204            quantity = quantity,
2205            timestep = timestep,
2206            reduction = reduction,
2207            cellsize = cellsize,
2208            verbose = verbose,
2209            origin = origin,
2210            datum = datum,
2211            format = 'ers')
2212################################# END COMPATIBILITY ##############
2213
2214
2215
2216def sww2pts(basename_in, basename_out=None,
2217            data_points=None,
2218            quantity=None,
2219            timestep=None,
2220            reduction=None,
2221            NODATA_value=-9999,
2222            verbose=False,
2223            origin=None):
2224            #datum = 'WGS84')
2225
2226
2227    """Read SWW file and convert to interpolated values at selected points
2228
2229    The parameter quantity' must be the name of an existing quantity or
2230    an expression involving existing quantities. The default is
2231    'elevation'.
2232
2233    if timestep (an index) is given, output quantity at that timestep
2234
2235    if reduction is given use that to reduce quantity over all timesteps.
2236
2237    data_points (Nx2 array) give locations of points where quantity is to be computed.
2238   
2239    """
2240
2241    import sys
2242    from Numeric import array, Float, concatenate, NewAxis, zeros, reshape, sometrue
2243    from Numeric import array2string
2244
2245    from anuga.utilities.polygon import inside_polygon, outside_polygon, separate_points_by_polygon
2246    from anuga.abstract_2d_finite_volumes.util import apply_expression_to_dictionary
2247
2248    from anuga.geospatial_data.geospatial_data import Geospatial_data
2249
2250    if quantity is None:
2251        quantity = 'elevation'
2252
2253    if reduction is None:
2254        reduction = max
2255
2256    if basename_out is None:
2257        basename_out = basename_in + '_%s' %quantity
2258
2259    swwfile = basename_in + '.sww'
2260    ptsfile = basename_out + '.pts'
2261
2262    # Read sww file
2263    if verbose: print 'Reading from %s' %swwfile
2264    from Scientific.IO.NetCDF import NetCDFFile
2265    fid = NetCDFFile(swwfile)
2266
2267    # Get extent and reference
2268    x = fid.variables['x'][:]
2269    y = fid.variables['y'][:]
2270    volumes = fid.variables['volumes'][:]
2271
2272    number_of_timesteps = fid.dimensions['number_of_timesteps']
2273    number_of_points = fid.dimensions['number_of_points']
2274    if origin is None:
2275
2276        # Get geo_reference
2277        # sww files don't have to have a geo_ref
2278        try:
2279            geo_reference = Geo_reference(NetCDFObject=fid)
2280        except AttributeError, e:
2281            geo_reference = Geo_reference() #Default georef object
2282
2283        xllcorner = geo_reference.get_xllcorner()
2284        yllcorner = geo_reference.get_yllcorner()
2285        zone = geo_reference.get_zone()
2286    else:
2287        zone = origin[0]
2288        xllcorner = origin[1]
2289        yllcorner = origin[2]
2290
2291
2292
2293    # FIXME: Refactor using code from file_function.statistics
2294    # Something like print swwstats(swwname)
2295    if verbose:
2296        x = fid.variables['x'][:]
2297        y = fid.variables['y'][:]
2298        times = fid.variables['time'][:]
2299        print '------------------------------------------------'
2300        print 'Statistics of SWW file:'
2301        print '  Name: %s' %swwfile
2302        print '  Reference:'
2303        print '    Lower left corner: [%f, %f]'\
2304              %(xllcorner, yllcorner)
2305        print '    Start time: %f' %fid.starttime[0]
2306        print '  Extent:'
2307        print '    x [m] in [%f, %f], len(x) == %d'\
2308              %(min(x.flat), max(x.flat), len(x.flat))
2309        print '    y [m] in [%f, %f], len(y) == %d'\
2310              %(min(y.flat), max(y.flat), len(y.flat))
2311        print '    t [s] in [%f, %f], len(t) == %d'\
2312              %(min(times), max(times), len(times))
2313        print '  Quantities [SI units]:'
2314        for name in ['stage', 'xmomentum', 'ymomentum', 'elevation']:
2315            q = fid.variables[name][:].flat
2316            print '    %s in [%f, %f]' %(name, min(q), max(q))
2317
2318
2319
2320    # Get quantity and reduce if applicable
2321    if verbose: print 'Processing quantity %s' %quantity
2322
2323    # Turn NetCDF objects into Numeric arrays
2324    quantity_dict = {}
2325    for name in fid.variables.keys():
2326        quantity_dict[name] = fid.variables[name][:]
2327
2328
2329
2330    # Convert quantity expression to quantities found in sww file   
2331    q = apply_expression_to_dictionary(quantity, quantity_dict)
2332
2333
2334
2335    if len(q.shape) == 2:
2336        # q has a time component and needs to be reduced along
2337        # the temporal dimension
2338        if verbose: print 'Reducing quantity %s' %quantity
2339        q_reduced = zeros( number_of_points, Float )
2340
2341        for k in range(number_of_points):
2342            q_reduced[k] = reduction( q[:,k] )
2343
2344        q = q_reduced
2345
2346    # Post condition: Now q has dimension: number_of_points
2347    assert len(q.shape) == 1
2348    assert q.shape[0] == number_of_points
2349
2350
2351    if verbose:
2352        print 'Processed values for %s are in [%f, %f]' %(quantity, min(q), max(q))
2353
2354
2355    # Create grid and update xll/yll corner and x,y
2356    vertex_points = concatenate ((x[:, NewAxis] ,y[:, NewAxis]), axis = 1)
2357    assert len(vertex_points.shape) == 2
2358
2359    # Interpolate
2360    from anuga.fit_interpolate.interpolate import Interpolate
2361    interp = Interpolate(vertex_points, volumes, verbose = verbose)
2362
2363    # Interpolate using quantity values
2364    if verbose: print 'Interpolating'
2365    interpolated_values = interp.interpolate(q, data_points).flat
2366
2367
2368    if verbose:
2369        print 'Interpolated values are in [%f, %f]' %(min(interpolated_values),
2370                                                      max(interpolated_values))
2371
2372    # Assign NODATA_value to all points outside bounding polygon (from interpolation mesh)
2373    P = interp.mesh.get_boundary_polygon()
2374    outside_indices = outside_polygon(data_points, P, closed=True)
2375
2376    for i in outside_indices:
2377        interpolated_values[i] = NODATA_value
2378
2379
2380    # Store results   
2381    G = Geospatial_data(data_points=data_points,
2382                        attributes=interpolated_values)
2383
2384    G.export_points_file(ptsfile, absolute = True)
2385
2386    fid.close()
2387
2388
2389def convert_dem_from_ascii2netcdf(basename_in, basename_out = None,
2390                                  use_cache = False,
2391                                  verbose = False):
2392    """Read Digitial Elevation model from the following ASCII format (.asc)
2393
2394    Example:
2395
2396    ncols         3121
2397    nrows         1800
2398    xllcorner     722000
2399    yllcorner     5893000
2400    cellsize      25
2401    NODATA_value  -9999
2402    138.3698 137.4194 136.5062 135.5558 ..........
2403
2404    Convert basename_in + '.asc' to NetCDF format (.dem)
2405    mimicking the ASCII format closely.
2406
2407
2408    An accompanying file with same basename_in but extension .prj must exist
2409    and is used to fix the UTM zone, datum, false northings and eastings.
2410
2411    The prj format is assumed to be as
2412
2413    Projection    UTM
2414    Zone          56
2415    Datum         WGS84
2416    Zunits        NO
2417    Units         METERS
2418    Spheroid      WGS84
2419    Xshift        0.0000000000
2420    Yshift        10000000.0000000000
2421    Parameters
2422    """
2423
2424
2425
2426    kwargs = {'basename_out': basename_out, 'verbose': verbose}
2427
2428    if use_cache is True:
2429        from caching import cache
2430        result = cache(_convert_dem_from_ascii2netcdf, basename_in, kwargs,
2431                       dependencies = [basename_in + '.asc',
2432                                       basename_in + '.prj'],
2433                       verbose = verbose)
2434
2435    else:
2436        result = apply(_convert_dem_from_ascii2netcdf, [basename_in], kwargs)
2437
2438    return result
2439
2440
2441
2442
2443
2444
2445def _convert_dem_from_ascii2netcdf(basename_in, basename_out = None,
2446                                  verbose = False):
2447    """Read Digitial Elevation model from the following ASCII format (.asc)
2448
2449    Internal function. See public function convert_dem_from_ascii2netcdf for details.
2450    """
2451
2452    import os
2453    from Scientific.IO.NetCDF import NetCDFFile
2454    from Numeric import Float, array
2455
2456    #root, ext = os.path.splitext(basename_in)
2457    root = basename_in
2458
2459    ###########################################
2460    # Read Meta data
2461    if verbose: print 'Reading METADATA from %s' %root + '.prj'
2462    metadatafile = open(root + '.prj')
2463    metalines = metadatafile.readlines()
2464    metadatafile.close()
2465
2466    L = metalines[0].strip().split()
2467    assert L[0].strip().lower() == 'projection'
2468    projection = L[1].strip()                   #TEXT
2469
2470    L = metalines[1].strip().split()
2471    assert L[0].strip().lower() == 'zone'
2472    zone = int(L[1].strip())
2473
2474    L = metalines[2].strip().split()
2475    assert L[0].strip().lower() == 'datum'
2476    datum = L[1].strip()                        #TEXT
2477
2478    L = metalines[3].strip().split()
2479    assert L[0].strip().lower() == 'zunits'     #IGNORE
2480    zunits = L[1].strip()                       #TEXT
2481
2482    L = metalines[4].strip().split()
2483    assert L[0].strip().lower() == 'units'
2484    units = L[1].strip()                        #TEXT
2485
2486    L = metalines[5].strip().split()
2487    assert L[0].strip().lower() == 'spheroid'   #IGNORE
2488    spheroid = L[1].strip()                     #TEXT
2489
2490    L = metalines[6].strip().split()
2491    assert L[0].strip().lower() == 'xshift'
2492    false_easting = float(L[1].strip())
2493
2494    L = metalines[7].strip().split()
2495    assert L[0].strip().lower() == 'yshift'
2496    false_northing = float(L[1].strip())
2497
2498    #print false_easting, false_northing, zone, datum
2499
2500
2501    ###########################################
2502    #Read DEM data
2503
2504    datafile = open(basename_in + '.asc')
2505
2506    if verbose: print 'Reading DEM from %s' %(basename_in + '.asc')
2507    lines = datafile.readlines()
2508    datafile.close()
2509
2510    if verbose: print 'Got', len(lines), ' lines'
2511
2512    ncols = int(lines[0].split()[1].strip())
2513    nrows = int(lines[1].split()[1].strip())
2514
2515    # Do cellsize (line 4) before line 2 and 3
2516    cellsize = float(lines[4].split()[1].strip())   
2517
2518    # Checks suggested by Joaquim Luis
2519    # Our internal representation of xllcorner
2520    # and yllcorner is non-standard.
2521    xref = lines[2].split()
2522    if xref[0].strip() == 'xllcorner':
2523        xllcorner = float(xref[1].strip()) # + 0.5*cellsize # Correct offset
2524    elif xref[0].strip() == 'xllcenter':
2525        xllcorner = float(xref[1].strip())
2526    else:
2527        msg = 'Unknown keyword: %s' %xref[0].strip()
2528        raise Exception, msg
2529
2530    yref = lines[3].split()
2531    if yref[0].strip() == 'yllcorner':
2532        yllcorner = float(yref[1].strip()) # + 0.5*cellsize # Correct offset
2533    elif yref[0].strip() == 'yllcenter':
2534        yllcorner = float(yref[1].strip())
2535    else:
2536        msg = 'Unknown keyword: %s' %yref[0].strip()
2537        raise Exception, msg
2538       
2539
2540    NODATA_value = int(lines[5].split()[1].strip())
2541
2542    assert len(lines) == nrows + 6
2543
2544
2545    ##########################################
2546
2547
2548    if basename_out == None:
2549        netcdfname = root + '.dem'
2550    else:
2551        netcdfname = basename_out + '.dem'
2552
2553    if verbose: print 'Store to NetCDF file %s' %netcdfname
2554    # NetCDF file definition
2555    fid = NetCDFFile(netcdfname, 'w')
2556
2557    #Create new file
2558    fid.institution = 'Geoscience Australia'
2559    fid.description = 'NetCDF DEM format for compact and portable storage ' +\
2560                      'of spatial point data'
2561
2562    fid.ncols = ncols
2563    fid.nrows = nrows
2564    fid.xllcorner = xllcorner
2565    fid.yllcorner = yllcorner
2566    fid.cellsize = cellsize
2567    fid.NODATA_value = NODATA_value
2568
2569    fid.zone = zone
2570    fid.false_easting = false_easting
2571    fid.false_northing = false_northing
2572    fid.projection = projection
2573    fid.datum = datum
2574    fid.units = units
2575
2576
2577    # dimension definitions
2578    fid.createDimension('number_of_rows', nrows)
2579    fid.createDimension('number_of_columns', ncols)
2580
2581    # variable definitions
2582    fid.createVariable('elevation', Float, ('number_of_rows',
2583                                            'number_of_columns'))
2584
2585    # Get handles to the variables
2586    elevation = fid.variables['elevation']
2587
2588    #Store data
2589    n = len(lines[6:])
2590    for i, line in enumerate(lines[6:]):
2591        fields = line.split()
2592        if verbose and i%((n+10)/10)==0:
2593            print 'Processing row %d of %d' %(i, nrows)
2594
2595        elevation[i, :] = array([float(x) for x in fields])
2596
2597    fid.close()
2598
2599
2600
2601
2602
2603def ferret2sww(basename_in, basename_out = None,
2604               verbose = False,
2605               minlat = None, maxlat = None,
2606               minlon = None, maxlon = None,
2607               mint = None, maxt = None, mean_stage = 0,
2608               origin = None, zscale = 1,
2609               fail_on_NaN = True,
2610               NaN_filler = 0,
2611               elevation = None,
2612               inverted_bathymetry = True
2613               ): #FIXME: Bathymetry should be obtained
2614                                  #from MOST somehow.
2615                                  #Alternatively from elsewhere
2616                                  #or, as a last resort,
2617                                  #specified here.
2618                                  #The value of -100 will work
2619                                  #for the Wollongong tsunami
2620                                  #scenario but is very hacky
2621    """Convert MOST and 'Ferret' NetCDF format for wave propagation to
2622    sww format native to abstract_2d_finite_volumes.
2623
2624    Specify only basename_in and read files of the form
2625    basefilename_ha.nc, basefilename_ua.nc, basefilename_va.nc containing
2626    relative height, x-velocity and y-velocity, respectively.
2627
2628    Also convert latitude and longitude to UTM. All coordinates are
2629    assumed to be given in the GDA94 datum.
2630
2631    min's and max's: If omitted - full extend is used.
2632    To include a value min may equal it, while max must exceed it.
2633    Lat and lon are assuemd to be in decimal degrees
2634
2635    origin is a 3-tuple with geo referenced
2636    UTM coordinates (zone, easting, northing)
2637
2638    nc format has values organised as HA[TIME, LATITUDE, LONGITUDE]
2639    which means that longitude is the fastest
2640    varying dimension (row major order, so to speak)
2641
2642    ferret2sww uses grid points as vertices in a triangular grid
2643    counting vertices from lower left corner upwards, then right
2644    """
2645
2646    import os
2647    from Scientific.IO.NetCDF import NetCDFFile
2648    from Numeric import Float, Int, Int32, searchsorted, zeros, array
2649    from Numeric import allclose, around
2650
2651    precision = Float
2652
2653    msg = 'Must use latitudes and longitudes for minlat, maxlon etc'
2654
2655    if minlat != None:
2656        assert -90 < minlat < 90 , msg
2657    if maxlat != None:
2658        assert -90 < maxlat < 90 , msg
2659        if minlat != None:
2660            assert maxlat > minlat
2661    if minlon != None:
2662        assert -180 < minlon < 180 , msg
2663    if maxlon != None:
2664        assert -180 < maxlon < 180 , msg
2665        if minlon != None:
2666            assert maxlon > minlon
2667       
2668
2669
2670    #Get NetCDF data
2671    if verbose: print 'Reading files %s_*.nc' %basename_in
2672    #print "basename_in + '_ha.nc'",basename_in + '_ha.nc'
2673    file_h = NetCDFFile(basename_in + '_ha.nc', 'r') #Wave amplitude (cm)
2674    file_u = NetCDFFile(basename_in + '_ua.nc', 'r') #Velocity (x) (cm/s)
2675    file_v = NetCDFFile(basename_in + '_va.nc', 'r') #Velocity (y) (cm/s)
2676    file_e = NetCDFFile(basename_in + '_e.nc', 'r')  #Elevation (z) (m)
2677
2678    if basename_out is None:
2679        swwname = basename_in + '.sww'
2680    else:
2681        swwname = basename_out + '.sww'
2682
2683    # Get dimensions of file_h
2684    for dimension in file_h.dimensions.keys():
2685        if dimension[:3] == 'LON':
2686            dim_h_longitude = dimension
2687        if dimension[:3] == 'LAT':
2688            dim_h_latitude = dimension
2689        if dimension[:4] == 'TIME':
2690            dim_h_time = dimension
2691
2692#    print 'long:', dim_h_longitude
2693#    print 'lats:', dim_h_latitude
2694#    print 'times:', dim_h_time
2695
2696    times = file_h.variables[dim_h_time]
2697    latitudes = file_h.variables[dim_h_latitude]
2698    longitudes = file_h.variables[dim_h_longitude]
2699   
2700    # get dimensions for file_e
2701    for dimension in file_e.dimensions.keys():
2702        if dimension[:3] == 'LON':
2703            dim_e_longitude = dimension
2704        if dimension[:3] == 'LAT':
2705            dim_e_latitude = dimension
2706
2707    # get dimensions for file_u
2708    for dimension in file_u.dimensions.keys():
2709        if dimension[:3] == 'LON':
2710            dim_u_longitude = dimension
2711        if dimension[:3] == 'LAT':
2712            dim_u_latitude = dimension
2713        if dimension[:4] == 'TIME':
2714            dim_u_time = dimension
2715           
2716    # get dimensions for file_v
2717    for dimension in file_v.dimensions.keys():
2718        if dimension[:3] == 'LON':
2719            dim_v_longitude = dimension
2720        if dimension[:3] == 'LAT':
2721            dim_v_latitude = dimension
2722        if dimension[:4] == 'TIME':
2723            dim_v_time = dimension
2724
2725
2726    # Precision used by most for lat/lon is 4 or 5 decimals
2727    e_lat = around(file_e.variables[dim_e_latitude][:], 5)
2728    e_lon = around(file_e.variables[dim_e_longitude][:], 5)
2729
2730    # Check that files are compatible
2731    assert allclose(latitudes, file_u.variables[dim_u_latitude])
2732    assert allclose(latitudes, file_v.variables[dim_v_latitude])
2733    assert allclose(latitudes, e_lat)
2734
2735    assert allclose(longitudes, file_u.variables[dim_u_longitude])
2736    assert allclose(longitudes, file_v.variables[dim_v_longitude])
2737    assert allclose(longitudes, e_lon)
2738
2739    if mint is None:
2740        jmin = 0
2741        mint = times[0]       
2742    else:
2743        jmin = searchsorted(times, mint)
2744       
2745    if maxt is None:
2746        jmax = len(times)
2747        maxt = times[-1]
2748    else:
2749        jmax = searchsorted(times, maxt)
2750
2751    #print "latitudes[:]",latitudes[:]
2752    #print "longitudes[:]",longitudes [:]
2753    kmin, kmax, lmin, lmax = _get_min_max_indexes(latitudes[:],
2754                                                  longitudes[:],
2755                                                  minlat, maxlat,
2756                                                  minlon, maxlon)
2757
2758
2759    times = times[jmin:jmax]
2760    latitudes = latitudes[kmin:kmax]
2761    longitudes = longitudes[lmin:lmax]
2762
2763    #print "latitudes[:]",latitudes[:]
2764    #print "longitudes[:]",longitudes [:]
2765
2766    if verbose: print 'cropping'
2767    zname = 'ELEVATION'
2768
2769    amplitudes = file_h.variables['HA'][jmin:jmax, kmin:kmax, lmin:lmax]
2770    uspeed = file_u.variables['UA'][jmin:jmax, kmin:kmax, lmin:lmax] #Lon
2771    vspeed = file_v.variables['VA'][jmin:jmax, kmin:kmax, lmin:lmax] #Lat
2772    elevations = file_e.variables[zname][kmin:kmax, lmin:lmax]
2773
2774    #    if latitudes2[0]==latitudes[0] and latitudes2[-1]==latitudes[-1]:
2775    #        elevations = file_e.variables['ELEVATION'][kmin:kmax, lmin:lmax]
2776    #    elif latitudes2[0]==latitudes[-1] and latitudes2[-1]==latitudes[0]:
2777    #        from Numeric import asarray
2778    #        elevations=elevations.tolist()
2779    #        elevations.reverse()
2780    #        elevations=asarray(elevations)
2781    #    else:
2782    #        from Numeric import asarray
2783    #        elevations=elevations.tolist()
2784    #        elevations.reverse()
2785    #        elevations=asarray(elevations)
2786    #        'print hmmm'
2787
2788
2789
2790    #Get missing values
2791    nan_ha = file_h.variables['HA'].missing_value[0]
2792    nan_ua = file_u.variables['UA'].missing_value[0]
2793    nan_va = file_v.variables['VA'].missing_value[0]
2794    if hasattr(file_e.variables[zname],'missing_value'):
2795        nan_e  = file_e.variables[zname].missing_value[0]
2796    else:
2797        nan_e = None
2798
2799    #Cleanup
2800    from Numeric import sometrue
2801
2802    missing = (amplitudes == nan_ha)
2803    if sometrue (missing):
2804        if fail_on_NaN:
2805            msg = 'NetCDFFile %s contains missing values'\
2806                  %(basename_in+'_ha.nc')
2807            raise DataMissingValuesError, msg
2808        else:
2809            amplitudes = amplitudes*(missing==0) + missing*NaN_filler
2810
2811    missing = (uspeed == nan_ua)
2812    if sometrue (missing):
2813        if fail_on_NaN:
2814            msg = 'NetCDFFile %s contains missing values'\
2815                  %(basename_in+'_ua.nc')
2816            raise DataMissingValuesError, msg
2817        else:
2818            uspeed = uspeed*(missing==0) + missing*NaN_filler
2819
2820    missing = (vspeed == nan_va)
2821    if sometrue (missing):
2822        if fail_on_NaN:
2823            msg = 'NetCDFFile %s contains missing values'\
2824                  %(basename_in+'_va.nc')
2825            raise DataMissingValuesError, msg
2826        else:
2827            vspeed = vspeed*(missing==0) + missing*NaN_filler
2828
2829
2830    missing = (elevations == nan_e)
2831    if sometrue (missing):
2832        if fail_on_NaN:
2833            msg = 'NetCDFFile %s contains missing values'\
2834                  %(basename_in+'_e.nc')
2835            raise DataMissingValuesError, msg
2836        else:
2837            elevations = elevations*(missing==0) + missing*NaN_filler
2838
2839    #######
2840
2841
2842
2843    number_of_times = times.shape[0]
2844    number_of_latitudes = latitudes.shape[0]
2845    number_of_longitudes = longitudes.shape[0]
2846
2847    assert amplitudes.shape[0] == number_of_times
2848    assert amplitudes.shape[1] == number_of_latitudes
2849    assert amplitudes.shape[2] == number_of_longitudes
2850
2851    if verbose:
2852        print '------------------------------------------------'
2853        print 'Statistics:'
2854        print '  Extent (lat/lon):'
2855        print '    lat in [%f, %f], len(lat) == %d'\
2856              %(min(latitudes.flat), max(latitudes.flat),
2857                len(latitudes.flat))
2858        print '    lon in [%f, %f], len(lon) == %d'\
2859              %(min(longitudes.flat), max(longitudes.flat),
2860                len(longitudes.flat))
2861        print '    t in [%f, %f], len(t) == %d'\
2862              %(min(times.flat), max(times.flat), len(times.flat))
2863
2864        q = amplitudes.flat
2865        name = 'Amplitudes (ha) [cm]'
2866        print %s in [%f, %f]' %(name, min(q), max(q))
2867
2868        q = uspeed.flat
2869        name = 'Speeds (ua) [cm/s]'
2870        print %s in [%f, %f]' %(name, min(q), max(q))
2871
2872        q = vspeed.flat
2873        name = 'Speeds (va) [cm/s]'
2874        print %s in [%f, %f]' %(name, min(q), max(q))
2875
2876        q = elevations.flat
2877        name = 'Elevations (e) [m]'
2878        print %s in [%f, %f]' %(name, min(q), max(q))
2879
2880
2881    # print number_of_latitudes, number_of_longitudes
2882    number_of_points = number_of_latitudes*number_of_longitudes
2883    number_of_volumes = (number_of_latitudes-1)*(number_of_longitudes-1)*2
2884
2885
2886    file_h.close()
2887    file_u.close()
2888    file_v.close()
2889    file_e.close()
2890
2891
2892    # NetCDF file definition
2893    outfile = NetCDFFile(swwname, 'w')
2894
2895    description = 'Converted from Ferret files: %s, %s, %s, %s'\
2896                  %(basename_in + '_ha.nc',
2897                    basename_in + '_ua.nc',
2898                    basename_in + '_va.nc',
2899                    basename_in + '_e.nc')
2900   
2901    # Create new file
2902    starttime = times[0]
2903   
2904    sww = Write_sww()
2905    sww.store_header(outfile, times, number_of_volumes,
2906                     number_of_points, description=description,
2907                     verbose=verbose,sww_precision=Float)
2908
2909    # Store
2910    from anuga.coordinate_transforms.redfearn import redfearn
2911    x = zeros(number_of_points, Float)  #Easting
2912    y = zeros(number_of_points, Float)  #Northing
2913
2914
2915    if verbose: print 'Making triangular grid'
2916
2917    # Check zone boundaries
2918    refzone, _, _ = redfearn(latitudes[0],longitudes[0])
2919
2920    vertices = {}
2921    i = 0
2922    for k, lat in enumerate(latitudes):       #Y direction
2923        for l, lon in enumerate(longitudes):  #X direction
2924
2925            vertices[l,k] = i
2926
2927            zone, easting, northing = redfearn(lat,lon)
2928
2929            msg = 'Zone boundary crossed at longitude =', lon
2930            #assert zone == refzone, msg
2931            #print '%7.2f %7.2f %8.2f %8.2f' %(lon, lat, easting, northing)
2932            x[i] = easting
2933            y[i] = northing
2934            i += 1
2935
2936    #Construct 2 triangles per 'rectangular' element
2937    volumes = []
2938    for l in range(number_of_longitudes-1):    #X direction
2939        for k in range(number_of_latitudes-1): #Y direction
2940            v1 = vertices[l,k+1]
2941            v2 = vertices[l,k]
2942            v3 = vertices[l+1,k+1]
2943            v4 = vertices[l+1,k]
2944
2945            volumes.append([v1,v2,v3]) #Upper element
2946            volumes.append([v4,v3,v2]) #Lower element
2947
2948    volumes = array(volumes)
2949
2950    if origin is None:
2951        origin = Geo_reference(refzone,min(x),min(y))
2952    geo_ref = write_NetCDF_georeference(origin, outfile)
2953   
2954    if elevation is not None:
2955        z = elevation
2956    else:
2957        if inverted_bathymetry:
2958            z = -1*elevations
2959        else:
2960            z = elevations
2961    #FIXME: z should be obtained from MOST and passed in here
2962
2963    #FIXME use the Write_sww instance(sww) to write this info
2964    from Numeric import resize
2965    z = resize(z,outfile.variables['z'][:].shape)
2966    outfile.variables['x'][:] = x - geo_ref.get_xllcorner()
2967    outfile.variables['y'][:] = y - geo_ref.get_yllcorner()
2968    outfile.variables['z'][:] = z             #FIXME HACK for bacwards compat.
2969    outfile.variables['elevation'][:] = z
2970    outfile.variables['volumes'][:] = volumes.astype(Int32) #For Opteron 64
2971
2972
2973
2974    #Time stepping
2975    stage = outfile.variables['stage']
2976    xmomentum = outfile.variables['xmomentum']
2977    ymomentum = outfile.variables['ymomentum']
2978
2979    if verbose: print 'Converting quantities'
2980    n = len(times)
2981    for j in range(n):
2982        if verbose and j%((n+10)/10)==0: print '  Doing %d of %d' %(j, n)
2983        i = 0
2984        for k in range(number_of_latitudes):      #Y direction
2985            for l in range(number_of_longitudes): #X direction
2986                w = zscale*amplitudes[j,k,l]/100 + mean_stage
2987                stage[j,i] = w
2988                h = w - z[i]
2989                xmomentum[j,i] = uspeed[j,k,l]/100*h
2990                ymomentum[j,i] = vspeed[j,k,l]/100*h
2991                i += 1
2992
2993    #outfile.close()
2994
2995    #FIXME: Refactor using code from file_function.statistics
2996    #Something like print swwstats(swwname)
2997    if verbose:
2998        x = outfile.variables['x'][:]
2999        y = outfile.variables['y'][:]
3000        print '------------------------------------------------'
3001        print 'Statistics of output file:'
3002        print '  Name: %s' %swwname
3003        print '  Reference:'
3004        print '    Lower left corner: [%f, %f]'\
3005              %(geo_ref.get_xllcorner(), geo_ref.get_yllcorner())
3006        print ' Start time: %f' %starttime
3007        print '    Min time: %f' %mint
3008        print '    Max time: %f' %maxt
3009        print '  Extent:'
3010        print '    x [m] in [%f, %f], len(x) == %d'\
3011              %(min(x.flat), max(x.flat), len(x.flat))
3012        print '    y [m] in [%f, %f], len(y) == %d'\
3013              %(min(y.flat), max(y.flat), len(y.flat))
3014        print '    t [s] in [%f, %f], len(t) == %d'\
3015              %(min(times), max(times), len(times))
3016        print '  Quantities [SI units]:'
3017        for name in ['stage', 'xmomentum', 'ymomentum', 'elevation']:
3018            q = outfile.variables[name][:].flat
3019            print '    %s in [%f, %f]' %(name, min(q), max(q))
3020
3021
3022
3023    outfile.close()
3024
3025
3026
3027
3028
3029def timefile2netcdf(filename, quantity_names=None, time_as_seconds=False):
3030    """Template for converting typical text files with time series to
3031    NetCDF tms file.
3032
3033
3034    The file format is assumed to be either two fields separated by a comma:
3035
3036        time [DD/MM/YY hh:mm:ss], value0 value1 value2 ...
3037
3038    E.g
3039
3040      31/08/04 00:00:00, 1.328223 0 0
3041      31/08/04 00:15:00, 1.292912 0 0
3042
3043    or time (seconds), value0 value1 value2 ...
3044   
3045      0.0, 1.328223 0 0
3046      0.1, 1.292912 0 0
3047
3048    will provide a time dependent function f(t) with three attributes
3049
3050    filename is assumed to be the rootname with extenisons .txt and .sww
3051    """
3052
3053    import time, calendar
3054    from Numeric import array
3055    from anuga.config import time_format
3056    from anuga.utilities.numerical_tools import ensure_numeric
3057
3058
3059
3060    fid = open(filename + '.txt')
3061    line = fid.readline()
3062    fid.close()
3063
3064    fields = line.split(',')
3065    msg = 'File %s must have the format date, value0 value1 value2 ...'
3066    assert len(fields) == 2, msg
3067
3068    if not time_as_seconds:
3069        try:
3070            starttime = calendar.timegm(time.strptime(fields[0], time_format))
3071        except ValueError:
3072            msg = 'First field in file %s must be' %filename
3073            msg += ' date-time with format %s.\n' %time_format
3074            msg += 'I got %s instead.' %fields[0]
3075            raise DataTimeError, msg
3076    else:
3077        try:
3078            starttime = float(fields[0])
3079        except Error:
3080            msg = "Bad time format"
3081            raise DataTimeError, msg
3082
3083
3084    #Split values
3085    values = []
3086    for value in fields[1].split():
3087        values.append(float(value))
3088
3089    q = ensure_numeric(values)
3090
3091    msg = 'ERROR: File must contain at least one independent value'
3092    assert len(q.shape) == 1, msg
3093
3094
3095
3096    #Read times proper
3097    from Numeric import zeros, Float, alltrue
3098    from anuga.config import time_format
3099    import time, calendar
3100
3101    fid = open(filename + '.txt')
3102    lines = fid.readlines()
3103    fid.close()
3104
3105    N = len(lines)
3106    d = len(q)
3107
3108    T = zeros(N, Float)       #Time
3109    Q = zeros((N, d), Float)  #Values
3110
3111    for i, line in enumerate(lines):
3112        fields = line.split(',')
3113        if not time_as_seconds:
3114            realtime = calendar.timegm(time.strptime(fields[0], time_format))
3115        else:
3116             realtime = float(fields[0])
3117        T[i] = realtime - starttime
3118
3119        for j, value in enumerate(fields[1].split()):
3120            Q[i, j] = float(value)
3121
3122    msg = 'File %s must list time as a monotonuosly ' %filename
3123    msg += 'increasing sequence'
3124    assert alltrue( T[1:] - T[:-1] > 0 ), msg
3125
3126    #Create NetCDF file
3127    from Scientific.IO.NetCDF import NetCDFFile
3128
3129    fid = NetCDFFile(filename + '.tms', 'w')
3130
3131
3132    fid.institution = 'Geoscience Australia'
3133    fid.description = 'Time series'
3134
3135
3136    #Reference point
3137    #Start time in seconds since the epoch (midnight 1/1/1970)
3138    #FIXME: Use Georef
3139    fid.starttime = starttime
3140
3141    # dimension definitions
3142    #fid.createDimension('number_of_volumes', self.number_of_volumes)
3143    #fid.createDimension('number_of_vertices', 3)
3144
3145
3146    fid.createDimension('number_of_timesteps', len(T))
3147
3148    fid.createVariable('time', Float, ('number_of_timesteps',))
3149
3150    fid.variables['time'][:] = T
3151
3152    for i in range(Q.shape[1]):
3153        try:
3154            name = quantity_names[i]
3155        except:
3156            name = 'Attribute%d'%i
3157
3158        fid.createVariable(name, Float, ('number_of_timesteps',))
3159        fid.variables[name][:] = Q[:,i]
3160
3161    fid.close()
3162
3163
3164def extent_sww(file_name):
3165    """
3166    Read in an sww file.
3167
3168    Input;
3169    file_name - the sww file
3170
3171    Output;
3172    z - Vector of bed elevation
3173    volumes - Array.  Each row has 3 values, representing
3174    the vertices that define the volume
3175    time - Vector of the times where there is stage information
3176    stage - array with respect to time and vertices (x,y)
3177    """
3178
3179
3180    from Scientific.IO.NetCDF import NetCDFFile
3181
3182    #Check contents
3183    #Get NetCDF
3184    fid = NetCDFFile(file_name, 'r')
3185
3186    # Get the variables
3187    x = fid.variables['x'][:]
3188    y = fid.variables['y'][:]
3189    stage = fid.variables['stage'][:]
3190    #print "stage",stage
3191    #print "stage.shap",stage.shape
3192    #print "min(stage.flat), mpythonax(stage.flat)",min(stage.flat), max(stage.flat)
3193    #print "min(stage)",min(stage)
3194
3195    fid.close()
3196
3197    return [min(x),max(x),min(y),max(y),min(stage.flat),max(stage.flat)]
3198
3199
3200def sww2domain(filename,boundary=None,t=None,\
3201               fail_if_NaN=True,NaN_filler=0\
3202               ,verbose = False,very_verbose = False):
3203    """
3204    Usage: domain = sww2domain('file.sww',t=time (default = last time in file))
3205
3206    Boundary is not recommended if domain.smooth is not selected, as it
3207    uses unique coordinates, but not unique boundaries. This means that
3208    the boundary file will not be compatable with the coordinates, and will
3209    give a different final boundary, or crash.
3210    """
3211    NaN=9.969209968386869e+036
3212    #initialise NaN.
3213
3214    from Scientific.IO.NetCDF import NetCDFFile
3215    from shallow_water import Domain
3216    from Numeric import asarray, transpose, resize
3217
3218    if verbose: print 'Reading from ', filename
3219    fid = NetCDFFile(filename, 'r')    #Open existing file for read
3220    time = fid.variables['time']       #Timesteps
3221    if t is None:
3222        t = time[-1]
3223    time_interp = get_time_interp(time,t)
3224
3225    # Get the variables as Numeric arrays
3226    x = fid.variables['x'][:]             #x-coordinates of vertices
3227    y = fid.variables['y'][:]             #y-coordinates of vertices
3228    elevation = fid.variables['elevation']     #Elevation
3229    stage = fid.variables['stage']     #Water level
3230    xmomentum = fid.variables['xmomentum']   #Momentum in the x-direction
3231    ymomentum = fid.variables['ymomentum']   #Momentum in the y-direction
3232
3233    starttime = fid.starttime[0]
3234    volumes = fid.variables['volumes'][:] #Connectivity
3235    coordinates=transpose(asarray([x.tolist(),y.tolist()]))
3236
3237    conserved_quantities = []
3238    interpolated_quantities = {}
3239    other_quantities = []
3240
3241    # get geo_reference
3242    #sww files don't have to have a geo_ref
3243    try:
3244        geo_reference = Geo_reference(NetCDFObject=fid)
3245    except: #AttributeError, e:
3246        geo_reference = None
3247
3248    if verbose: print '    getting quantities'
3249    for quantity in fid.variables.keys():
3250        dimensions = fid.variables[quantity].dimensions
3251        if 'number_of_timesteps' in dimensions:
3252            conserved_quantities.append(quantity)
3253            interpolated_quantities[quantity]=\
3254                  interpolated_quantity(fid.variables[quantity][:],time_interp)
3255        else: other_quantities.append(quantity)
3256
3257    other_quantities.remove('x')
3258    other_quantities.remove('y')
3259    other_quantities.remove('z')
3260    other_quantities.remove('volumes')
3261    try:
3262        other_quantities.remove('stage_range')
3263        other_quantities.remove('xmomentum_range')
3264        other_quantities.remove('ymomentum_range')
3265        other_quantities.remove('elevation_range')
3266    except:
3267        pass
3268       
3269
3270    conserved_quantities.remove('time')
3271
3272    if verbose: print '    building domain'
3273    #    From domain.Domain:
3274    #    domain = Domain(coordinates, volumes,\
3275    #                    conserved_quantities = conserved_quantities,\
3276    #                    other_quantities = other_quantities,zone=zone,\
3277    #                    xllcorner=xllcorner, yllcorner=yllcorner)
3278
3279    #   From shallow_water.Domain:
3280    coordinates=coordinates.tolist()
3281    volumes=volumes.tolist()
3282    #FIXME:should this be in mesh?(peter row)
3283    if fid.smoothing == 'Yes': unique = False
3284    else: unique = True
3285    if unique:
3286        coordinates,volumes,boundary=weed(coordinates,volumes,boundary)
3287
3288
3289    try:
3290        domain = Domain(coordinates, volumes, boundary)
3291    except AssertionError, e:
3292        fid.close()
3293        msg = 'Domain could not be created: %s. Perhaps use "fail_if_NaN=False and NaN_filler = ..."' %e
3294        raise DataDomainError, msg
3295
3296    if not boundary is None:
3297        domain.boundary = boundary
3298
3299    domain.geo_reference = geo_reference
3300
3301    domain.starttime=float(starttime)+float(t)
3302    domain.time=0.0
3303
3304    for quantity in other_quantities:
3305        try:
3306            NaN = fid.variables[quantity].missing_value
3307        except:
3308            pass #quantity has no missing_value number
3309        X = fid.variables[quantity][:]
3310        if very_verbose:
3311            print '       ',quantity
3312            print '        NaN =',NaN
3313            print '        max(X)'
3314            print '       ',max(X)
3315            print '        max(X)==NaN'
3316            print '       ',max(X)==NaN
3317            print ''
3318        if (max(X)==NaN) or (min(X)==NaN):
3319            if fail_if_NaN:
3320                msg = 'quantity "%s" contains no_data entry'%quantity
3321                raise DataMissingValuesError, msg
3322            else:
3323                data = (X<>NaN)
3324                X = (X*data)+(data==0)*NaN_filler
3325        if unique:
3326            X = resize(X,(len(X)/3,3))
3327        domain.set_quantity(quantity,X)
3328    #
3329    for quantity in conserved_quantities:
3330        try:
3331            NaN = fid.variables[quantity].missing_value
3332        except:
3333            pass #quantity has no missing_value number
3334        X = interpolated_quantities[quantity]
3335        if very_verbose:
3336            print '       ',quantity
3337            print '        NaN =',NaN
3338            print '        max(X)'
3339            print '       ',max(X)
3340            print '        max(X)==NaN'
3341            print '       ',max(X)==NaN
3342            print ''
3343        if (max(X)==NaN) or (min(X)==NaN):
3344            if fail_if_NaN:
3345                msg = 'quantity "%s" contains no_data entry'%quantity
3346                raise DataMissingValuesError, msg
3347            else:
3348                data = (X<>NaN)
3349                X = (X*data)+(data==0)*NaN_filler
3350        if unique:
3351            X = resize(X,(X.shape[0]/3,3))
3352        domain.set_quantity(quantity,X)
3353
3354    fid.close()
3355    return domain
3356
3357def interpolated_quantity(saved_quantity,time_interp):
3358
3359    #given an index and ratio, interpolate quantity with respect to time.
3360    index,ratio = time_interp
3361    Q = saved_quantity
3362    if ratio > 0:
3363        q = (1-ratio)*Q[index]+ ratio*Q[index+1]
3364    else:
3365        q = Q[index]
3366    #Return vector of interpolated values
3367    return q
3368
3369def get_time_interp(time,t=None):
3370    #Finds the ratio and index for time interpolation.
3371    #It is borrowed from previous abstract_2d_finite_volumes code.
3372    if t is None:
3373        t=time[-1]
3374        index = -1
3375        ratio = 0.
3376    else:
3377        T = time
3378        tau = t
3379        index=0
3380        msg = 'Time interval derived from file %s [%s:%s]'\
3381            %('FIXMEfilename', T[0], T[-1])
3382        msg += ' does not match model time: %s' %tau
3383        if tau < time[0]: raise DataTimeError, msg
3384        if tau > time[-1]: raise DataTimeError, msg
3385        while tau > time[index]: index += 1
3386        while tau < time[index]: index -= 1
3387        if tau == time[index]:
3388            #Protect against case where tau == time[-1] (last time)
3389            # - also works in general when tau == time[i]
3390            ratio = 0
3391        else:
3392            #t is now between index and index+1
3393            ratio = (tau - time[index])/(time[index+1] - time[index])
3394    return (index,ratio)
3395
3396
3397def weed(coordinates,volumes,boundary = None):
3398    if type(coordinates)==ArrayType:
3399        coordinates = coordinates.tolist()
3400    if type(volumes)==ArrayType:
3401        volumes = volumes.tolist()
3402
3403    unique = False
3404    point_dict = {}
3405    same_point = {}
3406    for i in range(len(coordinates)):
3407        point = tuple(coordinates[i])
3408        if point_dict.has_key(point):
3409            unique = True
3410            same_point[i]=point
3411            #to change all point i references to point j
3412        else:
3413            point_dict[point]=i
3414            same_point[i]=point
3415
3416    coordinates = []
3417    i = 0
3418    for point in point_dict.keys():
3419        point = tuple(point)
3420        coordinates.append(list(point))
3421        point_dict[point]=i
3422        i+=1
3423
3424
3425    for volume in volumes:
3426        for i in range(len(volume)):
3427            index = volume[i]
3428            if index>-1:
3429                volume[i]=point_dict[same_point[index]]
3430
3431    new_boundary = {}
3432    if not boundary is None:
3433        for segment in boundary.keys():
3434            point0 = point_dict[same_point[segment[0]]]
3435            point1 = point_dict[same_point[segment[1]]]
3436            label = boundary[segment]
3437            #FIXME should the bounday attributes be concaterated
3438            #('exterior, pond') or replaced ('pond')(peter row)
3439
3440            if new_boundary.has_key((point0,point1)):
3441                new_boundary[(point0,point1)]=new_boundary[(point0,point1)]#\
3442                                              #+','+label
3443
3444            elif new_boundary.has_key((point1,point0)):
3445                new_boundary[(point1,point0)]=new_boundary[(point1,point0)]#\
3446                                              #+','+label
3447            else: new_boundary[(point0,point1)]=label
3448
3449        boundary = new_boundary
3450
3451    return coordinates,volumes,boundary
3452
3453
3454def decimate_dem(basename_in, stencil, cellsize_new, basename_out=None,
3455                 verbose=False):
3456    """Read Digitial Elevation model from the following NetCDF format (.dem)
3457
3458    Example:
3459
3460    ncols         3121
3461    nrows         1800
3462    xllcorner     722000
3463    yllcorner     5893000
3464    cellsize      25
3465    NODATA_value  -9999
3466    138.3698 137.4194 136.5062 135.5558 ..........
3467
3468    Decimate data to cellsize_new using stencil and write to NetCDF dem format.
3469    """
3470
3471    import os
3472    from Scientific.IO.NetCDF import NetCDFFile
3473    from Numeric import Float, zeros, sum, reshape, equal
3474
3475    root = basename_in
3476    inname = root + '.dem'
3477
3478    #Open existing netcdf file to read
3479    infile = NetCDFFile(inname, 'r')
3480    if verbose: print 'Reading DEM from %s' %inname
3481
3482    #Read metadata
3483    ncols = infile.ncols[0]
3484    nrows = infile.nrows[0]
3485    xllcorner = infile.xllcorner[0]
3486    yllcorner = infile.yllcorner[0]
3487    cellsize = infile.cellsize[0]
3488    NODATA_value = infile.NODATA_value[0]
3489    zone = infile.zone[0]
3490    false_easting = infile.false_easting[0]
3491    false_northing = infile.false_northing[0]
3492    projection = infile.projection
3493    datum = infile.datum
3494    units = infile.units
3495
3496    dem_elevation = infile.variables['elevation']
3497
3498    #Get output file name
3499    if basename_out == None:
3500        outname = root + '_' + repr(cellsize_new) + '.dem'
3501    else:
3502        outname = basename_out + '.dem'
3503
3504    if verbose: print 'Write decimated NetCDF file to %s' %outname
3505
3506    #Determine some dimensions for decimated grid
3507    (nrows_stencil, ncols_stencil) = stencil.shape
3508    x_offset = ncols_stencil / 2
3509    y_offset = nrows_stencil / 2
3510    cellsize_ratio = int(cellsize_new / cellsize)
3511    ncols_new = 1 + (ncols - ncols_stencil) / cellsize_ratio
3512    nrows_new = 1 + (nrows - nrows_stencil) / cellsize_ratio
3513
3514    #Open netcdf file for output
3515    outfile = NetCDFFile(outname, 'w')
3516
3517    #Create new file
3518    outfile.institution = 'Geoscience Australia'
3519    outfile.description = 'NetCDF DEM format for compact and portable storage ' +\
3520                           'of spatial point data'
3521    #Georeferencing
3522    outfile.zone = zone
3523    outfile.projection = projection
3524    outfile.datum = datum
3525    outfile.units = units
3526
3527    outfile.cellsize = cellsize_new
3528    outfile.NODATA_value = NODATA_value
3529    outfile.false_easting = false_easting
3530    outfile.false_northing = false_northing
3531
3532    outfile.xllcorner = xllcorner + (x_offset * cellsize)
3533    outfile.yllcorner = yllcorner + (y_offset * cellsize)
3534    outfile.ncols = ncols_new
3535    outfile.nrows = nrows_new
3536
3537    # dimension definition
3538    outfile.createDimension('number_of_points', nrows_new*ncols_new)
3539
3540    # variable definition
3541    outfile.createVariable('elevation', Float, ('number_of_points',))
3542
3543    # Get handle to the variable
3544    elevation = outfile.variables['elevation']
3545
3546    dem_elevation_r = reshape(dem_elevation, (nrows, ncols))
3547
3548    #Store data
3549    global_index = 0
3550    for i in range(nrows_new):
3551        if verbose: print 'Processing row %d of %d' %(i, nrows_new)
3552        lower_index = global_index
3553        telev =  zeros(ncols_new, Float)
3554        local_index = 0
3555        trow = i * cellsize_ratio
3556
3557        for j in range(ncols_new):
3558            tcol = j * cellsize_ratio
3559            tmp = dem_elevation_r[trow:trow+nrows_stencil, tcol:tcol+ncols_stencil]
3560
3561            #if dem contains 1 or more NODATA_values set value in
3562            #decimated dem to NODATA_value, else compute decimated
3563            #value using stencil
3564            if sum(sum(equal(tmp, NODATA_value))) > 0:
3565                telev[local_index] = NODATA_value
3566            else:
3567                telev[local_index] = sum(sum(tmp * stencil))
3568
3569            global_index += 1
3570            local_index += 1
3571
3572        upper_index = global_index
3573
3574        elevation[lower_index:upper_index] = telev
3575
3576    assert global_index == nrows_new*ncols_new, 'index not equal to number of points'
3577
3578    infile.close()
3579    outfile.close()
3580
3581
3582
3583
3584def tsh2sww(filename, verbose=False): 
3585    """
3586    to check if a tsh/msh file 'looks' good.
3587    """
3588
3589
3590    if verbose == True:print 'Creating domain from', filename
3591    domain = pmesh_to_domain_instance(filename, Domain)
3592    if verbose == True:print "Number of triangles = ", len(domain)
3593
3594    domain.smooth = True
3595    domain.format = 'sww'   #Native netcdf visualisation format
3596    file_path, filename = path.split(filename)
3597    filename, ext = path.splitext(filename)
3598    domain.set_name(filename)   
3599    domain.reduction = mean
3600    if verbose == True:print "file_path",file_path
3601    if file_path == "":file_path = "."
3602    domain.set_datadir(file_path)
3603
3604    if verbose == True:
3605        print "Output written to " + domain.get_datadir() + sep + \
3606              domain.get_name() + "." + domain.format
3607    sww = get_dataobject(domain)
3608    sww.store_connectivity()
3609    sww.store_timestep()
3610
3611
3612def asc_csiro2sww(bath_dir,
3613                  elevation_dir,
3614                  ucur_dir,
3615                  vcur_dir,
3616                  sww_file,
3617                  minlat = None, maxlat = None,
3618                  minlon = None, maxlon = None,
3619                  zscale=1,
3620                  mean_stage = 0,
3621                  fail_on_NaN = True,
3622                  elevation_NaN_filler = 0,
3623                  bath_prefix='ba',
3624                  elevation_prefix='el',
3625                  verbose=False):
3626    """
3627    Produce an sww boundary file, from esri ascii data from CSIRO.
3628
3629    Also convert latitude and longitude to UTM. All coordinates are
3630    assumed to be given in the GDA94 datum.
3631
3632    assume:
3633    All files are in esri ascii format
3634
3635    4 types of information
3636    bathymetry
3637    elevation
3638    u velocity
3639    v velocity
3640
3641    Assumptions
3642    The metadata of all the files is the same
3643    Each type is in a seperate directory
3644    One bath file with extention .000
3645    The time period is less than 24hrs and uniform.
3646    """
3647    from Scientific.IO.NetCDF import NetCDFFile
3648
3649    from anuga.coordinate_transforms.redfearn import redfearn
3650
3651    precision = Float # So if we want to change the precision its done here
3652
3653    # go in to the bath dir and load the only file,
3654    bath_files = os.listdir(bath_dir)
3655
3656    bath_file = bath_files[0]
3657    bath_dir_file =  bath_dir + os.sep + bath_file
3658    bath_metadata,bath_grid =  _read_asc(bath_dir_file)
3659
3660    #Use the date.time of the bath file as a basis for
3661    #the start time for other files
3662    base_start = bath_file[-12:]
3663
3664    #go into the elevation dir and load the 000 file
3665    elevation_dir_file = elevation_dir  + os.sep + elevation_prefix \
3666                         + base_start
3667
3668    elevation_files = os.listdir(elevation_dir)
3669    ucur_files = os.listdir(ucur_dir)
3670    vcur_files = os.listdir(vcur_dir)
3671    elevation_files.sort()
3672    # the first elevation file should be the
3673    # file with the same base name as the bath data
3674    assert elevation_files[0] == 'el' + base_start
3675
3676    number_of_latitudes = bath_grid.shape[0]
3677    number_of_longitudes = bath_grid.shape[1]
3678    number_of_volumes = (number_of_latitudes-1)*(number_of_longitudes-1)*2
3679
3680    longitudes = [bath_metadata['xllcorner']+x*bath_metadata['cellsize'] \
3681                  for x in range(number_of_longitudes)]
3682    latitudes = [bath_metadata['yllcorner']+y*bath_metadata['cellsize'] \
3683                 for y in range(number_of_latitudes)]
3684
3685     # reverse order of lat, so the fist lat represents the first grid row
3686    latitudes.reverse()
3687
3688    kmin, kmax, lmin, lmax = _get_min_max_indexes(latitudes[:],longitudes[:],
3689                                                 minlat=minlat, maxlat=maxlat,
3690                                                 minlon=minlon, maxlon=maxlon)
3691
3692
3693    bath_grid = bath_grid[kmin:kmax,lmin:lmax]
3694    latitudes = latitudes[kmin:kmax]
3695    longitudes = longitudes[lmin:lmax]
3696    number_of_latitudes = len(latitudes)
3697    number_of_longitudes = len(longitudes)
3698    number_of_times = len(os.listdir(elevation_dir))
3699    number_of_points = number_of_latitudes*number_of_longitudes
3700    number_of_volumes = (number_of_latitudes-1)*(number_of_longitudes-1)*2
3701
3702    #Work out the times
3703    if len(elevation_files) > 1:
3704        # Assume: The time period is less than 24hrs.
3705        time_period = (int(elevation_files[1][-3:]) - \
3706                      int(elevation_files[0][-3:]))*60*60
3707        times = [x*time_period for x in range(len(elevation_files))]
3708    else:
3709        times = [0.0]
3710
3711
3712    if verbose:
3713        print '------------------------------------------------'
3714        print 'Statistics:'
3715        print '  Extent (lat/lon):'
3716        print '    lat in [%f, %f], len(lat) == %d'\
3717              %(min(latitudes), max(latitudes),
3718                len(latitudes))
3719        print '    lon in [%f, %f], len(lon) == %d'\
3720              %(min(longitudes), max(longitudes),
3721                len(longitudes))
3722        print '    t in [%f, %f], len(t) == %d'\
3723              %(min(times), max(times), len(times))
3724
3725    ######### WRITE THE SWW FILE #############
3726    # NetCDF file definition
3727    outfile = NetCDFFile(sww_file, 'w')
3728
3729    #Create new file
3730    outfile.institution = 'Geoscience Australia'
3731    outfile.description = 'Converted from XXX'
3732
3733
3734    #For sww compatibility
3735    outfile.smoothing = 'Yes'
3736    outfile.order = 1
3737
3738    #Start time in seconds since the epoch (midnight 1/1/1970)
3739    outfile.starttime = starttime = times[0]
3740
3741
3742    # dimension definitions
3743    outfile.createDimension('number_of_volumes', number_of_volumes)
3744
3745    outfile.createDimension('number_of_vertices', 3)
3746    outfile.createDimension('number_of_points', number_of_points)
3747    outfile.createDimension('number_of_timesteps', number_of_times)
3748
3749    # variable definitions
3750    outfile.createVariable('x', precision, ('number_of_points',))
3751    outfile.createVariable('y', precision, ('number_of_points',))
3752    outfile.createVariable('elevation', precision, ('number_of_points',))
3753
3754    #FIXME: Backwards compatibility
3755    outfile.createVariable('z', precision, ('number_of_points',))
3756    #################################
3757
3758    outfile.createVariable('volumes', Int, ('number_of_volumes',
3759                                            'number_of_vertices'))
3760
3761    outfile.createVariable('time', precision,
3762                           ('number_of_timesteps',))
3763
3764    outfile.createVariable('stage', precision,
3765                           ('number_of_timesteps',
3766                            'number_of_points'))
3767
3768    outfile.createVariable('xmomentum', precision,
3769                           ('number_of_timesteps',
3770                            'number_of_points'))
3771
3772    outfile.createVariable('ymomentum', precision,
3773                           ('number_of_timesteps',
3774                            'number_of_points'))
3775
3776    #Store
3777    from anuga.coordinate_transforms.redfearn import redfearn
3778    x = zeros(number_of_points, Float)  #Easting
3779    y = zeros(number_of_points, Float)  #Northing
3780
3781    if verbose: print 'Making triangular grid'
3782    #Get zone of 1st point.
3783    refzone, _, _ = redfearn(latitudes[0],longitudes[0])
3784
3785    vertices = {}
3786    i = 0
3787    for k, lat in enumerate(latitudes):
3788        for l, lon in enumerate(longitudes):
3789
3790            vertices[l,k] = i
3791
3792            zone, easting, northing = redfearn(lat,lon)
3793
3794            msg = 'Zone boundary crossed at longitude =', lon
3795            #assert zone == refzone, msg
3796            #print '%7.2f %7.2f %8.2f %8.2f' %(lon, lat, easting, northing)
3797            x[i] = easting
3798            y[i] = northing
3799            i += 1
3800
3801
3802    #Construct 2 triangles per 'rectangular' element
3803    volumes = []
3804    for l in range(number_of_longitudes-1):    #X direction
3805        for k in range(number_of_latitudes-1): #Y direction
3806            v1 = vertices[l,k+1]
3807            v2 = vertices[l,k]
3808            v3 = vertices[l+1,k+1]
3809            v4 = vertices[l+1,k]
3810
3811            #Note, this is different to the ferrit2sww code
3812            #since the order of the lats is reversed.
3813            volumes.append([v1,v3,v2]) #Upper element
3814            volumes.append([v4,v2,v3]) #Lower element
3815
3816    volumes = array(volumes)
3817
3818    geo_ref = Geo_reference(refzone,min(x),min(y))
3819    geo_ref.write_NetCDF(outfile)
3820
3821    # This will put the geo ref in the middle
3822    #geo_ref = Geo_reference(refzone,(max(x)+min(x))/2.0,(max(x)+min(y))/2.)
3823
3824
3825    if verbose:
3826        print '------------------------------------------------'
3827        print 'More Statistics:'
3828        print '  Extent (/lon):'
3829        print '    x in [%f, %f], len(lat) == %d'\
3830              %(min(x), max(x),
3831                len(x))
3832        print '    y in [%f, %f], len(lon) == %d'\
3833              %(min(y), max(y),
3834                len(y))
3835        print 'geo_ref: ',geo_ref
3836
3837    z = resize(bath_grid,outfile.variables['z'][:].shape)
3838    outfile.variables['x'][:] = x - geo_ref.get_xllcorner()
3839    outfile.variables['y'][:] = y - geo_ref.get_yllcorner()
3840    outfile.variables['z'][:] = z
3841    outfile.variables['elevation'][:] = z  #FIXME HACK
3842    outfile.variables['volumes'][:] = volumes.astype(Int32) #On Opteron 64
3843
3844    stage = outfile.variables['stage']
3845    xmomentum = outfile.variables['xmomentum']
3846    ymomentum = outfile.variables['ymomentum']
3847
3848    outfile.variables['time'][:] = times   #Store time relative
3849
3850    if verbose: print 'Converting quantities'
3851    n = number_of_times
3852    for j in range(number_of_times):
3853        # load in files
3854        elevation_meta, elevation_grid = \
3855           _read_asc(elevation_dir + os.sep + elevation_files[j])
3856
3857        _, u_momentum_grid =  _read_asc(ucur_dir + os.sep + ucur_files[j])
3858        _, v_momentum_grid =  _read_asc(vcur_dir + os.sep + vcur_files[j])
3859
3860        #cut matrix to desired size
3861        elevation_grid = elevation_grid[kmin:kmax,lmin:lmax]
3862        u_momentum_grid = u_momentum_grid[kmin:kmax,lmin:lmax]
3863        v_momentum_grid = v_momentum_grid[kmin:kmax,lmin:lmax]
3864       
3865        # handle missing values
3866        missing = (elevation_grid == elevation_meta['NODATA_value'])
3867        if sometrue (missing):
3868            if fail_on_NaN:
3869                msg = 'File %s contains missing values'\
3870                      %(elevation_files[j])
3871                raise DataMissingValuesError, msg
3872            else:
3873                elevation_grid = elevation_grid*(missing==0) + \
3874                                 missing*elevation_NaN_filler
3875
3876
3877        if verbose and j%((n+10)/10)==0: print '  Doing %d of %d' %(j, n)
3878        i = 0
3879        for k in range(number_of_latitudes):      #Y direction
3880            for l in range(number_of_longitudes): #X direction
3881                w = zscale*elevation_grid[k,l] + mean_stage
3882                stage[j,i] = w
3883                h = w - z[i]
3884                xmomentum[j,i] = u_momentum_grid[k,l]*h
3885                ymomentum[j,i] = v_momentum_grid[k,l]*h
3886                i += 1
3887    outfile.close()
3888
3889def _get_min_max_indexes(latitudes_ref,longitudes_ref,
3890                        minlat=None, maxlat=None,
3891                        minlon=None, maxlon=None):
3892    """
3893    return max, min indexes (for slicing) of the lat and long arrays to cover the area
3894    specified with min/max lat/long
3895
3896    Think of the latitudes and longitudes describing a 2d surface.
3897    The area returned is, if possible, just big enough to cover the
3898    inputed max/min area. (This will not be possible if the max/min area
3899    has a section outside of the latitudes/longitudes area.)
3900
3901    asset  longitudes are sorted,
3902    long - from low to high (west to east, eg 148 - 151)
3903    assert latitudes are sorted, ascending or decending
3904    """
3905    latitudes = latitudes_ref[:]
3906    longitudes = longitudes_ref[:]
3907
3908    latitudes = ensure_numeric(latitudes)
3909    longitudes = ensure_numeric(longitudes)
3910   
3911    assert allclose(sort(longitudes), longitudes)
3912   
3913    lat_ascending = True
3914    if not allclose(sort(latitudes), latitudes):
3915        lat_ascending = False
3916        # reverse order of lat, so it's in ascending order         
3917        latitudes = latitudes[::-1]
3918        assert allclose(sort(latitudes), latitudes)
3919    #print "latitudes  in funct", latitudes
3920   
3921    largest_lat_index = len(latitudes)-1
3922    #Cut out a smaller extent.
3923    if minlat == None:
3924        lat_min_index = 0
3925    else:
3926        lat_min_index = searchsorted(latitudes, minlat)-1
3927        if lat_min_index <0:
3928            lat_min_index = 0
3929
3930
3931    if maxlat == None:
3932        lat_max_index = largest_lat_index #len(latitudes)
3933    else:
3934        lat_max_index = searchsorted(latitudes, maxlat)
3935        if lat_max_index > largest_lat_index:
3936            lat_max_index = largest_lat_index
3937
3938    if minlon == None:
3939        lon_min_index = 0
3940    else:
3941        lon_min_index = searchsorted(longitudes, minlon)-1
3942        if lon_min_index <0:
3943            lon_min_index = 0
3944
3945    if maxlon == None:
3946        lon_max_index = len(longitudes)
3947    else:
3948        lon_max_index = searchsorted(longitudes, maxlon)
3949
3950    # Reversing the indexes, if the lat array is decending
3951    if lat_ascending is False:
3952        lat_min_index, lat_max_index = largest_lat_index - lat_max_index , \
3953                                       largest_lat_index - lat_min_index
3954    lat_max_index = lat_max_index + 1 # taking into account how slicing works
3955    lon_max_index = lon_max_index + 1 # taking into account how slicing works
3956
3957    return lat_min_index, lat_max_index, lon_min_index, lon_max_index
3958
3959
3960def _read_asc(filename, verbose=False):
3961    """Read esri file from the following ASCII format (.asc)
3962
3963    Example:
3964
3965    ncols         3121
3966    nrows         1800
3967    xllcorner     722000
3968    yllcorner     5893000
3969    cellsize      25
3970    NODATA_value  -9999
3971    138.3698 137.4194 136.5062 135.5558 ..........
3972
3973    """
3974
3975    datafile = open(filename)
3976
3977    if verbose: print 'Reading DEM from %s' %(filename)
3978    lines = datafile.readlines()
3979    datafile.close()
3980
3981    if verbose: print 'Got', len(lines), ' lines'
3982
3983    ncols = int(lines.pop(0).split()[1].strip())
3984    nrows = int(lines.pop(0).split()[1].strip())
3985    xllcorner = float(lines.pop(0).split()[1].strip())
3986    yllcorner = float(lines.pop(0).split()[1].strip())
3987    cellsize = float(lines.pop(0).split()[1].strip())
3988    NODATA_value = float(lines.pop(0).split()[1].strip())
3989
3990    assert len(lines) == nrows
3991
3992    #Store data
3993    grid = []
3994
3995    n = len(lines)
3996    for i, line in enumerate(lines):
3997        cells = line.split()
3998        assert len(cells) == ncols
3999        grid.append(array([float(x) for x in cells]))
4000    grid = array(grid)
4001
4002    return {'xllcorner':xllcorner,
4003            'yllcorner':yllcorner,
4004            'cellsize':cellsize,
4005            'NODATA_value':NODATA_value}, grid
4006
4007
4008
4009    ####  URS 2 SWW  ###
4010
4011lon_name = 'LON'
4012lat_name = 'LAT'
4013time_name = 'TIME'
4014precision = Float # So if we want to change the precision its done here       
4015class Write_nc:
4016    """
4017    Write an nc file.
4018   
4019    Note, this should be checked to meet cdc netcdf conventions for gridded
4020    data. http://www.cdc.noaa.gov/cdc/conventions/cdc_netcdf_standard.shtml
4021   
4022    """
4023    def __init__(self,
4024                 quantity_name,
4025                 file_name,
4026                 time_step_count,
4027                 time_step,
4028                 lon,
4029                 lat):
4030        """
4031        time_step_count is the number of time steps.
4032        time_step is the time step size
4033       
4034        pre-condition: quantity_name must be 'HA' 'UA'or 'VA'.
4035        """
4036        self.quantity_name = quantity_name
4037        quantity_units = {'HA':'CENTIMETERS',
4038                              'UA':'CENTIMETERS/SECOND',
4039                              'VA':'CENTIMETERS/SECOND'}       
4040       
4041        multiplier_dic = {'HA':100.0, # To convert from m to cm
4042                              'UA':100.0,  #  m/s to cm/sec
4043                              'VA':-100.0}  # MUX files have positve x in the
4044        # Southern direction.  This corrects for it, when writing nc files.
4045       
4046        self.quantity_multiplier =  multiplier_dic[self.quantity_name]
4047       
4048        #self.file_name = file_name
4049        self.time_step_count = time_step_count
4050        self.time_step = time_step
4051
4052        # NetCDF file definition
4053        self.outfile = NetCDFFile(file_name, 'w')
4054        outfile = self.outfile       
4055
4056        #Create new file
4057        nc_lon_lat_header(outfile, lon, lat)
4058   
4059        # TIME
4060        outfile.createDimension(time_name, None)
4061        outfile.createVariable(time_name, precision, (time_name,))
4062
4063        #QUANTITY
4064        outfile.createVariable(self.quantity_name, precision,
4065                               (time_name, lat_name, lon_name))
4066        outfile.variables[self.quantity_name].missing_value=-1.e+034
4067        outfile.variables[self.quantity_name].units= \
4068                                 quantity_units[self.quantity_name]
4069        outfile.variables[lon_name][:]= ensure_numeric(lon)
4070        outfile.variables[lat_name][:]= ensure_numeric(lat)
4071
4072        #Assume no one will be wanting to read this, while we are writing
4073        #outfile.close()
4074       
4075    def store_timestep(self, quantity_slice):
4076        """
4077        Write a time slice of quantity info
4078        quantity_slice is the data to be stored at this time step
4079        """
4080       
4081        outfile = self.outfile
4082       
4083        # Get the variables
4084        time = outfile.variables[time_name]
4085        quantity = outfile.variables[self.quantity_name]
4086           
4087        i = len(time)
4088
4089        #Store time
4090        time[i] = i*self.time_step #self.domain.time
4091        quantity[i,:] = quantity_slice* self.quantity_multiplier
4092       
4093    def close(self):
4094        self.outfile.close()
4095
4096def urs2sww(basename_in='o', basename_out=None, verbose=False,
4097            remove_nc_files=True,
4098            minlat=None, maxlat=None,
4099            minlon= None, maxlon=None,
4100            mint=None, maxt=None,
4101            mean_stage=0,
4102            origin = None,
4103            zscale=1,
4104            fail_on_NaN=True,
4105            NaN_filler=0,
4106            elevation=None):
4107    """
4108    Convert URS C binary format for wave propagation to
4109    sww format native to abstract_2d_finite_volumes.
4110
4111    Specify only basename_in and read files of the form
4112    basefilename_velocity-z-mux, basefilename_velocity-e-mux and
4113    basefilename_waveheight-n-mux containing relative height,
4114    x-velocity and y-velocity, respectively.
4115
4116    Also convert latitude and longitude to UTM. All coordinates are
4117    assumed to be given in the GDA94 datum. The latitude and longitude
4118    information is for  a grid.
4119
4120    min's and max's: If omitted - full extend is used.
4121    To include a value min may equal it, while max must exceed it.
4122    Lat and lon are assumed to be in decimal degrees.
4123    NOTE: minlon is the most east boundary.
4124   
4125    origin is a 3-tuple with geo referenced
4126    UTM coordinates (zone, easting, northing)
4127    It will be the origin of the sww file. This shouldn't be used,
4128    since all of anuga should be able to handle an arbitary origin.
4129
4130
4131    URS C binary format has data orgainised as TIME, LONGITUDE, LATITUDE
4132    which means that latitude is the fastest
4133    varying dimension (row major order, so to speak)
4134
4135    In URS C binary the latitudes and longitudes are in assending order.
4136    """
4137    if basename_out == None:
4138        basename_out = basename_in
4139    files_out = urs2nc(basename_in, basename_out)
4140    ferret2sww(basename_out,
4141               minlat=minlat,
4142               maxlat=maxlat,
4143               minlon=minlon,
4144               maxlon=maxlon,
4145               mint=mint,
4146               maxt=maxt,
4147               mean_stage=mean_stage,
4148               origin=origin,
4149               zscale=zscale,
4150               fail_on_NaN=fail_on_NaN,
4151               NaN_filler=NaN_filler,
4152               inverted_bathymetry=True,
4153               verbose=verbose)
4154    #print "files_out",files_out
4155    if remove_nc_files:
4156        for file_out in files_out:
4157            os.remove(file_out)
4158   
4159def urs2nc(basename_in = 'o', basename_out = 'urs'):
4160    """
4161    Convert the 3 urs files to 4 nc files.
4162
4163    The name of the urs file names must be;
4164    [basename_in]_velocity-z-mux
4165    [basename_in]_velocity-e-mux
4166    [basename_in]_waveheight-n-mux
4167   
4168    """
4169   
4170    files_in = [basename_in + WAVEHEIGHT_MUX_LABEL,
4171                basename_in + EAST_VELOCITY_LABEL,
4172                basename_in + NORTH_VELOCITY_LABEL]
4173    files_out = [basename_out+'_ha.nc',
4174                 basename_out+'_ua.nc',
4175                 basename_out+'_va.nc']
4176    quantities = ['HA','UA','VA']
4177
4178    #if os.access(files_in[0]+'.mux', os.F_OK) == 0 :
4179    for i, file_name in enumerate(files_in):
4180        if os.access(file_name, os.F_OK) == 0:
4181            if os.access(file_name+'.mux', os.F_OK) == 0 :
4182                msg = 'File %s does not exist or is not accessible' %file_name
4183                raise IOError, msg
4184            else:
4185               files_in[i] += '.mux'
4186               print "file_name", file_name
4187    hashed_elevation = None
4188    for file_in, file_out, quantity in map(None, files_in,
4189                                           files_out,
4190                                           quantities):
4191        lonlatdep, lon, lat, depth = _binary_c2nc(file_in,
4192                                         file_out,
4193                                         quantity)
4194        #print "lonlatdep", lonlatdep
4195        if hashed_elevation == None:
4196            elevation_file = basename_out+'_e.nc'
4197            write_elevation_nc(elevation_file,
4198                                lon,
4199                                lat,
4200                                depth)
4201            hashed_elevation = myhash(lonlatdep)
4202        else:
4203            msg = "The elevation information in the mux files is inconsistent"
4204            assert hashed_elevation == myhash(lonlatdep), msg
4205    files_out.append(elevation_file)
4206    return files_out
4207   
4208def _binary_c2nc(file_in, file_out, quantity):
4209    """
4210    Reads in a quantity urs file and writes a quantity nc file.
4211    additionally, returns the depth and lat, long info,
4212    so it can be written to a file.
4213    """
4214    columns = 3 # long, lat , depth
4215    mux_file = open(file_in, 'rb')
4216   
4217    # Number of points/stations
4218    (points_num,)= unpack('i',mux_file.read(4))
4219
4220    # nt, int - Number of time steps
4221    (time_step_count,)= unpack('i',mux_file.read(4))
4222
4223    #dt, float - time step, seconds
4224    (time_step,) = unpack('f', mux_file.read(4))
4225   
4226    msg = "Bad data in the mux file."
4227    if points_num < 0:
4228        mux_file.close()
4229        raise ANUGAError, msg
4230    if time_step_count < 0:
4231        mux_file.close()
4232        raise ANUGAError, msg
4233    if time_step < 0:
4234        mux_file.close()
4235        raise ANUGAError, msg
4236   
4237    lonlatdep = p_array.array('f')
4238    lonlatdep.read(mux_file, columns * points_num)
4239    lonlatdep = array(lonlatdep, typecode=Float)   
4240    lonlatdep = reshape(lonlatdep, (points_num, columns))
4241   
4242    lon, lat, depth = lon_lat2grid(lonlatdep)
4243    lon_sorted = list(lon)
4244    lon_sorted.sort()
4245
4246    if not lon == lon_sorted:
4247        msg = "Longitudes in mux file are not in ascending order"
4248        raise IOError, msg
4249    lat_sorted = list(lat)
4250    lat_sorted.sort()
4251
4252    if not lat == lat_sorted:
4253        msg = "Latitudes in mux file are not in ascending order"
4254   
4255    nc_file = Write_nc(quantity,
4256                       file_out,
4257                       time_step_count,
4258                       time_step,
4259                       lon,
4260                       lat)
4261
4262    for i in range(time_step_count):
4263        #Read in a time slice  from mux file 
4264        hz_p_array = p_array.array('f')
4265        hz_p_array.read(mux_file, points_num)
4266        hz_p = array(hz_p_array, typecode=Float)
4267        hz_p = reshape(hz_p, (len(lon), len(lat)))
4268        hz_p = transpose(hz_p) #mux has lat varying fastest, nc has long v.f.
4269
4270        #write time slice to nc file
4271        nc_file.store_timestep(hz_p)
4272    mux_file.close()
4273    nc_file.close()
4274
4275    return lonlatdep, lon, lat, depth
4276   
4277
4278def write_elevation_nc(file_out, lon, lat, depth_vector):
4279    """
4280    Write an nc elevation file.
4281    """
4282   
4283    # NetCDF file definition
4284    outfile = NetCDFFile(file_out, 'w')
4285
4286    #Create new file
4287    nc_lon_lat_header(outfile, lon, lat)
4288   
4289    # ELEVATION
4290    zname = 'ELEVATION'
4291    outfile.createVariable(zname, precision, (lat_name, lon_name))
4292    outfile.variables[zname].units='CENTIMETERS'
4293    outfile.variables[zname].missing_value=-1.e+034
4294
4295    outfile.variables[lon_name][:]= ensure_numeric(lon)
4296    outfile.variables[lat_name][:]= ensure_numeric(lat)
4297
4298    depth = reshape(depth_vector, ( len(lat), len(lon)))
4299    outfile.variables[zname][:]= depth
4300   
4301    outfile.close()
4302   
4303def nc_lon_lat_header(outfile, lon, lat):
4304    """
4305    outfile is the netcdf file handle.
4306    lon - a list/array of the longitudes
4307    lat - a list/array of the latitudes
4308    """
4309   
4310    outfile.institution = 'Geoscience Australia'
4311    outfile.description = 'Converted from URS binary C'
4312   
4313    # Longitude
4314    outfile.createDimension(lon_name, len(lon))
4315    outfile.createVariable(lon_name, precision, (lon_name,))
4316    outfile.variables[lon_name].point_spacing='uneven'
4317    outfile.variables[lon_name].units='degrees_east'
4318    outfile.variables[lon_name].assignValue(lon)
4319
4320
4321    # Latitude
4322    outfile.createDimension(lat_name, len(lat))
4323    outfile.createVariable(lat_name, precision, (lat_name,))
4324    outfile.variables[lat_name].point_spacing='uneven'
4325    outfile.variables[lat_name].units='degrees_north'
4326    outfile.variables[lat_name].assignValue(lat)
4327
4328
4329   
4330def lon_lat2grid(long_lat_dep):
4331    """
4332    given a list of points that are assumed to be an a grid,
4333    return the long's and lat's of the grid.
4334    long_lat_dep is an array where each row is a position.
4335    The first column is longitudes.
4336    The second column is latitudes.
4337
4338    The latitude is the fastest varying dimension - in mux files
4339    """
4340    LONG = 0
4341    LAT = 1
4342    QUANTITY = 2
4343
4344    long_lat_dep = ensure_numeric(long_lat_dep, Float)
4345   
4346    num_points = long_lat_dep.shape[0]
4347    this_rows_long = long_lat_dep[0,LONG]
4348
4349    # Count the length of unique latitudes
4350    i = 0
4351    while long_lat_dep[i,LONG] == this_rows_long and i < num_points:
4352        i += 1
4353    # determine the lats and longsfrom the grid
4354    lat = long_lat_dep[:i, LAT]       
4355    long = long_lat_dep[::i, LONG]
4356   
4357    lenlong = len(long)
4358    lenlat = len(lat)
4359    #print 'len lat', lat, len(lat)
4360    #print 'len long', long, len(long)
4361         
4362    msg = 'Input data is not gridded'     
4363    assert num_points % lenlat == 0, msg
4364    assert num_points % lenlong == 0, msg
4365         
4366    # Test that data is gridded       
4367    for i in range(lenlong):
4368        msg = 'Data is not gridded.  It must be for this operation'
4369        first = i*lenlat
4370        last = first + lenlat
4371               
4372        assert allclose(long_lat_dep[first:last,LAT], lat), msg
4373        assert allclose(long_lat_dep[first:last,LONG], long[i]), msg
4374   
4375   
4376#    print 'range long', min(long), max(long)
4377#    print 'range lat', min(lat), max(lat)
4378#    print 'ref long', min(long_lat_dep[:,0]), max(long_lat_dep[:,0])
4379#    print 'ref lat', min(long_lat_dep[:,1]), max(long_lat_dep[:,1])
4380   
4381   
4382   
4383    msg = 'Out of range latitudes/longitudes'
4384    for l in lat:assert -90 < l < 90 , msg
4385    for l in long:assert -180 < l < 180 , msg
4386
4387    # Changing quantity from lat being the fastest varying dimension to
4388    # long being the fastest varying dimension
4389    # FIXME - make this faster/do this a better way
4390    # use numeric transpose, after reshaping the quantity vector
4391#    quantity = zeros(len(long_lat_dep), Float)
4392    quantity = zeros(num_points, Float)
4393   
4394#    print 'num',num_points
4395    for lat_i, _ in enumerate(lat):
4396        for long_i, _ in enumerate(long):
4397            q_index = lat_i*lenlong+long_i
4398            lld_index = long_i*lenlat+lat_i
4399#            print 'lat_i', lat_i, 'long_i',long_i, 'q_index', q_index, 'lld_index', lld_index
4400            temp = long_lat_dep[lld_index, QUANTITY]
4401            quantity[q_index] = temp
4402           
4403    return long, lat, quantity
4404
4405####  END URS 2 SWW  ###
4406
4407#### URS UNGRIDDED 2 SWW ###
4408
4409### PRODUCING THE POINTS NEEDED FILE ###
4410
4411# Ones used for FESA 2007 results
4412#LL_LAT = -50.0
4413#LL_LONG = 80.0
4414#GRID_SPACING = 1.0/60.0
4415#LAT_AMOUNT = 4800
4416#LONG_AMOUNT = 3600
4417
4418def URS_points_needed_to_file(file_name, boundary_polygon, zone,
4419                              ll_lat, ll_long,
4420                              grid_spacing, 
4421                              lat_amount, long_amount,
4422                              isSouthernHemisphere=True,
4423                              export_csv=False, use_cache=False,
4424                              verbose=False):
4425    """
4426    Given the info to replicate the URS grid and a polygon output
4427    a file that specifies the cloud of boundary points for URS.
4428   
4429    Note: The polygon cannot cross zones or hemispheres.
4430   
4431    file_name - name of the urs file produced for David.
4432    boundary_polygon - a list of points that describes a polygon.
4433                      The last point is assumed ot join the first point.
4434                      This is in UTM (lat long would be better though)
4435
4436     This is info about the URS model that needs to be inputted.
4437     
4438    ll_lat - lower left latitude, in decimal degrees
4439    ll-long - lower left longitude, in decimal degrees
4440    grid_spacing - in deciamal degrees
4441    lat_amount - number of latitudes
4442    long_amount- number of longs
4443
4444
4445    Don't add the file extension.  It will be added.
4446    """
4447    geo = URS_points_needed(boundary_polygon, zone, ll_lat, ll_long,
4448                            grid_spacing, 
4449                            lat_amount, long_amount, isSouthernHemisphere,
4450                            use_cache, verbose)
4451    if not file_name[-4:] == ".urs":
4452        file_name += ".urs"
4453    geo.export_points_file(file_name, isSouthHemisphere=isSouthernHemisphere)
4454    if export_csv:
4455        if file_name[-4:] == ".urs":
4456            file_name = file_name[:-4] + ".csv"
4457        geo.export_points_file(file_name)
4458    return geo
4459
4460def URS_points_needed(boundary_polygon, zone, ll_lat,
4461                      ll_long, grid_spacing, 
4462                      lat_amount, long_amount, isSouthHemisphere=True,
4463                      use_cache=False, verbose=False):
4464    args = (boundary_polygon,
4465            zone, ll_lat,
4466            ll_long, grid_spacing, 
4467            lat_amount, long_amount, isSouthHemisphere)
4468    kwargs = {} 
4469    if use_cache is True:
4470        try:
4471            from anuga.caching import cache
4472        except:
4473            msg = 'Caching was requested, but caching module'+\
4474                  'could not be imported'
4475            raise msg
4476
4477
4478        geo = cache(_URS_points_needed,
4479                  args, kwargs,
4480                  verbose=verbose,
4481                  compression=False)
4482    else:
4483        geo = apply(_URS_points_needed, args, kwargs)
4484
4485    return geo
4486
4487def _URS_points_needed(boundary_polygon,
4488                      zone, ll_lat,
4489                      ll_long, grid_spacing, 
4490                      lat_amount, long_amount,
4491                       isSouthHemisphere):
4492    """
4493    boundary_polygon - a list of points that describes a polygon.
4494                      The last point is assumed ot join the first point.
4495                      This is in UTM (lat long would b better though)
4496
4497    ll_lat - lower left latitude, in decimal degrees
4498    ll-long - lower left longitude, in decimal degrees
4499    grid_spacing - in deciamal degrees
4500
4501    """
4502   
4503    from sets import ImmutableSet
4504   
4505    msg = "grid_spacing can not be zero"
4506    assert not grid_spacing == 0, msg
4507    a = boundary_polygon
4508    # List of segments.  Each segment is two points.
4509    segs = [i and [a[i-1], a[i]] or [a[len(a)-1], a[0]] for i in range(len(a))]
4510    # convert the segs to Lat's and longs.
4511   
4512    # Don't assume the zone of the segments is the same as the lower left
4513    # corner of the lat long data!!  They can easily be in different zones
4514   
4515    lat_long_set = ImmutableSet()
4516    for seg in segs:
4517        points_lat_long = points_needed(seg, ll_lat, ll_long, grid_spacing, 
4518                      lat_amount, long_amount, zone, isSouthHemisphere)
4519        lat_long_set |= ImmutableSet(points_lat_long)
4520    if lat_long_set == ImmutableSet([]):
4521        msg = """URS region specified and polygon does not overlap."""
4522        raise ValueError, msg
4523
4524    # Warning there is no info in geospatial saying the hemisphere of
4525    # these points.  There should be.
4526    geo = Geospatial_data(data_points=list(lat_long_set),
4527                              points_are_lats_longs=True)
4528    return geo
4529   
4530def points_needed(seg, ll_lat, ll_long, grid_spacing, 
4531                  lat_amount, long_amount, zone,
4532                  isSouthHemisphere):
4533    """
4534    seg is two points, in UTM
4535    return a list of the points, in lats and longs that are needed to
4536    interpolate any point on the segment.
4537    """
4538    from math import sqrt
4539    #print "zone",zone
4540    geo_reference = Geo_reference(zone=zone)
4541    #print "seg", seg
4542    geo = Geospatial_data(seg,geo_reference=geo_reference)
4543    seg_lat_long = geo.get_data_points(as_lat_long=True,
4544                                       isSouthHemisphere=isSouthHemisphere)
4545    #print "seg_lat_long", seg_lat_long
4546    # 1.415 = 2^0.5, rounded up....
4547    sqrt_2_rounded_up = 1.415
4548    buffer = sqrt_2_rounded_up * grid_spacing
4549   
4550    max_lat = max(seg_lat_long[0][0], seg_lat_long[1][0]) + buffer
4551    max_long = max(seg_lat_long[0][1], seg_lat_long[1][1]) + buffer
4552    min_lat = min(seg_lat_long[0][0], seg_lat_long[1][0]) - buffer
4553    min_long = min(seg_lat_long[0][1], seg_lat_long[1][1]) - buffer
4554
4555    #print "min_long", min_long
4556    #print "ll_long", ll_long
4557    #print "grid_spacing", grid_spacing
4558    first_row = (min_long - ll_long)/grid_spacing
4559    # To round up
4560    first_row_long = int(round(first_row + 0.5))
4561    #print "first_row", first_row_long
4562
4563    last_row = (max_long - ll_long)/grid_spacing # round down
4564    last_row_long = int(round(last_row))
4565    #print "last_row",last_row _long
4566   
4567    first_row = (min_lat - ll_lat)/grid_spacing
4568    # To round up
4569    first_row_lat = int(round(first_row + 0.5))
4570    #print "first_row", first_row_lat
4571
4572    last_row = (max_lat - ll_lat)/grid_spacing # round down
4573    last_row_lat = int(round(last_row))
4574    #print "last_row",last_row_lat
4575
4576    # to work out the max distance -
4577    # 111120 - horizontal distance between 1 deg latitude.
4578    #max_distance = sqrt_2_rounded_up * 111120 * grid_spacing
4579    max_distance = 157147.4112 * grid_spacing
4580    #print "max_distance", max_distance #2619.12 m for 1 minute
4581    points_lat_long = []
4582    # Create a list of the lat long points to include.
4583    for index_lat in range(first_row_lat, last_row_lat + 1):
4584        for index_long in range(first_row_long, last_row_long + 1):
4585            #print "index_lat", index_lat
4586            #print "index_long", index_long
4587            lat = ll_lat + index_lat*grid_spacing
4588            long = ll_long + index_long*grid_spacing
4589
4590            #filter here to keep good points
4591            if keep_point(lat, long, seg, max_distance):
4592                points_lat_long.append((lat, long)) #must be hashable
4593    #print "points_lat_long", points_lat_long
4594
4595    # Now that we have these points, lets throw ones out that are too far away
4596    return points_lat_long
4597
4598def keep_point(lat, long, seg, max_distance):
4599    """
4600    seg is two points, UTM
4601    """
4602    from math import sqrt
4603    _ , x0, y0 = redfearn(lat, long)
4604    x1 = seg[0][0]
4605    y1 = seg[0][1]
4606    x2 = seg[1][0]
4607    y2 = seg[1][1]
4608    x2_1 = x2-x1
4609    y2_1 = y2-y1
4610    try:
4611        d = abs((x2_1)*(y1-y0)-(x1-x0)*(y2_1))/sqrt( \
4612            (x2_1)*(x2_1)+(y2_1)*(y2_1))
4613    except ZeroDivisionError:
4614        #print "seg", seg
4615        #print "x0", x0
4616        #print "y0", y0
4617        if sqrt((x2_1)*(x2_1)+(y2_1)*(y2_1)) == 0 and \
4618           abs((x2_1)*(y1-y0)-(x1-x0)*(y2_1)) == 0:
4619            return True
4620        else:
4621            return False
4622   
4623    if d <= max_distance:
4624        return True
4625    else:
4626        return False
4627   
4628    #### CONVERTING UNGRIDDED URS DATA TO AN SWW FILE ####
4629   
4630WAVEHEIGHT_MUX_LABEL = '_waveheight-z-mux'
4631EAST_VELOCITY_LABEL =  '_velocity-e-mux'
4632NORTH_VELOCITY_LABEL =  '_velocity-n-mux' 
4633def urs_ungridded2sww(basename_in='o', basename_out=None, verbose=False,
4634                      mint=None, maxt=None,
4635                      mean_stage=0,
4636                      origin=None,
4637                      hole_points_UTM=None,
4638                      zscale=1):
4639    """   
4640    Convert URS C binary format for wave propagation to
4641    sww format native to abstract_2d_finite_volumes.
4642
4643
4644    Specify only basename_in and read files of the form
4645    basefilename_velocity-z-mux, basefilename_velocity-e-mux and
4646    basefilename_waveheight-n-mux containing relative height,
4647    x-velocity and y-velocity, respectively.
4648
4649    Also convert latitude and longitude to UTM. All coordinates are
4650    assumed to be given in the GDA94 datum. The latitude and longitude
4651    information is assumed ungridded grid.
4652
4653    min's and max's: If omitted - full extend is used.
4654    To include a value min ans max may equal it.
4655    Lat and lon are assumed to be in decimal degrees.
4656   
4657    origin is a 3-tuple with geo referenced
4658    UTM coordinates (zone, easting, northing)
4659    It will be the origin of the sww file. This shouldn't be used,
4660    since all of anuga should be able to handle an arbitary origin.
4661    The mux point info is NOT relative to this origin.
4662
4663
4664    URS C binary format has data orgainised as TIME, LONGITUDE, LATITUDE
4665    which means that latitude is the fastest
4666    varying dimension (row major order, so to speak)
4667
4668    In URS C binary the latitudes and longitudes are in assending order.
4669
4670    Note, interpolations of the resulting sww file will be different
4671    from results of urs2sww.  This is due to the interpolation
4672    function used, and the different grid structure between urs2sww
4673    and this function.
4674   
4675    Interpolating data that has an underlying gridded source can
4676    easily end up with different values, depending on the underlying
4677    mesh.
4678
4679    consider these 4 points
4680    50  -50
4681
4682    0     0
4683
4684    The grid can be
4685     -
4686    |\|    A
4687     -
4688     or;
4689      -
4690     |/|   B
4691      -
4692      If a point is just below the center of the midpoint, it will have a
4693      +ve value in grid A and a -ve value in grid B.
4694    """ 
4695    from anuga.mesh_engine.mesh_engine import NoTrianglesError
4696    from anuga.pmesh.mesh import Mesh
4697
4698    files_in = [basename_in + WAVEHEIGHT_MUX_LABEL,
4699                basename_in + EAST_VELOCITY_LABEL,
4700                basename_in + NORTH_VELOCITY_LABEL]
4701    quantities = ['HA','UA','VA']
4702
4703    # instanciate urs_points of the three mux files.
4704    mux = {}
4705    for quantity, file in map(None, quantities, files_in):
4706        mux[quantity] = Urs_points(file)
4707       
4708    # Could check that the depth is the same. (hashing)
4709
4710    # handle to a mux file to do depth stuff
4711    a_mux = mux[quantities[0]]
4712   
4713    # Convert to utm
4714    lat = a_mux.lonlatdep[:,1]
4715    long = a_mux.lonlatdep[:,0]
4716    points_utm, zone = convert_from_latlon_to_utm( \
4717        latitudes=lat, longitudes=long)
4718    #print "points_utm", points_utm
4719    #print "zone", zone
4720
4721    elevation = a_mux.lonlatdep[:,2] * -1 #
4722   
4723    # grid ( create a mesh from the selected points)
4724    # This mesh has a problem.  Triangles are streched over ungridded areas.
4725    #  If these areas could be described as holes in pmesh, that would be great
4726
4727    # I can't just get the user to selection a point in the middle.
4728    # A boundary is needed around these points.
4729    # But if the zone of points is obvious enough auto-segment should do
4730    # a good boundary.
4731    mesh = Mesh()
4732    mesh.add_vertices(points_utm)
4733    mesh.auto_segment(smooth_indents=True, expand_pinch=True)
4734    # To try and avoid alpha shape 'hugging' too much
4735    mesh.auto_segment( mesh.shape.get_alpha()*1.1 )
4736    if hole_points_UTM is not None:
4737        point = ensure_absolute(hole_points_UTM)
4738        mesh.add_hole(point[0], point[1])
4739    try:
4740        mesh.generate_mesh(minimum_triangle_angle=0.0, verbose=False)
4741    except NoTrianglesError:
4742        # This is a bit of a hack, going in and changing the
4743        # data structure.
4744        mesh.holes = []
4745        mesh.generate_mesh(minimum_triangle_angle=0.0, verbose=False)
4746    mesh_dic = mesh.Mesh2MeshList()
4747
4748    #mesh.export_mesh_file(basename_in + '_168.tsh')
4749    #import sys; sys.exit()
4750    # These are the times of the mux file
4751    mux_times = []
4752    for i in range(a_mux.time_step_count):
4753        mux_times.append(a_mux.time_step * i) 
4754    mux_times_start_i, mux_times_fin_i = mux2sww_time(mux_times, mint, maxt)
4755    times = mux_times[mux_times_start_i:mux_times_fin_i]
4756   
4757    if mux_times_start_i == mux_times_fin_i:
4758        # Close the mux files
4759        for quantity, file in map(None, quantities, files_in):
4760            mux[quantity].close()
4761        msg="Due to mint and maxt there's no time info in the boundary SWW."
4762        raise Exception, msg
4763       
4764    # If this raise is removed there is currently no downstream errors
4765           
4766    points_utm=ensure_numeric(points_utm)
4767    assert ensure_numeric(mesh_dic['generatedpointlist']) == \
4768           ensure_numeric(points_utm)
4769   
4770    volumes = mesh_dic['generatedtrianglelist']
4771   
4772    # write sww intro and grid stuff.   
4773    if basename_out is None:
4774        swwname = basename_in + '.sww'
4775    else:
4776        swwname = basename_out + '.sww'
4777
4778    if verbose: print 'Output to ', swwname
4779    outfile = NetCDFFile(swwname, 'w')
4780    # For a different way of doing this, check out tsh2sww
4781    # work out sww_times and the index range this covers
4782    sww = Write_sww()
4783    sww.store_header(outfile, times, len(volumes), len(points_utm),
4784                     verbose=verbose,sww_precision=Float)
4785    outfile.mean_stage = mean_stage
4786    outfile.zscale = zscale
4787
4788    sww.store_triangulation(outfile, points_utm, volumes,
4789                            elevation, zone,  new_origin=origin,
4790                            verbose=verbose)
4791   
4792    if verbose: print 'Converting quantities'
4793    j = 0
4794    # Read in a time slice from each mux file and write it to the sww file
4795    for ha, ua, va in map(None, mux['HA'], mux['UA'], mux['VA']):
4796        if j >= mux_times_start_i and j < mux_times_fin_i:
4797            stage = zscale*ha + mean_stage
4798            h = stage - elevation
4799            xmomentum = ua*h
4800            ymomentum = -1*va*h # -1 since in mux files south is positive.
4801            sww.store_quantities(outfile, 
4802                                 slice_index=j - mux_times_start_i,
4803                                 verbose=verbose,
4804                                 stage=stage,
4805                                 xmomentum=xmomentum,
4806                                 ymomentum=ymomentum,
4807                                 sww_precision=Float)
4808        j += 1
4809    if verbose: sww.verbose_quantities(outfile)
4810    outfile.close()
4811    #
4812    # Do some conversions while writing the sww file
4813
4814   
4815def mux2sww_time(mux_times, mint, maxt):
4816    """
4817    """
4818
4819    if mint == None:
4820        mux_times_start_i = 0
4821    else:
4822        mux_times_start_i = searchsorted(mux_times, mint)
4823       
4824    if maxt == None:
4825        mux_times_fin_i = len(mux_times)
4826    else:
4827        maxt += 0.5 # so if you specify a time where there is
4828                    # data that time will be included
4829        mux_times_fin_i = searchsorted(mux_times, maxt)
4830
4831    return mux_times_start_i, mux_times_fin_i
4832
4833
4834class Write_sww:
4835    from anuga.shallow_water.shallow_water_domain import Domain
4836
4837    # FIXME (Ole): Hardwiring the conserved quantities like
4838    # this could be a problem. I would prefer taking them from
4839    # the instantiation of Domain.
4840    #
4841    # (DSG) There is not always a Domain instance when Write_sww is used.
4842    # Check to see if this is the same level of hardwiring as is in
4843    # shallow water doamain.
4844   
4845    sww_quantities = Domain.conserved_quantities
4846
4847
4848    RANGE = '_range'
4849    EXTREMA = ':extrema'
4850
4851    def __init__(self):
4852        pass
4853   
4854    def store_header(self,
4855                     outfile,
4856                     times,
4857                     number_of_volumes,
4858                     number_of_points,
4859                     description='Converted from XXX',
4860                     smoothing=True,
4861                     order=1,
4862                     sww_precision=Float32,
4863                     verbose=False):
4864        """
4865        outfile - the name of the file that will be written
4866        times - A list of the time slice times OR a start time
4867        Note, if a list is given the info will be made relative.
4868        number_of_volumes - the number of triangles
4869        """
4870   
4871        outfile.institution = 'Geoscience Australia'
4872        outfile.description = description
4873
4874        # For sww compatibility
4875        if smoothing is True:
4876            # Smoothing to be depreciated
4877            outfile.smoothing = 'Yes'
4878            outfile.vertices_are_stored_uniquely = 'False'
4879        else:
4880            # Smoothing to be depreciated
4881            outfile.smoothing = 'No'
4882            outfile.vertices_are_stored_uniquely = 'True'
4883        outfile.order = order
4884
4885        try:
4886            revision_number = get_revision_number()
4887        except:
4888            revision_number = None
4889        # Allow None to be stored as a string               
4890        outfile.revision_number = str(revision_number) 
4891
4892
4893       
4894        # times - A list or array of the time slice times OR a start time
4895        # times = ensure_numeric(times)
4896        # Start time in seconds since the epoch (midnight 1/1/1970)
4897
4898        # This is being used to seperate one number from a list.
4899        # what it is actually doing is sorting lists from numeric arrays.
4900        if type(times) is list or type(times) is ArrayType: 
4901            number_of_times = len(times)
4902            times = ensure_numeric(times) 
4903            if number_of_times == 0:
4904                starttime = 0
4905            else:
4906                starttime = times[0]
4907                times = times - starttime  #Store relative times
4908        else:
4909            number_of_times = 0
4910            starttime = times
4911            #times = ensure_numeric([])
4912        outfile.starttime = starttime
4913        # dimension definitions
4914        outfile.createDimension('number_of_volumes', number_of_volumes)
4915        outfile.createDimension('number_of_vertices', 3)
4916        outfile.createDimension('numbers_in_range', 2)
4917   
4918        if smoothing is True:
4919            outfile.createDimension('number_of_points', number_of_points)
4920       
4921            # FIXME(Ole): This will cause sww files for paralle domains to
4922            # have ghost nodes stored (but not used by triangles).
4923            # To clean this up, we have to change get_vertex_values and
4924            # friends in quantity.py (but I can't be bothered right now)
4925        else:
4926            outfile.createDimension('number_of_points', 3*number_of_volumes)
4927        outfile.createDimension('number_of_timesteps', number_of_times)
4928
4929        # variable definitions
4930        outfile.createVariable('x', sww_precision, ('number_of_points',))
4931        outfile.createVariable('y', sww_precision, ('number_of_points',))
4932        outfile.createVariable('elevation', sww_precision, ('number_of_points',))
4933        q = 'elevation'
4934        outfile.createVariable(q+Write_sww.RANGE, sww_precision,
4935                               ('numbers_in_range',))
4936
4937
4938        # Initialise ranges with small and large sentinels.
4939        # If this was in pure Python we could have used None sensibly
4940        outfile.variables[q+Write_sww.RANGE][0] = max_float  # Min
4941        outfile.variables[q+Write_sww.RANGE][1] = -max_float # Max
4942
4943        # FIXME: Backwards compatibility
4944        outfile.createVariable('z', sww_precision, ('number_of_points',))
4945        #################################
4946
4947        outfile.createVariable('volumes', Int, ('number_of_volumes',
4948                                                'number_of_vertices'))
4949        # Doing sww_precision instead of Float gives cast errors.
4950        outfile.createVariable('time', Float,
4951                               ('number_of_timesteps',))
4952       
4953        for q in Write_sww.sww_quantities:
4954            outfile.createVariable(q, sww_precision,
4955                                   ('number_of_timesteps',
4956                                    'number_of_points')) 
4957            outfile.createVariable(q+Write_sww.RANGE, sww_precision,
4958                                   ('numbers_in_range',))
4959
4960            # Initialise ranges with small and large sentinels.
4961            # If this was in pure Python we could have used None sensibly
4962            outfile.variables[q+Write_sww.RANGE][0] = max_float  # Min
4963            outfile.variables[q+Write_sww.RANGE][1] = -max_float # Max
4964           
4965        if type(times) is list or type(times) is ArrayType: 
4966            outfile.variables['time'][:] = times    #Store time relative
4967           
4968        if verbose:
4969            print '------------------------------------------------'
4970            print 'Statistics:'
4971            print '    t in [%f, %f], len(t) == %d'\
4972                  %(min(times.flat), max(times.flat), len(times.flat))
4973
4974       
4975    def store_triangulation(self,
4976                            outfile,
4977                            points_utm,
4978                            volumes,
4979                            elevation, zone=None, new_origin=None, 
4980                            points_georeference=None, verbose=False):
4981        """
4982       
4983        new_origin - qa georeference that the points can be set to. (Maybe
4984        do this before calling this function.)
4985       
4986        points_utm - currently a list or array of the points in UTM.
4987        points_georeference - the georeference of the points_utm
4988       
4989        How about passing new_origin and current_origin.
4990        If you get both, do a convertion from the old to the new.
4991       
4992        If you only get new_origin, the points are absolute,
4993        convert to relative
4994       
4995        if you only get the current_origin the points are relative, store
4996        as relative.
4997       
4998        if you get no georefs create a new georef based on the minimums of
4999        points_utm.  (Another option would be to default to absolute)
5000       
5001        Yes, and this is done in another part of the code.
5002        Probably geospatial.
5003       
5004        If you don't supply either geo_refs, then supply a zone. If not
5005        the default zone will be used.
5006       
5007       
5008        precon
5009       
5010        header has been called.
5011        """
5012       
5013        number_of_points = len(points_utm)   
5014        volumes = array(volumes) 
5015        points_utm = array(points_utm)
5016
5017        # given the two geo_refs and the points, do the stuff
5018        # described in the method header
5019        # if this is needed else where, pull out as a function
5020        points_georeference = ensure_geo_reference(points_georeference)
5021        new_origin = ensure_geo_reference(new_origin)
5022        if new_origin is None and points_georeference is not None:
5023            points = points_utm
5024            geo_ref = points_georeference
5025        else:
5026            if new_origin is None:
5027                new_origin = Geo_reference(zone,min(points_utm[:,0]),
5028                                           min(points_utm[:,1]))
5029            points = new_origin.change_points_geo_ref(points_utm,
5030                                                      points_georeference)
5031            geo_ref = new_origin
5032
5033        # At this stage I need a georef and points
5034        # the points are relative to the georef
5035        geo_ref.write_NetCDF(outfile)
5036   
5037        # This will put the geo ref in the middle
5038        #geo_ref=Geo_reference(refzone,(max(x)+min(x))/2.0,(max(x)+min(y))/2.)
5039       
5040        x =  points[:,0]
5041        y =  points[:,1]
5042        z = outfile.variables['z'][:]
5043   
5044        if verbose:
5045            print '------------------------------------------------'
5046            print 'More Statistics:'
5047            print '  Extent (/lon):'
5048            print '    x in [%f, %f], len(lat) == %d'\
5049                  %(min(x), max(x),
5050                    len(x))
5051            print '    y in [%f, %f], len(lon) == %d'\
5052                  %(min(y), max(y),
5053                    len(y))
5054            print '    z in [%f, %f], len(z) == %d'\
5055                  %(min(elevation), max(elevation),
5056                    len(elevation))
5057            print 'geo_ref: ',geo_ref
5058            print '------------------------------------------------'
5059           
5060        #z = resize(bath_grid,outfile.variables['z'][:].shape)
5061        #print "points[:,0]", points[:,0]
5062        outfile.variables['x'][:] = points[:,0] #- geo_ref.get_xllcorner()
5063        outfile.variables['y'][:] = points[:,1] #- geo_ref.get_yllcorner()
5064        outfile.variables['z'][:] = elevation
5065        outfile.variables['elevation'][:] = elevation  #FIXME HACK
5066        outfile.variables['volumes'][:] = volumes.astype(Int32) #On Opteron 64
5067
5068        q = 'elevation'
5069        # This updates the _range values
5070        outfile.variables[q+Write_sww.RANGE][0] = min(elevation)
5071        outfile.variables[q+Write_sww.RANGE][1] = max(elevation)
5072
5073
5074    def store_quantities(self, outfile, sww_precision=Float32,
5075                         slice_index=None, time=None,
5076                         verbose=False, **quant):
5077        """
5078        Write the quantity info.
5079
5080        **quant is extra keyword arguments passed in. These must be
5081          the sww quantities, currently; stage, xmomentum, ymomentum.
5082       
5083        if the time array is already been built, use the slice_index
5084        to specify the index.
5085       
5086        Otherwise, use time to increase the time dimension
5087
5088        Maybe make this general, but the viewer assumes these quantities,
5089        so maybe we don't want it general - unless the viewer is general
5090       
5091        precon
5092        triangulation and
5093        header have been called.
5094        """
5095
5096        if time is not None:
5097            file_time = outfile.variables['time']
5098            slice_index = len(file_time)
5099            file_time[slice_index] = time   
5100
5101        # Write the conserved quantities from Domain.
5102        # Typically stage,  xmomentum, ymomentum
5103        # other quantities will be ignored, silently.
5104        # Also write the ranges: stage_range,
5105        # xmomentum_range and ymomentum_range
5106        for q in Write_sww.sww_quantities:
5107            if not quant.has_key(q):
5108                msg = 'SWW file can not write quantity %s' %q
5109                raise NewQuantity, msg
5110            else:
5111                q_values = quant[q]
5112                outfile.variables[q][slice_index] = \
5113                                q_values.astype(sww_precision)
5114
5115                # This updates the _range values
5116                q_range = outfile.variables[q+Write_sww.RANGE][:]
5117                q_values_min = min(q_values)
5118                if q_values_min < q_range[0]:
5119                    outfile.variables[q+Write_sww.RANGE][0] = q_values_min
5120                q_values_max = max(q_values)
5121                if q_values_max > q_range[1]:
5122                    outfile.variables[q+Write_sww.RANGE][1] = q_values_max
5123
5124    def verbose_quantities(self, outfile):
5125        print '------------------------------------------------'
5126        print 'More Statistics:'
5127        for q in Write_sww.sww_quantities:
5128            print %s in [%f, %f]' %(q,
5129                                       outfile.variables[q+Write_sww.RANGE][0],
5130                                       outfile.variables[q+Write_sww.RANGE][1])
5131        print '------------------------------------------------'
5132
5133
5134       
5135def obsolete_write_sww_time_slices(outfile, has, uas, vas, elevation,
5136                         mean_stage=0, zscale=1,
5137                         verbose=False):   
5138    #Time stepping
5139    stage = outfile.variables['stage']
5140    xmomentum = outfile.variables['xmomentum']
5141    ymomentum = outfile.variables['ymomentum']
5142
5143    n = len(has)
5144    j=0
5145    for ha, ua, va in map(None, has, uas, vas):
5146        if verbose and j%((n+10)/10)==0: print '  Doing %d of %d' %(j, n)
5147        w = zscale*ha + mean_stage
5148        stage[j] = w
5149        h = w - elevation
5150        xmomentum[j] = ua*h
5151        ymomentum[j] = -1*va*#  -1 since in mux files south is positive.
5152        j += 1
5153   
5154def urs2txt(basename_in, location_index=None):
5155    """
5156    Not finished or tested
5157    """
5158   
5159    files_in = [basename_in + WAVEHEIGHT_MUX_LABEL,
5160                basename_in + EAST_VELOCITY_LABEL,
5161                basename_in + NORTH_VELOCITY_LABEL]
5162    quantities = ['HA','UA','VA']
5163
5164    d = ","
5165   
5166    # instanciate urs_points of the three mux files.
5167    mux = {}
5168    for quantity, file in map(None, quantities, files_in):
5169        mux[quantity] = Urs_points(file)
5170       
5171    # Could check that the depth is the same. (hashing)
5172
5173    # handle to a mux file to do depth stuff
5174    a_mux = mux[quantities[0]]
5175   
5176    # Convert to utm
5177    latitudes = a_mux.lonlatdep[:,1]
5178    longitudes = a_mux.lonlatdep[:,0]
5179    points_utm, zone = convert_from_latlon_to_utm( \
5180        latitudes=latitudes, longitudes=longitudes)
5181    #print "points_utm", points_utm
5182    #print "zone", zone
5183    depths = a_mux.lonlatdep[:,2]  #
5184   
5185    fid = open(basename_in + '.txt', 'w')
5186
5187    fid.write("zone: " + str(zone) + "\n")
5188
5189    if location_index is not None:
5190        #Title
5191        li = location_index
5192        fid.write('location_index'+d+'lat'+d+ 'long' +d+ 'Easting' +d+ \
5193                  'Northing' + "\n")
5194        fid.write(str(li) +d+ str(latitudes[li])+d+ \
5195              str(longitudes[li]) +d+ str(points_utm[li][0]) +d+ \
5196              str(points_utm[li][01]) + "\n")
5197
5198    # the non-time dependent stuff
5199    #Title
5200    fid.write('location_index'+d+'lat'+d+ 'long' +d+ 'Easting' +d+ \
5201                  'Northing' +d+ 'depth m' + "\n")
5202    i = 0
5203    for depth, point_utm, lat, long in map(None, depths,
5204                                               points_utm, latitudes,
5205                                               longitudes):
5206       
5207        fid.write(str(i) +d+ str(lat)+d+ str(long) +d+ str(point_utm[0]) +d+ \
5208                  str(point_utm[01]) +d+ str(depth) + "\n")
5209        i +=1
5210    #Time dependent
5211    if location_index is not None:
5212        time_step = a_mux.time_step
5213        i = 0
5214        #Title
5215        fid.write('time' +d+ 'HA depth m'+d+ \
5216                 'UA momentum East x m/sec' +d+ 'VA momentum North y m/sec' \
5217                      + "\n")
5218        for HA, UA, VA in map(None, mux['HA'], mux['UA'], mux['VA']):
5219            fid.write(str(i*time_step) +d+ str(HA[location_index])+d+ \
5220                      str(UA[location_index]) +d+ str(VA[location_index]) \
5221                      + "\n")
5222           
5223            i +=1
5224   
5225class Urs_points:
5226    """
5227    Read the info in URS mux files.
5228
5229    for the quantities heres a correlation between the file names and
5230    what they mean;
5231    z-mux is height above sea level, m
5232    e-mux is velocity is Eastern direction, m/s
5233    n-mux is velocity is Northern direction, m/s   
5234    """
5235    def __init__(self,urs_file):
5236        self.iterated = False
5237        columns = 3 # long, lat , depth
5238        mux_file = open(urs_file, 'rb')
5239       
5240        # Number of points/stations
5241        (self.points_num,)= unpack('i',mux_file.read(4))
5242       
5243        # nt, int - Number of time steps
5244        (self.time_step_count,)= unpack('i',mux_file.read(4))
5245        #print "self.time_step_count", self.time_step_count
5246        #dt, float - time step, seconds
5247        (self.time_step,) = unpack('f', mux_file.read(4))
5248        #print "self.time_step", self.time_step
5249        msg = "Bad data in the urs file."
5250        if self.points_num < 0:
5251            mux_file.close()
5252            raise ANUGAError, msg
5253        if self.time_step_count < 0:
5254            mux_file.close()
5255            raise ANUGAError, msg
5256        if self.time_step < 0:
5257            mux_file.close()
5258            raise ANUGAError, msg
5259
5260        # the depth is in meters, and it is the distance from the ocean
5261        # to the sea bottom.
5262        lonlatdep = p_array.array('f')
5263        lonlatdep.read(mux_file, columns * self.points_num)
5264        lonlatdep = array(lonlatdep, typecode=Float)   
5265        lonlatdep = reshape(lonlatdep, (self.points_num, columns))
5266        #print 'lonlatdep',lonlatdep
5267        self.lonlatdep = lonlatdep
5268       
5269        self.mux_file = mux_file
5270        # check this array
5271
5272    def __iter__(self):
5273        """
5274        iterate over quantity data which is with respect to time.
5275
5276        Note: You can only interate once over an object
5277       
5278        returns quantity infomation for each time slice
5279        """
5280        msg =  "You can only interate once over a urs file."
5281        assert not self.iterated, msg
5282        self.iter_time_step = 0
5283        self.iterated = True
5284        return self
5285   
5286    def next(self):
5287        if self.time_step_count == self.iter_time_step:
5288            self.close()
5289            raise StopIteration
5290        #Read in a time slice  from mux file 
5291        hz_p_array = p_array.array('f')
5292        hz_p_array.read(self.mux_file, self.points_num)
5293        hz_p = array(hz_p_array, typecode=Float)
5294        self.iter_time_step += 1
5295       
5296        return hz_p
5297
5298    def close(self):
5299        self.mux_file.close()
5300       
5301    #### END URS UNGRIDDED 2 SWW ###
5302
5303       
5304def start_screen_catcher(dir_name=None, myid='', numprocs='', extra_info='',
5305                         verbose=True):
5306    """
5307    Used to store screen output and errors to file, if run on multiple
5308    processes eachprocessor will have its own output and error file.
5309   
5310    extra_info - is used as a string that can identify outputs with another
5311    string eg. '_other'
5312   
5313    FIXME: Would be good if you could suppress all the screen output and
5314    only save it to file... however it seems a bit tricky as this capture
5315    techique response to sys.stdout and by this time it is already printed out.
5316    """
5317   
5318    import sys
5319#    dir_name = dir_name
5320    if dir_name == None:
5321        dir_name=getcwd()
5322       
5323    if access(dir_name,W_OK) == 0:
5324        if verbose: print 'Making directory %s' %dir_name
5325      #  if verbose: print "myid", myid
5326        mkdir (dir_name,0777)
5327
5328    if myid <>'':
5329        myid = '_'+str(myid)
5330    if numprocs <>'':
5331        numprocs = '_'+str(numprocs)
5332    if extra_info <>'':
5333        extra_info = '_'+str(extra_info)
5334#    print 'hello1'
5335    screen_output_name = join(dir_name, "screen_output%s%s%s.txt" %(myid,
5336                                                                numprocs,
5337                                                                extra_info))
5338    screen_error_name = join(dir_name,  "screen_error%s%s%s.txt" %(myid,
5339                                                              numprocs,
5340                                                              extra_info))
5341
5342    if verbose: print 'Starting ScreenCatcher, all output will be stored in %s' \
5343                                     %(screen_output_name)
5344    #used to catch screen output to file
5345    sys.stdout = Screen_Catcher(screen_output_name)
5346    sys.stderr = Screen_Catcher(screen_error_name)
5347
5348class Screen_Catcher:
5349    """this simply catches the screen output and stores it to file defined by
5350    start_screen_catcher (above)
5351    """
5352   
5353    def __init__(self, filename):
5354        self.filename = filename
5355#        print 'init'
5356        if exists(self.filename)is True:
5357            print'Old existing file "%s" has been deleted' %(self.filename)
5358            remove(self.filename)
5359
5360    def write(self, stuff):
5361        fid = open(self.filename, 'a')
5362        fid.write(stuff)
5363        fid.close()
5364       
5365def copy_code_files(dir_name, filename1, filename2=None):
5366    """Copies "filename1" and "filename2" to "dir_name". Very useful for
5367    information management
5368    filename1 and filename2 are both absolute pathnames   
5369    """
5370
5371    if access(dir_name,F_OK) == 0:
5372        print 'Make directory %s' %dir_name
5373        mkdir (dir_name,0777)
5374    shutil.copy(filename1, dir_name + sep + basename(filename1))
5375    if filename2!=None:
5376        shutil.copy(filename2, dir_name + sep + basename(filename2))
5377        print 'Files %s and %s copied' %(filename1, filename2)
5378    else:
5379        print 'File %s copied' %(filename1)
5380
5381def get_data_from_file(filename,separator_value = ','):
5382    """
5383    Read in data information from file and
5384   
5385    Returns:
5386        header_fields, a string? of the first line separated
5387        by the 'separator_value'
5388       
5389        data, a array (N data columns X M lines) in the file
5390        excluding the header
5391       
5392    NOTE: wont deal with columns with different lenghts and there must be
5393    no blank lines at the end.
5394    """
5395   
5396    fid = open(filename)
5397    lines = fid.readlines()
5398   
5399    fid.close()
5400   
5401    header_line = lines[0]
5402    header_fields = header_line.split(separator_value)
5403
5404    #array to store data, number in there is to allow float...
5405    #i'm sure there is a better way!
5406    data=array([],typecode=Float)
5407    data=resize(data,((len(lines)-1),len(header_fields)))
5408#    print 'number of fields',range(len(header_fields))
5409#    print 'number of lines',len(lines), shape(data)
5410#    print'data',data[1,1],header_line
5411
5412    array_number = 0
5413    line_number = 1
5414    while line_number < (len(lines)):
5415        for i in range(len(header_fields)): 
5416            #this get line below the header, explaining the +1
5417            #and also the line_number can be used as the array index
5418            fields = lines[line_number].split(separator_value)
5419            #assign to array
5420            data[array_number,i] = float(fields[i])
5421           
5422        line_number = line_number +1
5423        array_number = array_number +1
5424       
5425    return header_fields, data
5426
5427def store_parameters(verbose=False,**kwargs):
5428    """
5429    Store "kwargs" into a temp csv file, if "completed" is a kwargs csv file is
5430    kwargs[file_name] else it is kwargs[output_dir] + details_temp.csv
5431   
5432    Must have a file_name keyword arg, this is what is writing to.
5433    might be a better way to do this using CSV module Writer and writeDict
5434   
5435    writes file to "output_dir" unless "completed" is in kwargs, then
5436    it writes to "file_name" kwargs
5437
5438    """
5439    import types
5440#    import os
5441   
5442    # Check that kwargs is a dictionary
5443    if type(kwargs) != types.DictType:
5444        raise TypeError
5445   
5446    #is completed is kwargs?
5447    try:
5448        kwargs['completed']
5449        completed=True
5450    except:
5451        completed=False
5452 
5453    #get file name and removes from dict and assert that a file_name exists
5454    if completed:
5455        try:
5456            file = str(kwargs['file_name'])
5457        except:
5458            raise 'kwargs must have file_name'
5459    else:
5460        #write temp file in output directory
5461        try:
5462            file = str(kwargs['output_dir'])+'detail_temp.csv'
5463        except:
5464            raise 'kwargs must have output_dir'
5465       
5466    #extracts the header info and the new line info
5467    line=''
5468    header=''
5469    count=0
5470    keys = kwargs.keys()
5471    keys.sort()
5472   
5473    #used the sorted keys to create the header and line data
5474    for k in keys:
5475#        print "%s = %s" %(k, kwargs[k])
5476        header = header+str(k)
5477        line = line+str(kwargs[k])
5478        count+=1
5479        if count <len(kwargs):
5480            header = header+','
5481            line = line+','
5482    header+='\n'
5483    line+='\n'
5484
5485    # checks the header info, if the same, then write, if not create a new file
5486    #try to open!
5487    try:
5488        fid = open(file,"r")
5489        file_header=fid.readline()
5490        fid.close()
5491        if verbose: print 'read file header %s' %file_header
5492       
5493    except:
5494        msg = 'try to create new file',file
5495        if verbose: print msg
5496        #tries to open file, maybe directory is bad
5497        try:
5498            fid = open(file,"w")
5499            fid.write(header)
5500            fid.close()
5501            file_header=header
5502        except:
5503            msg = 'cannot create new file',file
5504            raise msg
5505           
5506    #if header is same or this is a new file
5507    if file_header==str(header):
5508        fid=open(file,"a")
5509        #write new line
5510        fid.write(line)
5511        fid.close()
5512    else:
5513        #backup plan,
5514        # if header is different and has completed will append info to
5515        #end of details_temp.cvs file in output directory
5516        file = str(kwargs['output_dir'])+'detail_temp.csv'
5517        fid=open(file,"a")
5518        fid.write(header)
5519        fid.write(line)
5520        fid.close()
5521        if verbose: print 'file',file_header.strip('\n')
5522        if verbose: print 'head',header.strip('\n')
5523        if file_header.strip('\n')==str(header): print 'they equal'
5524        msg = 'WARNING: File header does not match input info, the input variables have changed, suggest to change file name'
5525        print msg
5526
5527
5528
5529# ----------------------------------------------
5530# Functions to obtain diagnostics from sww files
5531#-----------------------------------------------
5532
5533def get_mesh_and_quantities_from_sww_file(filename, quantity_names, verbose=False):
5534    """Get and rebuild mesh structure and the associated quantities from sww file
5535    """
5536
5537    #FIXME(Ole): This is work in progress
5538   
5539    import types
5540    # FIXME (Ole): Maybe refactor filefunction using this more fundamental code.
5541
5542    return
5543   
5544    # Open NetCDF file
5545    if verbose: print 'Reading', filename
5546    fid = NetCDFFile(filename, 'r')
5547
5548    if type(quantity_names) == types.StringType:
5549        quantity_names = [quantity_names]       
5550
5551    if quantity_names is None or len(quantity_names) < 1:
5552        msg = 'No quantities are specified'
5553        raise Exception, msg
5554
5555    # Now assert that requested quantitites (and the independent ones)
5556    # are present in file
5557    missing = []
5558    for quantity in ['x', 'y', 'volumes', 'time'] + quantity_names:
5559        if not fid.variables.has_key(quantity):
5560            missing.append(quantity)
5561
5562    if len(missing) > 0:
5563        msg = 'Quantities %s could not be found in file %s'\
5564              %(str(missing), filename)
5565        fid.close()
5566        raise Exception, msg
5567
5568    if not filename.endswith('.sww'):
5569        msg = 'Filename must have extension .sww'       
5570        raise Exception, msg       
5571
5572    # Get first timestep
5573    try:
5574        starttime = fid.starttime[0]
5575    except ValueError:
5576        msg = 'Could not read starttime from file %s' %filename
5577        raise msg
5578
5579    # Get variables
5580    time = fid.variables['time'][:]   
5581
5582    # Get origin
5583    xllcorner = fid.xllcorner[0]
5584    yllcorner = fid.yllcorner[0]
5585    zone = fid.zone[0]
5586    georeference = Geo_reference(zone, xllcorner, yllcorner)
5587
5588
5589    x = fid.variables['x'][:]
5590    y = fid.variables['y'][:]
5591    triangles = fid.variables['volumes'][:]
5592
5593    x = reshape(x, (len(x),1))
5594    y = reshape(y, (len(y),1))
5595    vertex_coordinates = concatenate((x,y), axis=1) #m x 2 array
5596
5597    #if interpolation_points is not None:
5598    #    # Adjust for georef
5599    #    interpolation_points[:,0] -= xllcorner
5600    #    interpolation_points[:,1] -= yllcorner       
5601       
5602
5603    # Produce values for desired data points at
5604    # each timestep for each quantity
5605    quantities = {}
5606    for name in quantity_names:
5607        quantities[name] = fid.variables[name][:]
5608       
5609    fid.close()
5610
5611    # Create mesh and quad tree
5612    #interpolator = Interpolate(vertex_coordinates, triangles)
5613
5614    #return interpolator, quantities, geo_reference, time
5615
5616
5617def get_flow_through_cross_section(filename,
5618                                   polyline,
5619                                   verbose=False):
5620    """Obtain flow (m^3/s) perpendicular to cross section given by the argument polyline.
5621
5622    Inputs:
5623        filename: Name of sww file
5624        polyline: Representation of desired cross section - it may contain multiple
5625                  sections allowing for complex shapes.
5626
5627    Output:
5628        Q: Hydrograph of total flow across given segments for all stored timesteps.
5629
5630    The normal flow is computed for each triangle intersected by the polyline and added up.
5631    If multiple sections are specified normal flows may partially cancel each other.
5632
5633    """
5634
5635    # Get mesh and quantities from sww file
5636    X = get_mesh_and_quantities_from_sww_file(filename, ['elevation',
5637                                                         'stage',
5638                                                         'xmomentum',
5639                                                         'ymomentum'], verbose=verbose)
5640    interpolator, quantities, geo_reference, time = X
5641
5642
5643   
5644    # Find all intersections and associated triangles.
5645   
5646    get_intersecting_segments(polyline)
5647   
5648    # Then store for each triangle the length of the intersecting segment(s),
5649    # right hand normal(s) and midpoints.
5650    pass
5651
5652
5653
5654def get_maximum_inundation_elevation(filename,
5655                                     polygon=None,
5656                                     time_interval=None,
5657                                     verbose=False):
5658   
5659    """Return highest elevation where depth > 0
5660   
5661    Usage:
5662    max_runup = get_maximum_inundation_elevation(filename,
5663                                                 polygon=None,
5664                                                 time_interval=None,
5665                                                 verbose=False)
5666
5667    filename is a NetCDF sww file containing ANUGA model output.   
5668    Optional arguments polygon and time_interval restricts the maximum
5669    runup calculation
5670    to a points that lie within the specified polygon and time interval.
5671
5672    If no inundation is found within polygon and time_interval the return value
5673    is None signifying "No Runup" or "Everything is dry".
5674
5675    See general function get_maximum_inundation_data for details.
5676   
5677    """
5678   
5679    runup, _ = get_maximum_inundation_data(filename,
5680                                           polygon=polygon,
5681                                           time_interval=time_interval,
5682                                           verbose=verbose)
5683    return runup
5684
5685
5686
5687
5688def get_maximum_inundation_location(filename,
5689                                    polygon=None,
5690                                    time_interval=None,
5691                                    verbose=False):
5692    """Return location of highest elevation where h > 0
5693   
5694   
5695    Usage:
5696    max_runup_location = get_maximum_inundation_location(filename,
5697                                                         polygon=None,
5698                                                         time_interval=None,
5699                                                         verbose=False)
5700
5701    filename is a NetCDF sww file containing ANUGA model output.
5702    Optional arguments polygon and time_interval restricts the maximum
5703    runup calculation
5704    to a points that lie within the specified polygon and time interval.
5705
5706    If no inundation is found within polygon and time_interval the return value
5707    is None signifying "No Runup" or "Everything is dry".
5708
5709    See general function get_maximum_inundation_data for details.
5710    """
5711   
5712    _, max_loc = get_maximum_inundation_data(filename,
5713                                             polygon=polygon,
5714                                             time_interval=time_interval,
5715                                             verbose=verbose)
5716    return max_loc
5717   
5718
5719
5720def get_maximum_inundation_data(filename, polygon=None, time_interval=None,
5721                                use_centroid_values=False,
5722                                verbose=False):
5723    """Compute maximum run up height from sww file.
5724
5725
5726    Usage:
5727    runup, location = get_maximum_inundation_data(filename,
5728                                                  polygon=None,
5729                                                  time_interval=None,
5730                                                  verbose=False)
5731   
5732
5733    Algorithm is as in get_maximum_inundation_elevation from
5734    shallow_water_domain
5735    except that this function works with the sww file and computes the maximal
5736    runup height over multiple timesteps.
5737   
5738    Optional arguments polygon and time_interval restricts the
5739    maximum runup calculation
5740    to a points that lie within the specified polygon and time interval.
5741    Polygon is
5742    assumed to be in (absolute) UTM coordinates in the same zone as domain.
5743
5744    If no inundation is found within polygon and time_interval the return value
5745    is None signifying "No Runup" or "Everything is dry".
5746    """
5747
5748    # We are using nodal values here as that is what is stored in sww files.
5749
5750    # Water depth below which it is considered to be 0 in the model
5751    # FIXME (Ole): Allow this to be specified as a keyword argument as well
5752
5753    from anuga.utilities.polygon import inside_polygon   
5754    from anuga.config import minimum_allowed_height
5755    from Scientific.IO.NetCDF import NetCDFFile
5756
5757    dir, base = os.path.split(filename)
5758           
5759    iterate_over = get_all_swwfiles(dir,base)
5760   
5761    # Read sww file
5762    if verbose: 
5763        print 'Reading from %s' %filename
5764        # FIXME: Use general swwstats (when done)
5765   
5766    maximal_runup = None
5767    maximal_runup_location = None
5768   
5769    for file, swwfile in enumerate (iterate_over):
5770       
5771        # Read sww file
5772        filename = join(dir,swwfile+'.sww')
5773       
5774        if verbose: 
5775            print 'Reading from %s' %filename
5776            # FIXME: Use general swwstats (when done)
5777               
5778        fid = NetCDFFile(filename)
5779   
5780        # Get geo_reference
5781        # sww files don't have to have a geo_ref
5782        try:
5783            geo_reference = Geo_reference(NetCDFObject=fid)
5784        except AttributeError, e:
5785            geo_reference = Geo_reference() # Default georef object
5786           
5787        xllcorner = geo_reference.get_xllcorner()
5788        yllcorner = geo_reference.get_yllcorner()
5789        zone = geo_reference.get_zone()
5790       
5791        # Get extent
5792        volumes = fid.variables['volumes'][:]   
5793        x = fid.variables['x'][:] + xllcorner
5794        y = fid.variables['y'][:] + yllcorner
5795   
5796   
5797        # Get the relevant quantities (Convert from single precison)
5798        elevation = array(fid.variables['elevation'][:], Float) 
5799        stage = array(fid.variables['stage'][:], Float)
5800   
5801   
5802        # Here's where one could convert nodal information to centroid
5803        # information
5804        # but is probably something we need to write in C.
5805        # Here's a Python thought which is NOT finished!!!
5806        if use_centroid_values is True:
5807            x = get_centroid_values(x, volumes)
5808            y = get_centroid_values(y, volumes)   
5809            elevation = get_centroid_values(elevation, volumes)   
5810   
5811   
5812        # Spatial restriction
5813        if polygon is not None:
5814            msg = 'polygon must be a sequence of points.'
5815            assert len(polygon[0]) == 2, msg
5816            # FIXME (Ole): Make a generic polygon input check in polygon.py
5817            # and call it here
5818           
5819            points = concatenate((x[:,NewAxis], y[:,NewAxis]), axis=1)
5820   
5821            point_indices = inside_polygon(points, polygon)
5822   
5823            # Restrict quantities to polygon
5824            elevation = take(elevation, point_indices)
5825            stage = take(stage, point_indices, axis=1)
5826   
5827            # Get info for location of maximal runup
5828            points_in_polygon = take(points, point_indices)
5829            x = points_in_polygon[:,0]
5830            y = points_in_polygon[:,1]       
5831        else:
5832            # Take all points
5833            point_indices = arange(len(x))
5834           
5835   
5836        # Temporal restriction
5837        time = fid.variables['time'][:]
5838        all_timeindices = arange(len(time))       
5839        if time_interval is not None:
5840           
5841            msg = 'time_interval must be a sequence of length 2.'
5842            assert len(time_interval) == 2, msg
5843            msg = 'time_interval %s must not be decreasing.' %(time_interval)
5844            assert time_interval[1] >= time_interval[0], msg
5845           
5846            msg = 'Specified time interval [%.8f:%.8f]' %tuple(time_interval)
5847            msg += ' must does not match model time interval: [%.8f, %.8f]\n'\
5848                   %(time[0], time[-1])
5849            if time_interval[1] < time[0]: raise ValueError(msg)
5850            if time_interval[0] > time[-1]: raise ValueError(msg)
5851   
5852            # Take time indices corresponding to interval (& is bitwise AND)
5853            timesteps = compress((time_interval[0] <= time) & (time <= time_interval[1]),
5854                                 all_timeindices)
5855   
5856   
5857            msg = 'time_interval %s did not include any model timesteps.' %(time_interval)       
5858            assert not alltrue(timesteps == 0), msg
5859   
5860   
5861        else:
5862            # Take them all
5863            timesteps = all_timeindices
5864       
5865   
5866        fid.close()
5867   
5868        # Compute maximal runup for each timestep
5869        #maximal_runup = None
5870        #maximal_runup_location = None
5871        #maximal_runups = [None]
5872        #maximal_runup_locations = [None]
5873       
5874        for i in timesteps:
5875            if use_centroid_values is True:
5876                stage_i = get_centroid_values(stage[i,:], volumes)   
5877            else:
5878                stage_i = stage[i,:]
5879               
5880            depth = stage_i  - elevation
5881       
5882            # Get wet nodes i.e. nodes with depth>0 within given region and timesteps
5883            wet_nodes = compress(depth > minimum_allowed_height, arange(len(depth)))
5884   
5885            if alltrue(wet_nodes == 0):
5886                runup = None
5887            else:   
5888                # Find maximum elevation among wet nodes
5889                wet_elevation = take(elevation, wet_nodes)
5890   
5891                runup_index = argmax(wet_elevation)
5892                runup = max(wet_elevation)
5893                assert wet_elevation[runup_index] == runup # Must be True
5894            #print "runup", runup
5895            #print "maximal_runup", maximal_runup
5896           
5897            if runup > maximal_runup:
5898                maximal_runup = runup      # This works even if maximal_runups is None
5899                #print "NEW RUNUP",runup
5900   
5901                # Record location
5902                wet_x = take(x, wet_nodes)
5903                wet_y = take(y, wet_nodes)           
5904                maximal_runup_location = [wet_x[runup_index], wet_y[runup_index]]
5905   
5906    #print 'maximal_runup, maximal_runup_location',maximal_runup, maximal_runup_location
5907    return maximal_runup, maximal_runup_location
5908
5909def get_all_swwfiles(look_in_dir='',base_name='',verbose=False):
5910    '''
5911    Finds all the sww files in a "look_in_dir" which contains a "base_name".
5912    will accept base_name with or without the extension ".sww"
5913   
5914    Returns: a list of strings
5915       
5916    Usage:     iterate_over = get_all_swwfiles(dir, name)
5917    then
5918               for swwfile in iterate_over:
5919                   do stuff
5920                   
5921    Check "export_grids" and "get_maximum_inundation_data" for examples
5922    '''
5923   
5924    #plus tests the extension
5925    name, extension = os.path.splitext(base_name)
5926
5927    if extension <>'' and extension <> '.sww':
5928        msg = msg='file %s %s must be an NetCDF sww file!'%(base_name,extension)
5929        raise IOError, msg
5930
5931    if look_in_dir == "":
5932        look_in_dir = "." # Unix compatibility
5933   
5934    dir_ls = os.listdir(look_in_dir)
5935    #print 'dir_ls',dir_ls, base
5936    iterate_over = [x[:-4] for x in dir_ls if name in x and x[-4:] == '.sww']
5937    if len(iterate_over) == 0:
5938        msg = 'No files of the base name %s'\
5939              %(name)
5940        raise IOError, msg
5941    if verbose: print 'iterate over %s' %(iterate_over)
5942
5943    return iterate_over
5944
5945def get_all_files_with_extension(look_in_dir='',base_name='',extension='.sww',verbose=False):
5946    '''
5947    Finds all the sww files in a "look_in_dir" which contains a "base_name".
5948   
5949   
5950    Returns: a list of strings
5951       
5952    Usage:     iterate_over = get_all_swwfiles(dir, name)
5953    then
5954               for swwfile in iterate_over:
5955                   do stuff
5956                   
5957    Check "export_grids" and "get_maximum_inundation_data" for examples
5958    '''
5959   
5960    #plus tests the extension
5961    name, ext = os.path.splitext(base_name)
5962#    print 'look_in_dir',look_in_dir
5963
5964    if ext <>'' and ext <> extension:
5965        msg = msg='base_name %s must be an file with %s extension!'%(base_name,extension)
5966        raise IOError, msg
5967
5968    if look_in_dir == "":
5969        look_in_dir = "." # Unix compatibility
5970#    print 'look_in_dir',look_in_dir, getcwd()
5971    dir_ls = os.listdir(look_in_dir)
5972    #print 'dir_ls',dir_ls, base_name
5973    iterate_over = [x[:-4] for x in dir_ls if name in x and x[-4:] == extension]
5974    if len(iterate_over) == 0:
5975        msg = 'No files of the base name %s in %s'\
5976              %(name, look_in_dir)
5977        raise IOError, msg
5978    if verbose: print 'iterate over %s' %(iterate_over)
5979
5980    return iterate_over
5981
5982def get_all_directories_with_name(look_in_dir='',base_name='',verbose=False):
5983    '''
5984    Finds all the sww files in a "look_in_dir" which contains a "base_name".
5985   
5986   
5987    Returns: a list of strings
5988       
5989    Usage:     iterate_over = get_all_swwfiles(dir, name)
5990    then
5991               for swwfile in iterate_over:
5992                   do stuff
5993                   
5994    Check "export_grids" and "get_maximum_inundation_data" for examples
5995    '''
5996   
5997    #plus tests the extension
5998
5999    if look_in_dir == "":
6000        look_in_dir = "." # Unix compatibility
6001#    print 'look_in_dir',look_in_dir
6002    dir_ls = os.listdir(look_in_dir)
6003#    print 'dir_ls',dir_ls
6004    iterate_over = [x for x in dir_ls if base_name in x]
6005    if len(iterate_over) == 0:
6006        msg = 'No files of the base name %s'\
6007              %(name)
6008        raise IOError, msg
6009    if verbose: print 'iterate over %s' %(iterate_over)
6010
6011    return iterate_over
6012
6013def points2polygon(points_file,
6014                    minimum_triangle_angle=3.0):
6015    """
6016    WARNING: This function is not fully working. 
6017   
6018    Function to return a polygon returned from alpha shape, given a points file.
6019   
6020    WARNING: Alpha shape returns multiple polygons, but this function only returns one polygon.
6021   
6022    """
6023    from anuga.pmesh.mesh import Mesh, importMeshFromFile
6024    from anuga.shallow_water import Domain   
6025    from anuga.pmesh.mesh_interface import create_mesh_from_regions
6026   
6027    mesh = importMeshFromFile(points_file)
6028    mesh.auto_segment()
6029    mesh.exportASCIIsegmentoutlinefile("outline.tsh")
6030    mesh2 = importMeshFromFile("outline.tsh")
6031    mesh2.generate_mesh(maximum_triangle_area=1000000000, minimum_triangle_angle=minimum_triangle_angle, verbose=False)
6032    mesh2.export_mesh_file('outline_meshed.tsh')
6033    domain = Domain("outline_meshed.tsh", use_cache = False)
6034    polygon =  domain.get_boundary_polygon()
6035    return polygon
6036
6037#-------------------------------------------------------------
6038if __name__ == "__main__":
6039    #setting umask from config to force permissions for all files and directories
6040    # created to the same. (it was noticed the "mpirun" doesn't honour the umask
6041    # set in your .bashrc etc file)
6042    from config import umask
6043    import os 
6044    os.umask(umask)
Note: See TracBrowser for help on using the repository browser.