1 | # |
---|
2 | # earthquake_tsunami function |
---|
3 | # |
---|
4 | |
---|
5 | """This function returns a callable object representing an initial water |
---|
6 | displacement generated by a submarine earthqauke. |
---|
7 | |
---|
8 | Using input parameters: |
---|
9 | |
---|
10 | Required |
---|
11 | length along-stike length of rupture area |
---|
12 | width down-dip width of rupture area |
---|
13 | strike azimuth (degrees, measured from north) of fault axis |
---|
14 | dip angle of fault dip in degrees w.r.t. horizontal |
---|
15 | depth depth to base of rupture area |
---|
16 | |
---|
17 | Optional |
---|
18 | x0 x origin (0) |
---|
19 | y0 y origin (0) |
---|
20 | slip metres of fault slip (1) |
---|
21 | rake angle of slip (w.r.t. horizontal) in fault plane (90 degrees) |
---|
22 | |
---|
23 | The returned object is a callable okada function that represents |
---|
24 | the initial water displacement generated by a submarine earthuake. |
---|
25 | |
---|
26 | """ |
---|
27 | |
---|
28 | def earthquake_tsunami(length, width, strike, depth, \ |
---|
29 | dip, x0=0.0, y0=0.0, slip=1.0, rake=90.,\ |
---|
30 | domain=None, verbose=False): |
---|
31 | |
---|
32 | from math import sin, radians |
---|
33 | |
---|
34 | if domain is not None: |
---|
35 | xllcorner = domain.geo_reference.get_xllcorner() |
---|
36 | yllcorner = domain.geo_reference.get_yllcorner() |
---|
37 | x0 = x0 - xllcorner # fault origin (relative) |
---|
38 | y0 = y0 - yllcorner |
---|
39 | |
---|
40 | #a few temporary print statements |
---|
41 | if verbose is True: |
---|
42 | print '\nThe Earthquake ...' |
---|
43 | print '\tLength: ', length |
---|
44 | print '\tDepth: ', depth |
---|
45 | print '\tStrike: ', strike |
---|
46 | print '\tWidth: ', width |
---|
47 | print '\tDip: ', dip |
---|
48 | print '\tSlip: ', slip |
---|
49 | print '\tx0: ', x0 |
---|
50 | print '\ty0: ', y0 |
---|
51 | |
---|
52 | # warning state |
---|
53 | # test = width*1000.0*sin(radians(dip)) - depth |
---|
54 | test = width*1000.0*sin(radians(dip)) - depth*1000 |
---|
55 | |
---|
56 | if test > 0.0: |
---|
57 | msg = 'Earthquake source not located below seafloor - check depth' |
---|
58 | raise Exception, msg |
---|
59 | |
---|
60 | return Okada_func(length=length, width=width, dip=dip, \ |
---|
61 | x0=x0, y0=y0, strike=strike, depth=depth, \ |
---|
62 | slip=slip, rake=rake) |
---|
63 | |
---|
64 | # |
---|
65 | # Okada class |
---|
66 | # |
---|
67 | |
---|
68 | """This is a callable class representing the initial water displacment |
---|
69 | generated by an earthquake. |
---|
70 | |
---|
71 | Using input parameters: |
---|
72 | |
---|
73 | Required |
---|
74 | length along-stike length of rupture area |
---|
75 | width down-dip width of rupture area |
---|
76 | strike azimuth (degrees, measured from north) of fault axis |
---|
77 | dip angle of fault dip in degrees w.r.t. horizontal |
---|
78 | depth depth to base of rupture area |
---|
79 | |
---|
80 | Optional |
---|
81 | x0 x origin (0) |
---|
82 | y0 y origin (0) |
---|
83 | slip metres of fault slip (1) |
---|
84 | rake angle of slip (w.r.t. horizontal) in fault plane (90 degrees) |
---|
85 | |
---|
86 | """ |
---|
87 | |
---|
88 | class Okada_func: |
---|
89 | |
---|
90 | def __init__(self, length, width, dip, x0, y0, strike, \ |
---|
91 | depth, slip, rake): |
---|
92 | self.dip = dip |
---|
93 | self.length = length |
---|
94 | self.width = width |
---|
95 | self.x0 = x0 |
---|
96 | self.y0 = y0 |
---|
97 | self.strike = strike |
---|
98 | self.depth = depth |
---|
99 | self.slip = slip |
---|
100 | self.rake = rake |
---|
101 | |
---|
102 | |
---|
103 | def __call__(self, x, y): |
---|
104 | """Make Okada_func a callable object. |
---|
105 | |
---|
106 | If called as a function, this object returns z values representing |
---|
107 | the initial 3D distribution of water heights at the points (x,y) |
---|
108 | produced by a submarine mass failure. |
---|
109 | """ |
---|
110 | |
---|
111 | from math import sin, cos, radians, exp, cosh |
---|
112 | from Numeric import zeros, Float |
---|
113 | #from okada import okadatest |
---|
114 | |
---|
115 | #ensure vectors x and y have the same length |
---|
116 | N = len(x) |
---|
117 | assert N == len(y) |
---|
118 | |
---|
119 | depth = self.depth |
---|
120 | dip = self.dip |
---|
121 | length = self.length |
---|
122 | width = self.width |
---|
123 | x0 = self.x0 |
---|
124 | y0 = self.y0 |
---|
125 | strike = self.strike |
---|
126 | dip = self.dip |
---|
127 | rake = self.rake |
---|
128 | slip = self.slip |
---|
129 | |
---|
130 | #double Gaussian calculation assumes water displacement is oriented |
---|
131 | #E-W, so, for displacement at some angle alpha clockwise from the E-W |
---|
132 | #direction, rotate (x,y) coordinates anti-clockwise by alpha |
---|
133 | |
---|
134 | cosa = cos(radians(strike)) |
---|
135 | sina = sin(radians(strike)) |
---|
136 | |
---|
137 | xr = ( (x-x0) * sina + (y-y0) * cosa) |
---|
138 | yr = (-(x-x0) * cosa + (y-y0) * sina) |
---|
139 | |
---|
140 | # works on nautilus when have already done |
---|
141 | # f2py -c okada.f -m okada |
---|
142 | #z1 = okada(xr,yr,depth,length,width,dip,rake,slip) |
---|
143 | |
---|
144 | z2 = zeros(N, Float) |
---|
145 | alp = 0.5 |
---|
146 | disl3 = 0.0 |
---|
147 | zero = 0.0 |
---|
148 | disl1 = slip*cos(radians(rake)) |
---|
149 | disl2 = slip*sin(radians(rake)) |
---|
150 | cd = cos(radians(dip)) |
---|
151 | sd = sin(radians(dip)) |
---|
152 | |
---|
153 | for i in range(N-1): |
---|
154 | self.SRECTF(alp,xr[i]*.001,yr[i]*.001,depth*.001,zero,length,\ |
---|
155 | zero,width,sd,cd,disl1,disl2,disl3) |
---|
156 | |
---|
157 | z2[i] = self.U3 |
---|
158 | |
---|
159 | return z2 |
---|
160 | |
---|
161 | def SRECTF(self,ALP,X,Y,DEP,AL1,AL2,AW1,AW2,SD,CD,DISL1,DISL2,DISL3): |
---|
162 | """ SURFACE DISPLACEMENT,STRAIN,TILT DUE TO RECTANGULAR FAULT |
---|
163 | IN A HALF-SPACE. CODED BY Y.OKADA ... JAN 1985 |
---|
164 | |
---|
165 | |
---|
166 | INPUT |
---|
167 | ALP : MEDIUM CONSTANT MYU/(LAMDA+MYU)=1./((VP/VS)**2-1) |
---|
168 | X,Y : COORDINATE OF STATION |
---|
169 | DEP : SOURCE DEPTH |
---|
170 | AL1,AL2 : FAULT LENGTH RANGE |
---|
171 | AW1,AW2 : FAULT WIDTH RANGE |
---|
172 | SD,CD : SIN,COS OF DIP-ANGLE |
---|
173 | (CD=0.D0, SD=+/-1.D0 SHOULD BE GIVEN FOR VERTICAL FAULT) |
---|
174 | DISL1,DISL2,DISL3 : STRIKE-, DIP- AND TENSILE-DISLOCATION |
---|
175 | |
---|
176 | OUTPUT |
---|
177 | U1, U2, U3 : DISPLACEMENT ( UNIT= UNIT OF DISL ) |
---|
178 | U11,U12,U21,U22 : STRAIN ( UNIT= UNIT OF DISL / |
---|
179 | U31,U32 : TILT UNIT OF X,Y,,,AW ) |
---|
180 | |
---|
181 | SUBROUTINE USED...SRECTG |
---|
182 | """ |
---|
183 | |
---|
184 | from Numeric import zeros, Float |
---|
185 | U = zeros(9, Float) |
---|
186 | DU = zeros(9, Float) |
---|
187 | |
---|
188 | F0 = 0.0 |
---|
189 | F1 = 1.0 |
---|
190 | |
---|
191 | P = Y*CD + DEP*SD |
---|
192 | Q = Y*SD - DEP*CD |
---|
193 | |
---|
194 | KVEC = [1,2] |
---|
195 | JVEC = [1,2] |
---|
196 | for K in KVEC: |
---|
197 | if K == 1: ET=P-AW1 |
---|
198 | if K == 2: ET=P-AW2 |
---|
199 | for J in JVEC: |
---|
200 | if J == 1: XI=X-AL1 |
---|
201 | if J == 2: XI=X-AL2 |
---|
202 | JK=J+K |
---|
203 | if JK <> 3: |
---|
204 | SIGN= F1 |
---|
205 | else: |
---|
206 | SIGN=-F1 |
---|
207 | |
---|
208 | self.SRECTG(ALP,XI,ET,Q,SD,CD,DISL1,DISL2,DISL3) |
---|
209 | |
---|
210 | DU[0] = self.DU1 |
---|
211 | DU[1] = self.DU2 |
---|
212 | DU[2] = self.DU3 |
---|
213 | DU[3] = self.DU11 |
---|
214 | DU[4] = self.DU12 |
---|
215 | DU[5] = self.DU21 |
---|
216 | DU[6] = self.DU22 |
---|
217 | DU[7] = self.DU31 |
---|
218 | DU[8] = self.DU32 |
---|
219 | |
---|
220 | for i in range(len(U)): |
---|
221 | U[i]=U[i]+SIGN*DU[i] |
---|
222 | |
---|
223 | U1 =U[0] |
---|
224 | U2 =U[1] |
---|
225 | U3 =U[2] |
---|
226 | U11=U[3] |
---|
227 | U12=U[4] |
---|
228 | U21=U[5] |
---|
229 | U22=U[6] |
---|
230 | U31=U[7] |
---|
231 | U32=U[8] |
---|
232 | |
---|
233 | self.U3 = U3 |
---|
234 | |
---|
235 | def SRECTG(self,ALP,XI,ET,Q,SD,CD,DISL1,DISL2,DISL3): |
---|
236 | """ |
---|
237 | C |
---|
238 | C********************************************************************* |
---|
239 | C***** ***** |
---|
240 | C***** INDEFINITE INTEGRAL OF SURFACE DISPLACEMENT,STRAIN,TILT ***** |
---|
241 | C***** DUE TO RECTANGULAR FAULT IN A HALF-SPACE ***** |
---|
242 | C***** CODED BY Y.OKADA ... JAN 1985 ***** |
---|
243 | C***** ***** |
---|
244 | C********************************************************************* |
---|
245 | C |
---|
246 | C***** INPUT |
---|
247 | C***** ALP : MEDIUM CONSTANT MYU/(LAMDA+MYU)=1./((VP/VS)**2-1) |
---|
248 | C***** XI,ET,Q : FAULT COORDINATE |
---|
249 | C***** SD,CD : SIN,COS OF DIP-ANGLE |
---|
250 | C***** (CD=0.D0, SD=+/-1.D0 SHOULD BE GIVEN FOR VERTICAL FAULT) |
---|
251 | C***** DISL1,DISL2,DISL3 : STRIKE-, DIP- AND TENSILE-DISLOCATION |
---|
252 | C |
---|
253 | C***** OUTPUT |
---|
254 | C***** U1, U2, U3 : DISPLACEMENT ( UNIT= UNIT OF DISL ) |
---|
255 | C***** U11,U12,U21,U22 : STRAIN ( UNIT= UNIT OF DISL / |
---|
256 | C***** U31,U32 : TILT UNIT OF XI,ET,Q ) |
---|
257 | C |
---|
258 | """ |
---|
259 | |
---|
260 | from math import sqrt, atan, log, radians |
---|
261 | F0 = 0.0 |
---|
262 | F1 = 1.0 |
---|
263 | F2 = 2.0 |
---|
264 | PI2=6.283185307179586 |
---|
265 | |
---|
266 | XI2=XI*XI |
---|
267 | ET2=ET*ET |
---|
268 | Q2=Q*Q |
---|
269 | R2=XI2+ET2+Q2 |
---|
270 | R =sqrt(R2) |
---|
271 | R3=R*R2 |
---|
272 | D =ET*SD-Q*CD |
---|
273 | Y =ET*CD+Q*SD |
---|
274 | RET=R+ET |
---|
275 | if RET < F0: RET=F0 |
---|
276 | RD =R+D |
---|
277 | RRD=F1/(R*RD) |
---|
278 | |
---|
279 | if Q <> F0: |
---|
280 | TT = atan( radians( XI*ET/(Q*R) )) |
---|
281 | else: |
---|
282 | TT = F0 |
---|
283 | |
---|
284 | if RET <> F0: |
---|
285 | RE = F1/RET |
---|
286 | DLE= log(RET) |
---|
287 | else: |
---|
288 | RE = F0 |
---|
289 | DLE=-log(R-ET) |
---|
290 | |
---|
291 | RRX=F1/(R*(R+XI)) |
---|
292 | RRE=RE/R |
---|
293 | AXI=(F2*R+XI)*RRX*RRX/R |
---|
294 | AET=(F2*R+ET)*RRE*RRE/R |
---|
295 | |
---|
296 | if CD == 0: |
---|
297 | #C============================== |
---|
298 | #C===== INCLINED FAULT ===== |
---|
299 | #C============================== |
---|
300 | RD2=RD*RD |
---|
301 | A1=-ALP/F2*XI*Q/RD2 |
---|
302 | A3= ALP/F2*( ET/RD + Y*Q/RD2 - DLE ) |
---|
303 | A4=-ALP*Q/RD |
---|
304 | A5=-ALP*XI*SD/RD |
---|
305 | B1= ALP/F2* Q /RD2*(F2*XI2*RRD - F1) |
---|
306 | B2= ALP/F2*XI*SD/RD2*(F2*Q2 *RRD - F1) |
---|
307 | C1= ALP*XI*Q*RRD/RD |
---|
308 | C3= ALP*SD/RD*(XI2*RRD - F1) |
---|
309 | else: |
---|
310 | #C============================== |
---|
311 | #C===== VERTICAL FAULT ===== |
---|
312 | #C============================== |
---|
313 | TD=SD/CD |
---|
314 | X =sqrt(XI2+Q2) |
---|
315 | if XI == F0: |
---|
316 | A5=F0 |
---|
317 | else: |
---|
318 | A5= ALP*F2/CD*atan( radians((ET*(X+Q*CD)+X*(R+X)*SD) / (XI*(R+X)*CD) )) |
---|
319 | A4= ALP/CD*( log(RD) - SD*DLE ) |
---|
320 | A3= ALP*(Y/RD/CD - DLE) + TD*A4 |
---|
321 | A1=-ALP/CD*XI/RD - TD*A5 |
---|
322 | C1= ALP/CD*XI*(RRD - SD*RRE) |
---|
323 | C3= ALP/CD*(Q*RRE - Y*RRD) |
---|
324 | B1= ALP/CD*(XI2*RRD - F1)/RD - TD*C3 |
---|
325 | B2= ALP/CD*XI*Y*RRD/RD - TD*C1 |
---|
326 | |
---|
327 | A2=-ALP*DLE - A3 |
---|
328 | B3=-ALP*XI*RRE - B2 |
---|
329 | B4=-ALP*( CD/R + Q*SD*RRE ) - B1 |
---|
330 | C2= ALP*(-SD/R + Q*CD*RRE ) - C3 |
---|
331 | |
---|
332 | U1 =F0 |
---|
333 | U2 =F0 |
---|
334 | U3 =F0 |
---|
335 | U11=F0 |
---|
336 | U12=F0 |
---|
337 | U21=F0 |
---|
338 | U22=F0 |
---|
339 | U31=F0 |
---|
340 | U32=F0 |
---|
341 | |
---|
342 | if DISL1 <> F0: |
---|
343 | #C====================================== |
---|
344 | #C===== STRIKE-SLIP CONTRIBUTION ===== |
---|
345 | #C====================================== |
---|
346 | UN=DISL1/PI2 |
---|
347 | REQ=RRE*Q |
---|
348 | U1 =U1 - UN*( REQ*XI + TT + A1*SD ) |
---|
349 | U2 =U2 - UN*( REQ*Y + Q*CD*RE + A2*SD ) |
---|
350 | U3 =U3 - UN*( REQ*D + Q*SD*RE + A4*SD ) |
---|
351 | U11=U11+ UN*( XI2*Q*AET - B1*SD ) |
---|
352 | U12=U12+ UN*( XI2*XI*( D/(ET2+Q2)/R3 - AET*SD ) - B2*SD ) |
---|
353 | U21=U21+ UN*( XI*Q/R3*CD + (XI*Q2*AET - B2)*SD ) |
---|
354 | U22=U22+ UN*( Y *Q/R3*CD + (Q*SD*(Q2*AET-F2*RRE) -(XI2+ET2)/R3*CD - B4)*SD ) |
---|
355 | U31=U31+ UN*(-XI*Q2*AET*CD + (XI*Q/R3 - C1)*SD ) |
---|
356 | U32=U32+ UN*( D*Q/R3*CD + (XI2*Q*AET*CD - SD/R + Y*Q/R3 - C2)*SD ) |
---|
357 | |
---|
358 | if DISL2 <> F0: |
---|
359 | #C=================================== |
---|
360 | #C===== DIP-SLIP CONTRIBUTION ===== |
---|
361 | #C=================================== |
---|
362 | UN=DISL2/PI2 |
---|
363 | SDCD=SD*CD |
---|
364 | U1 =U1 - UN*( Q/R - A3*SDCD ) |
---|
365 | U2 =U2 - UN*( Y*Q*RRX + CD*TT - A1*SDCD ) |
---|
366 | U3 =U3 - UN*( D*Q*RRX + SD*TT - A5*SDCD ) |
---|
367 | U11=U11+ UN*( XI*Q/R3 + B3*SDCD ) |
---|
368 | U12=U12+ UN*( Y *Q/R3 - SD/R + B1*SDCD ) |
---|
369 | U21=U21+ UN*( Y *Q/R3 + Q*CD*RRE + B1*SDCD ) |
---|
370 | U22=U22+ UN*( Y*Y*Q*AXI - (F2*Y*RRX + XI*CD*RRE)*SD + B2*SDCD ) |
---|
371 | U31=U31+ UN*( D *Q/R3 + Q*SD*RRE + C3*SDCD ) |
---|
372 | U32=U32+ UN*( Y*D*Q*AXI - (F2*D*RRX + XI*SD*RRE)*SD + C1*SDCD ) |
---|
373 | |
---|
374 | if DISL3 <> F0: |
---|
375 | #C======================================== |
---|
376 | #C===== TENSILE-FAULT CONTRIBUTION ===== |
---|
377 | #C======================================== |
---|
378 | UN=DISL3/PI2 |
---|
379 | SDSD=SD*SD |
---|
380 | U1 =U1 + UN*( Q2*RRE - A3*SDSD ) |
---|
381 | U2 =U2 + UN*(-D*Q*RRX - SD*(XI*Q*RRE - TT) - A1*SDSD ) |
---|
382 | U3 =U3 + UN*( Y*Q*RRX + CD*(XI*Q*RRE - TT) - A5*SDSD ) |
---|
383 | U11=U11- UN*( XI*Q2*AET + B3*SDSD ) |
---|
384 | U12=U12- UN*(-D*Q/R3 - XI2*Q*AET*SD + B1*SDSD ) |
---|
385 | U21=U21- UN*( Q2*(CD/R3 + Q*AET*SD) + B1*SDSD ) |
---|
386 | U22=U22- UN*((Y*CD-D*SD)*Q2*AXI - F2*Q*SD*CD*RRX - (XI*Q2*AET - B2)*SDSD ) |
---|
387 | U31=U31- UN*( Q2*(SD/R3 - Q*AET*CD) + C3*SDSD ) |
---|
388 | U32=U32- UN*((Y*SD+D*CD)*Q2*AXI + XI*Q2*AET*SD*CD - (F2*Q*RRX - C1)*SDSD ) |
---|
389 | |
---|
390 | self.DU1 = U1 |
---|
391 | self.DU2 = U2 |
---|
392 | self.DU3 = U3 |
---|
393 | |
---|
394 | self.DU11 = U11 |
---|
395 | self.DU12 = U12 |
---|
396 | |
---|
397 | self.DU21 = U21 |
---|
398 | self.DU22 = U22 |
---|
399 | |
---|
400 | self.DU31 = U31 |
---|
401 | self.DU32 = U32 |
---|
402 | |
---|
403 | def spoint(self,alp,x,y,dep,sd,cd,pot1,pot2,pot3): |
---|
404 | """ Calculate surface displacement, strain, tilt due to buried point |
---|
405 | source in a semiinfinite medium. Y. Okada Jan 1985 |
---|
406 | |
---|
407 | Input: |
---|
408 | |
---|
409 | ALP : MEDIUM CONSTANT MYU/(LAMDA+MYU)=1./((VP/VS)**2-1) |
---|
410 | X,Y : COORDINATE OF STATION |
---|
411 | DEP : SOURCE DEPTH |
---|
412 | SD,CD : SIN,COS OF DIP-ANGLE |
---|
413 | (CD=0.D0, SD=+/-1.D0 SHOULD BE GIVEN FOR VERTICAL FAULT) |
---|
414 | POT1,POT2,POT3 : STRIKE-, DIP- AND TENSILE-POTENCY |
---|
415 | POTENCY=( MOMENT OF DOUBLE-COUPLE )/MYU FOR POT1,2 |
---|
416 | POTENCY=(INTENSITY OF ISOTROPIC PART)/LAMDA FOR POT3 |
---|
417 | |
---|
418 | Output: |
---|
419 | |
---|
420 | U1, U2, U3 : DISPLACEMENT ( UNIT=(UNIT OF POTENCY) / |
---|
421 | : (UNIT OF X,Y,D)**2 ) |
---|
422 | U11,U12,U21,U22 : STRAIN ( UNIT= UNIT OF POTENCY) / |
---|
423 | U31,U32 : TILT (UNIT OF X,Y,D)**3 ) |
---|
424 | """ |
---|
425 | |
---|
426 | from math import sqrt |
---|
427 | |
---|
428 | F0 = 0.0 |
---|
429 | F1 = 1.0 |
---|
430 | F2 = 2.0 |
---|
431 | F3 = 3.0 |
---|
432 | F4 = 4.0 |
---|
433 | F5 = 5.0 |
---|
434 | F8 = 8.0 |
---|
435 | F9 = 9.0 |
---|
436 | PI2 = 6.283185307179586 |
---|
437 | |
---|
438 | D =DEP |
---|
439 | P =Y*CD + D*SD |
---|
440 | Q =Y*SD - D*CD |
---|
441 | S =P*SD + Q*CD |
---|
442 | X2=X*X |
---|
443 | Y2=Y*Y |
---|
444 | XY=X*Y |
---|
445 | D2=D*D |
---|
446 | R2=X2 + Y2 + D2 |
---|
447 | R =sqrt(R2) |
---|
448 | R3=R *R2 |
---|
449 | R5=R3*R2 |
---|
450 | QR=F3*Q/R5 |
---|
451 | XR =F5*X2/R2 |
---|
452 | YR =F5*Y2/R2 |
---|
453 | XYR=F5*XY/R2 |
---|
454 | DR =F5*D /R2 |
---|
455 | RD =R + D |
---|
456 | R12=F1/(R*RD*RD) |
---|
457 | R32=R12*(F2*R + D)/ R2 |
---|
458 | R33=R12*(F3*R + D)/(R2*RD) |
---|
459 | R53=R12*(F8*R2 + F9*R*D + F3*D2)/(R2*R2*RD) |
---|
460 | R54=R12*(F5*R2 + F4*R*D + D2)/R3*R12 |
---|
461 | |
---|
462 | A1= ALP*Y*(R12-X2*R33) |
---|
463 | A2= ALP*X*(R12-Y2*R33) |
---|
464 | A3= ALP*X/R3 - A2 |
---|
465 | A4=-ALP*XY*R32 |
---|
466 | A5= ALP*( F1/(R*RD) - X2*R32 ) |
---|
467 | B1= ALP*(-F3*XY*R33 + F3*X2*XY*R54) |
---|
468 | B2= ALP*( F1/R3 - F3*R12 + F3*X2*Y2*R54) |
---|
469 | B3= ALP*( F1/R3 - F3*X2/R5) - B2 |
---|
470 | B4=-ALP*F3*XY/R5 - B1 |
---|
471 | C1=-ALP*Y*(R32 - X2*R53) |
---|
472 | C2=-ALP*X*(R32 - Y2*R53) |
---|
473 | C3=-ALP*F3*X*D/R5 - C2 |
---|
474 | |
---|
475 | U1 =F0 |
---|
476 | U2 =F0 |
---|
477 | U3 =F0 |
---|
478 | U11=F0 |
---|
479 | U12=F0 |
---|
480 | U21=F0 |
---|
481 | U22=F0 |
---|
482 | U31=F0 |
---|
483 | U32=F0 |
---|
484 | |
---|
485 | #====================================== |
---|
486 | #===== STRIKE-SLIP CONTRIBUTION ===== |
---|
487 | #====================================== |
---|
488 | |
---|
489 | if POT1 <> F0: |
---|
490 | UN=POT1/PI2 |
---|
491 | QRX=QR*X |
---|
492 | FX=F3*X/R5*SD |
---|
493 | U1 =U1 - UN*( QRX*X + A1*SD ) |
---|
494 | U2 =U2 - UN*( QRX*Y + A2*SD ) |
---|
495 | U3 =U3 - UN*( QRX*D + A4*SD ) |
---|
496 | |
---|
497 | U11=U11- UN*( QRX* (F2-XR) + B1*SD ) |
---|
498 | U12=U12- UN*(-QRX*XYR + FX*X + B2*SD ) |
---|
499 | U21=U21- UN*( QR*Y*(F1-XR) + B2*SD ) |
---|
500 | U22=U22- UN*( QRX *(F1-YR) + FX*Y + B4*SD ) |
---|
501 | U31=U31- UN*( QR*D*(F1-XR) + C1*SD ) |
---|
502 | U32=U32- UN*(-QRX*DR*Y + FX*D + C2*SD ) |
---|
503 | |
---|
504 | #====================================== |
---|
505 | #===== DIP-SLIP CONTRIBUTION ===== |
---|
506 | #====================================== |
---|
507 | |
---|
508 | if POT2 <> F0: |
---|
509 | UN=POT2/PI2 |
---|
510 | SDCD=SD*CD |
---|
511 | QRP=QR*P |
---|
512 | FS=F3*S/R5 |
---|
513 | U1 =U1 - UN*( QRP*X - A3*SDCD ) |
---|
514 | U2 =U2 - UN*( QRP*Y - A1*SDCD ) |
---|
515 | U3 =U3 - UN*( QRP*D - A5*SDCD ) |
---|
516 | U11=U11- UN*( QRP*(F1-XR) - B3*SDCD ) |
---|
517 | U12=U12- UN*(-QRP*XYR + FS*X - B1*SDCD ) |
---|
518 | U21=U21- UN*(-QRP*XYR - B1*SDCD ) |
---|
519 | U22=U22- UN*( QRP*(F1-YR) + FS*Y - B2*SDCD ) |
---|
520 | U31=U31- UN*(-QRP*DR*X - C3*SDCD ) |
---|
521 | U32=U32- UN*(-QRP*DR*Y + FS*D - C1*SDCD ) |
---|
522 | |
---|
523 | #======================================== |
---|
524 | #===== TENSILE-FAULT CONTRIBUTION ===== |
---|
525 | #======================================== |
---|
526 | |
---|
527 | if POT3 <> F0: |
---|
528 | UN=POT3/PI2 |
---|
529 | SDSD=SD*SD |
---|
530 | QRQ=QR*Q |
---|
531 | FQ=F2*QR*SD |
---|
532 | U1 =U1 + UN*( QRQ*X - A3*SDSD ) |
---|
533 | U2 =U2 + UN*( QRQ*Y - A1*SDSD ) |
---|
534 | U3 =U3 + UN*( QRQ*D - A5*SDSD ) |
---|
535 | U11=U11+ UN*( QRQ*(F1-XR) - B3*SDSD ) |
---|
536 | U12=U12+ UN*(-QRQ*XYR + FQ*X - B1*SDSD ) |
---|
537 | U21=U21+ UN*(-QRQ*XYR - B1*SDSD ) |
---|
538 | U22=U22+ UN*( QRQ*(F1-YR) + FQ*Y - B2*SDSD ) |
---|
539 | U31=U31+ UN*(-QRQ*DR*X - C3*SDSD ) |
---|
540 | U32=U32+ UN*(-QRQ*DR*Y + FQ*D - C1*SDSD ) |
---|
541 | |
---|