1 | """Finite-volume computations of the shallow water wave equation. |
---|
2 | |
---|
3 | Title: ANGUA shallow_water_domain - 2D triangular domains for finite-volume |
---|
4 | computations of the shallow water wave equation. |
---|
5 | |
---|
6 | |
---|
7 | Author: Ole Nielsen (Ole.Nielsen@ga.gov.au), |
---|
8 | Stephen Roberts (Stephen.Roberts@anu.edu.au), |
---|
9 | Duncan Gray (Duncan.Gray@ga.gov.au), etc |
---|
10 | |
---|
11 | CreationDate: 2004 |
---|
12 | |
---|
13 | Description: |
---|
14 | This module contains a specialisation of class Domain from |
---|
15 | module domain.py consisting of methods specific to the |
---|
16 | Shallow Water Wave Equation |
---|
17 | |
---|
18 | U_t + E_x + G_y = S |
---|
19 | |
---|
20 | where |
---|
21 | |
---|
22 | U = [w, uh, vh] |
---|
23 | E = [uh, u^2h + gh^2/2, uvh] |
---|
24 | G = [vh, uvh, v^2h + gh^2/2] |
---|
25 | S represents source terms forcing the system |
---|
26 | (e.g. gravity, friction, wind stress, ...) |
---|
27 | |
---|
28 | and _t, _x, _y denote the derivative with respect to t, x and y |
---|
29 | respectively. |
---|
30 | |
---|
31 | |
---|
32 | The quantities are |
---|
33 | |
---|
34 | symbol variable name explanation |
---|
35 | x x horizontal distance from origin [m] |
---|
36 | y y vertical distance from origin [m] |
---|
37 | z elevation elevation of bed on which flow is modelled [m] |
---|
38 | h height water height above z [m] |
---|
39 | w stage absolute water level, w = z+h [m] |
---|
40 | u speed in the x direction [m/s] |
---|
41 | v speed in the y direction [m/s] |
---|
42 | uh xmomentum momentum in the x direction [m^2/s] |
---|
43 | vh ymomentum momentum in the y direction [m^2/s] |
---|
44 | |
---|
45 | eta mannings friction coefficient [to appear] |
---|
46 | nu wind stress coefficient [to appear] |
---|
47 | |
---|
48 | The conserved quantities are w, uh, vh |
---|
49 | |
---|
50 | Reference: |
---|
51 | Catastrophic Collapse of Water Supply Reservoirs in Urban Areas, |
---|
52 | Christopher Zoppou and Stephen Roberts, |
---|
53 | Journal of Hydraulic Engineering, vol. 127, No. 7 July 1999 |
---|
54 | |
---|
55 | Hydrodynamic modelling of coastal inundation. |
---|
56 | Nielsen, O., S. Roberts, D. Gray, A. McPherson and A. Hitchman |
---|
57 | In Zerger, A. and Argent, R.M. (eds) MODSIM 2005 International Congress on |
---|
58 | Modelling and Simulation. Modelling and Simulation Society of Australia and |
---|
59 | New Zealand, December 2005, pp. 518-523. ISBN: 0-9758400-2-9. |
---|
60 | http://www.mssanz.org.au/modsim05/papers/nielsen.pdf |
---|
61 | |
---|
62 | |
---|
63 | SeeAlso: |
---|
64 | TRAC administration of ANUGA (User Manuals etc) at |
---|
65 | https://datamining.anu.edu.au/anuga and Subversion repository at |
---|
66 | $HeadURL: anuga_core/source/anuga/shallow_water/shallow_water_domain.py $ |
---|
67 | |
---|
68 | Constraints: See GPL license in the user guide |
---|
69 | Version: 1.0 ($Revision: 4836 $) |
---|
70 | ModifiedBy: |
---|
71 | $Author: ole $ |
---|
72 | $Date: 2007-11-20 06:38:57 +0000 (Tue, 20 Nov 2007) $ |
---|
73 | |
---|
74 | """ |
---|
75 | |
---|
76 | # Subversion keywords: |
---|
77 | # |
---|
78 | # $LastChangedDate: 2007-11-20 06:38:57 +0000 (Tue, 20 Nov 2007) $ |
---|
79 | # $LastChangedRevision: 4836 $ |
---|
80 | # $LastChangedBy: ole $ |
---|
81 | |
---|
82 | from Numeric import zeros, ones, Float, array, sum, size |
---|
83 | from Numeric import compress, arange |
---|
84 | |
---|
85 | |
---|
86 | from anuga.abstract_2d_finite_volumes.domain import Domain as Generic_Domain |
---|
87 | from anuga.abstract_2d_finite_volumes.generic_boundary_conditions\ |
---|
88 | import Boundary |
---|
89 | from anuga.abstract_2d_finite_volumes.generic_boundary_conditions\ |
---|
90 | import File_boundary |
---|
91 | from anuga.abstract_2d_finite_volumes.generic_boundary_conditions\ |
---|
92 | import Dirichlet_boundary |
---|
93 | from anuga.abstract_2d_finite_volumes.generic_boundary_conditions\ |
---|
94 | import Time_boundary |
---|
95 | from anuga.abstract_2d_finite_volumes.generic_boundary_conditions\ |
---|
96 | import Transmissive_boundary |
---|
97 | |
---|
98 | from anuga.utilities.numerical_tools import gradient, mean |
---|
99 | from anuga.config import minimum_storable_height |
---|
100 | from anuga.config import minimum_allowed_height, maximum_allowed_speed |
---|
101 | from anuga.config import g, epsilon, beta_h, beta_w, beta_w_dry,\ |
---|
102 | beta_uh, beta_uh_dry, beta_vh, beta_vh_dry, tight_slope_limiters |
---|
103 | from anuga.config import alpha_balance |
---|
104 | from anuga.config import optimise_dry_cells |
---|
105 | |
---|
106 | #--------------------- |
---|
107 | # Shallow water domain |
---|
108 | #--------------------- |
---|
109 | class Domain(Generic_Domain): |
---|
110 | |
---|
111 | conserved_quantities = ['stage', 'xmomentum', 'ymomentum'] |
---|
112 | other_quantities = ['elevation', 'friction'] |
---|
113 | |
---|
114 | def __init__(self, |
---|
115 | coordinates=None, |
---|
116 | vertices=None, |
---|
117 | boundary=None, |
---|
118 | tagged_elements=None, |
---|
119 | geo_reference=None, |
---|
120 | use_inscribed_circle=False, |
---|
121 | mesh_filename=None, |
---|
122 | use_cache=False, |
---|
123 | verbose=False, |
---|
124 | full_send_dict=None, |
---|
125 | ghost_recv_dict=None, |
---|
126 | processor=0, |
---|
127 | numproc=1, |
---|
128 | number_of_full_nodes=None, |
---|
129 | number_of_full_triangles=None): |
---|
130 | |
---|
131 | |
---|
132 | other_quantities = ['elevation', 'friction'] |
---|
133 | Generic_Domain.__init__(self, |
---|
134 | coordinates, |
---|
135 | vertices, |
---|
136 | boundary, |
---|
137 | Domain.conserved_quantities, |
---|
138 | Domain.other_quantities, |
---|
139 | tagged_elements, |
---|
140 | geo_reference, |
---|
141 | use_inscribed_circle, |
---|
142 | mesh_filename, |
---|
143 | use_cache, |
---|
144 | verbose, |
---|
145 | full_send_dict, |
---|
146 | ghost_recv_dict, |
---|
147 | processor, |
---|
148 | numproc, |
---|
149 | number_of_full_nodes=number_of_full_nodes, |
---|
150 | number_of_full_triangles=number_of_full_triangles) |
---|
151 | |
---|
152 | |
---|
153 | self.set_minimum_allowed_height(minimum_allowed_height) |
---|
154 | |
---|
155 | self.maximum_allowed_speed = maximum_allowed_speed |
---|
156 | self.g = g |
---|
157 | self.beta_w = beta_w |
---|
158 | self.beta_w_dry = beta_w_dry |
---|
159 | self.beta_uh = beta_uh |
---|
160 | self.beta_uh_dry = beta_uh_dry |
---|
161 | self.beta_vh = beta_vh |
---|
162 | self.beta_vh_dry = beta_vh_dry |
---|
163 | self.beta_h = beta_h |
---|
164 | self.alpha_balance = alpha_balance |
---|
165 | |
---|
166 | self.tight_slope_limiters = tight_slope_limiters |
---|
167 | self.optimise_dry_cells = optimise_dry_cells |
---|
168 | |
---|
169 | self.forcing_terms.append(manning_friction_implicit) |
---|
170 | self.forcing_terms.append(gravity) |
---|
171 | |
---|
172 | # Stored output |
---|
173 | self.store = True |
---|
174 | self.format = 'sww' |
---|
175 | self.set_store_vertices_uniquely(False) |
---|
176 | self.minimum_storable_height = minimum_storable_height |
---|
177 | self.quantities_to_be_stored = ['stage','xmomentum','ymomentum'] |
---|
178 | |
---|
179 | |
---|
180 | |
---|
181 | def set_all_limiters(self, beta): |
---|
182 | """Shorthand to assign one constant value [0,1[ to all limiters. |
---|
183 | 0 Corresponds to first order, where as larger values make use of |
---|
184 | the second order scheme. |
---|
185 | """ |
---|
186 | |
---|
187 | self.beta_w = beta |
---|
188 | self.beta_w_dry = beta |
---|
189 | self.beta_uh = beta |
---|
190 | self.beta_uh_dry = beta |
---|
191 | self.beta_vh = beta |
---|
192 | self.beta_vh_dry = beta |
---|
193 | self.beta_h = beta |
---|
194 | |
---|
195 | |
---|
196 | def set_store_vertices_uniquely(self, flag, reduction=None): |
---|
197 | """Decide whether vertex values should be stored uniquely as |
---|
198 | computed in the model or whether they should be reduced to one |
---|
199 | value per vertex using self.reduction. |
---|
200 | """ |
---|
201 | |
---|
202 | # FIXME (Ole): how about using the word continuous vertex values? |
---|
203 | self.smooth = not flag |
---|
204 | |
---|
205 | # Reduction operation for get_vertex_values |
---|
206 | if reduction is None: |
---|
207 | self.reduction = mean |
---|
208 | #self.reduction = min #Looks better near steep slopes |
---|
209 | |
---|
210 | |
---|
211 | def set_minimum_storable_height(self, minimum_storable_height): |
---|
212 | """ |
---|
213 | Set the minimum depth that will be recognised when writing |
---|
214 | to an sww file. This is useful for removing thin water layers |
---|
215 | that seems to be caused by friction creep. |
---|
216 | |
---|
217 | The minimum allowed sww depth is in meters. |
---|
218 | """ |
---|
219 | self.minimum_storable_height = minimum_storable_height |
---|
220 | |
---|
221 | |
---|
222 | def set_minimum_allowed_height(self, minimum_allowed_height): |
---|
223 | """ |
---|
224 | Set the minimum depth that will be recognised in the numerical |
---|
225 | scheme |
---|
226 | |
---|
227 | The minimum allowed depth is in meters. |
---|
228 | |
---|
229 | The parameter H0 (Minimal height for flux computation) |
---|
230 | is also set by this function |
---|
231 | """ |
---|
232 | |
---|
233 | #FIXME (Ole): rename H0 to minimum_allowed_height_in_flux_computation |
---|
234 | |
---|
235 | #FIXME (Ole): Maybe use histogram to identify isolated extreme speeds |
---|
236 | #and deal with them adaptively similarly to how we used to use 1 order |
---|
237 | #steps to recover. |
---|
238 | self.minimum_allowed_height = minimum_allowed_height |
---|
239 | self.H0 = minimum_allowed_height |
---|
240 | |
---|
241 | |
---|
242 | def set_maximum_allowed_speed(self, maximum_allowed_speed): |
---|
243 | """ |
---|
244 | Set the maximum particle speed that is allowed in water |
---|
245 | shallower than minimum_allowed_height. This is useful for |
---|
246 | controlling speeds in very thin layers of water and at the same time |
---|
247 | allow some movement avoiding pooling of water. |
---|
248 | |
---|
249 | """ |
---|
250 | self.maximum_allowed_speed = maximum_allowed_speed |
---|
251 | |
---|
252 | |
---|
253 | def set_points_file_block_line_size(self,points_file_block_line_size): |
---|
254 | """ |
---|
255 | Set the minimum depth that will be recognised when writing |
---|
256 | to an sww file. This is useful for removing thin water layers |
---|
257 | that seems to be caused by friction creep. |
---|
258 | |
---|
259 | The minimum allowed sww depth is in meters. |
---|
260 | """ |
---|
261 | self.points_file_block_line_size = points_file_block_line_size |
---|
262 | |
---|
263 | |
---|
264 | def set_quantities_to_be_stored(self, q): |
---|
265 | """Specify which quantities will be stored in the sww file. |
---|
266 | |
---|
267 | q must be either: |
---|
268 | - the name of a quantity |
---|
269 | - a list of quantity names |
---|
270 | - None |
---|
271 | |
---|
272 | In the two first cases, the named quantities will be stored at |
---|
273 | each yieldstep (This is in addition to the quantities elevation |
---|
274 | and friction) |
---|
275 | |
---|
276 | If q is None, storage will be switched off altogether. |
---|
277 | """ |
---|
278 | |
---|
279 | |
---|
280 | if q is None: |
---|
281 | self.quantities_to_be_stored = [] |
---|
282 | self.store = False |
---|
283 | return |
---|
284 | |
---|
285 | if isinstance(q, basestring): |
---|
286 | q = [q] # Turn argument into a list |
---|
287 | |
---|
288 | # Check correcness |
---|
289 | for quantity_name in q: |
---|
290 | msg = 'Quantity %s is not a valid conserved quantity'\ |
---|
291 | %quantity_name |
---|
292 | |
---|
293 | assert quantity_name in self.conserved_quantities, msg |
---|
294 | |
---|
295 | self.quantities_to_be_stored = q |
---|
296 | |
---|
297 | |
---|
298 | |
---|
299 | def get_wet_elements(self, indices=None): |
---|
300 | """Return indices for elements where h > minimum_allowed_height |
---|
301 | |
---|
302 | Optional argument: |
---|
303 | indices is the set of element ids that the operation applies to. |
---|
304 | |
---|
305 | Usage: |
---|
306 | indices = get_wet_elements() |
---|
307 | |
---|
308 | Note, centroid values are used for this operation |
---|
309 | """ |
---|
310 | |
---|
311 | # Water depth below which it is considered to be 0 in the model |
---|
312 | # FIXME (Ole): Allow this to be specified as a keyword argument as well |
---|
313 | from anuga.config import minimum_allowed_height |
---|
314 | |
---|
315 | |
---|
316 | elevation = self.get_quantity('elevation').\ |
---|
317 | get_values(location='centroids', indices=indices) |
---|
318 | stage = self.get_quantity('stage').\ |
---|
319 | get_values(location='centroids', indices=indices) |
---|
320 | depth = stage - elevation |
---|
321 | |
---|
322 | # Select indices for which depth > 0 |
---|
323 | wet_indices = compress(depth > minimum_allowed_height, |
---|
324 | arange(len(depth))) |
---|
325 | return wet_indices |
---|
326 | |
---|
327 | |
---|
328 | def get_maximum_inundation_elevation(self, indices=None): |
---|
329 | """Return highest elevation where h > 0 |
---|
330 | |
---|
331 | Optional argument: |
---|
332 | indices is the set of element ids that the operation applies to. |
---|
333 | |
---|
334 | Usage: |
---|
335 | q = get_maximum_inundation_elevation() |
---|
336 | |
---|
337 | Note, centroid values are used for this operation |
---|
338 | """ |
---|
339 | |
---|
340 | wet_elements = self.get_wet_elements(indices) |
---|
341 | return self.get_quantity('elevation').\ |
---|
342 | get_maximum_value(indices=wet_elements) |
---|
343 | |
---|
344 | |
---|
345 | def get_maximum_inundation_location(self, indices=None): |
---|
346 | """Return location of highest elevation where h > 0 |
---|
347 | |
---|
348 | Optional argument: |
---|
349 | indices is the set of element ids that the operation applies to. |
---|
350 | |
---|
351 | Usage: |
---|
352 | q = get_maximum_inundation_location() |
---|
353 | |
---|
354 | Note, centroid values are used for this operation |
---|
355 | """ |
---|
356 | |
---|
357 | wet_elements = self.get_wet_elements(indices) |
---|
358 | return self.get_quantity('elevation').\ |
---|
359 | get_maximum_location(indices=wet_elements) |
---|
360 | |
---|
361 | def check_integrity(self): |
---|
362 | Generic_Domain.check_integrity(self) |
---|
363 | |
---|
364 | #Check that we are solving the shallow water wave equation |
---|
365 | |
---|
366 | msg = 'First conserved quantity must be "stage"' |
---|
367 | assert self.conserved_quantities[0] == 'stage', msg |
---|
368 | msg = 'Second conserved quantity must be "xmomentum"' |
---|
369 | assert self.conserved_quantities[1] == 'xmomentum', msg |
---|
370 | msg = 'Third conserved quantity must be "ymomentum"' |
---|
371 | assert self.conserved_quantities[2] == 'ymomentum', msg |
---|
372 | |
---|
373 | def extrapolate_second_order_sw(self): |
---|
374 | #Call correct module function |
---|
375 | #(either from this module or C-extension) |
---|
376 | extrapolate_second_order_sw(self) |
---|
377 | |
---|
378 | def compute_fluxes(self): |
---|
379 | #Call correct module function |
---|
380 | #(either from this module or C-extension) |
---|
381 | compute_fluxes(self) |
---|
382 | |
---|
383 | def distribute_to_vertices_and_edges(self): |
---|
384 | # Call correct module function |
---|
385 | # (either from this module or C-extension) |
---|
386 | distribute_to_vertices_and_edges(self) |
---|
387 | |
---|
388 | |
---|
389 | |
---|
390 | def evolve(self, |
---|
391 | yieldstep = None, |
---|
392 | finaltime = None, |
---|
393 | duration = None, |
---|
394 | skip_initial_step = False): |
---|
395 | """Specialisation of basic evolve method from parent class |
---|
396 | """ |
---|
397 | |
---|
398 | # Call check integrity here rather than from user scripts |
---|
399 | # self.check_integrity() |
---|
400 | |
---|
401 | msg = 'Parameter beta_h must be in the interval [0, 1[' |
---|
402 | assert 0 <= self.beta_h <= 1.0, msg |
---|
403 | msg = 'Parameter beta_w must be in the interval [0, 1[' |
---|
404 | assert 0 <= self.beta_w <= 1.0, msg |
---|
405 | |
---|
406 | |
---|
407 | # Initial update of vertex and edge values before any STORAGE |
---|
408 | # and or visualisation |
---|
409 | # This is done again in the initialisation of the Generic_Domain |
---|
410 | # evolve loop but we do it here to ensure the values are ok for storage |
---|
411 | self.distribute_to_vertices_and_edges() |
---|
412 | |
---|
413 | if self.store is True and self.time == 0.0: |
---|
414 | self.initialise_storage() |
---|
415 | # print 'Storing results in ' + self.writer.filename |
---|
416 | else: |
---|
417 | pass |
---|
418 | # print 'Results will not be stored.' |
---|
419 | # print 'To store results set domain.store = True' |
---|
420 | # FIXME: Diagnostic output should be controlled by |
---|
421 | # a 'verbose' flag living in domain (or in a parent class) |
---|
422 | |
---|
423 | # Call basic machinery from parent class |
---|
424 | for t in Generic_Domain.evolve(self, |
---|
425 | yieldstep=yieldstep, |
---|
426 | finaltime=finaltime, |
---|
427 | duration=duration, |
---|
428 | skip_initial_step=skip_initial_step): |
---|
429 | |
---|
430 | # Store model data, e.g. for subsequent visualisation |
---|
431 | if self.store is True: |
---|
432 | self.store_timestep(self.quantities_to_be_stored) |
---|
433 | |
---|
434 | # FIXME: Could maybe be taken from specified list |
---|
435 | # of 'store every step' quantities |
---|
436 | |
---|
437 | # Pass control on to outer loop for more specific actions |
---|
438 | yield(t) |
---|
439 | |
---|
440 | |
---|
441 | def initialise_storage(self): |
---|
442 | """Create and initialise self.writer object for storing data. |
---|
443 | Also, save x,y and bed elevation |
---|
444 | """ |
---|
445 | |
---|
446 | from anuga.shallow_water.data_manager import get_dataobject |
---|
447 | |
---|
448 | # Initialise writer |
---|
449 | self.writer = get_dataobject(self, mode = 'w') |
---|
450 | |
---|
451 | # Store vertices and connectivity |
---|
452 | self.writer.store_connectivity() |
---|
453 | |
---|
454 | |
---|
455 | def store_timestep(self, name): |
---|
456 | """Store named quantity and time. |
---|
457 | |
---|
458 | Precondition: |
---|
459 | self.write has been initialised |
---|
460 | """ |
---|
461 | self.writer.store_timestep(name) |
---|
462 | |
---|
463 | |
---|
464 | def timestepping_statistics(self, |
---|
465 | track_speeds=False, |
---|
466 | triangle_id=None): |
---|
467 | """Return string with time stepping statistics for printing or logging |
---|
468 | |
---|
469 | Optional boolean keyword track_speeds decides whether to report |
---|
470 | location of smallest timestep as well as a histogram and percentile |
---|
471 | report. |
---|
472 | """ |
---|
473 | |
---|
474 | from Numeric import sqrt |
---|
475 | from anuga.config import epsilon, g |
---|
476 | |
---|
477 | |
---|
478 | # Call basic machinery from parent class |
---|
479 | msg = Generic_Domain.timestepping_statistics(self, |
---|
480 | track_speeds, |
---|
481 | triangle_id) |
---|
482 | |
---|
483 | if track_speeds is True: |
---|
484 | |
---|
485 | # qwidth determines the text field used for quantities |
---|
486 | qwidth = self.qwidth |
---|
487 | |
---|
488 | # Selected triangle |
---|
489 | k = self.k |
---|
490 | |
---|
491 | # Report some derived quantities at vertices, edges and centroid |
---|
492 | # specific to the shallow water wave equation |
---|
493 | |
---|
494 | z = self.quantities['elevation'] |
---|
495 | w = self.quantities['stage'] |
---|
496 | |
---|
497 | Vw = w.get_values(location='vertices', indices=[k])[0] |
---|
498 | Ew = w.get_values(location='edges', indices=[k])[0] |
---|
499 | Cw = w.get_values(location='centroids', indices=[k]) |
---|
500 | |
---|
501 | Vz = z.get_values(location='vertices', indices=[k])[0] |
---|
502 | Ez = z.get_values(location='edges', indices=[k])[0] |
---|
503 | Cz = z.get_values(location='centroids', indices=[k]) |
---|
504 | |
---|
505 | |
---|
506 | name = 'depth' |
---|
507 | Vh = Vw-Vz |
---|
508 | Eh = Ew-Ez |
---|
509 | Ch = Cw-Cz |
---|
510 | |
---|
511 | s = ' %s: vertex_values = %.4f,\t %.4f,\t %.4f\n'\ |
---|
512 | %(name.ljust(qwidth), Vh[0], Vh[1], Vh[2]) |
---|
513 | |
---|
514 | s += ' %s: edge_values = %.4f,\t %.4f,\t %.4f\n'\ |
---|
515 | %(name.ljust(qwidth), Eh[0], Eh[1], Eh[2]) |
---|
516 | |
---|
517 | s += ' %s: centroid_value = %.4f\n'\ |
---|
518 | %(name.ljust(qwidth), Ch[0]) |
---|
519 | |
---|
520 | msg += s |
---|
521 | |
---|
522 | uh = self.quantities['xmomentum'] |
---|
523 | vh = self.quantities['ymomentum'] |
---|
524 | |
---|
525 | Vuh = uh.get_values(location='vertices', indices=[k])[0] |
---|
526 | Euh = uh.get_values(location='edges', indices=[k])[0] |
---|
527 | Cuh = uh.get_values(location='centroids', indices=[k]) |
---|
528 | |
---|
529 | Vvh = vh.get_values(location='vertices', indices=[k])[0] |
---|
530 | Evh = vh.get_values(location='edges', indices=[k])[0] |
---|
531 | Cvh = vh.get_values(location='centroids', indices=[k]) |
---|
532 | |
---|
533 | # Speeds in each direction |
---|
534 | Vu = Vuh/(Vh + epsilon) |
---|
535 | Eu = Euh/(Eh + epsilon) |
---|
536 | Cu = Cuh/(Ch + epsilon) |
---|
537 | name = 'U' |
---|
538 | s = ' %s: vertex_values = %.4f,\t %.4f,\t %.4f\n'\ |
---|
539 | %(name.ljust(qwidth), Vu[0], Vu[1], Vu[2]) |
---|
540 | |
---|
541 | s += ' %s: edge_values = %.4f,\t %.4f,\t %.4f\n'\ |
---|
542 | %(name.ljust(qwidth), Eu[0], Eu[1], Eu[2]) |
---|
543 | |
---|
544 | s += ' %s: centroid_value = %.4f\n'\ |
---|
545 | %(name.ljust(qwidth), Cu[0]) |
---|
546 | |
---|
547 | msg += s |
---|
548 | |
---|
549 | Vv = Vvh/(Vh + epsilon) |
---|
550 | Ev = Evh/(Eh + epsilon) |
---|
551 | Cv = Cvh/(Ch + epsilon) |
---|
552 | name = 'V' |
---|
553 | s = ' %s: vertex_values = %.4f,\t %.4f,\t %.4f\n'\ |
---|
554 | %(name.ljust(qwidth), Vv[0], Vv[1], Vv[2]) |
---|
555 | |
---|
556 | s += ' %s: edge_values = %.4f,\t %.4f,\t %.4f\n'\ |
---|
557 | %(name.ljust(qwidth), Ev[0], Ev[1], Ev[2]) |
---|
558 | |
---|
559 | s += ' %s: centroid_value = %.4f\n'\ |
---|
560 | %(name.ljust(qwidth), Cv[0]) |
---|
561 | |
---|
562 | msg += s |
---|
563 | |
---|
564 | |
---|
565 | # Froude number in each direction |
---|
566 | name = 'Froude (x)' |
---|
567 | Vfx = Vu/(sqrt(g*Vh) + epsilon) |
---|
568 | Efx = Eu/(sqrt(g*Eh) + epsilon) |
---|
569 | Cfx = Cu/(sqrt(g*Ch) + epsilon) |
---|
570 | |
---|
571 | s = ' %s: vertex_values = %.4f,\t %.4f,\t %.4f\n'\ |
---|
572 | %(name.ljust(qwidth), Vfx[0], Vfx[1], Vfx[2]) |
---|
573 | |
---|
574 | s += ' %s: edge_values = %.4f,\t %.4f,\t %.4f\n'\ |
---|
575 | %(name.ljust(qwidth), Efx[0], Efx[1], Efx[2]) |
---|
576 | |
---|
577 | s += ' %s: centroid_value = %.4f\n'\ |
---|
578 | %(name.ljust(qwidth), Cfx[0]) |
---|
579 | |
---|
580 | msg += s |
---|
581 | |
---|
582 | |
---|
583 | name = 'Froude (y)' |
---|
584 | Vfy = Vv/(sqrt(g*Vh) + epsilon) |
---|
585 | Efy = Ev/(sqrt(g*Eh) + epsilon) |
---|
586 | Cfy = Cv/(sqrt(g*Ch) + epsilon) |
---|
587 | |
---|
588 | s = ' %s: vertex_values = %.4f,\t %.4f,\t %.4f\n'\ |
---|
589 | %(name.ljust(qwidth), Vfy[0], Vfy[1], Vfy[2]) |
---|
590 | |
---|
591 | s += ' %s: edge_values = %.4f,\t %.4f,\t %.4f\n'\ |
---|
592 | %(name.ljust(qwidth), Efy[0], Efy[1], Efy[2]) |
---|
593 | |
---|
594 | s += ' %s: centroid_value = %.4f\n'\ |
---|
595 | %(name.ljust(qwidth), Cfy[0]) |
---|
596 | |
---|
597 | msg += s |
---|
598 | |
---|
599 | |
---|
600 | |
---|
601 | return msg |
---|
602 | |
---|
603 | |
---|
604 | |
---|
605 | #=============== End of class Shallow Water Domain =============================== |
---|
606 | |
---|
607 | |
---|
608 | #----------------- |
---|
609 | # Flux computation |
---|
610 | #----------------- |
---|
611 | |
---|
612 | def compute_fluxes(domain): |
---|
613 | """Compute all fluxes and the timestep suitable for all volumes |
---|
614 | in domain. |
---|
615 | |
---|
616 | Compute total flux for each conserved quantity using "flux_function" |
---|
617 | |
---|
618 | Fluxes across each edge are scaled by edgelengths and summed up |
---|
619 | Resulting flux is then scaled by area and stored in |
---|
620 | explicit_update for each of the three conserved quantities |
---|
621 | stage, xmomentum and ymomentum |
---|
622 | |
---|
623 | The maximal allowable speed computed by the flux_function for each volume |
---|
624 | is converted to a timestep that must not be exceeded. The minimum of |
---|
625 | those is computed as the next overall timestep. |
---|
626 | |
---|
627 | Post conditions: |
---|
628 | domain.explicit_update is reset to computed flux values |
---|
629 | domain.timestep is set to the largest step satisfying all volumes. |
---|
630 | |
---|
631 | |
---|
632 | This wrapper calls the underlying C version of compute fluxes |
---|
633 | """ |
---|
634 | |
---|
635 | import sys |
---|
636 | |
---|
637 | N = len(domain) # number_of_triangles |
---|
638 | |
---|
639 | # Shortcuts |
---|
640 | Stage = domain.quantities['stage'] |
---|
641 | Xmom = domain.quantities['xmomentum'] |
---|
642 | Ymom = domain.quantities['ymomentum'] |
---|
643 | Bed = domain.quantities['elevation'] |
---|
644 | |
---|
645 | timestep = float(sys.maxint) |
---|
646 | from shallow_water_ext import\ |
---|
647 | compute_fluxes_ext_central as compute_fluxes_ext |
---|
648 | |
---|
649 | |
---|
650 | flux_timestep = compute_fluxes_ext(timestep, |
---|
651 | domain.epsilon, |
---|
652 | domain.H0, |
---|
653 | domain.g, |
---|
654 | domain.neighbours, |
---|
655 | domain.neighbour_edges, |
---|
656 | domain.normals, |
---|
657 | domain.edgelengths, |
---|
658 | domain.radii, |
---|
659 | domain.areas, |
---|
660 | domain.tri_full_flag, |
---|
661 | Stage.edge_values, |
---|
662 | Xmom.edge_values, |
---|
663 | Ymom.edge_values, |
---|
664 | Bed.edge_values, |
---|
665 | Stage.boundary_values, |
---|
666 | Xmom.boundary_values, |
---|
667 | Ymom.boundary_values, |
---|
668 | Stage.explicit_update, |
---|
669 | Xmom.explicit_update, |
---|
670 | Ymom.explicit_update, |
---|
671 | domain.already_computed_flux, |
---|
672 | domain.max_speed, |
---|
673 | int(domain.optimise_dry_cells)) |
---|
674 | |
---|
675 | domain.flux_timestep = flux_timestep |
---|
676 | |
---|
677 | |
---|
678 | |
---|
679 | #--------------------------------------- |
---|
680 | # Module functions for gradient limiting |
---|
681 | #--------------------------------------- |
---|
682 | |
---|
683 | |
---|
684 | # MH090605 The following method belongs to the shallow_water domain class |
---|
685 | # see comments in the corresponding method in shallow_water_ext.c |
---|
686 | def extrapolate_second_order_sw(domain): |
---|
687 | """Wrapper calling C version of extrapolate_second_order_sw |
---|
688 | """ |
---|
689 | import sys |
---|
690 | |
---|
691 | N = len(domain) # number_of_triangles |
---|
692 | |
---|
693 | # Shortcuts |
---|
694 | Stage = domain.quantities['stage'] |
---|
695 | Xmom = domain.quantities['xmomentum'] |
---|
696 | Ymom = domain.quantities['ymomentum'] |
---|
697 | Elevation = domain.quantities['elevation'] |
---|
698 | |
---|
699 | from shallow_water_ext import extrapolate_second_order_sw as extrapol2 |
---|
700 | extrapol2(domain, |
---|
701 | domain.surrogate_neighbours, |
---|
702 | domain.number_of_boundaries, |
---|
703 | domain.centroid_coordinates, |
---|
704 | Stage.centroid_values, |
---|
705 | Xmom.centroid_values, |
---|
706 | Ymom.centroid_values, |
---|
707 | Elevation.centroid_values, |
---|
708 | domain.vertex_coordinates, |
---|
709 | Stage.vertex_values, |
---|
710 | Xmom.vertex_values, |
---|
711 | Ymom.vertex_values, |
---|
712 | Elevation.vertex_values, |
---|
713 | int(domain.optimise_dry_cells)) |
---|
714 | |
---|
715 | |
---|
716 | def distribute_to_vertices_and_edges(domain): |
---|
717 | """Distribution from centroids to vertices specific to the |
---|
718 | shallow water wave |
---|
719 | equation. |
---|
720 | |
---|
721 | It will ensure that h (w-z) is always non-negative even in the |
---|
722 | presence of steep bed-slopes by taking a weighted average between shallow |
---|
723 | and deep cases. |
---|
724 | |
---|
725 | In addition, all conserved quantities get distributed as per either a |
---|
726 | constant (order==1) or a piecewise linear function (order==2). |
---|
727 | |
---|
728 | FIXME: more explanation about removal of artificial variability etc |
---|
729 | |
---|
730 | Precondition: |
---|
731 | All quantities defined at centroids and bed elevation defined at |
---|
732 | vertices. |
---|
733 | |
---|
734 | Postcondition |
---|
735 | Conserved quantities defined at vertices |
---|
736 | |
---|
737 | """ |
---|
738 | |
---|
739 | from anuga.config import optimised_gradient_limiter |
---|
740 | |
---|
741 | # Remove very thin layers of water |
---|
742 | protect_against_infinitesimal_and_negative_heights(domain) |
---|
743 | |
---|
744 | # Extrapolate all conserved quantities |
---|
745 | if optimised_gradient_limiter: |
---|
746 | # MH090605 if second order, |
---|
747 | # perform the extrapolation and limiting on |
---|
748 | # all of the conserved quantities |
---|
749 | |
---|
750 | if (domain._order_ == 1): |
---|
751 | for name in domain.conserved_quantities: |
---|
752 | Q = domain.quantities[name] |
---|
753 | Q.extrapolate_first_order() |
---|
754 | elif domain._order_ == 2: |
---|
755 | domain.extrapolate_second_order_sw() |
---|
756 | else: |
---|
757 | raise 'Unknown order' |
---|
758 | else: |
---|
759 | # Old code: |
---|
760 | for name in domain.conserved_quantities: |
---|
761 | Q = domain.quantities[name] |
---|
762 | |
---|
763 | if domain._order_ == 1: |
---|
764 | Q.extrapolate_first_order() |
---|
765 | elif domain._order_ == 2: |
---|
766 | |
---|
767 | # Experiment |
---|
768 | #if name == 'stage': |
---|
769 | # #print name, 'second' |
---|
770 | # Q.extrapolate_second_order() |
---|
771 | # Q.limit() |
---|
772 | #else: |
---|
773 | # #print name, 'first' |
---|
774 | # Q.extrapolate_first_order() |
---|
775 | # #Q.extrapolate_second_order() |
---|
776 | # #Q.limit() |
---|
777 | |
---|
778 | Q.extrapolate_second_order() |
---|
779 | Q.limit() |
---|
780 | else: |
---|
781 | raise 'Unknown order' |
---|
782 | |
---|
783 | |
---|
784 | #Take bed elevation into account when water heights are small |
---|
785 | balance_deep_and_shallow(domain) |
---|
786 | |
---|
787 | #Compute edge values by interpolation |
---|
788 | for name in domain.conserved_quantities: |
---|
789 | Q = domain.quantities[name] |
---|
790 | Q.interpolate_from_vertices_to_edges() |
---|
791 | |
---|
792 | |
---|
793 | def protect_against_infinitesimal_and_negative_heights(domain): |
---|
794 | """Protect against infinitesimal heights and associated high velocities |
---|
795 | """ |
---|
796 | |
---|
797 | # Shortcuts |
---|
798 | wc = domain.quantities['stage'].centroid_values |
---|
799 | zc = domain.quantities['elevation'].centroid_values |
---|
800 | xmomc = domain.quantities['xmomentum'].centroid_values |
---|
801 | ymomc = domain.quantities['ymomentum'].centroid_values |
---|
802 | |
---|
803 | from shallow_water_ext import protect |
---|
804 | |
---|
805 | protect(domain.minimum_allowed_height, domain.maximum_allowed_speed, |
---|
806 | domain.epsilon, wc, zc, xmomc, ymomc) |
---|
807 | |
---|
808 | |
---|
809 | def h_limiter(domain): |
---|
810 | """Limit slopes for each volume to eliminate artificial variance |
---|
811 | introduced by e.g. second order extrapolator |
---|
812 | |
---|
813 | limit on h = w-z |
---|
814 | |
---|
815 | This limiter depends on two quantities (w,z) so it resides within |
---|
816 | this module rather than within quantity.py |
---|
817 | |
---|
818 | Wrapper for c-extension |
---|
819 | """ |
---|
820 | |
---|
821 | N = len(domain) # number_of_triangles |
---|
822 | beta_h = domain.beta_h |
---|
823 | |
---|
824 | # Shortcuts |
---|
825 | wc = domain.quantities['stage'].centroid_values |
---|
826 | zc = domain.quantities['elevation'].centroid_values |
---|
827 | hc = wc - zc |
---|
828 | |
---|
829 | wv = domain.quantities['stage'].vertex_values |
---|
830 | zv = domain.quantities['elevation'].vertex_values |
---|
831 | hv = wv - zv |
---|
832 | |
---|
833 | #Call C-extension |
---|
834 | from shallow_water_ext import h_limiter_sw |
---|
835 | hvbar = h_limiter_sw(domain, hc, hv) |
---|
836 | |
---|
837 | return hvbar |
---|
838 | |
---|
839 | |
---|
840 | def balance_deep_and_shallow(domain): |
---|
841 | """Compute linear combination between stage as computed by |
---|
842 | gradient-limiters limiting using w, and stage computed by |
---|
843 | gradient-limiters limiting using h (h-limiter). |
---|
844 | The former takes precedence when heights are large compared to the |
---|
845 | bed slope while the latter takes precedence when heights are |
---|
846 | relatively small. Anything in between is computed as a balanced |
---|
847 | linear combination in order to avoid numerical disturbances which |
---|
848 | would otherwise appear as a result of hard switching between |
---|
849 | modes. |
---|
850 | |
---|
851 | Wrapper for C implementation |
---|
852 | """ |
---|
853 | |
---|
854 | # FIXME (Ole): I reckon this can be simplified significantly: |
---|
855 | # |
---|
856 | # Always use beta_h == 0, and phase it out. |
---|
857 | # Compute hc and hv in the c-code |
---|
858 | # Omit updating xmomv |
---|
859 | # |
---|
860 | from shallow_water_ext import balance_deep_and_shallow as balance_deep_and_shallow_c |
---|
861 | |
---|
862 | # Shortcuts |
---|
863 | wc = domain.quantities['stage'].centroid_values |
---|
864 | zc = domain.quantities['elevation'].centroid_values |
---|
865 | |
---|
866 | wv = domain.quantities['stage'].vertex_values |
---|
867 | zv = domain.quantities['elevation'].vertex_values |
---|
868 | |
---|
869 | # Momentums at centroids |
---|
870 | xmomc = domain.quantities['xmomentum'].centroid_values |
---|
871 | ymomc = domain.quantities['ymomentum'].centroid_values |
---|
872 | |
---|
873 | # Momentums at vertices |
---|
874 | xmomv = domain.quantities['xmomentum'].vertex_values |
---|
875 | ymomv = domain.quantities['ymomentum'].vertex_values |
---|
876 | |
---|
877 | # Limit h |
---|
878 | if domain.beta_h > 0: |
---|
879 | hvbar = h_limiter(domain) |
---|
880 | |
---|
881 | balance_deep_and_shallow_c(domain, domain.beta_h, |
---|
882 | wc, zc, wv, zv, hvbar, |
---|
883 | xmomc, ymomc, xmomv, ymomv) |
---|
884 | else: |
---|
885 | # print 'Using first order h-limiter' |
---|
886 | # FIXME: Pass wc in for now - it will be ignored. |
---|
887 | |
---|
888 | # This is how one would make a first order h_limited value |
---|
889 | # as in the old balancer (pre 17 Feb 2005): |
---|
890 | # If we wish to hard wire this, one should modify the C-code |
---|
891 | # from Numeric import zeros, Float |
---|
892 | # hvbar = zeros( (len(wc), 3), Float) |
---|
893 | # for i in range(3): |
---|
894 | # hvbar[:,i] = wc[:] - zc[:] |
---|
895 | |
---|
896 | balance_deep_and_shallow_c(domain, domain.beta_h, |
---|
897 | wc, zc, wv, zv, wc, |
---|
898 | xmomc, ymomc, xmomv, ymomv) |
---|
899 | |
---|
900 | |
---|
901 | |
---|
902 | |
---|
903 | #------------------------------------------------------------------ |
---|
904 | # Boundary conditions - specific to the shallow water wave equation |
---|
905 | #------------------------------------------------------------------ |
---|
906 | class Reflective_boundary(Boundary): |
---|
907 | """Reflective boundary returns same conserved quantities as |
---|
908 | those present in its neighbour volume but reflected. |
---|
909 | |
---|
910 | This class is specific to the shallow water equation as it |
---|
911 | works with the momentum quantities assumed to be the second |
---|
912 | and third conserved quantities. |
---|
913 | """ |
---|
914 | |
---|
915 | def __init__(self, domain = None): |
---|
916 | Boundary.__init__(self) |
---|
917 | |
---|
918 | if domain is None: |
---|
919 | msg = 'Domain must be specified for reflective boundary' |
---|
920 | raise msg |
---|
921 | |
---|
922 | # Handy shorthands |
---|
923 | self.stage = domain.quantities['stage'].edge_values |
---|
924 | self.xmom = domain.quantities['xmomentum'].edge_values |
---|
925 | self.ymom = domain.quantities['ymomentum'].edge_values |
---|
926 | self.normals = domain.normals |
---|
927 | |
---|
928 | self.conserved_quantities = zeros(3, Float) |
---|
929 | |
---|
930 | def __repr__(self): |
---|
931 | return 'Reflective_boundary' |
---|
932 | |
---|
933 | |
---|
934 | def evaluate(self, vol_id, edge_id): |
---|
935 | """Reflective boundaries reverses the outward momentum |
---|
936 | of the volume they serve. |
---|
937 | """ |
---|
938 | |
---|
939 | q = self.conserved_quantities |
---|
940 | q[0] = self.stage[vol_id, edge_id] |
---|
941 | q[1] = self.xmom[vol_id, edge_id] |
---|
942 | q[2] = self.ymom[vol_id, edge_id] |
---|
943 | |
---|
944 | normal = self.normals[vol_id, 2*edge_id:2*edge_id+2] |
---|
945 | |
---|
946 | |
---|
947 | r = rotate(q, normal, direction = 1) |
---|
948 | r[1] = -r[1] |
---|
949 | q = rotate(r, normal, direction = -1) |
---|
950 | |
---|
951 | return q |
---|
952 | |
---|
953 | |
---|
954 | |
---|
955 | class Transmissive_Momentum_Set_Stage_boundary(Boundary): |
---|
956 | """Returns same momentum conserved quantities as |
---|
957 | those present in its neighbour volume. |
---|
958 | Sets stage by specifying a function f of time which may either be a |
---|
959 | vector function or a scalar function |
---|
960 | |
---|
961 | Example: |
---|
962 | |
---|
963 | def waveform(t): |
---|
964 | return sea_level + normalized_amplitude/cosh(t-25)**2 |
---|
965 | |
---|
966 | Bts = Transmissive_Momentum_Set_Stage_boundary(domain, waveform) |
---|
967 | |
---|
968 | |
---|
969 | Underlying domain must be specified when boundary is instantiated |
---|
970 | """ |
---|
971 | |
---|
972 | def __init__(self, domain = None, function=None): |
---|
973 | Boundary.__init__(self) |
---|
974 | |
---|
975 | if domain is None: |
---|
976 | msg = 'Domain must be specified for this type boundary' |
---|
977 | raise msg |
---|
978 | |
---|
979 | if function is None: |
---|
980 | msg = 'Function must be specified for this type boundary' |
---|
981 | raise msg |
---|
982 | |
---|
983 | self.domain = domain |
---|
984 | self.function = function |
---|
985 | |
---|
986 | def __repr__(self): |
---|
987 | return 'Transmissive_Momentum_Set_Stage_boundary(%s)' %self.domain |
---|
988 | |
---|
989 | def evaluate(self, vol_id, edge_id): |
---|
990 | """Transmissive Momentum Set Stage boundaries return the edge momentum |
---|
991 | values of the volume they serve. |
---|
992 | """ |
---|
993 | |
---|
994 | q = self.domain.get_conserved_quantities(vol_id, edge = edge_id) |
---|
995 | value = self.function(self.domain.time) |
---|
996 | |
---|
997 | try: |
---|
998 | x = float(value) |
---|
999 | except: |
---|
1000 | x = float(value[0]) |
---|
1001 | |
---|
1002 | q[0] = x |
---|
1003 | return q |
---|
1004 | |
---|
1005 | |
---|
1006 | # FIXME: Consider this (taken from File_boundary) to allow |
---|
1007 | # spatial variation |
---|
1008 | # if vol_id is not None and edge_id is not None: |
---|
1009 | # i = self.boundary_indices[ vol_id, edge_id ] |
---|
1010 | # return self.F(t, point_id = i) |
---|
1011 | # else: |
---|
1012 | # return self.F(t) |
---|
1013 | |
---|
1014 | |
---|
1015 | |
---|
1016 | class Dirichlet_Discharge_boundary(Boundary): |
---|
1017 | """ |
---|
1018 | Sets stage (stage0) |
---|
1019 | Sets momentum (wh0) in the inward normal direction. |
---|
1020 | |
---|
1021 | Underlying domain must be specified when boundary is instantiated |
---|
1022 | """ |
---|
1023 | |
---|
1024 | def __init__(self, domain = None, stage0=None, wh0=None): |
---|
1025 | Boundary.__init__(self) |
---|
1026 | |
---|
1027 | if domain is None: |
---|
1028 | msg = 'Domain must be specified for this type boundary' |
---|
1029 | raise msg |
---|
1030 | |
---|
1031 | if stage0 is None: |
---|
1032 | raise 'set stage' |
---|
1033 | |
---|
1034 | if wh0 is None: |
---|
1035 | wh0 = 0.0 |
---|
1036 | |
---|
1037 | self.domain = domain |
---|
1038 | self.stage0 = stage0 |
---|
1039 | self.wh0 = wh0 |
---|
1040 | |
---|
1041 | def __repr__(self): |
---|
1042 | return 'Dirichlet_Discharge_boundary(%s)' %self.domain |
---|
1043 | |
---|
1044 | def evaluate(self, vol_id, edge_id): |
---|
1045 | """Set discharge in the (inward) normal direction |
---|
1046 | """ |
---|
1047 | |
---|
1048 | normal = self.domain.get_normal(vol_id,edge_id) |
---|
1049 | q = [self.stage0, -self.wh0*normal[0], -self.wh0*normal[1]] |
---|
1050 | return q |
---|
1051 | |
---|
1052 | |
---|
1053 | # FIXME: Consider this (taken from File_boundary) to allow |
---|
1054 | # spatial variation |
---|
1055 | # if vol_id is not None and edge_id is not None: |
---|
1056 | # i = self.boundary_indices[ vol_id, edge_id ] |
---|
1057 | # return self.F(t, point_id = i) |
---|
1058 | # else: |
---|
1059 | # return self.F(t) |
---|
1060 | |
---|
1061 | |
---|
1062 | class Field_boundary(Boundary): |
---|
1063 | """Set boundary from given field represented in an sww file containing values |
---|
1064 | for stage, xmomentum and ymomentum. |
---|
1065 | Optionally, the user can specify mean_stage to offset the stage provided in the |
---|
1066 | sww file. |
---|
1067 | |
---|
1068 | This function is a thin wrapper around the generic File_boundary. The |
---|
1069 | difference between the file_boundary and field_boundary is only that the |
---|
1070 | field_boundary will allow you to change the level of the stage height when |
---|
1071 | you read in the boundary condition. This is very useful when running |
---|
1072 | different tide heights in the same area as you need only to convert one |
---|
1073 | boundary condition to a SWW file, ideally for tide height of 0 m |
---|
1074 | (saving disk space). Then you can use field_boundary to read this SWW file |
---|
1075 | and change the stage height (tide) on the fly depending on the scenario. |
---|
1076 | |
---|
1077 | """ |
---|
1078 | |
---|
1079 | |
---|
1080 | def __init__(self, filename, domain, |
---|
1081 | mean_stage=0.0, |
---|
1082 | time_thinning=1, |
---|
1083 | use_cache=False, |
---|
1084 | verbose=False): |
---|
1085 | """Constructor |
---|
1086 | |
---|
1087 | filename: Name of sww file |
---|
1088 | domain: pointer to shallow water domain for which the boundary applies |
---|
1089 | mean_stage: The mean water level which will be added to stage derived |
---|
1090 | from the sww file |
---|
1091 | time_thinning: Will set how many time steps from the sww file read in |
---|
1092 | will be interpolated to the boundary. For example if |
---|
1093 | the sww file has 1 second time steps and is 24 hours |
---|
1094 | in length it has 86400 time steps. If you set |
---|
1095 | time_thinning to 1 it will read all these steps. |
---|
1096 | If you set it to 100 it will read every 100th step eg |
---|
1097 | only 864 step. This parameter is very useful to increase |
---|
1098 | the speed of a model run that you are setting up |
---|
1099 | and testing. |
---|
1100 | use_cache: |
---|
1101 | verbose: |
---|
1102 | |
---|
1103 | """ |
---|
1104 | |
---|
1105 | # Create generic file_boundary object |
---|
1106 | self.file_boundary = File_boundary(filename, domain, |
---|
1107 | time_thinning=time_thinning, |
---|
1108 | use_cache=use_cache, |
---|
1109 | verbose=verbose) |
---|
1110 | |
---|
1111 | # Record information from File_boundary |
---|
1112 | self.F = self.file_boundary.F |
---|
1113 | self.domain = self.file_boundary.domain |
---|
1114 | |
---|
1115 | # Record mean stage |
---|
1116 | self.mean_stage = mean_stage |
---|
1117 | |
---|
1118 | |
---|
1119 | def __repr__(self): |
---|
1120 | return 'Field boundary' |
---|
1121 | |
---|
1122 | |
---|
1123 | def evaluate(self, vol_id=None, edge_id=None): |
---|
1124 | """Return linearly interpolated values based on domain.time |
---|
1125 | |
---|
1126 | vol_id and edge_id are ignored |
---|
1127 | """ |
---|
1128 | |
---|
1129 | # Evaluate file boundary |
---|
1130 | q = self.file_boundary.evaluate(vol_id, edge_id) |
---|
1131 | |
---|
1132 | # Adjust stage |
---|
1133 | for j, name in enumerate(self.domain.conserved_quantities): |
---|
1134 | if name == 'stage': |
---|
1135 | q[j] += self.mean_stage |
---|
1136 | return q |
---|
1137 | |
---|
1138 | |
---|
1139 | |
---|
1140 | #----------------------- |
---|
1141 | # Standard forcing terms |
---|
1142 | #----------------------- |
---|
1143 | |
---|
1144 | def gravity(domain): |
---|
1145 | """Apply gravitational pull in the presence of bed slope |
---|
1146 | Wrapper calls underlying C implementation |
---|
1147 | """ |
---|
1148 | |
---|
1149 | xmom = domain.quantities['xmomentum'].explicit_update |
---|
1150 | ymom = domain.quantities['ymomentum'].explicit_update |
---|
1151 | |
---|
1152 | stage = domain.quantities['stage'] |
---|
1153 | elevation = domain.quantities['elevation'] |
---|
1154 | |
---|
1155 | h = stage.centroid_values - elevation.centroid_values |
---|
1156 | z = elevation.vertex_values |
---|
1157 | |
---|
1158 | x = domain.get_vertex_coordinates() |
---|
1159 | g = domain.g |
---|
1160 | |
---|
1161 | |
---|
1162 | from shallow_water_ext import gravity as gravity_c |
---|
1163 | gravity_c(g, h, z, x, xmom, ymom) #, 1.0e-6) |
---|
1164 | |
---|
1165 | |
---|
1166 | |
---|
1167 | def manning_friction_implicit(domain): |
---|
1168 | """Apply (Manning) friction to water momentum |
---|
1169 | Wrapper for c version |
---|
1170 | """ |
---|
1171 | |
---|
1172 | |
---|
1173 | #print 'Implicit friction' |
---|
1174 | |
---|
1175 | xmom = domain.quantities['xmomentum'] |
---|
1176 | ymom = domain.quantities['ymomentum'] |
---|
1177 | |
---|
1178 | w = domain.quantities['stage'].centroid_values |
---|
1179 | z = domain.quantities['elevation'].centroid_values |
---|
1180 | |
---|
1181 | uh = xmom.centroid_values |
---|
1182 | vh = ymom.centroid_values |
---|
1183 | eta = domain.quantities['friction'].centroid_values |
---|
1184 | |
---|
1185 | xmom_update = xmom.semi_implicit_update |
---|
1186 | ymom_update = ymom.semi_implicit_update |
---|
1187 | |
---|
1188 | N = len(domain) |
---|
1189 | eps = domain.minimum_allowed_height |
---|
1190 | g = domain.g |
---|
1191 | |
---|
1192 | from shallow_water_ext import manning_friction as manning_friction_c |
---|
1193 | manning_friction_c(g, eps, w, z, uh, vh, eta, xmom_update, ymom_update) |
---|
1194 | |
---|
1195 | |
---|
1196 | def manning_friction_explicit(domain): |
---|
1197 | """Apply (Manning) friction to water momentum |
---|
1198 | Wrapper for c version |
---|
1199 | """ |
---|
1200 | |
---|
1201 | # print 'Explicit friction' |
---|
1202 | |
---|
1203 | xmom = domain.quantities['xmomentum'] |
---|
1204 | ymom = domain.quantities['ymomentum'] |
---|
1205 | |
---|
1206 | w = domain.quantities['stage'].centroid_values |
---|
1207 | z = domain.quantities['elevation'].centroid_values |
---|
1208 | |
---|
1209 | uh = xmom.centroid_values |
---|
1210 | vh = ymom.centroid_values |
---|
1211 | eta = domain.quantities['friction'].centroid_values |
---|
1212 | |
---|
1213 | xmom_update = xmom.explicit_update |
---|
1214 | ymom_update = ymom.explicit_update |
---|
1215 | |
---|
1216 | N = len(domain) |
---|
1217 | eps = domain.minimum_allowed_height |
---|
1218 | g = domain.g |
---|
1219 | |
---|
1220 | from shallow_water_ext import manning_friction as manning_friction_c |
---|
1221 | manning_friction_c(g, eps, w, z, uh, vh, eta, xmom_update, ymom_update) |
---|
1222 | |
---|
1223 | |
---|
1224 | # FIXME (Ole): This was implemented for use with one of the analytical solutions (Sampson?) |
---|
1225 | # Is it still needed (30 Oct 2007)? |
---|
1226 | def linear_friction(domain): |
---|
1227 | """Apply linear friction to water momentum |
---|
1228 | |
---|
1229 | Assumes quantity: 'linear_friction' to be present |
---|
1230 | """ |
---|
1231 | |
---|
1232 | from math import sqrt |
---|
1233 | |
---|
1234 | w = domain.quantities['stage'].centroid_values |
---|
1235 | z = domain.quantities['elevation'].centroid_values |
---|
1236 | h = w-z |
---|
1237 | |
---|
1238 | uh = domain.quantities['xmomentum'].centroid_values |
---|
1239 | vh = domain.quantities['ymomentum'].centroid_values |
---|
1240 | tau = domain.quantities['linear_friction'].centroid_values |
---|
1241 | |
---|
1242 | xmom_update = domain.quantities['xmomentum'].semi_implicit_update |
---|
1243 | ymom_update = domain.quantities['ymomentum'].semi_implicit_update |
---|
1244 | |
---|
1245 | N = len(domain) # number_of_triangles |
---|
1246 | eps = domain.minimum_allowed_height |
---|
1247 | g = domain.g #Not necessary? Why was this added? |
---|
1248 | |
---|
1249 | for k in range(N): |
---|
1250 | if tau[k] >= eps: |
---|
1251 | if h[k] >= eps: |
---|
1252 | S = -tau[k]/h[k] |
---|
1253 | |
---|
1254 | #Update momentum |
---|
1255 | xmom_update[k] += S*uh[k] |
---|
1256 | ymom_update[k] += S*vh[k] |
---|
1257 | |
---|
1258 | |
---|
1259 | |
---|
1260 | #--------------------------------- |
---|
1261 | # Experimental auxiliary functions |
---|
1262 | #--------------------------------- |
---|
1263 | def check_forcefield(f): |
---|
1264 | """Check that f is either |
---|
1265 | 1: a callable object f(t,x,y), where x and y are vectors |
---|
1266 | and that it returns an array or a list of same length |
---|
1267 | as x and y |
---|
1268 | 2: a scalar |
---|
1269 | """ |
---|
1270 | |
---|
1271 | if callable(f): |
---|
1272 | N = 3 |
---|
1273 | x = ones(3, Float) |
---|
1274 | y = ones(3, Float) |
---|
1275 | try: |
---|
1276 | q = f(1.0, x=x, y=y) |
---|
1277 | except Exception, e: |
---|
1278 | msg = 'Function %s could not be executed:\n%s' %(f, e) |
---|
1279 | # FIXME: Reconsider this semantics |
---|
1280 | raise msg |
---|
1281 | |
---|
1282 | try: |
---|
1283 | q = array(q).astype(Float) |
---|
1284 | except: |
---|
1285 | msg = 'Return value from vector function %s could ' %f |
---|
1286 | msg += 'not be converted into a Numeric array of floats.\n' |
---|
1287 | msg += 'Specified function should return either list or array.' |
---|
1288 | raise msg |
---|
1289 | |
---|
1290 | # Is this really what we want? |
---|
1291 | msg = 'Return vector from function %s ' %f |
---|
1292 | msg += 'must have same lenght as input vectors' |
---|
1293 | assert len(q) == N, msg |
---|
1294 | |
---|
1295 | else: |
---|
1296 | try: |
---|
1297 | f = float(f) |
---|
1298 | except: |
---|
1299 | msg = 'Force field %s must be either a scalar' %f |
---|
1300 | msg += ' or a vector function' |
---|
1301 | raise Exception(msg) |
---|
1302 | return f |
---|
1303 | |
---|
1304 | |
---|
1305 | class Wind_stress: |
---|
1306 | """Apply wind stress to water momentum in terms of |
---|
1307 | wind speed [m/s] and wind direction [degrees] |
---|
1308 | """ |
---|
1309 | |
---|
1310 | def __init__(self, *args, **kwargs): |
---|
1311 | """Initialise windfield from wind speed s [m/s] |
---|
1312 | and wind direction phi [degrees] |
---|
1313 | |
---|
1314 | Inputs v and phi can be either scalars or Python functions, e.g. |
---|
1315 | |
---|
1316 | W = Wind_stress(10, 178) |
---|
1317 | |
---|
1318 | #FIXME - 'normal' degrees are assumed for now, i.e. the |
---|
1319 | vector (1,0) has zero degrees. |
---|
1320 | We may need to convert from 'compass' degrees later on and also |
---|
1321 | map from True north to grid north. |
---|
1322 | |
---|
1323 | Arguments can also be Python functions of t,x,y as in |
---|
1324 | |
---|
1325 | def speed(t,x,y): |
---|
1326 | ... |
---|
1327 | return s |
---|
1328 | |
---|
1329 | def angle(t,x,y): |
---|
1330 | ... |
---|
1331 | return phi |
---|
1332 | |
---|
1333 | where x and y are vectors. |
---|
1334 | |
---|
1335 | and then pass the functions in |
---|
1336 | |
---|
1337 | W = Wind_stress(speed, angle) |
---|
1338 | |
---|
1339 | The instantiated object W can be appended to the list of |
---|
1340 | forcing_terms as in |
---|
1341 | |
---|
1342 | Alternatively, one vector valued function for (speed, angle) |
---|
1343 | can be applied, providing both quantities simultaneously. |
---|
1344 | As in |
---|
1345 | W = Wind_stress(F), where returns (speed, angle) for each t. |
---|
1346 | |
---|
1347 | domain.forcing_terms.append(W) |
---|
1348 | """ |
---|
1349 | |
---|
1350 | from anuga.config import rho_a, rho_w, eta_w |
---|
1351 | from Numeric import array, Float |
---|
1352 | |
---|
1353 | if len(args) == 2: |
---|
1354 | s = args[0] |
---|
1355 | phi = args[1] |
---|
1356 | elif len(args) == 1: |
---|
1357 | # Assume vector function returning (s, phi)(t,x,y) |
---|
1358 | vector_function = args[0] |
---|
1359 | s = lambda t,x,y: vector_function(t,x=x,y=y)[0] |
---|
1360 | phi = lambda t,x,y: vector_function(t,x=x,y=y)[1] |
---|
1361 | else: |
---|
1362 | # Assume info is in 2 keyword arguments |
---|
1363 | |
---|
1364 | if len(kwargs) == 2: |
---|
1365 | s = kwargs['s'] |
---|
1366 | phi = kwargs['phi'] |
---|
1367 | else: |
---|
1368 | raise 'Assumes two keyword arguments: s=..., phi=....' |
---|
1369 | |
---|
1370 | self.speed = check_forcefield(s) |
---|
1371 | self.phi = check_forcefield(phi) |
---|
1372 | |
---|
1373 | self.const = eta_w*rho_a/rho_w |
---|
1374 | |
---|
1375 | |
---|
1376 | def __call__(self, domain): |
---|
1377 | """Evaluate windfield based on values found in domain |
---|
1378 | """ |
---|
1379 | |
---|
1380 | from math import pi, cos, sin, sqrt |
---|
1381 | from Numeric import Float, ones, ArrayType |
---|
1382 | |
---|
1383 | xmom_update = domain.quantities['xmomentum'].explicit_update |
---|
1384 | ymom_update = domain.quantities['ymomentum'].explicit_update |
---|
1385 | |
---|
1386 | N = len(domain) # number_of_triangles |
---|
1387 | t = domain.time |
---|
1388 | |
---|
1389 | if callable(self.speed): |
---|
1390 | xc = domain.get_centroid_coordinates() |
---|
1391 | s_vec = self.speed(t, xc[:,0], xc[:,1]) |
---|
1392 | else: |
---|
1393 | # Assume s is a scalar |
---|
1394 | |
---|
1395 | try: |
---|
1396 | s_vec = self.speed * ones(N, Float) |
---|
1397 | except: |
---|
1398 | msg = 'Speed must be either callable or a scalar: %s' %self.s |
---|
1399 | raise msg |
---|
1400 | |
---|
1401 | |
---|
1402 | if callable(self.phi): |
---|
1403 | xc = domain.get_centroid_coordinates() |
---|
1404 | phi_vec = self.phi(t, xc[:,0], xc[:,1]) |
---|
1405 | else: |
---|
1406 | # Assume phi is a scalar |
---|
1407 | |
---|
1408 | try: |
---|
1409 | phi_vec = self.phi * ones(N, Float) |
---|
1410 | except: |
---|
1411 | msg = 'Angle must be either callable or a scalar: %s' %self.phi |
---|
1412 | raise msg |
---|
1413 | |
---|
1414 | assign_windfield_values(xmom_update, ymom_update, |
---|
1415 | s_vec, phi_vec, self.const) |
---|
1416 | |
---|
1417 | |
---|
1418 | def assign_windfield_values(xmom_update, ymom_update, |
---|
1419 | s_vec, phi_vec, const): |
---|
1420 | """Python version of assigning wind field to update vectors. |
---|
1421 | A c version also exists (for speed) |
---|
1422 | """ |
---|
1423 | from math import pi, cos, sin, sqrt |
---|
1424 | |
---|
1425 | N = len(s_vec) |
---|
1426 | for k in range(N): |
---|
1427 | s = s_vec[k] |
---|
1428 | phi = phi_vec[k] |
---|
1429 | |
---|
1430 | # Convert to radians |
---|
1431 | phi = phi*pi/180 |
---|
1432 | |
---|
1433 | # Compute velocity vector (u, v) |
---|
1434 | u = s*cos(phi) |
---|
1435 | v = s*sin(phi) |
---|
1436 | |
---|
1437 | # Compute wind stress |
---|
1438 | S = const * sqrt(u**2 + v**2) |
---|
1439 | xmom_update[k] += S*u |
---|
1440 | ymom_update[k] += S*v |
---|
1441 | |
---|
1442 | |
---|
1443 | |
---|
1444 | class Rainfall: |
---|
1445 | """Class Rainfall - general 'rain over entire domain' forcing term. |
---|
1446 | |
---|
1447 | Used for implementing Rainfall over the entire domain. |
---|
1448 | |
---|
1449 | Current Limited to only One Gauge.. |
---|
1450 | |
---|
1451 | Need to add Spatial Varying Capability |
---|
1452 | (This module came from copying and amending the Inflow Code) |
---|
1453 | |
---|
1454 | Rainfall(rain) |
---|
1455 | |
---|
1456 | rain [mm/s]: Total rain rate over the specified domain. |
---|
1457 | NOTE: Raingauge Data needs to reflect the time step. |
---|
1458 | IE: if Gauge is mm read at a time step, then the input |
---|
1459 | here is as mm/(timeStep) so 10mm in 5minutes becomes |
---|
1460 | 10/(5x60) = 0.0333mm/s. |
---|
1461 | |
---|
1462 | |
---|
1463 | This parameter can be either a constant or a |
---|
1464 | function of time. Positive values indicate inflow, |
---|
1465 | negative values indicate outflow. |
---|
1466 | (and be used for Infiltration - Write Seperate Module) |
---|
1467 | The specified flow will be divided by the area of |
---|
1468 | the inflow region and then applied to update the |
---|
1469 | quantity in question. |
---|
1470 | |
---|
1471 | Examples |
---|
1472 | How to put them in a run File... |
---|
1473 | |
---|
1474 | #-------------------------------------------------------------------------- |
---|
1475 | # Setup specialised forcing terms |
---|
1476 | #-------------------------------------------------------------------------- |
---|
1477 | # This is the new element implemented by Ole and Rudy to allow direct |
---|
1478 | # input of Inflow in mm/s |
---|
1479 | |
---|
1480 | catchmentrainfall = Rainfall(rain=file_function('Q100_2hr_Rain.tms')) |
---|
1481 | # Note need path to File in String. |
---|
1482 | # Else assumed in same directory |
---|
1483 | |
---|
1484 | domain.forcing_terms.append(catchmentrainfall) |
---|
1485 | """ |
---|
1486 | |
---|
1487 | # FIXME (OLE): Add a polygon as an alternative. |
---|
1488 | # FIXME (AnyOne) : Add various methods to allow spatial variations |
---|
1489 | # FIXME (OLE): Generalise to all quantities |
---|
1490 | |
---|
1491 | def __init__(self, |
---|
1492 | rain=0.0, |
---|
1493 | quantity_name='stage'): |
---|
1494 | |
---|
1495 | self.rain = rain |
---|
1496 | self.quantity_name = quantity_name |
---|
1497 | |
---|
1498 | def __call__(self, domain): |
---|
1499 | |
---|
1500 | # Update rainfall |
---|
1501 | if callable(self.rain): |
---|
1502 | rain = self.rain(domain.get_time()) |
---|
1503 | else: |
---|
1504 | rain = self.rain |
---|
1505 | |
---|
1506 | # Now rain is a number |
---|
1507 | quantity = domain.quantities[self.quantity_name].explicit_update |
---|
1508 | quantity[:] += rain/1000 # Converting mm/s to m/s to apply in ANUGA |
---|
1509 | # 1mm of rainfall is equivalent to 1 litre /m2 |
---|
1510 | # Flow is expressed as m3/s converted to a stage height in (m) |
---|
1511 | |
---|
1512 | # Note 1m3 = 1x10^9mm3 (mls) |
---|
1513 | # or is that m3 to Litres ??? Check this how is it applied !!! |
---|
1514 | |
---|
1515 | |
---|
1516 | class Inflow: |
---|
1517 | """Class Inflow - general 'rain and drain' forcing term. |
---|
1518 | |
---|
1519 | Useful for implementing flows in and out of the domain. |
---|
1520 | |
---|
1521 | Inflow(center, radius, flow) |
---|
1522 | |
---|
1523 | center [m]: Coordinates at center of flow point |
---|
1524 | radius [m]: Size of circular area |
---|
1525 | flow [m^3/s]: Total flow rate over the specified area. |
---|
1526 | This parameter can be either a constant or a |
---|
1527 | function of time. Positive values indicate inflow, |
---|
1528 | negative values indicate outflow. |
---|
1529 | The specified flow will be divided by the area of |
---|
1530 | the inflow region and then applied to update the |
---|
1531 | quantity in question. |
---|
1532 | |
---|
1533 | Examples |
---|
1534 | |
---|
1535 | # Constant drain at 0.003 m^3/s. |
---|
1536 | # The outflow area is 0.07**2*pi=0.0154 m^2 |
---|
1537 | # This corresponds to a rate of change of 0.003/0.0154 = 0.2 m/s |
---|
1538 | # |
---|
1539 | Inflow((0.7, 0.4), 0.07, -0.003) |
---|
1540 | |
---|
1541 | |
---|
1542 | # Tap turning up to a maximum inflow of 0.0142 m^3/s. |
---|
1543 | # The inflow area is 0.03**2*pi = 0.00283 m^2 |
---|
1544 | # This corresponds to a rate of change of 0.0142/0.00283 = 5 m/s |
---|
1545 | # over the specified area |
---|
1546 | Inflow((0.5, 0.5), 0.03, lambda t: min(0.01*t, 0.0142)) |
---|
1547 | |
---|
1548 | #-------------------------------------------------------------------------- |
---|
1549 | # Setup specialised forcing terms |
---|
1550 | #-------------------------------------------------------------------------- |
---|
1551 | # This is the new element implemented by Ole to allow direct input |
---|
1552 | # of Inflow in m^3/s |
---|
1553 | |
---|
1554 | hydrograph = Inflow(center=(320, 300), radius=10, |
---|
1555 | flow=file_function('Q/QPMF_Rot_Sub13.tms')) |
---|
1556 | |
---|
1557 | domain.forcing_terms.append(hydrograph) |
---|
1558 | |
---|
1559 | """ |
---|
1560 | |
---|
1561 | # FIXME (OLE): Add a polygon as an alternative. |
---|
1562 | # FIXME (OLE): Generalise to all quantities |
---|
1563 | |
---|
1564 | def __init__(self, |
---|
1565 | center=None, radius=None, |
---|
1566 | flow=0.0, |
---|
1567 | quantity_name = 'stage'): |
---|
1568 | |
---|
1569 | from math import pi |
---|
1570 | |
---|
1571 | |
---|
1572 | |
---|
1573 | if center is not None and radius is not None: |
---|
1574 | assert len(center) == 2 |
---|
1575 | else: |
---|
1576 | msg = 'Both center and radius must be specified' |
---|
1577 | raise Exception, msg |
---|
1578 | |
---|
1579 | self.center = center |
---|
1580 | self.radius = radius |
---|
1581 | self.area = radius**2*pi |
---|
1582 | self.flow = flow |
---|
1583 | self.quantity_name = quantity_name |
---|
1584 | |
---|
1585 | def __call__(self, domain): |
---|
1586 | |
---|
1587 | # Determine indices in flow area |
---|
1588 | if not hasattr(self, 'indices'): |
---|
1589 | center = self.center |
---|
1590 | radius = self.radius |
---|
1591 | |
---|
1592 | N = len(domain) |
---|
1593 | self.indices = [] |
---|
1594 | coordinates = domain.get_centroid_coordinates() |
---|
1595 | for k in range(N): |
---|
1596 | x, y = coordinates[k,:] # Centroid |
---|
1597 | if ((x-center[0])**2+(y-center[1])**2) < radius**2: |
---|
1598 | self.indices.append(k) |
---|
1599 | |
---|
1600 | # Update inflow |
---|
1601 | if callable(self.flow): |
---|
1602 | flow = self.flow(domain.get_time()) |
---|
1603 | else: |
---|
1604 | flow = self.flow |
---|
1605 | |
---|
1606 | # Now flow is a number |
---|
1607 | |
---|
1608 | quantity = domain.quantities[self.quantity_name].explicit_update |
---|
1609 | for k in self.indices: |
---|
1610 | quantity[k] += flow/self.area |
---|
1611 | |
---|
1612 | |
---|
1613 | #------------------ |
---|
1614 | # Initialise module |
---|
1615 | #------------------ |
---|
1616 | |
---|
1617 | |
---|
1618 | from anuga.utilities import compile |
---|
1619 | if compile.can_use_C_extension('shallow_water_ext.c'): |
---|
1620 | # Underlying C implementations can be accessed |
---|
1621 | |
---|
1622 | from shallow_water_ext import rotate, assign_windfield_values |
---|
1623 | else: |
---|
1624 | msg = 'C implementations could not be accessed by %s.\n ' %__file__ |
---|
1625 | msg += 'Make sure compile_all.py has been run as described in ' |
---|
1626 | msg += 'the ANUGA installation guide.' |
---|
1627 | raise Exception, msg |
---|
1628 | |
---|
1629 | |
---|
1630 | # Optimisation with psyco |
---|
1631 | from anuga.config import use_psyco |
---|
1632 | if use_psyco: |
---|
1633 | try: |
---|
1634 | import psyco |
---|
1635 | except: |
---|
1636 | import os |
---|
1637 | if os.name == 'posix' and os.uname()[4] == 'x86_64': |
---|
1638 | pass |
---|
1639 | #Psyco isn't supported on 64 bit systems, but it doesn't matter |
---|
1640 | else: |
---|
1641 | msg = 'WARNING: psyco (speedup) could not import'+\ |
---|
1642 | ', you may want to consider installing it' |
---|
1643 | print msg |
---|
1644 | else: |
---|
1645 | psyco.bind(Domain.distribute_to_vertices_and_edges) |
---|
1646 | psyco.bind(Domain.compute_fluxes) |
---|
1647 | |
---|
1648 | if __name__ == "__main__": |
---|
1649 | pass |
---|
1650 | |
---|
1651 | |
---|