[3698] | 1 | // Python - C extension module for shallow_water.py |
---|
| 2 | // |
---|
| 3 | // To compile (Python2.3): |
---|
| 4 | // gcc -c domain_ext.c -I/usr/include/python2.3 -o domain_ext.o -Wall -O |
---|
| 5 | // gcc -shared domain_ext.o -o domain_ext.so |
---|
| 6 | // |
---|
| 7 | // or use python compile.py |
---|
| 8 | // |
---|
| 9 | // See the module shallow_water.py |
---|
| 10 | // |
---|
| 11 | // |
---|
| 12 | // Ole Nielsen, GA 2004 |
---|
| 13 | |
---|
| 14 | |
---|
| 15 | #include "Python.h" |
---|
| 16 | #include "Numeric/arrayobject.h" |
---|
| 17 | #include "math.h" |
---|
| 18 | #include <stdio.h> |
---|
| 19 | |
---|
| 20 | //Shared code snippets |
---|
| 21 | #include "util_ext.h" |
---|
| 22 | |
---|
| 23 | const double pi = 3.14159265358979; |
---|
| 24 | |
---|
| 25 | // Computational function for rotation |
---|
| 26 | int _rotate(double *q, double n1, double n2) { |
---|
| 27 | /*Rotate the momentum component q (q[1], q[2]) |
---|
| 28 | from x,y coordinates to coordinates based on normal vector (n1, n2). |
---|
| 29 | |
---|
| 30 | Result is returned in array 3x1 r |
---|
| 31 | To rotate in opposite direction, call rotate with (q, n1, -n2) |
---|
| 32 | |
---|
| 33 | Contents of q are changed by this function */ |
---|
| 34 | |
---|
| 35 | |
---|
| 36 | double q1, q2; |
---|
| 37 | |
---|
| 38 | //Shorthands |
---|
| 39 | q1 = q[1]; //uh momentum |
---|
| 40 | q2 = q[2]; //vh momentum |
---|
| 41 | |
---|
| 42 | //Rotate |
---|
| 43 | q[1] = n1*q1 + n2*q2; |
---|
| 44 | q[2] = -n2*q1 + n1*q2; |
---|
| 45 | |
---|
| 46 | return 0; |
---|
| 47 | } |
---|
| 48 | |
---|
| 49 | int find_qmin_and_qmax(double dq0, double dq1, double dq2, double *qmin, double *qmax){ |
---|
| 50 | //Considering the centroid of an FV triangle and the vertices of its auxiliary triangle, find |
---|
| 51 | //qmin=min(q)-qc and qmax=max(q)-qc, where min(q) and max(q) are respectively min and max over the |
---|
| 52 | //four values (at the centroid of the FV triangle and the auxiliary triangle vertices), |
---|
| 53 | //and qc is the centroid |
---|
| 54 | //dq0=q(vertex0)-q(centroid of FV triangle) |
---|
| 55 | //dq1=q(vertex1)-q(vertex0) |
---|
| 56 | //dq2=q(vertex2)-q(vertex0) |
---|
| 57 | if (dq0>=0.0){ |
---|
| 58 | if (dq1>=dq2){ |
---|
| 59 | if (dq1>=0.0) |
---|
| 60 | *qmax=dq0+dq1; |
---|
| 61 | else |
---|
| 62 | *qmax=dq0; |
---|
| 63 | if ((*qmin=dq0+dq2)<0) |
---|
| 64 | ;//qmin is already set to correct value |
---|
| 65 | else |
---|
| 66 | *qmin=0.0; |
---|
| 67 | } |
---|
| 68 | else{//dq1<dq2 |
---|
| 69 | if (dq2>0) |
---|
| 70 | *qmax=dq0+dq2; |
---|
| 71 | else |
---|
| 72 | *qmax=dq0; |
---|
| 73 | if ((*qmin=dq0+dq1)<0) |
---|
| 74 | ;//qmin is the correct value |
---|
| 75 | else |
---|
| 76 | *qmin=0.0; |
---|
| 77 | } |
---|
| 78 | } |
---|
| 79 | else{//dq0<0 |
---|
| 80 | if (dq1<=dq2){ |
---|
| 81 | if (dq1<0.0) |
---|
| 82 | *qmin=dq0+dq1; |
---|
| 83 | else |
---|
| 84 | *qmin=dq0; |
---|
| 85 | if ((*qmax=dq0+dq2)>0.0) |
---|
| 86 | ;//qmax is already set to the correct value |
---|
| 87 | else |
---|
| 88 | *qmax=0.0; |
---|
| 89 | } |
---|
| 90 | else{//dq1>dq2 |
---|
| 91 | if (dq2<0.0) |
---|
| 92 | *qmin=dq0+dq2; |
---|
| 93 | else |
---|
| 94 | *qmin=dq0; |
---|
| 95 | if ((*qmax=dq0+dq1)>0.0) |
---|
| 96 | ;//qmax is already set to the correct value |
---|
| 97 | else |
---|
| 98 | *qmax=0.0; |
---|
| 99 | } |
---|
| 100 | } |
---|
| 101 | return 0; |
---|
| 102 | } |
---|
| 103 | |
---|
| 104 | int limit_gradient(double *dqv, double qmin, double qmax, double beta_w){ |
---|
| 105 | //given provisional jumps dqv from the FV triangle centroid to its vertices and |
---|
| 106 | //jumps qmin (qmax) between the centroid of the FV triangle and the |
---|
| 107 | //minimum (maximum) of the values at the centroid of the FV triangle and the auxiliary triangle vertices, |
---|
| 108 | //calculate a multiplicative factor phi by which the provisional vertex jumps are to be limited |
---|
| 109 | int i; |
---|
| 110 | double r=1000.0, r0=1.0, phi=1.0; |
---|
| 111 | static double TINY = 1.0e-100;//to avoid machine accuracy problems. |
---|
| 112 | //Any provisional jump with magnitude < TINY does not contribute to the limiting process. |
---|
| 113 | for (i=0;i<3;i++){ |
---|
| 114 | if (dqv[i]<-TINY) |
---|
| 115 | r0=qmin/dqv[i]; |
---|
| 116 | if (dqv[i]>TINY) |
---|
| 117 | r0=qmax/dqv[i]; |
---|
| 118 | r=min(r0,r); |
---|
| 119 | // |
---|
| 120 | } |
---|
| 121 | phi=min(r*beta_w,1.0); |
---|
| 122 | for (i=0;i<3;i++) |
---|
| 123 | dqv[i]=dqv[i]*phi; |
---|
| 124 | return 0; |
---|
| 125 | } |
---|
| 126 | |
---|
| 127 | // Computational function for flux computation (using stage w=z+h) |
---|
| 128 | int flux_function_central(double *q_left, double *q_right, |
---|
| 129 | double z_left, double z_right, |
---|
| 130 | double n1, double n2, |
---|
| 131 | double epsilon, double g, |
---|
| 132 | double *edgeflux, double *max_speed) { |
---|
| 133 | |
---|
| 134 | /*Compute fluxes between volumes for the shallow water wave equation |
---|
| 135 | cast in terms of the 'stage', w = h+z using |
---|
| 136 | the 'central scheme' as described in |
---|
| 137 | |
---|
| 138 | Kurganov, Noelle, Petrova. 'Semidiscrete Central-Upwind Schemes For |
---|
| 139 | Hyperbolic Conservation Laws and Hamilton-Jacobi Equations'. |
---|
| 140 | Siam J. Sci. Comput. Vol. 23, No. 3, pp. 707-740. |
---|
| 141 | |
---|
| 142 | The implemented formula is given in equation (3.15) on page 714 |
---|
| 143 | */ |
---|
| 144 | |
---|
| 145 | int i; |
---|
| 146 | |
---|
| 147 | double w_left, h_left, uh_left, vh_left, u_left; |
---|
| 148 | double w_right, h_right, uh_right, vh_right, u_right; |
---|
| 149 | double s_min, s_max, soundspeed_left, soundspeed_right; |
---|
| 150 | double denom, z; |
---|
| 151 | double q_left_copy[3], q_right_copy[3]; |
---|
| 152 | double flux_right[3], flux_left[3]; |
---|
| 153 | |
---|
| 154 | //Copy conserved quantities to protect from modification |
---|
| 155 | for (i=0; i<3; i++) { |
---|
| 156 | q_left_copy[i] = q_left[i]; |
---|
| 157 | q_right_copy[i] = q_right[i]; |
---|
| 158 | } |
---|
| 159 | |
---|
| 160 | //Align x- and y-momentum with x-axis |
---|
| 161 | _rotate(q_left_copy, n1, n2); |
---|
| 162 | _rotate(q_right_copy, n1, n2); |
---|
| 163 | |
---|
| 164 | z = (z_left+z_right)/2; //Take average of field values |
---|
| 165 | |
---|
| 166 | //Compute speeds in x-direction |
---|
| 167 | w_left = q_left_copy[0]; // h+z |
---|
| 168 | h_left = w_left-z; |
---|
| 169 | uh_left = q_left_copy[1]; |
---|
| 170 | |
---|
| 171 | if (h_left < epsilon) { |
---|
| 172 | h_left = 0.0; //Could have been negative |
---|
| 173 | u_left = 0.0; |
---|
| 174 | } else { |
---|
| 175 | u_left = uh_left/h_left; |
---|
| 176 | } |
---|
| 177 | |
---|
| 178 | w_right = q_right_copy[0]; |
---|
| 179 | h_right = w_right-z; |
---|
| 180 | uh_right = q_right_copy[1]; |
---|
| 181 | |
---|
| 182 | if (h_right < epsilon) { |
---|
| 183 | h_right = 0.0; //Could have been negative |
---|
| 184 | u_right = 0.0; |
---|
| 185 | } else { |
---|
| 186 | u_right = uh_right/h_right; |
---|
| 187 | } |
---|
| 188 | |
---|
| 189 | //Momentum in y-direction |
---|
| 190 | vh_left = q_left_copy[2]; |
---|
| 191 | vh_right = q_right_copy[2]; |
---|
| 192 | |
---|
| 193 | |
---|
| 194 | //Maximal and minimal wave speeds |
---|
| 195 | soundspeed_left = sqrt(g*h_left); |
---|
| 196 | soundspeed_right = sqrt(g*h_right); |
---|
| 197 | |
---|
| 198 | s_max = max(u_left+soundspeed_left, u_right+soundspeed_right); |
---|
| 199 | if (s_max < 0.0) s_max = 0.0; |
---|
| 200 | |
---|
| 201 | s_min = min(u_left-soundspeed_left, u_right-soundspeed_right); |
---|
| 202 | if (s_min > 0.0) s_min = 0.0; |
---|
| 203 | |
---|
| 204 | //Flux formulas |
---|
| 205 | flux_left[0] = u_left*h_left; |
---|
| 206 | flux_left[1] = u_left*uh_left + 0.5*g*h_left*h_left; |
---|
| 207 | flux_left[2] = u_left*vh_left; |
---|
| 208 | |
---|
| 209 | flux_right[0] = u_right*h_right; |
---|
| 210 | flux_right[1] = u_right*uh_right + 0.5*g*h_right*h_right; |
---|
| 211 | flux_right[2] = u_right*vh_right; |
---|
| 212 | |
---|
| 213 | |
---|
| 214 | //Flux computation |
---|
| 215 | denom = s_max-s_min; |
---|
| 216 | if (denom == 0.0) { |
---|
| 217 | for (i=0; i<3; i++) edgeflux[i] = 0.0; |
---|
| 218 | *max_speed = 0.0; |
---|
| 219 | } else { |
---|
| 220 | for (i=0; i<3; i++) { |
---|
| 221 | edgeflux[i] = s_max*flux_left[i] - s_min*flux_right[i]; |
---|
| 222 | edgeflux[i] += s_max*s_min*(q_right_copy[i]-q_left_copy[i]); |
---|
| 223 | edgeflux[i] /= denom; |
---|
| 224 | } |
---|
| 225 | |
---|
| 226 | //Maximal wavespeed |
---|
| 227 | *max_speed = max(fabs(s_max), fabs(s_min)); |
---|
| 228 | |
---|
| 229 | //Rotate back |
---|
| 230 | _rotate(edgeflux, n1, -n2); |
---|
| 231 | } |
---|
| 232 | return 0; |
---|
| 233 | } |
---|
| 234 | |
---|
| 235 | double erfcc(double x){ |
---|
| 236 | double z,t,result; |
---|
| 237 | |
---|
| 238 | z=fabs(x); |
---|
| 239 | t=1.0/(1.0+0.5*z); |
---|
| 240 | result=t*exp(-z*z-1.26551223+t*(1.00002368+t*(.37409196+ |
---|
| 241 | t*(.09678418+t*(-.18628806+t*(.27886807+t*(-1.13520398+ |
---|
| 242 | t*(1.48851587+t*(-.82215223+t*.17087277))))))))); |
---|
| 243 | if (x < 0.0) result = 2.0-result; |
---|
| 244 | |
---|
| 245 | return result; |
---|
| 246 | } |
---|
| 247 | |
---|
| 248 | |
---|
| 249 | |
---|
| 250 | // Computational function for flux computation (using stage w=z+h) |
---|
| 251 | int flux_function_kinetic(double *q_left, double *q_right, |
---|
| 252 | double z_left, double z_right, |
---|
| 253 | double n1, double n2, |
---|
| 254 | double epsilon, double g, |
---|
| 255 | double *edgeflux, double *max_speed) { |
---|
| 256 | |
---|
| 257 | /*Compute fluxes between volumes for the shallow water wave equation |
---|
| 258 | cast in terms of the 'stage', w = h+z using |
---|
| 259 | the 'central scheme' as described in |
---|
| 260 | |
---|
| 261 | Zhang et. al., Advances in Water Resources, 26(6), 2003, 635-647. |
---|
| 262 | */ |
---|
| 263 | |
---|
| 264 | int i; |
---|
| 265 | |
---|
| 266 | double w_left, h_left, uh_left, vh_left, u_left, F_left; |
---|
| 267 | double w_right, h_right, uh_right, vh_right, u_right, F_right; |
---|
| 268 | double s_min, s_max, soundspeed_left, soundspeed_right; |
---|
| 269 | double z; |
---|
| 270 | double q_left_copy[3], q_right_copy[3]; |
---|
| 271 | |
---|
| 272 | |
---|
| 273 | //Copy conserved quantities to protect from modification |
---|
| 274 | for (i=0; i<3; i++) { |
---|
| 275 | q_left_copy[i] = q_left[i]; |
---|
| 276 | q_right_copy[i] = q_right[i]; |
---|
| 277 | } |
---|
| 278 | |
---|
| 279 | //Align x- and y-momentum with x-axis |
---|
| 280 | _rotate(q_left_copy, n1, n2); |
---|
| 281 | _rotate(q_right_copy, n1, n2); |
---|
| 282 | |
---|
| 283 | z = (z_left+z_right)/2; //Take average of field values |
---|
| 284 | |
---|
| 285 | //Compute speeds in x-direction |
---|
| 286 | w_left = q_left_copy[0]; // h+z |
---|
| 287 | h_left = w_left-z; |
---|
| 288 | uh_left = q_left_copy[1]; |
---|
| 289 | |
---|
| 290 | if (h_left < epsilon) { |
---|
| 291 | h_left = 0.0; //Could have been negative |
---|
| 292 | u_left = 0.0; |
---|
| 293 | } else { |
---|
| 294 | u_left = uh_left/h_left; |
---|
| 295 | } |
---|
| 296 | |
---|
| 297 | w_right = q_right_copy[0]; |
---|
| 298 | h_right = w_right-z; |
---|
| 299 | uh_right = q_right_copy[1]; |
---|
| 300 | |
---|
| 301 | if (h_right < epsilon) { |
---|
| 302 | h_right = 0.0; //Could have been negative |
---|
| 303 | u_right = 0.0; |
---|
| 304 | } else { |
---|
| 305 | u_right = uh_right/h_right; |
---|
| 306 | } |
---|
| 307 | |
---|
| 308 | //Momentum in y-direction |
---|
| 309 | vh_left = q_left_copy[2]; |
---|
| 310 | vh_right = q_right_copy[2]; |
---|
| 311 | |
---|
| 312 | |
---|
| 313 | //Maximal and minimal wave speeds |
---|
| 314 | soundspeed_left = sqrt(g*h_left); |
---|
| 315 | soundspeed_right = sqrt(g*h_right); |
---|
| 316 | |
---|
| 317 | s_max = max(u_left+soundspeed_left, u_right+soundspeed_right); |
---|
| 318 | if (s_max < 0.0) s_max = 0.0; |
---|
| 319 | |
---|
| 320 | s_min = min(u_left-soundspeed_left, u_right-soundspeed_right); |
---|
| 321 | if (s_min > 0.0) s_min = 0.0; |
---|
| 322 | |
---|
| 323 | |
---|
| 324 | F_left = 0.0; |
---|
| 325 | F_right = 0.0; |
---|
| 326 | if (h_left > 0.0) F_left = u_left/sqrt(g*h_left); |
---|
| 327 | if (h_right > 0.0) F_right = u_right/sqrt(g*h_right); |
---|
| 328 | |
---|
| 329 | for (i=0; i<3; i++) edgeflux[i] = 0.0; |
---|
| 330 | *max_speed = 0.0; |
---|
| 331 | |
---|
| 332 | edgeflux[0] = h_left*u_left/2.0*erfcc(-F_left) + \ |
---|
| 333 | h_left*sqrt(g*h_left)/2.0/sqrt(pi)*exp(-(F_left*F_left)) + \ |
---|
| 334 | h_right*u_right/2.0*erfcc(F_right) - \ |
---|
| 335 | h_right*sqrt(g*h_right)/2.0/sqrt(pi)*exp(-(F_right*F_right)); |
---|
| 336 | |
---|
| 337 | edgeflux[1] = (h_left*u_left*u_left + g/2.0*h_left*h_left)/2.0*erfcc(-F_left) + \ |
---|
| 338 | u_left*h_left*sqrt(g*h_left)/2.0/sqrt(pi)*exp(-(F_left*F_left)) + \ |
---|
| 339 | (h_right*u_right*u_right + g/2.0*h_right*h_right)/2.0*erfcc(F_right) - \ |
---|
| 340 | u_right*h_right*sqrt(g*h_right)/2.0/sqrt(pi)*exp(-(F_right*F_right)); |
---|
| 341 | |
---|
| 342 | edgeflux[2] = vh_left*u_left/2.0*erfcc(-F_left) + \ |
---|
| 343 | vh_left*sqrt(g*h_left)/2.0/sqrt(pi)*exp(-(F_left*F_left)) + \ |
---|
| 344 | vh_right*u_right/2.0*erfcc(F_right) - \ |
---|
| 345 | vh_right*sqrt(g*h_right)/2.0/sqrt(pi)*exp(-(F_right*F_right)); |
---|
| 346 | |
---|
| 347 | //Maximal wavespeed |
---|
| 348 | *max_speed = max(fabs(s_max), fabs(s_min)); |
---|
| 349 | |
---|
| 350 | //Rotate back |
---|
| 351 | _rotate(edgeflux, n1, -n2); |
---|
| 352 | |
---|
| 353 | return 0; |
---|
| 354 | } |
---|
| 355 | |
---|
| 356 | |
---|
| 357 | void _manning_friction(double g, double eps, int N, |
---|
| 358 | double* w, double* z, |
---|
| 359 | double* uh, double* vh, |
---|
| 360 | double* eta, double* xmom, double* ymom) { |
---|
| 361 | |
---|
| 362 | int k; |
---|
| 363 | double S, h; |
---|
| 364 | |
---|
| 365 | for (k=0; k<N; k++) { |
---|
| 366 | if (eta[k] > eps) { |
---|
| 367 | h = w[k]-z[k]; |
---|
| 368 | if (h >= eps) { |
---|
| 369 | S = -g * eta[k]*eta[k] * sqrt((uh[k]*uh[k] + vh[k]*vh[k])); |
---|
| 370 | //S /= pow(h, 7.0/3); //Expensive (on Ole's home computer) |
---|
| 371 | S /= exp(7.0/3.0*log(h)); //seems to save about 15% over manning_friction |
---|
| 372 | //S /= h*h*(1 + h/3.0 - h*h/9.0); //FIXME: Could use a Taylor expansion |
---|
| 373 | |
---|
| 374 | |
---|
| 375 | //Update momentum |
---|
| 376 | xmom[k] += S*uh[k]; |
---|
| 377 | ymom[k] += S*vh[k]; |
---|
| 378 | } |
---|
| 379 | } |
---|
| 380 | } |
---|
| 381 | } |
---|
| 382 | |
---|
| 383 | |
---|
| 384 | |
---|
| 385 | int _balance_deep_and_shallow(int N, |
---|
| 386 | double* wc, |
---|
| 387 | double* zc, |
---|
| 388 | double* hc, |
---|
| 389 | double* wv, |
---|
| 390 | double* zv, |
---|
| 391 | double* hv, |
---|
| 392 | double* hvbar, |
---|
| 393 | double* xmomc, |
---|
| 394 | double* ymomc, |
---|
| 395 | double* xmomv, |
---|
| 396 | double* ymomv) { |
---|
| 397 | |
---|
| 398 | int k, k3, i; |
---|
| 399 | double dz, hmin, alpha; |
---|
| 400 | |
---|
| 401 | //Compute linear combination between w-limited stages and |
---|
| 402 | //h-limited stages close to the bed elevation. |
---|
| 403 | |
---|
| 404 | for (k=0; k<N; k++) { |
---|
| 405 | // Compute maximal variation in bed elevation |
---|
| 406 | // This quantitiy is |
---|
| 407 | // dz = max_i abs(z_i - z_c) |
---|
| 408 | // and it is independent of dimension |
---|
| 409 | // In the 1d case zc = (z0+z1)/2 |
---|
| 410 | // In the 2d case zc = (z0+z1+z2)/3 |
---|
| 411 | |
---|
| 412 | k3 = 3*k; |
---|
| 413 | |
---|
| 414 | //FIXME: Try with this one precomputed |
---|
| 415 | dz = 0.0; |
---|
| 416 | hmin = hv[k3]; |
---|
| 417 | for (i=0; i<3; i++) { |
---|
| 418 | dz = max(dz, fabs(zv[k3+i]-zc[k])); |
---|
| 419 | hmin = min(hmin, hv[k3+i]); |
---|
| 420 | } |
---|
| 421 | |
---|
| 422 | |
---|
| 423 | //Create alpha in [0,1], where alpha==0 means using the h-limited |
---|
| 424 | //stage and alpha==1 means using the w-limited stage as |
---|
| 425 | //computed by the gradient limiter (both 1st or 2nd order) |
---|
| 426 | // |
---|
| 427 | //If hmin > dz/2 then alpha = 1 and the bed will have no effect |
---|
| 428 | //If hmin < 0 then alpha = 0 reverting to constant height above bed. |
---|
| 429 | |
---|
| 430 | |
---|
| 431 | if (dz > 0.0) |
---|
| 432 | //if (hmin<0.0) |
---|
| 433 | // alpha = 0.0; |
---|
| 434 | //else |
---|
| 435 | // alpha = max( min( hc[k]/dz, 1.0), 0.0 ); |
---|
| 436 | alpha = max( min( 2.0*hmin/dz, 1.0), 0.0 ); |
---|
| 437 | else |
---|
| 438 | alpha = 1.0; //Flat bed |
---|
| 439 | |
---|
| 440 | //alpha = 1.0; |
---|
| 441 | |
---|
| 442 | //printf("dz = %.3f, alpha = %.8f\n", dz, alpha); |
---|
| 443 | |
---|
| 444 | // Let |
---|
| 445 | // |
---|
| 446 | // wvi be the w-limited stage (wvi = zvi + hvi) |
---|
| 447 | // wvi- be the h-limited state (wvi- = zvi + hvi-) |
---|
| 448 | // |
---|
| 449 | // |
---|
| 450 | // where i=0,1,2 denotes the vertex ids |
---|
| 451 | // |
---|
| 452 | // Weighted balance between w-limited and h-limited stage is |
---|
| 453 | // |
---|
| 454 | // wvi := (1-alpha)*(zvi+hvi-) + alpha*(zvi+hvi) |
---|
| 455 | // |
---|
| 456 | // It follows that the updated wvi is |
---|
| 457 | // wvi := zvi + (1-alpha)*hvi- + alpha*hvi |
---|
| 458 | // |
---|
| 459 | // Momentum is balanced between constant and limited |
---|
| 460 | |
---|
| 461 | if (alpha < 1) { |
---|
| 462 | for (i=0; i<3; i++) { |
---|
| 463 | wv[k3+i] = zv[k3+i] + (1-alpha)*hvbar[k3+i] + alpha*hv[k3+i]; |
---|
| 464 | |
---|
| 465 | //Update momentum as a linear combination of |
---|
| 466 | //xmomc and ymomc (shallow) and momentum |
---|
| 467 | //from extrapolator xmomv and ymomv (deep). |
---|
| 468 | xmomv[k3+i] = (1-alpha)*xmomc[k] + alpha*xmomv[k3+i]; |
---|
| 469 | ymomv[k3+i] = (1-alpha)*ymomc[k] + alpha*ymomv[k3+i]; |
---|
| 470 | } |
---|
| 471 | } |
---|
| 472 | } |
---|
| 473 | return 0; |
---|
| 474 | } |
---|
| 475 | |
---|
| 476 | |
---|
| 477 | |
---|
| 478 | int _protect(int N, |
---|
| 479 | double minimum_allowed_height, |
---|
| 480 | double epsilon, |
---|
| 481 | double* wc, |
---|
| 482 | double* zc, |
---|
| 483 | double* xmomc, |
---|
| 484 | double* ymomc) { |
---|
| 485 | |
---|
| 486 | int k; |
---|
| 487 | double hc; |
---|
| 488 | |
---|
| 489 | //Protect against initesimal and negative heights |
---|
| 490 | |
---|
| 491 | for (k=0; k<N; k++) { |
---|
| 492 | hc = wc[k] - zc[k]; |
---|
| 493 | |
---|
| 494 | if (hc < minimum_allowed_height) { |
---|
| 495 | if (hc < epsilon) wc[k] = zc[k]; //Contain 'lost mass' error |
---|
| 496 | xmomc[k] = 0.0; |
---|
| 497 | ymomc[k] = 0.0; |
---|
| 498 | } |
---|
| 499 | |
---|
| 500 | } |
---|
| 501 | return 0; |
---|
| 502 | } |
---|
| 503 | |
---|
| 504 | |
---|
| 505 | |
---|
| 506 | |
---|
| 507 | int _assign_wind_field_values(int N, |
---|
| 508 | double* xmom_update, |
---|
| 509 | double* ymom_update, |
---|
| 510 | double* s_vec, |
---|
| 511 | double* phi_vec, |
---|
| 512 | double cw) { |
---|
| 513 | |
---|
| 514 | //Assign windfield values to momentum updates |
---|
| 515 | |
---|
| 516 | int k; |
---|
| 517 | double S, s, phi, u, v; |
---|
| 518 | |
---|
| 519 | for (k=0; k<N; k++) { |
---|
| 520 | |
---|
| 521 | s = s_vec[k]; |
---|
| 522 | phi = phi_vec[k]; |
---|
| 523 | |
---|
| 524 | //Convert to radians |
---|
| 525 | phi = phi*pi/180; |
---|
| 526 | |
---|
| 527 | //Compute velocity vector (u, v) |
---|
| 528 | u = s*cos(phi); |
---|
| 529 | v = s*sin(phi); |
---|
| 530 | |
---|
| 531 | //Compute wind stress |
---|
| 532 | S = cw * sqrt(u*u + v*v); |
---|
| 533 | xmom_update[k] += S*u; |
---|
| 534 | ymom_update[k] += S*v; |
---|
| 535 | } |
---|
| 536 | return 0; |
---|
| 537 | } |
---|
| 538 | |
---|
| 539 | |
---|
| 540 | |
---|
| 541 | /////////////////////////////////////////////////////////////////// |
---|
| 542 | // Gateways to Python |
---|
| 543 | |
---|
| 544 | PyObject *gravity(PyObject *self, PyObject *args) { |
---|
| 545 | // |
---|
| 546 | // gravity(g, h, v, x, xmom, ymom) |
---|
| 547 | // |
---|
| 548 | |
---|
| 549 | |
---|
| 550 | PyArrayObject *h, *v, *x, *xmom, *ymom; |
---|
| 551 | int k, i, N, k3, k6; |
---|
| 552 | double g, avg_h, zx, zy; |
---|
| 553 | double x0, y0, x1, y1, x2, y2, z0, z1, z2; |
---|
| 554 | |
---|
| 555 | if (!PyArg_ParseTuple(args, "dOOOOO", |
---|
| 556 | &g, &h, &v, &x, |
---|
| 557 | &xmom, &ymom)) |
---|
| 558 | return NULL; |
---|
| 559 | |
---|
| 560 | N = h -> dimensions[0]; |
---|
| 561 | for (k=0; k<N; k++) { |
---|
| 562 | k3 = 3*k; // base index |
---|
| 563 | k6 = 6*k; // base index |
---|
| 564 | |
---|
| 565 | avg_h = 0.0; |
---|
| 566 | for (i=0; i<3; i++) { |
---|
| 567 | avg_h += ((double *) h -> data)[k3+i]; |
---|
| 568 | } |
---|
| 569 | avg_h /= 3; |
---|
| 570 | |
---|
| 571 | |
---|
| 572 | //Compute bed slope |
---|
| 573 | x0 = ((double*) x -> data)[k6 + 0]; |
---|
| 574 | y0 = ((double*) x -> data)[k6 + 1]; |
---|
| 575 | x1 = ((double*) x -> data)[k6 + 2]; |
---|
| 576 | y1 = ((double*) x -> data)[k6 + 3]; |
---|
| 577 | x2 = ((double*) x -> data)[k6 + 4]; |
---|
| 578 | y2 = ((double*) x -> data)[k6 + 5]; |
---|
| 579 | |
---|
| 580 | |
---|
| 581 | z0 = ((double*) v -> data)[k3 + 0]; |
---|
| 582 | z1 = ((double*) v -> data)[k3 + 1]; |
---|
| 583 | z2 = ((double*) v -> data)[k3 + 2]; |
---|
| 584 | |
---|
| 585 | _gradient(x0, y0, x1, y1, x2, y2, z0, z1, z2, &zx, &zy); |
---|
| 586 | |
---|
| 587 | //Update momentum |
---|
| 588 | ((double*) xmom -> data)[k] += -g*zx*avg_h; |
---|
| 589 | ((double*) ymom -> data)[k] += -g*zy*avg_h; |
---|
| 590 | } |
---|
| 591 | |
---|
| 592 | return Py_BuildValue(""); |
---|
| 593 | } |
---|
| 594 | |
---|
| 595 | |
---|
| 596 | PyObject *manning_friction(PyObject *self, PyObject *args) { |
---|
| 597 | // |
---|
| 598 | // manning_friction(g, eps, h, uh, vh, eta, xmom_update, ymom_update) |
---|
| 599 | // |
---|
| 600 | |
---|
| 601 | |
---|
| 602 | PyArrayObject *w, *z, *uh, *vh, *eta, *xmom, *ymom; |
---|
| 603 | int N; |
---|
| 604 | double g, eps; |
---|
| 605 | |
---|
| 606 | if (!PyArg_ParseTuple(args, "ddOOOOOOO", |
---|
| 607 | &g, &eps, &w, &z, &uh, &vh, &eta, |
---|
| 608 | &xmom, &ymom)) |
---|
| 609 | return NULL; |
---|
| 610 | |
---|
| 611 | N = w -> dimensions[0]; |
---|
| 612 | _manning_friction(g, eps, N, |
---|
| 613 | (double*) w -> data, |
---|
| 614 | (double*) z -> data, |
---|
| 615 | (double*) uh -> data, |
---|
| 616 | (double*) vh -> data, |
---|
| 617 | (double*) eta -> data, |
---|
| 618 | (double*) xmom -> data, |
---|
| 619 | (double*) ymom -> data); |
---|
| 620 | |
---|
| 621 | return Py_BuildValue(""); |
---|
| 622 | } |
---|
| 623 | |
---|
| 624 | PyObject *extrapolate_second_order_sw(PyObject *self, PyObject *args) { |
---|
| 625 | /*Compute the vertex values based on a linear reconstruction on each triangle |
---|
| 626 | These values are calculated as follows: |
---|
| 627 | 1) For each triangle not adjacent to a boundary, we consider the auxiliary triangle |
---|
| 628 | formed by the centroids of its three neighbours. |
---|
| 629 | 2) For each conserved quantity, we integrate around the auxiliary triangle's boundary the product |
---|
| 630 | of the quantity and the outward normal vector. Dividing by the triangle area gives (a,b), the average |
---|
| 631 | of the vector (q_x,q_y) on the auxiliary triangle. We suppose that the linear reconstruction on the |
---|
| 632 | original triangle has gradient (a,b). |
---|
| 633 | 3) Provisional vertex junmps dqv[0,1,2] are computed and these are then limited by calling the functions |
---|
| 634 | find_qmin_and_qmax and limit_gradient |
---|
| 635 | |
---|
| 636 | Python call: |
---|
| 637 | extrapolate_second_order_sw(domain.surrogate_neighbours, |
---|
| 638 | domain.number_of_boundaries |
---|
| 639 | domain.centroid_coordinates, |
---|
| 640 | Stage.centroid_values |
---|
| 641 | Xmom.centroid_values |
---|
| 642 | Ymom.centroid_values |
---|
| 643 | domain.vertex_coordinates, |
---|
| 644 | Stage.vertex_values, |
---|
| 645 | Xmom.vertex_values, |
---|
| 646 | Ymom.vertex_values) |
---|
| 647 | |
---|
| 648 | Post conditions: |
---|
| 649 | The vertices of each triangle have values from a limited linear reconstruction |
---|
| 650 | based on centroid values |
---|
| 651 | |
---|
| 652 | */ |
---|
| 653 | PyArrayObject *surrogate_neighbours, |
---|
| 654 | *number_of_boundaries, |
---|
| 655 | *centroid_coordinates, |
---|
| 656 | *stage_centroid_values, |
---|
| 657 | *xmom_centroid_values, |
---|
| 658 | *ymom_centroid_values, |
---|
| 659 | *vertex_coordinates, |
---|
| 660 | *stage_vertex_values, |
---|
| 661 | *xmom_vertex_values, |
---|
| 662 | *ymom_vertex_values; |
---|
| 663 | PyObject *domain, *Tmp; |
---|
| 664 | //Local variables |
---|
| 665 | double a, b;//gradient vector, not stored but used to calculate vertex values from centroids |
---|
| 666 | int number_of_elements,k,k0,k1,k2,k3,k6,coord_index,i; |
---|
| 667 | double x,y,x0,y0,x1,y1,x2,y2,xv0,yv0,xv1,yv1,xv2,yv2;//vertices of the auxiliary triangle |
---|
| 668 | double dx1,dx2,dy1,dy2,dxv0,dxv1,dxv2,dyv0,dyv1,dyv2,dq0,dq1,dq2,area2; |
---|
| 669 | double dqv[3], qmin, qmax, beta_w;//provisional jumps from centroids to v'tices and safety factor re limiting |
---|
| 670 | //by which these jumps are limited |
---|
| 671 | // Convert Python arguments to C |
---|
| 672 | if (!PyArg_ParseTuple(args, "OOOOOOOOOOO", |
---|
| 673 | &domain, |
---|
| 674 | &surrogate_neighbours, |
---|
| 675 | &number_of_boundaries, |
---|
| 676 | ¢roid_coordinates, |
---|
| 677 | &stage_centroid_values, |
---|
| 678 | &xmom_centroid_values, |
---|
| 679 | &ymom_centroid_values, |
---|
| 680 | &vertex_coordinates, |
---|
| 681 | &stage_vertex_values, |
---|
| 682 | &xmom_vertex_values, |
---|
| 683 | &ymom_vertex_values)) { |
---|
| 684 | PyErr_SetString(PyExc_RuntimeError, "Input arguments failed"); |
---|
| 685 | return NULL; |
---|
| 686 | } |
---|
| 687 | |
---|
| 688 | //get the safety factor beta_w, set in the config.py file. This is used in the limiting process |
---|
| 689 | Tmp = PyObject_GetAttrString(domain, "beta_w"); |
---|
| 690 | if (!Tmp) |
---|
| 691 | return NULL; |
---|
| 692 | beta_w = PyFloat_AsDouble(Tmp); |
---|
| 693 | Py_DECREF(Tmp); |
---|
| 694 | number_of_elements = stage_centroid_values -> dimensions[0]; |
---|
| 695 | for (k=0; k<number_of_elements; k++) { |
---|
| 696 | k3=k*3; |
---|
| 697 | k6=k*6; |
---|
| 698 | |
---|
| 699 | if (((long *) number_of_boundaries->data)[k]==3){/*no neighbours, set gradient on the triangle to zero*/ |
---|
| 700 | ((double *) stage_vertex_values->data)[k3]=((double *)stage_centroid_values->data)[k]; |
---|
| 701 | ((double *) stage_vertex_values->data)[k3+1]=((double *)stage_centroid_values->data)[k]; |
---|
| 702 | ((double *) stage_vertex_values->data)[k3+2]=((double *)stage_centroid_values->data)[k]; |
---|
| 703 | ((double *) xmom_vertex_values->data)[k3]=((double *)xmom_centroid_values->data)[k]; |
---|
| 704 | ((double *) xmom_vertex_values->data)[k3+1]=((double *)xmom_centroid_values->data)[k]; |
---|
| 705 | ((double *) xmom_vertex_values->data)[k3+2]=((double *)xmom_centroid_values->data)[k]; |
---|
| 706 | ((double *) ymom_vertex_values->data)[k3]=((double *)ymom_centroid_values->data)[k]; |
---|
| 707 | ((double *) ymom_vertex_values->data)[k3+1]=((double *)ymom_centroid_values->data)[k]; |
---|
| 708 | ((double *) ymom_vertex_values->data)[k3+2]=((double *)ymom_centroid_values->data)[k]; |
---|
| 709 | continue; |
---|
| 710 | } |
---|
| 711 | else {//we will need centroid coordinates and vertex coordinates of the triangle |
---|
| 712 | //get the vertex coordinates of the FV triangle |
---|
| 713 | xv0=((double *)vertex_coordinates->data)[k6]; yv0=((double *)vertex_coordinates->data)[k6+1]; |
---|
| 714 | xv1=((double *)vertex_coordinates->data)[k6+2]; yv1=((double *)vertex_coordinates->data)[k6+3]; |
---|
| 715 | xv2=((double *)vertex_coordinates->data)[k6+4]; yv2=((double *)vertex_coordinates->data)[k6+5]; |
---|
| 716 | //get the centroid coordinates of the FV triangle |
---|
| 717 | coord_index=2*k; |
---|
| 718 | x=((double *)centroid_coordinates->data)[coord_index]; |
---|
| 719 | y=((double *)centroid_coordinates->data)[coord_index+1]; |
---|
| 720 | //store x- and y- differentials for the vertices of the FV triangle relative to the centroid |
---|
| 721 | dxv0=xv0-x; dxv1=xv1-x; dxv2=xv2-x; |
---|
| 722 | dyv0=yv0-y; dyv1=yv1-y; dyv2=yv2-y; |
---|
| 723 | } |
---|
| 724 | if (((long *)number_of_boundaries->data)[k]<=1){ |
---|
| 725 | //if no boundaries, auxiliary triangle is formed from the centroids of the three neighbours |
---|
| 726 | //if one boundary, auxiliary triangle is formed from this centroid and its two neighbours |
---|
| 727 | k0=((long *)surrogate_neighbours->data)[k3]; |
---|
| 728 | k1=((long *)surrogate_neighbours->data)[k3+1]; |
---|
| 729 | k2=((long *)surrogate_neighbours->data)[k3+2]; |
---|
| 730 | //get the auxiliary triangle's vertex coordinates (really the centroids of neighbouring triangles) |
---|
| 731 | coord_index=2*k0; |
---|
| 732 | x0=((double *)centroid_coordinates->data)[coord_index]; |
---|
| 733 | y0=((double *)centroid_coordinates->data)[coord_index+1]; |
---|
| 734 | coord_index=2*k1; |
---|
| 735 | x1=((double *)centroid_coordinates->data)[coord_index]; |
---|
| 736 | y1=((double *)centroid_coordinates->data)[coord_index+1]; |
---|
| 737 | coord_index=2*k2; |
---|
| 738 | x2=((double *)centroid_coordinates->data)[coord_index]; |
---|
| 739 | y2=((double *)centroid_coordinates->data)[coord_index+1]; |
---|
| 740 | //store x- and y- differentials for the vertices of the auxiliary triangle |
---|
| 741 | dx1=x1-x0; dx2=x2-x0; |
---|
| 742 | dy1=y1-y0; dy2=y2-y0; |
---|
| 743 | //calculate 2*area of the auxiliary triangle |
---|
| 744 | area2 = dy2*dx1 - dy1*dx2;//the triangle is guaranteed to be counter-clockwise |
---|
| 745 | //If the mesh is 'weird' near the boundary, the trianlge might be flat or clockwise: |
---|
| 746 | if (area2<=0) |
---|
| 747 | return NULL; |
---|
| 748 | |
---|
| 749 | //### stage ### |
---|
| 750 | //calculate the difference between vertex 0 of the auxiliary triangle and the FV triangle centroid |
---|
| 751 | dq0=((double *)stage_centroid_values->data)[k0]-((double *)stage_centroid_values->data)[k]; |
---|
| 752 | //calculate differentials between the vertices of the auxiliary triangle |
---|
| 753 | dq1=((double *)stage_centroid_values->data)[k1]-((double *)stage_centroid_values->data)[k0]; |
---|
| 754 | dq2=((double *)stage_centroid_values->data)[k2]-((double *)stage_centroid_values->data)[k0]; |
---|
| 755 | //calculate the gradient of stage on the auxiliary triangle |
---|
| 756 | a = dy2*dq1 - dy1*dq2; |
---|
| 757 | a /= area2; |
---|
| 758 | b = dx1*dq2 - dx2*dq1; |
---|
| 759 | b /= area2; |
---|
| 760 | //calculate provisional jumps in stage from the centroid of the FV tri to its vertices, to be limited |
---|
| 761 | dqv[0]=a*dxv0+b*dyv0; |
---|
| 762 | dqv[1]=a*dxv1+b*dyv1; |
---|
| 763 | dqv[2]=a*dxv2+b*dyv2; |
---|
| 764 | //now we want to find min and max of the centroid and the vertices of the auxiliary triangle |
---|
| 765 | //and compute jumps from the centroid to the min and max |
---|
| 766 | find_qmin_and_qmax(dq0,dq1,dq2,&qmin,&qmax); |
---|
| 767 | limit_gradient(dqv,qmin,qmax,beta_w);//the gradient will be limited |
---|
| 768 | for (i=0;i<3;i++) |
---|
| 769 | ((double *)stage_vertex_values->data)[k3+i]=((double *)stage_centroid_values->data)[k]+dqv[i]; |
---|
| 770 | |
---|
| 771 | //### xmom ### |
---|
| 772 | //calculate the difference between vertex 0 of the auxiliary triangle and the FV triangle centroid |
---|
| 773 | dq0=((double *)xmom_centroid_values->data)[k0]-((double *)xmom_centroid_values->data)[k]; |
---|
| 774 | //calculate differentials between the vertices of the auxiliary triangle |
---|
| 775 | dq1=((double *)xmom_centroid_values->data)[k1]-((double *)xmom_centroid_values->data)[k0]; |
---|
| 776 | dq2=((double *)xmom_centroid_values->data)[k2]-((double *)xmom_centroid_values->data)[k0]; |
---|
| 777 | //calculate the gradient of xmom on the auxiliary triangle |
---|
| 778 | a = dy2*dq1 - dy1*dq2; |
---|
| 779 | a /= area2; |
---|
| 780 | b = dx1*dq2 - dx2*dq1; |
---|
| 781 | b /= area2; |
---|
| 782 | //calculate provisional jumps in stage from the centroid of the FV tri to its vertices, to be limited |
---|
| 783 | dqv[0]=a*dxv0+b*dyv0; |
---|
| 784 | dqv[1]=a*dxv1+b*dyv1; |
---|
| 785 | dqv[2]=a*dxv2+b*dyv2; |
---|
| 786 | //now we want to find min and max of the centroid and the vertices of the auxiliary triangle |
---|
| 787 | //and compute jumps from the centroid to the min and max |
---|
| 788 | find_qmin_and_qmax(dq0,dq1,dq2,&qmin,&qmax); |
---|
| 789 | limit_gradient(dqv,qmin,qmax,beta_w);//the gradient will be limited |
---|
| 790 | for (i=0;i<3;i++) |
---|
| 791 | ((double *)xmom_vertex_values->data)[k3+i]=((double *)xmom_centroid_values->data)[k]+dqv[i]; |
---|
| 792 | |
---|
| 793 | //### ymom ### |
---|
| 794 | //calculate the difference between vertex 0 of the auxiliary triangle and the FV triangle centroid |
---|
| 795 | dq0=((double *)ymom_centroid_values->data)[k0]-((double *)ymom_centroid_values->data)[k]; |
---|
| 796 | //calculate differentials between the vertices of the auxiliary triangle |
---|
| 797 | dq1=((double *)ymom_centroid_values->data)[k1]-((double *)ymom_centroid_values->data)[k0]; |
---|
| 798 | dq2=((double *)ymom_centroid_values->data)[k2]-((double *)ymom_centroid_values->data)[k0]; |
---|
| 799 | //calculate the gradient of xmom on the auxiliary triangle |
---|
| 800 | a = dy2*dq1 - dy1*dq2; |
---|
| 801 | a /= area2; |
---|
| 802 | b = dx1*dq2 - dx2*dq1; |
---|
| 803 | b /= area2; |
---|
| 804 | //calculate provisional jumps in stage from the centroid of the FV tri to its vertices, to be limited |
---|
| 805 | dqv[0]=a*dxv0+b*dyv0; |
---|
| 806 | dqv[1]=a*dxv1+b*dyv1; |
---|
| 807 | dqv[2]=a*dxv2+b*dyv2; |
---|
| 808 | //now we want to find min and max of the centroid and the vertices of the auxiliary triangle |
---|
| 809 | //and compute jumps from the centroid to the min and max |
---|
| 810 | find_qmin_and_qmax(dq0,dq1,dq2,&qmin,&qmax); |
---|
| 811 | limit_gradient(dqv,qmin,qmax,beta_w);//the gradient will be limited |
---|
| 812 | for (i=0;i<3;i++) |
---|
| 813 | ((double *)ymom_vertex_values->data)[k3+i]=((double *)ymom_centroid_values->data)[k]+dqv[i]; |
---|
| 814 | }//if (number_of_boundaries[k]<=1) |
---|
| 815 | else{//number_of_boundaries==2 |
---|
| 816 | //one internal neighbour and gradient is in direction of the neighbour's centroid |
---|
| 817 | //find the only internal neighbour |
---|
| 818 | for (k2=k3;k2<k3+3;k2++){//k2 just indexes the edges of triangle k |
---|
| 819 | if (((long *)surrogate_neighbours->data)[k2]!=k)//find internal neighbour of triabngle k |
---|
| 820 | break; |
---|
| 821 | } |
---|
| 822 | if ((k2==k3+3))//if we didn't find an internal neighbour |
---|
| 823 | return NULL;//error |
---|
| 824 | k1=((long *)surrogate_neighbours->data)[k2]; |
---|
| 825 | //the coordinates of the triangle are already (x,y). Get centroid of the neighbour (x1,y1) |
---|
| 826 | coord_index=2*k1; |
---|
| 827 | x1=((double *)centroid_coordinates->data)[coord_index]; |
---|
| 828 | y1=((double *)centroid_coordinates->data)[coord_index+1]; |
---|
| 829 | //compute x- and y- distances between the centroid of the FV triangle and that of its neighbour |
---|
| 830 | dx1=x1-x; dy1=y1-y; |
---|
| 831 | //set area2 as the square of the distance |
---|
| 832 | area2=dx1*dx1+dy1*dy1; |
---|
| 833 | //set dx2=(x1-x0)/((x1-x0)^2+(y1-y0)^2) and dy2=(y1-y0)/((x1-x0)^2+(y1-y0)^2) which |
---|
| 834 | //respectively correspond to the x- and y- gradients of the conserved quantities |
---|
| 835 | dx2=1.0/area2; |
---|
| 836 | dy2=dx2*dy1; |
---|
| 837 | dx2*=dx1; |
---|
| 838 | |
---|
| 839 | //## stage ### |
---|
| 840 | //compute differentials |
---|
| 841 | dq1=((double *)stage_centroid_values->data)[k1]-((double *)stage_centroid_values->data)[k]; |
---|
| 842 | //calculate the gradient between the centroid of the FV triangle and that of its neighbour |
---|
| 843 | a=dq1*dx2; |
---|
| 844 | b=dq1*dy2; |
---|
| 845 | //calculate provisional vertex jumps, to be limited |
---|
| 846 | dqv[0]=a*dxv0+b*dyv0; |
---|
| 847 | dqv[1]=a*dxv1+b*dyv1; |
---|
| 848 | dqv[2]=a*dxv2+b*dyv2; |
---|
| 849 | //now limit the jumps |
---|
| 850 | if (dq1>=0.0){ |
---|
| 851 | qmin=0.0; |
---|
| 852 | qmax=dq1; |
---|
| 853 | } |
---|
| 854 | else{ |
---|
| 855 | qmin=dq1; |
---|
| 856 | qmax=0.0; |
---|
| 857 | } |
---|
| 858 | limit_gradient(dqv,qmin,qmax,beta_w);//the gradient will be limited |
---|
| 859 | for (i=0;i<3;i++) |
---|
| 860 | ((double *)stage_vertex_values->data)[k3+i]=((double *)stage_centroid_values->data)[k]+dqv[i]; |
---|
| 861 | |
---|
| 862 | //## xmom ### |
---|
| 863 | //compute differentials |
---|
| 864 | dq1=((double *)xmom_centroid_values->data)[k1]-((double *)xmom_centroid_values->data)[k]; |
---|
| 865 | //calculate the gradient between the centroid of the FV triangle and that of its neighbour |
---|
| 866 | a=dq1*dx2; |
---|
| 867 | b=dq1*dy2; |
---|
| 868 | //calculate provisional vertex jumps, to be limited |
---|
| 869 | dqv[0]=a*dxv0+b*dyv0; |
---|
| 870 | dqv[1]=a*dxv1+b*dyv1; |
---|
| 871 | dqv[2]=a*dxv2+b*dyv2; |
---|
| 872 | //now limit the jumps |
---|
| 873 | if (dq1>=0.0){ |
---|
| 874 | qmin=0.0; |
---|
| 875 | qmax=dq1; |
---|
| 876 | } |
---|
| 877 | else{ |
---|
| 878 | qmin=dq1; |
---|
| 879 | qmax=0.0; |
---|
| 880 | } |
---|
| 881 | limit_gradient(dqv,qmin,qmax,beta_w);//the gradient will be limited |
---|
| 882 | for (i=0;i<3;i++) |
---|
| 883 | ((double *)xmom_vertex_values->data)[k3+i]=((double *)xmom_centroid_values->data)[k]+dqv[i]; |
---|
| 884 | |
---|
| 885 | //## ymom ### |
---|
| 886 | //compute differentials |
---|
| 887 | dq1=((double *)ymom_centroid_values->data)[k1]-((double *)ymom_centroid_values->data)[k]; |
---|
| 888 | //calculate the gradient between the centroid of the FV triangle and that of its neighbour |
---|
| 889 | a=dq1*dx2; |
---|
| 890 | b=dq1*dy2; |
---|
| 891 | //calculate provisional vertex jumps, to be limited |
---|
| 892 | dqv[0]=a*dxv0+b*dyv0; |
---|
| 893 | dqv[1]=a*dxv1+b*dyv1; |
---|
| 894 | dqv[2]=a*dxv2+b*dyv2; |
---|
| 895 | //now limit the jumps |
---|
| 896 | if (dq1>=0.0){ |
---|
| 897 | qmin=0.0; |
---|
| 898 | qmax=dq1; |
---|
| 899 | } |
---|
| 900 | else{ |
---|
| 901 | qmin=dq1; |
---|
| 902 | qmax=0.0; |
---|
| 903 | } |
---|
| 904 | limit_gradient(dqv,qmin,qmax,beta_w);//the gradient will be limited |
---|
| 905 | for (i=0;i<3;i++) |
---|
| 906 | ((double *)ymom_vertex_values->data)[k3+i]=((double *)ymom_centroid_values->data)[k]+dqv[i]; |
---|
| 907 | }//else [number_of_boudaries==2] |
---|
| 908 | }//for k=0 to number_of_elements-1 |
---|
| 909 | return Py_BuildValue(""); |
---|
| 910 | }//extrapolate_second-order_sw |
---|
| 911 | |
---|
| 912 | PyObject *rotate(PyObject *self, PyObject *args, PyObject *kwargs) { |
---|
| 913 | // |
---|
| 914 | // r = rotate(q, normal, direction=1) |
---|
| 915 | // |
---|
| 916 | // Where q is assumed to be a Float numeric array of length 3 and |
---|
| 917 | // normal a Float numeric array of length 2. |
---|
| 918 | |
---|
| 919 | |
---|
| 920 | PyObject *Q, *Normal; |
---|
| 921 | PyArrayObject *q, *r, *normal; |
---|
| 922 | |
---|
| 923 | static char *argnames[] = {"q", "normal", "direction", NULL}; |
---|
| 924 | int dimensions[1], i, direction=1; |
---|
| 925 | double n1, n2; |
---|
| 926 | |
---|
| 927 | // Convert Python arguments to C |
---|
| 928 | if (!PyArg_ParseTupleAndKeywords(args, kwargs, "OO|i", argnames, |
---|
| 929 | &Q, &Normal, &direction)) |
---|
| 930 | return NULL; |
---|
| 931 | |
---|
| 932 | //Input checks (convert sequences into numeric arrays) |
---|
| 933 | q = (PyArrayObject *) |
---|
| 934 | PyArray_ContiguousFromObject(Q, PyArray_DOUBLE, 0, 0); |
---|
| 935 | normal = (PyArrayObject *) |
---|
| 936 | PyArray_ContiguousFromObject(Normal, PyArray_DOUBLE, 0, 0); |
---|
| 937 | |
---|
| 938 | |
---|
| 939 | if (normal -> dimensions[0] != 2) { |
---|
| 940 | PyErr_SetString(PyExc_RuntimeError, "Normal vector must have 2 components"); |
---|
| 941 | return NULL; |
---|
| 942 | } |
---|
| 943 | |
---|
| 944 | //Allocate space for return vector r (don't DECREF) |
---|
| 945 | dimensions[0] = 3; |
---|
| 946 | r = (PyArrayObject *) PyArray_FromDims(1, dimensions, PyArray_DOUBLE); |
---|
| 947 | |
---|
| 948 | //Copy |
---|
| 949 | for (i=0; i<3; i++) { |
---|
| 950 | ((double *) (r -> data))[i] = ((double *) (q -> data))[i]; |
---|
| 951 | } |
---|
| 952 | |
---|
| 953 | //Get normal and direction |
---|
| 954 | n1 = ((double *) normal -> data)[0]; |
---|
| 955 | n2 = ((double *) normal -> data)[1]; |
---|
| 956 | if (direction == -1) n2 = -n2; |
---|
| 957 | |
---|
| 958 | //Rotate |
---|
| 959 | _rotate((double *) r -> data, n1, n2); |
---|
| 960 | |
---|
| 961 | //Release numeric arrays |
---|
| 962 | Py_DECREF(q); |
---|
| 963 | Py_DECREF(normal); |
---|
| 964 | |
---|
| 965 | //return result using PyArray to avoid memory leak |
---|
| 966 | return PyArray_Return(r); |
---|
| 967 | } |
---|
| 968 | |
---|
| 969 | PyObject *compute_fluxes(PyObject *self, PyObject *args) { |
---|
| 970 | /*Compute all fluxes and the timestep suitable for all volumes |
---|
| 971 | in domain. |
---|
| 972 | |
---|
| 973 | Compute total flux for each conserved quantity using "flux_function" |
---|
| 974 | |
---|
| 975 | Fluxes across each edge are scaled by edgelengths and summed up |
---|
| 976 | Resulting flux is then scaled by area and stored in |
---|
| 977 | explicit_update for each of the three conserved quantities |
---|
| 978 | stage, xmomentum and ymomentum |
---|
| 979 | |
---|
| 980 | The maximal allowable speed computed by the flux_function for each volume |
---|
| 981 | is converted to a timestep that must not be exceeded. The minimum of |
---|
| 982 | those is computed as the next overall timestep. |
---|
| 983 | |
---|
| 984 | Python call: |
---|
| 985 | domain.timestep = compute_fluxes(timestep, |
---|
| 986 | domain.epsilon, |
---|
| 987 | domain.g, |
---|
| 988 | domain.neighbours, |
---|
| 989 | domain.neighbour_edges, |
---|
| 990 | domain.normals, |
---|
| 991 | domain.edgelengths, |
---|
| 992 | domain.radii, |
---|
| 993 | domain.areas, |
---|
| 994 | Stage.edge_values, |
---|
| 995 | Xmom.edge_values, |
---|
| 996 | Ymom.edge_values, |
---|
| 997 | Bed.edge_values, |
---|
| 998 | Stage.boundary_values, |
---|
| 999 | Xmom.boundary_values, |
---|
| 1000 | Ymom.boundary_values, |
---|
| 1001 | Stage.explicit_update, |
---|
| 1002 | Xmom.explicit_update, |
---|
| 1003 | Ymom.explicit_update, |
---|
| 1004 | already_computed_flux) |
---|
| 1005 | |
---|
| 1006 | |
---|
| 1007 | Post conditions: |
---|
| 1008 | domain.explicit_update is reset to computed flux values |
---|
| 1009 | domain.timestep is set to the largest step satisfying all volumes. |
---|
| 1010 | |
---|
| 1011 | |
---|
| 1012 | */ |
---|
| 1013 | |
---|
| 1014 | |
---|
| 1015 | PyArrayObject *neighbours, *neighbour_edges, |
---|
| 1016 | *normals, *edgelengths, *radii, *areas, |
---|
| 1017 | *stage_edge_values, |
---|
| 1018 | *xmom_edge_values, |
---|
| 1019 | *ymom_edge_values, |
---|
| 1020 | *bed_edge_values, |
---|
| 1021 | *stage_boundary_values, |
---|
| 1022 | *xmom_boundary_values, |
---|
| 1023 | *ymom_boundary_values, |
---|
| 1024 | *stage_explicit_update, |
---|
| 1025 | *xmom_explicit_update, |
---|
| 1026 | *ymom_explicit_update, |
---|
| 1027 | *already_computed_flux;//tracks whether the flux across an edge has already been computed |
---|
| 1028 | |
---|
| 1029 | |
---|
| 1030 | //Local variables |
---|
| 1031 | double timestep, max_speed, epsilon, g; |
---|
| 1032 | double normal[2], ql[3], qr[3], zl, zr; |
---|
| 1033 | double edgeflux[3]; //Work arrays for summing up fluxes |
---|
| 1034 | |
---|
| 1035 | int number_of_elements, k, i, m, n; |
---|
| 1036 | int ki, nm=0, ki2; //Index shorthands |
---|
| 1037 | static long call=1; |
---|
| 1038 | |
---|
| 1039 | |
---|
| 1040 | // Convert Python arguments to C |
---|
| 1041 | if (!PyArg_ParseTuple(args, "dddOOOOOOOOOOOOOOOOO", |
---|
| 1042 | ×tep, |
---|
| 1043 | &epsilon, |
---|
| 1044 | &g, |
---|
| 1045 | &neighbours, |
---|
| 1046 | &neighbour_edges, |
---|
| 1047 | &normals, |
---|
| 1048 | &edgelengths, &radii, &areas, |
---|
| 1049 | &stage_edge_values, |
---|
| 1050 | &xmom_edge_values, |
---|
| 1051 | &ymom_edge_values, |
---|
| 1052 | &bed_edge_values, |
---|
| 1053 | &stage_boundary_values, |
---|
| 1054 | &xmom_boundary_values, |
---|
| 1055 | &ymom_boundary_values, |
---|
| 1056 | &stage_explicit_update, |
---|
| 1057 | &xmom_explicit_update, |
---|
| 1058 | &ymom_explicit_update, |
---|
| 1059 | &already_computed_flux)) { |
---|
| 1060 | PyErr_SetString(PyExc_RuntimeError, "Input arguments failed"); |
---|
| 1061 | return NULL; |
---|
| 1062 | } |
---|
| 1063 | number_of_elements = stage_edge_values -> dimensions[0]; |
---|
| 1064 | call++;//a static local variable to which already_computed_flux is compared |
---|
| 1065 | //set explicit_update to zero for all conserved_quantities. |
---|
| 1066 | //This assumes compute_fluxes called before forcing terms |
---|
| 1067 | for (k=0; k<number_of_elements; k++) { |
---|
| 1068 | ((double *) stage_explicit_update -> data)[k]=0.0; |
---|
| 1069 | ((double *) xmom_explicit_update -> data)[k]=0.0; |
---|
| 1070 | ((double *) ymom_explicit_update -> data)[k]=0.0; |
---|
| 1071 | } |
---|
| 1072 | //Loop through neighbours and compute edge flux for each |
---|
| 1073 | for (k=0; k<number_of_elements; k++) { |
---|
| 1074 | for (i=0; i<3; i++) { |
---|
| 1075 | ki = k*3+i; |
---|
| 1076 | if (((long *) already_computed_flux->data)[ki]==call)//we've already computed the flux across this edge |
---|
| 1077 | continue; |
---|
| 1078 | ql[0] = ((double *) stage_edge_values -> data)[ki]; |
---|
| 1079 | ql[1] = ((double *) xmom_edge_values -> data)[ki]; |
---|
| 1080 | ql[2] = ((double *) ymom_edge_values -> data)[ki]; |
---|
| 1081 | zl = ((double *) bed_edge_values -> data)[ki]; |
---|
| 1082 | |
---|
| 1083 | //Quantities at neighbour on nearest face |
---|
| 1084 | n = ((long *) neighbours -> data)[ki]; |
---|
| 1085 | if (n < 0) { |
---|
| 1086 | m = -n-1; //Convert negative flag to index |
---|
| 1087 | qr[0] = ((double *) stage_boundary_values -> data)[m]; |
---|
| 1088 | qr[1] = ((double *) xmom_boundary_values -> data)[m]; |
---|
| 1089 | qr[2] = ((double *) ymom_boundary_values -> data)[m]; |
---|
| 1090 | zr = zl; //Extend bed elevation to boundary |
---|
| 1091 | } else { |
---|
| 1092 | m = ((long *) neighbour_edges -> data)[ki]; |
---|
| 1093 | nm = n*3+m; |
---|
| 1094 | qr[0] = ((double *) stage_edge_values -> data)[nm]; |
---|
| 1095 | qr[1] = ((double *) xmom_edge_values -> data)[nm]; |
---|
| 1096 | qr[2] = ((double *) ymom_edge_values -> data)[nm]; |
---|
| 1097 | zr = ((double *) bed_edge_values -> data)[nm]; |
---|
| 1098 | } |
---|
| 1099 | // Outward pointing normal vector |
---|
| 1100 | // normal = domain.normals[k, 2*i:2*i+2] |
---|
| 1101 | ki2 = 2*ki; //k*6 + i*2 |
---|
| 1102 | normal[0] = ((double *) normals -> data)[ki2]; |
---|
| 1103 | normal[1] = ((double *) normals -> data)[ki2+1]; |
---|
| 1104 | //Edge flux computation |
---|
| 1105 | flux_function_kinetic(ql, qr, zl, zr, |
---|
| 1106 | normal[0], normal[1], |
---|
| 1107 | epsilon, g, |
---|
| 1108 | edgeflux, &max_speed); |
---|
| 1109 | //update triangle k |
---|
| 1110 | ((long *) already_computed_flux->data)[ki]=call; |
---|
| 1111 | ((double *) stage_explicit_update -> data)[k] -= edgeflux[0]*((double *) edgelengths -> data)[ki]; |
---|
| 1112 | ((double *) xmom_explicit_update -> data)[k] -= edgeflux[1]*((double *) edgelengths -> data)[ki]; |
---|
| 1113 | ((double *) ymom_explicit_update -> data)[k] -= edgeflux[2]*((double *) edgelengths -> data)[ki]; |
---|
| 1114 | //update the neighbour n |
---|
| 1115 | if (n>=0){ |
---|
| 1116 | ((long *) already_computed_flux->data)[nm]=call; |
---|
| 1117 | ((double *) stage_explicit_update -> data)[n] += edgeflux[0]*((double *) edgelengths -> data)[nm]; |
---|
| 1118 | ((double *) xmom_explicit_update -> data)[n] += edgeflux[1]*((double *) edgelengths -> data)[nm]; |
---|
| 1119 | ((double *) ymom_explicit_update -> data)[n] += edgeflux[2]*((double *) edgelengths -> data)[nm]; |
---|
| 1120 | } |
---|
| 1121 | ///for (j=0; j<3; j++) { |
---|
| 1122 | ///flux[j] -= edgeflux[j]*((double *) edgelengths -> data)[ki]; |
---|
| 1123 | ///} |
---|
| 1124 | //Update timestep |
---|
| 1125 | //timestep = min(timestep, domain.radii[k]/max_speed) |
---|
| 1126 | //FIXME: SR Add parameter for CFL condition |
---|
| 1127 | if (max_speed > epsilon) { |
---|
| 1128 | timestep = min(timestep, ((double *) radii -> data)[k]/max_speed); |
---|
| 1129 | //maxspeed in flux_function is calculated as max(|u+a|,|u-a|) |
---|
| 1130 | if (n>=0) |
---|
| 1131 | timestep = min(timestep, ((double *) radii -> data)[n]/max_speed); |
---|
| 1132 | } |
---|
| 1133 | } // end for i |
---|
| 1134 | //Normalise by area and store for when all conserved |
---|
| 1135 | //quantities get updated |
---|
| 1136 | ((double *) stage_explicit_update -> data)[k] /= ((double *) areas -> data)[k]; |
---|
| 1137 | ((double *) xmom_explicit_update -> data)[k] /= ((double *) areas -> data)[k]; |
---|
| 1138 | ((double *) ymom_explicit_update -> data)[k] /= ((double *) areas -> data)[k]; |
---|
| 1139 | } //end for k |
---|
| 1140 | return Py_BuildValue("d", timestep); |
---|
| 1141 | } |
---|
| 1142 | |
---|
| 1143 | PyObject *protect(PyObject *self, PyObject *args) { |
---|
| 1144 | // |
---|
| 1145 | // protect(minimum_allowed_height, wc, zc, xmomc, ymomc) |
---|
| 1146 | |
---|
| 1147 | |
---|
| 1148 | PyArrayObject |
---|
| 1149 | *wc, //Stage at centroids |
---|
| 1150 | *zc, //Elevation at centroids |
---|
| 1151 | *xmomc, //Momentums at centroids |
---|
| 1152 | *ymomc; |
---|
| 1153 | |
---|
| 1154 | |
---|
| 1155 | int N; |
---|
| 1156 | double minimum_allowed_height, epsilon; |
---|
| 1157 | |
---|
| 1158 | // Convert Python arguments to C |
---|
| 1159 | if (!PyArg_ParseTuple(args, "ddOOOO", |
---|
| 1160 | &minimum_allowed_height, |
---|
| 1161 | &epsilon, |
---|
| 1162 | &wc, &zc, &xmomc, &ymomc)) |
---|
| 1163 | return NULL; |
---|
| 1164 | |
---|
| 1165 | N = wc -> dimensions[0]; |
---|
| 1166 | |
---|
| 1167 | _protect(N, |
---|
| 1168 | minimum_allowed_height, |
---|
| 1169 | epsilon, |
---|
| 1170 | (double*) wc -> data, |
---|
| 1171 | (double*) zc -> data, |
---|
| 1172 | (double*) xmomc -> data, |
---|
| 1173 | (double*) ymomc -> data); |
---|
| 1174 | |
---|
| 1175 | return Py_BuildValue(""); |
---|
| 1176 | } |
---|
| 1177 | |
---|
| 1178 | |
---|
| 1179 | |
---|
| 1180 | PyObject *balance_deep_and_shallow(PyObject *self, PyObject *args) { |
---|
| 1181 | // |
---|
| 1182 | // balance_deep_and_shallow(wc, zc, hc, wv, zv, hv, |
---|
| 1183 | // xmomc, ymomc, xmomv, ymomv) |
---|
| 1184 | |
---|
| 1185 | |
---|
| 1186 | PyArrayObject |
---|
| 1187 | *wc, //Stage at centroids |
---|
| 1188 | *zc, //Elevation at centroids |
---|
| 1189 | *hc, //Height at centroids |
---|
| 1190 | *wv, //Stage at vertices |
---|
| 1191 | *zv, //Elevation at vertices |
---|
| 1192 | *hv, //Depths at vertices |
---|
| 1193 | *hvbar, //h-Limited depths at vertices |
---|
| 1194 | *xmomc, //Momentums at centroids and vertices |
---|
| 1195 | *ymomc, |
---|
| 1196 | *xmomv, |
---|
| 1197 | *ymomv; |
---|
| 1198 | |
---|
| 1199 | int N; //, err; |
---|
| 1200 | |
---|
| 1201 | // Convert Python arguments to C |
---|
| 1202 | if (!PyArg_ParseTuple(args, "OOOOOOOOOOO", |
---|
| 1203 | &wc, &zc, &hc, |
---|
| 1204 | &wv, &zv, &hv, &hvbar, |
---|
| 1205 | &xmomc, &ymomc, &xmomv, &ymomv)) |
---|
| 1206 | return NULL; |
---|
| 1207 | |
---|
| 1208 | N = wc -> dimensions[0]; |
---|
| 1209 | |
---|
| 1210 | _balance_deep_and_shallow(N, |
---|
| 1211 | (double*) wc -> data, |
---|
| 1212 | (double*) zc -> data, |
---|
| 1213 | (double*) hc -> data, |
---|
| 1214 | (double*) wv -> data, |
---|
| 1215 | (double*) zv -> data, |
---|
| 1216 | (double*) hv -> data, |
---|
| 1217 | (double*) hvbar -> data, |
---|
| 1218 | (double*) xmomc -> data, |
---|
| 1219 | (double*) ymomc -> data, |
---|
| 1220 | (double*) xmomv -> data, |
---|
| 1221 | (double*) ymomv -> data); |
---|
| 1222 | |
---|
| 1223 | |
---|
| 1224 | return Py_BuildValue(""); |
---|
| 1225 | } |
---|
| 1226 | |
---|
| 1227 | |
---|
| 1228 | |
---|
| 1229 | PyObject *h_limiter(PyObject *self, PyObject *args) { |
---|
| 1230 | |
---|
| 1231 | PyObject *domain, *Tmp; |
---|
| 1232 | PyArrayObject |
---|
| 1233 | *hv, *hc, //Depth at vertices and centroids |
---|
| 1234 | *hvbar, //Limited depth at vertices (return values) |
---|
| 1235 | *neighbours; |
---|
| 1236 | |
---|
| 1237 | int k, i, n, N, k3; |
---|
| 1238 | int dimensions[2]; |
---|
| 1239 | double beta_h; //Safety factor (see config.py) |
---|
| 1240 | double *hmin, *hmax, hn; |
---|
| 1241 | |
---|
| 1242 | // Convert Python arguments to C |
---|
| 1243 | if (!PyArg_ParseTuple(args, "OOO", &domain, &hc, &hv)) |
---|
| 1244 | return NULL; |
---|
| 1245 | |
---|
| 1246 | neighbours = get_consecutive_array(domain, "neighbours"); |
---|
| 1247 | |
---|
| 1248 | //Get safety factor beta_h |
---|
| 1249 | Tmp = PyObject_GetAttrString(domain, "beta_h"); |
---|
| 1250 | if (!Tmp) |
---|
| 1251 | return NULL; |
---|
| 1252 | |
---|
| 1253 | beta_h = PyFloat_AsDouble(Tmp); |
---|
| 1254 | |
---|
| 1255 | Py_DECREF(Tmp); |
---|
| 1256 | |
---|
| 1257 | N = hc -> dimensions[0]; |
---|
| 1258 | |
---|
| 1259 | //Create hvbar |
---|
| 1260 | dimensions[0] = N; |
---|
| 1261 | dimensions[1] = 3; |
---|
| 1262 | hvbar = (PyArrayObject *) PyArray_FromDims(2, dimensions, PyArray_DOUBLE); |
---|
| 1263 | |
---|
| 1264 | |
---|
| 1265 | //Find min and max of this and neighbour's centroid values |
---|
| 1266 | hmin = malloc(N * sizeof(double)); |
---|
| 1267 | hmax = malloc(N * sizeof(double)); |
---|
| 1268 | for (k=0; k<N; k++) { |
---|
| 1269 | k3=k*3; |
---|
| 1270 | |
---|
| 1271 | hmin[k] = ((double*) hc -> data)[k]; |
---|
| 1272 | hmax[k] = hmin[k]; |
---|
| 1273 | |
---|
| 1274 | for (i=0; i<3; i++) { |
---|
| 1275 | n = ((long*) neighbours -> data)[k3+i]; |
---|
| 1276 | |
---|
| 1277 | //Initialise hvbar with values from hv |
---|
| 1278 | ((double*) hvbar -> data)[k3+i] = ((double*) hv -> data)[k3+i]; |
---|
| 1279 | |
---|
| 1280 | if (n >= 0) { |
---|
| 1281 | hn = ((double*) hc -> data)[n]; //Neighbour's centroid value |
---|
| 1282 | |
---|
| 1283 | hmin[k] = min(hmin[k], hn); |
---|
| 1284 | hmax[k] = max(hmax[k], hn); |
---|
| 1285 | } |
---|
| 1286 | } |
---|
| 1287 | } |
---|
| 1288 | |
---|
| 1289 | // Call underlying standard routine |
---|
| 1290 | _limit(N, beta_h, (double*) hc -> data, (double*) hvbar -> data, hmin, hmax); |
---|
| 1291 | |
---|
| 1292 | // // //Py_DECREF(domain); //FIXME: NEcessary? |
---|
| 1293 | free(hmin); |
---|
| 1294 | free(hmax); |
---|
| 1295 | |
---|
| 1296 | //return result using PyArray to avoid memory leak |
---|
| 1297 | return PyArray_Return(hvbar); |
---|
| 1298 | //return Py_BuildValue(""); |
---|
| 1299 | } |
---|
| 1300 | |
---|
| 1301 | PyObject *h_limiter_sw(PyObject *self, PyObject *args) { |
---|
| 1302 | //a faster version of h_limiter above |
---|
| 1303 | PyObject *domain, *Tmp; |
---|
| 1304 | PyArrayObject |
---|
| 1305 | *hv, *hc, //Depth at vertices and centroids |
---|
| 1306 | *hvbar, //Limited depth at vertices (return values) |
---|
| 1307 | *neighbours; |
---|
| 1308 | |
---|
| 1309 | int k, i, N, k3,k0,k1,k2; |
---|
| 1310 | int dimensions[2]; |
---|
| 1311 | double beta_h; //Safety factor (see config.py) |
---|
| 1312 | double hmin, hmax, dh[3]; |
---|
| 1313 | // Convert Python arguments to C |
---|
| 1314 | if (!PyArg_ParseTuple(args, "OOO", &domain, &hc, &hv)) |
---|
| 1315 | return NULL; |
---|
| 1316 | neighbours = get_consecutive_array(domain, "neighbours"); |
---|
| 1317 | |
---|
| 1318 | //Get safety factor beta_h |
---|
| 1319 | Tmp = PyObject_GetAttrString(domain, "beta_h"); |
---|
| 1320 | if (!Tmp) |
---|
| 1321 | return NULL; |
---|
| 1322 | beta_h = PyFloat_AsDouble(Tmp); |
---|
| 1323 | |
---|
| 1324 | Py_DECREF(Tmp); |
---|
| 1325 | |
---|
| 1326 | N = hc -> dimensions[0]; |
---|
| 1327 | |
---|
| 1328 | //Create hvbar |
---|
| 1329 | dimensions[0] = N; |
---|
| 1330 | dimensions[1] = 3; |
---|
| 1331 | hvbar = (PyArrayObject *) PyArray_FromDims(2, dimensions, PyArray_DOUBLE); |
---|
| 1332 | for (k=0;k<N;k++){ |
---|
| 1333 | k3=k*3; |
---|
| 1334 | //get the ids of the neighbours |
---|
| 1335 | k0 = ((long*) neighbours -> data)[k3]; |
---|
| 1336 | k1 = ((long*) neighbours -> data)[k3+1]; |
---|
| 1337 | k2 = ((long*) neighbours -> data)[k3+2]; |
---|
| 1338 | //set hvbar provisionally |
---|
| 1339 | for (i=0;i<3;i++){ |
---|
| 1340 | ((double*) hvbar -> data)[k3+i] = ((double*) hv -> data)[k3+i]; |
---|
| 1341 | dh[i]=((double*) hvbar -> data)[k3+i]-((double*) hc -> data)[k]; |
---|
| 1342 | } |
---|
| 1343 | hmin=((double*) hc -> data)[k]; |
---|
| 1344 | hmax=hmin; |
---|
| 1345 | if (k0>=0){ |
---|
| 1346 | hmin=min(hmin,((double*) hc -> data)[k0]); |
---|
| 1347 | hmax=max(hmax,((double*) hc -> data)[k0]); |
---|
| 1348 | } |
---|
| 1349 | if (k1>=0){ |
---|
| 1350 | hmin=min(hmin,((double*) hc -> data)[k1]); |
---|
| 1351 | hmax=max(hmax,((double*) hc -> data)[k1]); |
---|
| 1352 | } |
---|
| 1353 | if (k2>=0){ |
---|
| 1354 | hmin=min(hmin,((double*) hc -> data)[k2]); |
---|
| 1355 | hmax=max(hmax,((double*) hc -> data)[k2]); |
---|
| 1356 | } |
---|
| 1357 | hmin-=((double*) hc -> data)[k]; |
---|
| 1358 | hmax-=((double*) hc -> data)[k]; |
---|
| 1359 | limit_gradient(dh,hmin,hmax,beta_h); |
---|
| 1360 | for (i=0;i<3;i++) |
---|
| 1361 | ((double*) hvbar -> data)[k3+i] = ((double*) hc -> data)[k]+dh[i]; |
---|
| 1362 | } |
---|
| 1363 | return PyArray_Return(hvbar); |
---|
| 1364 | } |
---|
| 1365 | |
---|
| 1366 | PyObject *assign_windfield_values(PyObject *self, PyObject *args) { |
---|
| 1367 | // |
---|
| 1368 | // assign_windfield_values(xmom_update, ymom_update, |
---|
| 1369 | // s_vec, phi_vec, self.const) |
---|
| 1370 | |
---|
| 1371 | |
---|
| 1372 | |
---|
| 1373 | PyArrayObject //(one element per triangle) |
---|
| 1374 | *s_vec, //Speeds |
---|
| 1375 | *phi_vec, //Bearings |
---|
| 1376 | *xmom_update, //Momentum updates |
---|
| 1377 | *ymom_update; |
---|
| 1378 | |
---|
| 1379 | |
---|
| 1380 | int N; |
---|
| 1381 | double cw; |
---|
| 1382 | |
---|
| 1383 | // Convert Python arguments to C |
---|
| 1384 | if (!PyArg_ParseTuple(args, "OOOOd", |
---|
| 1385 | &xmom_update, |
---|
| 1386 | &ymom_update, |
---|
| 1387 | &s_vec, &phi_vec, |
---|
| 1388 | &cw)) |
---|
| 1389 | return NULL; |
---|
| 1390 | |
---|
| 1391 | N = xmom_update -> dimensions[0]; |
---|
| 1392 | |
---|
| 1393 | _assign_wind_field_values(N, |
---|
| 1394 | (double*) xmom_update -> data, |
---|
| 1395 | (double*) ymom_update -> data, |
---|
| 1396 | (double*) s_vec -> data, |
---|
| 1397 | (double*) phi_vec -> data, |
---|
| 1398 | cw); |
---|
| 1399 | |
---|
| 1400 | return Py_BuildValue(""); |
---|
| 1401 | } |
---|
| 1402 | |
---|
| 1403 | |
---|
| 1404 | |
---|
| 1405 | |
---|
| 1406 | ////////////////////////////////////////// |
---|
| 1407 | // Method table for python module |
---|
| 1408 | static struct PyMethodDef MethodTable[] = { |
---|
| 1409 | /* The cast of the function is necessary since PyCFunction values |
---|
| 1410 | * only take two PyObject* parameters, and rotate() takes |
---|
| 1411 | * three. |
---|
| 1412 | */ |
---|
| 1413 | |
---|
| 1414 | {"rotate", (PyCFunction)rotate, METH_VARARGS | METH_KEYWORDS, "Print out"}, |
---|
| 1415 | {"extrapolate_second_order_sw", extrapolate_second_order_sw, METH_VARARGS, "Print out"}, |
---|
| 1416 | {"compute_fluxes", compute_fluxes, METH_VARARGS, "Print out"}, |
---|
| 1417 | {"gravity", gravity, METH_VARARGS, "Print out"}, |
---|
| 1418 | {"manning_friction", manning_friction, METH_VARARGS, "Print out"}, |
---|
| 1419 | {"balance_deep_and_shallow", balance_deep_and_shallow, |
---|
| 1420 | METH_VARARGS, "Print out"}, |
---|
| 1421 | {"h_limiter", h_limiter, |
---|
| 1422 | METH_VARARGS, "Print out"}, |
---|
| 1423 | {"h_limiter_sw", h_limiter_sw, |
---|
| 1424 | METH_VARARGS, "Print out"}, |
---|
| 1425 | {"protect", protect, METH_VARARGS | METH_KEYWORDS, "Print out"}, |
---|
| 1426 | {"assign_windfield_values", assign_windfield_values, |
---|
| 1427 | METH_VARARGS | METH_KEYWORDS, "Print out"}, |
---|
| 1428 | //{"distribute_to_vertices_and_edges", |
---|
| 1429 | // distribute_to_vertices_and_edges, METH_VARARGS}, |
---|
| 1430 | //{"update_conserved_quantities", |
---|
| 1431 | // update_conserved_quantities, METH_VARARGS}, |
---|
| 1432 | //{"set_initialcondition", |
---|
| 1433 | // set_initialcondition, METH_VARARGS}, |
---|
| 1434 | {NULL, NULL} |
---|
| 1435 | }; |
---|
| 1436 | |
---|
| 1437 | // Module initialisation |
---|
| 1438 | void initshallow_water_kinetic_ext(void){ |
---|
| 1439 | Py_InitModule("shallow_water_kinetic_ext", MethodTable); |
---|
| 1440 | |
---|
| 1441 | import_array(); //Necessary for handling of NumPY structures |
---|
| 1442 | } |
---|