[5675] | 1 | # |
---|
| 2 | # slide_tsunami function |
---|
| 3 | # |
---|
| 4 | |
---|
| 5 | """This function returns a callable object representing an initial water |
---|
| 6 | displacement generated by a submarine sediment slide. |
---|
| 7 | |
---|
| 8 | Using input parameters: |
---|
| 9 | |
---|
| 10 | Required |
---|
| 11 | length downslope slide length |
---|
| 12 | depth water depth to slide centre of mass |
---|
| 13 | slope bathymetric slope |
---|
| 14 | |
---|
| 15 | Optional |
---|
| 16 | x0 x origin (0) |
---|
| 17 | y0 y origin (0) |
---|
| 18 | alpha angular orientation of slide in xy plane (0) |
---|
| 19 | w slide width (0.25*length) |
---|
| 20 | T slide thickness (0.01*length) |
---|
| 21 | g acceleration due to gravity (9.8) |
---|
| 22 | gamma specific density of sediments (1.85) |
---|
| 23 | Cm added mass coefficient (1) |
---|
| 24 | Cd drag coefficient (1) |
---|
| 25 | Cn friction coefficient (0) |
---|
| 26 | psi (0) |
---|
| 27 | dx offset of second Gaussian (0.2*width of first Gaussian) |
---|
| 28 | kappa multiplier for sech^2 function (3.0) |
---|
| 29 | kappad multiplier for second Gaussian function (0.8) |
---|
| 30 | zsmall an amount near to zero (0.01) |
---|
| 31 | |
---|
| 32 | The following parameters are calculated: |
---|
| 33 | |
---|
| 34 | a0 initial acceleration |
---|
| 35 | ut theoretical terminal velocity |
---|
| 36 | s0 charactistic distance of motion |
---|
| 37 | t0 characteristic time of motion |
---|
| 38 | w initial wavelength of tsunami |
---|
| 39 | a2D 2D initial amplitude of tsunami |
---|
| 40 | a3D 3D initial amplitude of tsunami |
---|
| 41 | |
---|
| 42 | The returned object is a callable double Gaussian function that represents |
---|
| 43 | the initial water displacement generated by a submarine sediment slide. |
---|
| 44 | |
---|
| 45 | Adrian Hitchman |
---|
| 46 | Geoscience Australia, June 2005 |
---|
| 47 | """ |
---|
[6157] | 48 | |
---|
[7276] | 49 | import numpy as num |
---|
[6157] | 50 | |
---|
[7632] | 51 | import anuga.utilities.log as lg |
---|
[6157] | 52 | |
---|
[7317] | 53 | |
---|
[5675] | 54 | def find_min(x0, wa, kappad, dx): |
---|
| 55 | """Determine eta_min to scale eta(x,y) |
---|
| 56 | |
---|
| 57 | eta(x,y) = n03d/nmin*[-f(y)]*g(x) |
---|
| 58 | |
---|
| 59 | nmin = min (-f(y)*g(x) ) |
---|
| 60 | = -f(ystar)*g(xstar) |
---|
| 61 | |
---|
| 62 | ystar = min (-f(y) ), i.e. diff(-f(y))=0 |
---|
| 63 | xstar = min ( g(x) ), i.e. diff(g(x))=0 |
---|
| 64 | |
---|
| 65 | ystar = y0 and -f(ystar)=1.0 |
---|
| 66 | """ |
---|
| 67 | from math import exp, cosh |
---|
| 68 | |
---|
| 69 | step = 0.05 |
---|
| 70 | x = x0+50. |
---|
| 71 | deriv = 10.0 |
---|
| 72 | count_max = 1000000 |
---|
| 73 | c = 0 |
---|
| 74 | deriv = 10. |
---|
| 75 | f_ystar = 1. |
---|
| 76 | |
---|
| 77 | while c < count_max and deriv > 0: |
---|
| 78 | deriv = (x-x0)*exp(-((x-x0)/wa)**2.0) - \ |
---|
| 79 | kappad*(x-dx-x0)*exp(-((x-dx-x0)/wa)**2.0) |
---|
| 80 | |
---|
| 81 | if deriv <= 0: xstar = x |
---|
| 82 | x -= step |
---|
| 83 | c += 1 |
---|
| 84 | |
---|
| 85 | g_xstar = exp(-((xstar-x0)/wa)**2)-kappad*exp(-((xstar-dx-x0)/wa)**2) |
---|
| 86 | |
---|
| 87 | etastar = g_xstar*f_ystar |
---|
| 88 | |
---|
| 89 | return etastar |
---|
| 90 | |
---|
| 91 | def slide_tsunami(length, depth, slope, width=None, thickness=None, \ |
---|
| 92 | x0=0.0, y0=0.0, alpha=0.0, \ |
---|
| 93 | gravity=9.8, gamma=1.85, \ |
---|
| 94 | massco=1, dragco=1, frictionco=0, psi=0, \ |
---|
| 95 | dx=None, kappa=3.0, kappad=0.8, zsmall=0.01, \ |
---|
| 96 | scale=None, |
---|
| 97 | domain=None, verbose=False): |
---|
| 98 | |
---|
| 99 | from math import sin, tan, radians, pi, sqrt, exp |
---|
| 100 | |
---|
| 101 | if domain is not None: |
---|
| 102 | xllcorner = domain.geo_reference.get_xllcorner() |
---|
| 103 | yllcorner = domain.geo_reference.get_yllcorner() |
---|
| 104 | x0 = x0 - xllcorner # slump origin (relative) |
---|
| 105 | y0 = y0 - yllcorner |
---|
| 106 | |
---|
| 107 | #if width not provided, set to typical value |
---|
| 108 | if width is None: |
---|
| 109 | width = 0.25 * length |
---|
| 110 | |
---|
| 111 | #if thickness not provided, set to typical value |
---|
| 112 | if thickness is None: |
---|
| 113 | thickness = 0.01 * length |
---|
| 114 | |
---|
| 115 | #calculate some parameters of the slide |
---|
| 116 | |
---|
| 117 | sint = sin(radians(slope)) |
---|
| 118 | tant = tan(radians(slope)) |
---|
| 119 | tanp = tan(radians(psi)) |
---|
| 120 | |
---|
| 121 | a0 = gravity * sint * ((gamma-1)/(gamma+massco)) * (1-(tanp/tant)) |
---|
| 122 | ut = sqrt((gravity*depth) * (length*sint/depth) \ |
---|
| 123 | * (pi*(gamma-1)/(2*dragco)) * (1-(tanp/tant))) |
---|
| 124 | s0 = ut**2 / a0 |
---|
| 125 | t0 = ut / a0 |
---|
| 126 | |
---|
| 127 | #calculate some parameters of the water displacement produced by the slide |
---|
| 128 | |
---|
| 129 | w = t0 * sqrt(gravity*depth) |
---|
| 130 | a2D = s0 * (0.0574 - (0.0431*sint)) \ |
---|
| 131 | * (thickness/length) \ |
---|
| 132 | * ((length*sint/depth)**1.25) \ |
---|
| 133 | * (1 - exp(-2.2*(gamma-1))) |
---|
| 134 | a3D = a2D / (1 + (15.5*sqrt(depth/(length*sint)))) |
---|
| 135 | |
---|
| 136 | from math import sqrt, log, e |
---|
| 137 | dx = 2.0 * (w * sqrt(-log((zsmall/a3D),e))) / 5.0 |
---|
| 138 | |
---|
| 139 | # determine nmin for scaling of eta(x,y) |
---|
| 140 | nmin = find_min(x0,w,kappad,dx) |
---|
| 141 | |
---|
| 142 | if scale is None: |
---|
| 143 | scale = a3D/nmin |
---|
| 144 | |
---|
| 145 | #a few temporary print statements |
---|
| 146 | if verbose is True: |
---|
[7632] | 147 | lg.critical('\nThe slide ...') |
---|
| 148 | lg.critical('\tLength: %s' % str(length)) |
---|
| 149 | lg.critical('\tDepth: %s' % str(depth)) |
---|
| 150 | lg.critical('\tSlope: %s' % str(slope)) |
---|
| 151 | lg.critical('\tWidth: %s' % str(width)) |
---|
| 152 | lg.critical('\tThickness: %s' % str(thickness)) |
---|
| 153 | lg.critical('\tx0: %s' % str(x0)) |
---|
| 154 | lg.critical('\ty0: %s' % str(y0)) |
---|
| 155 | lg.critical('\tAlpha: %s' % str(alpha)) |
---|
| 156 | lg.critical('\tAcceleration: %s' % str(a0)) |
---|
| 157 | lg.critical('\tTerminal velocity: %s' % str(ut)) |
---|
| 158 | lg.critical('\tChar time: %s' % str(t0)) |
---|
| 159 | lg.critical('\tChar distance: %s' % str(s0)) |
---|
| 160 | lg.critical('\nThe tsunami ...') |
---|
| 161 | lg.critical('\tWavelength: %s' % str(w)) |
---|
| 162 | lg.critical('\t2D amplitude: %s' % str(a2D)) |
---|
| 163 | lg.critical('\t3D amplitude: %s' % str(a3D)) |
---|
| 164 | lg.critical('\tscale for eta(x,y): %s' % str(scale)) |
---|
[5675] | 165 | |
---|
| 166 | #keep an eye on some of the assumptions built into the maths |
---|
| 167 | |
---|
| 168 | if ((slope < 5) or (slope > 30)): |
---|
| 169 | if verbose is True: |
---|
[7632] | 170 | lg.critical('WARNING: slope out of range (5 - 30 degrees) %s' |
---|
[7317] | 171 | % str(slope)) |
---|
[5675] | 172 | if ((depth/length < 0.06) or (depth/length > 1.5)): |
---|
| 173 | if verbose is True: |
---|
[7632] | 174 | lg.critical('WARNING: d/b out of range (0.06 - 1.5) %s' |
---|
[7317] | 175 | % str(depth/length)) |
---|
[5675] | 176 | if ((thickness/length < 0.008) or (thickness/length > 0.2)): |
---|
| 177 | if verbose is True: |
---|
[7632] | 178 | lg.critical('WARNING: T/b out of range (0.008 - 0.2) %s' |
---|
[7317] | 179 | % str(thickness/length)) |
---|
[5675] | 180 | if ((gamma < 1.46) or (gamma > 2.93)): |
---|
| 181 | if verbose is True: |
---|
[7632] | 182 | lg.critical('WARNING: gamma out of range (1.46 - 2.93) %s' |
---|
[7317] | 183 | % str(gamma)) |
---|
[5675] | 184 | |
---|
| 185 | return Double_gaussian(a3D, w, width, x0, y0, alpha, kappa, kappad, zsmall, dx, scale) |
---|
| 186 | |
---|
| 187 | # |
---|
| 188 | # slump_tsunami function |
---|
| 189 | # |
---|
| 190 | |
---|
| 191 | """This function returns a callable object representing an initial water |
---|
| 192 | displacement generated by a submarine sediment slump. |
---|
| 193 | |
---|
| 194 | Using input parameters: |
---|
| 195 | |
---|
| 196 | Required |
---|
| 197 | length downslope slump length |
---|
| 198 | depth water depth to slump centre of mass |
---|
| 199 | slope bathymetric slope |
---|
| 200 | |
---|
| 201 | Optional |
---|
| 202 | x0 x origin (0) |
---|
| 203 | y0 y origin (0) |
---|
| 204 | alpha angular orientation of slide in xy plane (0) |
---|
| 205 | w slump width (1.0*length) |
---|
| 206 | T slump thickness (0.1*length) |
---|
| 207 | R slump radius of curvature (b^2/(8*T)) |
---|
| 208 | del_phi slump angular displacement (0.48) |
---|
| 209 | g acceleration due to gravity (9.8) |
---|
| 210 | gamma specific density of sediments (1.85) |
---|
| 211 | Cm added mass coefficient (1) |
---|
| 212 | Cd drag coefficient (1) |
---|
| 213 | Cn friction coefficient (0) |
---|
| 214 | dx offset of second Gaussian (0.2*width of first Gaussian) |
---|
| 215 | kappa multiplier for sech^2 function (3.0) |
---|
| 216 | kappad multiplier for second Gaussian function (0.8) |
---|
| 217 | zsmall an amount near to zero (0.01) |
---|
| 218 | |
---|
| 219 | The following parameters are calculated: |
---|
| 220 | |
---|
| 221 | a0 initial acceleration |
---|
| 222 | um maximum velocity |
---|
| 223 | s0 charactistic distance of motion |
---|
| 224 | t0 characteristic time of motion |
---|
| 225 | w initial wavelength of tsunami |
---|
| 226 | a2D 2D initial amplitude of tsunami |
---|
| 227 | a3D 3D initial amplitude of tsunami |
---|
| 228 | |
---|
| 229 | The returned object is a callable double Gaussian function that represents |
---|
| 230 | the initial water displacement generated by a submarine sediment slump. |
---|
| 231 | |
---|
| 232 | Adrian Hitchman |
---|
| 233 | Geoscience Australia, June 2005 |
---|
| 234 | """ |
---|
| 235 | |
---|
| 236 | def slump_tsunami(length, depth, slope, width=None, thickness=None, \ |
---|
| 237 | radius=None, dphi=0.48, x0=0.0, y0=0.0, alpha=0.0, \ |
---|
| 238 | gravity=9.8, gamma=1.85, \ |
---|
| 239 | massco=1, dragco=1, frictionco=0, \ |
---|
| 240 | dx=None, kappa=3.0, kappad=1.0, zsmall=0.01, scale=None, \ |
---|
| 241 | domain=None, |
---|
| 242 | verbose=False): |
---|
| 243 | |
---|
| 244 | from math import sin, radians, sqrt |
---|
| 245 | |
---|
| 246 | if domain is not None: |
---|
| 247 | xllcorner = domain.geo_reference.get_xllcorner() |
---|
| 248 | yllcorner = domain.geo_reference.get_yllcorner() |
---|
| 249 | x0 = x0 - xllcorner # slump origin (relative) |
---|
| 250 | y0 = y0 - yllcorner |
---|
| 251 | |
---|
| 252 | #if width not provided, set to typical value |
---|
| 253 | if width is None: |
---|
| 254 | width = length |
---|
| 255 | |
---|
| 256 | #if thickness not provided, set to typical value |
---|
| 257 | if thickness is None: |
---|
| 258 | thickness = 0.1 * length |
---|
| 259 | |
---|
| 260 | #if radius not provided, set to typical value |
---|
| 261 | if radius is None: |
---|
| 262 | radius = length**2 / (8.0 * thickness) |
---|
| 263 | |
---|
| 264 | #calculate some parameters of the slump |
---|
| 265 | |
---|
| 266 | sint = sin(radians(slope)) |
---|
| 267 | |
---|
| 268 | s0 = radius * dphi / 2 |
---|
| 269 | t0 = sqrt((radius*(gamma+massco)) / (gravity*(gamma-1))) |
---|
| 270 | a0 = s0 / t0**2 |
---|
| 271 | um = s0 / t0 |
---|
| 272 | |
---|
| 273 | #calculate some parameters of the water displacement produced by the slump |
---|
| 274 | |
---|
| 275 | w = t0 * sqrt(gravity*depth) |
---|
| 276 | a2D = s0 * (0.131/sint) \ |
---|
| 277 | * (thickness/length) \ |
---|
| 278 | * (length*sint/depth)**1.25 \ |
---|
| 279 | * (length/radius)**0.63 * dphi**0.39 \ |
---|
| 280 | * (1.47 - (0.35*(gamma-1))) * (gamma-1) |
---|
| 281 | a3D = a2D / (1 + (2.06*sqrt(depth/length))) |
---|
| 282 | |
---|
| 283 | from math import sqrt, log, e |
---|
| 284 | dx = 2.0 * (w * sqrt(-log((zsmall/a3D),e))) / 5.0 |
---|
| 285 | |
---|
| 286 | # determine nmin for scaling of eta(x,y) |
---|
| 287 | nmin = find_min(x0,w,kappad,dx) |
---|
| 288 | |
---|
| 289 | if scale is None: |
---|
| 290 | scale = a3D/nmin |
---|
| 291 | |
---|
| 292 | #a few temporary print statements |
---|
| 293 | if verbose is True: |
---|
[7632] | 294 | lg.critical('\nThe slump ...') |
---|
| 295 | lg.critical('\tLength: %s' % str(length)) |
---|
| 296 | lg.critical('\tDepth: %s' % str(depth)) |
---|
| 297 | lg.critical('\tSlope: %s' % str(slope)) |
---|
| 298 | lg.critical('\tWidth: %s' % str(width)) |
---|
| 299 | lg.critical('\tThickness: %s' % str(thickness)) |
---|
| 300 | lg.critical('\tRadius: %s' % str(radius)) |
---|
| 301 | lg.critical('\tDphi: %s' % str(dphi)) |
---|
| 302 | lg.critical('\tx0: %s' % str(x0)) |
---|
| 303 | lg.critical('\ty0: %s' % str(y0)) |
---|
| 304 | lg.critical('\tAlpha: %s' % str(alpha)) |
---|
| 305 | lg.critical('\tAcceleration: %s' % str(a0)) |
---|
| 306 | lg.critical('\tMaximum velocity: %s' % str(um)) |
---|
| 307 | lg.critical('\tChar time: %s' % str(t0)) |
---|
| 308 | lg.critical('\tChar distance: %s' % str(s0)) |
---|
| 309 | lg.critical('\nThe tsunami ...') |
---|
| 310 | lg.critical('\tWavelength: %s' % str(w)) |
---|
| 311 | lg.critical('\t2D amplitude: %s' % str(a2D)) |
---|
| 312 | lg.critical('\t3D amplitude: %s' % str(a3D)) |
---|
| 313 | lg.critical('\tDelta x %s' % str(dx)) |
---|
| 314 | lg.critical('\tsmall %s' % str(zsmall)) |
---|
| 315 | lg.critical('\tKappa d %s' % str(kappad)) |
---|
| 316 | lg.critical('\tscale for eta(x,y): %s' % str(scale)) |
---|
[5675] | 317 | |
---|
| 318 | #keep an eye on some of the assumptions built into the maths |
---|
| 319 | |
---|
| 320 | if ((slope < 10) or (slope > 30)): |
---|
| 321 | if verbose is True: |
---|
[7632] | 322 | lg.critical('WARNING: slope out of range (10 - 30 degrees) %s' |
---|
[7317] | 323 | % str(slope)) |
---|
[5675] | 324 | if ((depth/length < 0.34) or (depth/length > 0.5)): |
---|
| 325 | if verbose is True: |
---|
[7632] | 326 | lg.critical('WARNING: d/b out of range (0.34 - 0.5) %s' |
---|
[7317] | 327 | % str(depth/length)) |
---|
[5675] | 328 | if ((thickness/length < 0.10) or (thickness/length > 0.15)): |
---|
| 329 | if verbose is True: |
---|
[7632] | 330 | lg.critical('WARNING: T/b out of range (0.10 - 0.15) %s' |
---|
[7317] | 331 | % str(thickness/length)) |
---|
[5675] | 332 | if ((radius/length < 1.0) or (radius/length > 2.0)): |
---|
| 333 | if verbose is True: |
---|
[7632] | 334 | lg.critical('WARNING: R/b out of range (1 - 2) %s' |
---|
[7317] | 335 | % str(radius/length)) |
---|
[5675] | 336 | if ((dphi < 0.10) or (dphi > 0.52)): |
---|
| 337 | if verbose is True: |
---|
[7632] | 338 | lg.critical('WARNING: del_phi out of range (0.10 - 0.52) %s' |
---|
[7317] | 339 | % str(dphi)) |
---|
[5675] | 340 | if ((gamma < 1.46) or (gamma > 2.93)): |
---|
| 341 | if verbose is True: |
---|
[7632] | 342 | lg.critical('WARNING: gamma out of range (1.46 - 2.93) %s' |
---|
[7317] | 343 | % str(gamma)) |
---|
[5675] | 344 | |
---|
| 345 | return Double_gaussian(a3D, w, width, x0, y0, alpha, kappa, kappad, zsmall, dx, scale) |
---|
| 346 | |
---|
| 347 | # |
---|
| 348 | # Double_gaussian class |
---|
| 349 | # |
---|
| 350 | |
---|
| 351 | """This is a callable class representing the initial water displacment |
---|
| 352 | generated by a sediment slide or slump. |
---|
| 353 | |
---|
| 354 | Using input parameters: |
---|
| 355 | |
---|
| 356 | Required |
---|
| 357 | w initial wavelength of tsunami |
---|
| 358 | a3D 3D initial amplitude of tsunami |
---|
| 359 | width width of smf |
---|
| 360 | |
---|
| 361 | Optional |
---|
| 362 | x0 x origin of smf |
---|
| 363 | y0 y origin of smf |
---|
| 364 | alpha angular orientation of smf in xy plane (0) |
---|
| 365 | dx offset of second Gaussian (0.2*width of first Gaussian) |
---|
| 366 | kappa multiplier for sech^2 function (3.0) |
---|
| 367 | kappad multiplier for second Gaussian function (0.8) |
---|
| 368 | zsmall an amount near to zero (0.01) |
---|
| 369 | |
---|
| 370 | Adrian Hitchman |
---|
| 371 | Geoscience Australia, June 2005 |
---|
| 372 | """ |
---|
| 373 | |
---|
| 374 | class Double_gaussian: |
---|
| 375 | |
---|
| 376 | def __init__(self, a3D, wavelength, width, x0, y0, alpha, \ |
---|
| 377 | kappa, kappad, zsmall, dx, scale): |
---|
| 378 | self.a3D = a3D |
---|
| 379 | self.wavelength = wavelength |
---|
| 380 | self.width = width |
---|
| 381 | self.x0 = x0 |
---|
| 382 | self.y0 = y0 |
---|
| 383 | self.alpha = alpha |
---|
| 384 | self.kappa = kappa |
---|
| 385 | self.kappad = kappad |
---|
| 386 | self.scale = scale |
---|
| 387 | |
---|
| 388 | if dx is None: |
---|
| 389 | from math import sqrt, log, e |
---|
| 390 | dx = 2.0 * (self.wavelength * sqrt(-log((zsmall/self.a3D),e))) / 5.0 |
---|
| 391 | self.dx = dx |
---|
| 392 | |
---|
| 393 | def __call__(self, x, y): |
---|
| 394 | """Make Double_gaussian a callable object. |
---|
| 395 | |
---|
| 396 | If called as a function, this object returns z values representing |
---|
| 397 | the initial 3D distribution of water heights at the points (x,y) |
---|
| 398 | produced by a submarine mass failure. |
---|
| 399 | """ |
---|
| 400 | |
---|
| 401 | from math import sin, cos, radians, exp, cosh |
---|
| 402 | |
---|
| 403 | #ensure vectors x and y have the same length |
---|
| 404 | N = len(x) |
---|
| 405 | assert N == len(y) |
---|
| 406 | |
---|
| 407 | am = self.a3D |
---|
| 408 | am2 = 1.0 |
---|
| 409 | wa = self.wavelength |
---|
| 410 | wi = self.width |
---|
| 411 | x0 = self.x0 |
---|
| 412 | y0 = self.y0 |
---|
| 413 | alpha = self.alpha |
---|
| 414 | dx = self.dx |
---|
| 415 | kappa = self.kappa |
---|
| 416 | kappad = self.kappad |
---|
| 417 | scale = self.scale |
---|
| 418 | |
---|
| 419 | #double Gaussian calculation assumes water displacement is oriented |
---|
| 420 | #E-W, so, for displacement at some angle alpha clockwise from the E-W |
---|
| 421 | #direction, rotate (x,y) coordinates anti-clockwise by alpha |
---|
| 422 | |
---|
| 423 | cosa = cos(radians(alpha)) |
---|
| 424 | sina = sin(radians(alpha)) |
---|
| 425 | |
---|
| 426 | xr = ((x-x0) * cosa - (y-y0) * sina) + x0 |
---|
| 427 | yr = ((x-x0) * sina + (y-y0) * cosa) + y0 |
---|
| 428 | |
---|
[7276] | 429 | z = num.zeros(N, num.float) |
---|
[5675] | 430 | maxz = 0.0 |
---|
| 431 | minz = 0.0 |
---|
| 432 | for i in range(N): |
---|
| 433 | try: |
---|
| 434 | z[i] = -scale / ((cosh(kappa*(yr[i]-y0)/(wi+wa)))**2) \ |
---|
| 435 | * (exp(-((xr[i]-x0)/wa)**2) - \ |
---|
| 436 | kappad*exp(-((xr[i]-dx-x0)/wa)**2)) |
---|
| 437 | if z[i] > maxz: maxz = z[i] |
---|
| 438 | if z[i] < minz: minz = z[i] |
---|
| 439 | |
---|
| 440 | except OverflowError: |
---|
| 441 | pass |
---|
| 442 | |
---|
| 443 | return z |
---|
| 444 | |
---|
| 445 | def determineDX(self, zsmall): |
---|
| 446 | """Determine a suitable offset for the second Gaussian function. |
---|
| 447 | |
---|
| 448 | A suitable offset for the second Gaussian function is taken to |
---|
| 449 | be some fraction of the 'width' of the first Gaussian function. |
---|
| 450 | |
---|
| 451 | The 'width' of the first Gaussian is obtained from the range of |
---|
| 452 | the x coordinates over which the function takes values from |
---|
| 453 | 'near zero', through 1, and back to 'near zero'. |
---|
| 454 | |
---|
| 455 | The parameter zsmall passed to this function specifies how much |
---|
| 456 | 'near zero' is. |
---|
| 457 | """ |
---|
| 458 | |
---|
| 459 | from math import sqrt, log, e |
---|
| 460 | |
---|
| 461 | a = self.a3D |
---|
| 462 | c = self.wavelength |
---|
| 463 | |
---|
| 464 | self.dx = 2.0 * (c * sqrt(-log((zsmall/a),e))) / 5.0 |
---|
| 465 | |
---|
| 466 | return self.dx |
---|
| 467 | |
---|