1 | #!/usr/bin/env python |
---|
2 | # |
---|
3 | |
---|
4 | import unittest |
---|
5 | import copy |
---|
6 | from Numeric import zeros, array, allclose, Float |
---|
7 | from anuga.utilities.numerical_tools import mean |
---|
8 | import tempfile |
---|
9 | import os |
---|
10 | from Scientific.IO.NetCDF import NetCDFFile |
---|
11 | from struct import pack |
---|
12 | from sets import ImmutableSet |
---|
13 | |
---|
14 | from anuga.shallow_water import * |
---|
15 | from anuga.shallow_water.data_manager import * |
---|
16 | from anuga.config import epsilon |
---|
17 | from anuga.utilities.anuga_exceptions import ANUGAError |
---|
18 | from anuga.utilities.numerical_tools import ensure_numeric |
---|
19 | from anuga.coordinate_transforms.redfearn import degminsec2decimal_degrees |
---|
20 | |
---|
21 | # This is needed to run the tests of local functions |
---|
22 | import data_manager |
---|
23 | from anuga.coordinate_transforms.redfearn import redfearn |
---|
24 | from anuga.coordinate_transforms.geo_reference import Geo_reference |
---|
25 | |
---|
26 | class Test_Data_Manager(unittest.TestCase): |
---|
27 | def setUp(self): |
---|
28 | import time |
---|
29 | from mesh_factory import rectangular |
---|
30 | |
---|
31 | #Create basic mesh |
---|
32 | points, vertices, boundary = rectangular(2, 2) |
---|
33 | |
---|
34 | #Create shallow water domain |
---|
35 | domain = Domain(points, vertices, boundary) |
---|
36 | domain.default_order = 2 |
---|
37 | |
---|
38 | |
---|
39 | #Set some field values |
---|
40 | domain.set_quantity('elevation', lambda x,y: -x) |
---|
41 | domain.set_quantity('friction', 0.03) |
---|
42 | |
---|
43 | |
---|
44 | ###################### |
---|
45 | # Boundary conditions |
---|
46 | B = Transmissive_boundary(domain) |
---|
47 | domain.set_boundary( {'left': B, 'right': B, 'top': B, 'bottom': B}) |
---|
48 | |
---|
49 | |
---|
50 | ###################### |
---|
51 | #Initial condition - with jumps |
---|
52 | |
---|
53 | |
---|
54 | bed = domain.quantities['elevation'].vertex_values |
---|
55 | stage = zeros(bed.shape, Float) |
---|
56 | |
---|
57 | h = 0.3 |
---|
58 | for i in range(stage.shape[0]): |
---|
59 | if i % 2 == 0: |
---|
60 | stage[i,:] = bed[i,:] + h |
---|
61 | else: |
---|
62 | stage[i,:] = bed[i,:] |
---|
63 | |
---|
64 | domain.set_quantity('stage', stage) |
---|
65 | |
---|
66 | |
---|
67 | domain.distribute_to_vertices_and_edges() |
---|
68 | self.initial_stage = copy.copy(domain.quantities['stage'].vertex_values) |
---|
69 | |
---|
70 | |
---|
71 | |
---|
72 | self.domain = domain |
---|
73 | |
---|
74 | C = domain.get_vertex_coordinates() |
---|
75 | self.X = C[:,0:6:2].copy() |
---|
76 | self.Y = C[:,1:6:2].copy() |
---|
77 | |
---|
78 | self.F = bed |
---|
79 | |
---|
80 | #Write A testfile (not realistic. Values aren't realistic) |
---|
81 | self.test_MOST_file = 'most_small' |
---|
82 | |
---|
83 | longitudes = [150.66667, 150.83334, 151., 151.16667] |
---|
84 | latitudes = [-34.5, -34.33333, -34.16667, -34] |
---|
85 | |
---|
86 | long_name = 'LON' |
---|
87 | lat_name = 'LAT' |
---|
88 | |
---|
89 | nx = 4 |
---|
90 | ny = 4 |
---|
91 | six = 6 |
---|
92 | |
---|
93 | |
---|
94 | for ext in ['_ha.nc', '_ua.nc', '_va.nc', '_e.nc']: |
---|
95 | fid = NetCDFFile(self.test_MOST_file + ext, 'w') |
---|
96 | |
---|
97 | fid.createDimension(long_name,nx) |
---|
98 | fid.createVariable(long_name,'d',(long_name,)) |
---|
99 | fid.variables[long_name].point_spacing='uneven' |
---|
100 | fid.variables[long_name].units='degrees_east' |
---|
101 | fid.variables[long_name].assignValue(longitudes) |
---|
102 | |
---|
103 | fid.createDimension(lat_name,ny) |
---|
104 | fid.createVariable(lat_name,'d',(lat_name,)) |
---|
105 | fid.variables[lat_name].point_spacing='uneven' |
---|
106 | fid.variables[lat_name].units='degrees_north' |
---|
107 | fid.variables[lat_name].assignValue(latitudes) |
---|
108 | |
---|
109 | fid.createDimension('TIME',six) |
---|
110 | fid.createVariable('TIME','d',('TIME',)) |
---|
111 | fid.variables['TIME'].point_spacing='uneven' |
---|
112 | fid.variables['TIME'].units='seconds' |
---|
113 | fid.variables['TIME'].assignValue([0.0, 0.1, 0.6, 1.1, 1.6, 2.1]) |
---|
114 | |
---|
115 | |
---|
116 | name = ext[1:3].upper() |
---|
117 | if name == 'E.': name = 'ELEVATION' |
---|
118 | fid.createVariable(name,'d',('TIME', lat_name, long_name)) |
---|
119 | fid.variables[name].units='CENTIMETERS' |
---|
120 | fid.variables[name].missing_value=-1.e+034 |
---|
121 | |
---|
122 | fid.variables[name].assignValue([[[0.3400644, 0, -46.63519, -6.50198], |
---|
123 | [-0.1214216, 0, 0, 0], |
---|
124 | [0, 0, 0, 0], |
---|
125 | [0, 0, 0, 0]], |
---|
126 | [[0.3400644, 2.291054e-005, -23.33335, -6.50198], |
---|
127 | [-0.1213987, 4.581959e-005, -1.594838e-007, 1.421085e-012], |
---|
128 | [2.291054e-005, 4.582107e-005, 4.581715e-005, 1.854517e-009], |
---|
129 | [0, 2.291054e-005, 2.291054e-005, 0]], |
---|
130 | [[0.3400644, 0.0001374632, -23.31503, -6.50198], |
---|
131 | [-0.1212842, 0.0002756907, 0.006325484, 1.380492e-006], |
---|
132 | [0.0001374632, 0.0002749264, 0.0002742863, 6.665601e-008], |
---|
133 | [0, 0.0001374632, 0.0001374632, 0]], |
---|
134 | [[0.3400644, 0.0002520159, -23.29672, -6.50198], |
---|
135 | [-0.1211696, 0.0005075303, 0.01264618, 6.208276e-006], |
---|
136 | [0.0002520159, 0.0005040318, 0.0005027961, 2.23865e-007], |
---|
137 | [0, 0.0002520159, 0.0002520159, 0]], |
---|
138 | [[0.3400644, 0.0003665686, -23.27842, -6.50198], |
---|
139 | [-0.1210551, 0.0007413362, 0.01896192, 1.447638e-005], |
---|
140 | [0.0003665686, 0.0007331371, 0.0007313463, 4.734126e-007], |
---|
141 | [0, 0.0003665686, 0.0003665686, 0]], |
---|
142 | [[0.3400644, 0.0004811212, -23.26012, -6.50198], |
---|
143 | [-0.1209405, 0.0009771062, 0.02527271, 2.617787e-005], |
---|
144 | [0.0004811212, 0.0009622425, 0.0009599366, 8.152277e-007], |
---|
145 | [0, 0.0004811212, 0.0004811212, 0]]]) |
---|
146 | |
---|
147 | |
---|
148 | fid.close() |
---|
149 | |
---|
150 | |
---|
151 | |
---|
152 | |
---|
153 | def tearDown(self): |
---|
154 | import os |
---|
155 | for ext in ['_ha.nc', '_ua.nc', '_va.nc', '_e.nc']: |
---|
156 | #print 'Trying to remove', self.test_MOST_file + ext |
---|
157 | os.remove(self.test_MOST_file + ext) |
---|
158 | |
---|
159 | def test_sww_constant(self): |
---|
160 | """Test that constant sww information can be written correctly |
---|
161 | (non smooth) |
---|
162 | """ |
---|
163 | |
---|
164 | import time, os |
---|
165 | from Numeric import array, zeros, allclose, Float, concatenate |
---|
166 | from Scientific.IO.NetCDF import NetCDFFile |
---|
167 | |
---|
168 | self.domain.set_name('datatest' + str(id(self))) |
---|
169 | self.domain.format = 'sww' #Remove?? |
---|
170 | self.domain.smooth = False |
---|
171 | |
---|
172 | sww = get_dataobject(self.domain) |
---|
173 | sww.store_connectivity() |
---|
174 | |
---|
175 | #Check contents |
---|
176 | #Get NetCDF |
---|
177 | fid = NetCDFFile(sww.filename, 'r') #Open existing file for append |
---|
178 | |
---|
179 | # Get the variables |
---|
180 | x = fid.variables['x'] |
---|
181 | y = fid.variables['y'] |
---|
182 | z = fid.variables['elevation'] |
---|
183 | |
---|
184 | volumes = fid.variables['volumes'] |
---|
185 | |
---|
186 | |
---|
187 | assert allclose (x[:], self.X.flat) |
---|
188 | assert allclose (y[:], self.Y.flat) |
---|
189 | assert allclose (z[:], self.F.flat) |
---|
190 | |
---|
191 | V = volumes |
---|
192 | |
---|
193 | P = len(self.domain) |
---|
194 | for k in range(P): |
---|
195 | assert V[k, 0] == 3*k |
---|
196 | assert V[k, 1] == 3*k+1 |
---|
197 | assert V[k, 2] == 3*k+2 |
---|
198 | |
---|
199 | |
---|
200 | fid.close() |
---|
201 | |
---|
202 | #Cleanup |
---|
203 | os.remove(sww.filename) |
---|
204 | |
---|
205 | |
---|
206 | def test_sww_constant_smooth(self): |
---|
207 | """Test that constant sww information can be written correctly |
---|
208 | (non smooth) |
---|
209 | """ |
---|
210 | |
---|
211 | import time, os |
---|
212 | from Numeric import array, zeros, allclose, Float, concatenate |
---|
213 | from Scientific.IO.NetCDF import NetCDFFile |
---|
214 | |
---|
215 | self.domain.set_name('datatest' + str(id(self))) |
---|
216 | self.domain.format = 'sww' |
---|
217 | self.domain.smooth = True |
---|
218 | |
---|
219 | sww = get_dataobject(self.domain) |
---|
220 | sww.store_connectivity() |
---|
221 | |
---|
222 | #Check contents |
---|
223 | #Get NetCDF |
---|
224 | fid = NetCDFFile(sww.filename, 'r') #Open existing file for append |
---|
225 | |
---|
226 | # Get the variables |
---|
227 | x = fid.variables['x'] |
---|
228 | y = fid.variables['y'] |
---|
229 | z = fid.variables['elevation'] |
---|
230 | |
---|
231 | volumes = fid.variables['volumes'] |
---|
232 | |
---|
233 | X = x[:] |
---|
234 | Y = y[:] |
---|
235 | |
---|
236 | assert allclose([X[0], Y[0]], array([0.0, 0.0])) |
---|
237 | assert allclose([X[1], Y[1]], array([0.0, 0.5])) |
---|
238 | assert allclose([X[2], Y[2]], array([0.0, 1.0])) |
---|
239 | |
---|
240 | assert allclose([X[4], Y[4]], array([0.5, 0.5])) |
---|
241 | |
---|
242 | assert allclose([X[7], Y[7]], array([1.0, 0.5])) |
---|
243 | |
---|
244 | Z = z[:] |
---|
245 | assert Z[4] == -0.5 |
---|
246 | |
---|
247 | V = volumes |
---|
248 | assert V[2,0] == 4 |
---|
249 | assert V[2,1] == 5 |
---|
250 | assert V[2,2] == 1 |
---|
251 | |
---|
252 | assert V[4,0] == 6 |
---|
253 | assert V[4,1] == 7 |
---|
254 | assert V[4,2] == 3 |
---|
255 | |
---|
256 | |
---|
257 | fid.close() |
---|
258 | |
---|
259 | #Cleanup |
---|
260 | os.remove(sww.filename) |
---|
261 | |
---|
262 | |
---|
263 | |
---|
264 | def test_sww_variable(self): |
---|
265 | """Test that sww information can be written correctly |
---|
266 | """ |
---|
267 | |
---|
268 | import time, os |
---|
269 | from Numeric import array, zeros, allclose, Float, concatenate |
---|
270 | from Scientific.IO.NetCDF import NetCDFFile |
---|
271 | |
---|
272 | self.domain.set_name('datatest' + str(id(self))) |
---|
273 | self.domain.format = 'sww' |
---|
274 | self.domain.smooth = True |
---|
275 | self.domain.reduction = mean |
---|
276 | |
---|
277 | sww = get_dataobject(self.domain) |
---|
278 | sww.store_connectivity() |
---|
279 | sww.store_timestep('stage') |
---|
280 | |
---|
281 | #Check contents |
---|
282 | #Get NetCDF |
---|
283 | fid = NetCDFFile(sww.filename, 'r') #Open existing file for append |
---|
284 | |
---|
285 | |
---|
286 | # Get the variables |
---|
287 | x = fid.variables['x'] |
---|
288 | y = fid.variables['y'] |
---|
289 | z = fid.variables['elevation'] |
---|
290 | time = fid.variables['time'] |
---|
291 | stage = fid.variables['stage'] |
---|
292 | |
---|
293 | |
---|
294 | Q = self.domain.quantities['stage'] |
---|
295 | Q0 = Q.vertex_values[:,0] |
---|
296 | Q1 = Q.vertex_values[:,1] |
---|
297 | Q2 = Q.vertex_values[:,2] |
---|
298 | |
---|
299 | A = stage[0,:] |
---|
300 | #print A[0], (Q2[0,0] + Q1[1,0])/2 |
---|
301 | assert allclose(A[0], (Q2[0] + Q1[1])/2) |
---|
302 | assert allclose(A[1], (Q0[1] + Q1[3] + Q2[2])/3) |
---|
303 | assert allclose(A[2], Q0[3]) |
---|
304 | assert allclose(A[3], (Q0[0] + Q1[5] + Q2[4])/3) |
---|
305 | |
---|
306 | #Center point |
---|
307 | assert allclose(A[4], (Q1[0] + Q2[1] + Q0[2] +\ |
---|
308 | Q0[5] + Q2[6] + Q1[7])/6) |
---|
309 | |
---|
310 | |
---|
311 | |
---|
312 | fid.close() |
---|
313 | |
---|
314 | #Cleanup |
---|
315 | os.remove(sww.filename) |
---|
316 | |
---|
317 | |
---|
318 | def test_sww_variable2(self): |
---|
319 | """Test that sww information can be written correctly |
---|
320 | multiple timesteps. Use average as reduction operator |
---|
321 | """ |
---|
322 | |
---|
323 | import time, os |
---|
324 | from Numeric import array, zeros, allclose, Float, concatenate |
---|
325 | from Scientific.IO.NetCDF import NetCDFFile |
---|
326 | |
---|
327 | self.domain.set_name('datatest' + str(id(self))) |
---|
328 | self.domain.format = 'sww' |
---|
329 | self.domain.smooth = True |
---|
330 | |
---|
331 | self.domain.reduction = mean |
---|
332 | |
---|
333 | sww = get_dataobject(self.domain) |
---|
334 | sww.store_connectivity() |
---|
335 | sww.store_timestep('stage') |
---|
336 | self.domain.evolve_to_end(finaltime = 0.01) |
---|
337 | sww.store_timestep('stage') |
---|
338 | |
---|
339 | |
---|
340 | #Check contents |
---|
341 | #Get NetCDF |
---|
342 | fid = NetCDFFile(sww.filename, 'r') #Open existing file for append |
---|
343 | |
---|
344 | # Get the variables |
---|
345 | x = fid.variables['x'] |
---|
346 | y = fid.variables['y'] |
---|
347 | z = fid.variables['elevation'] |
---|
348 | time = fid.variables['time'] |
---|
349 | stage = fid.variables['stage'] |
---|
350 | |
---|
351 | #Check values |
---|
352 | Q = self.domain.quantities['stage'] |
---|
353 | Q0 = Q.vertex_values[:,0] |
---|
354 | Q1 = Q.vertex_values[:,1] |
---|
355 | Q2 = Q.vertex_values[:,2] |
---|
356 | |
---|
357 | A = stage[1,:] |
---|
358 | assert allclose(A[0], (Q2[0] + Q1[1])/2) |
---|
359 | assert allclose(A[1], (Q0[1] + Q1[3] + Q2[2])/3) |
---|
360 | assert allclose(A[2], Q0[3]) |
---|
361 | assert allclose(A[3], (Q0[0] + Q1[5] + Q2[4])/3) |
---|
362 | |
---|
363 | #Center point |
---|
364 | assert allclose(A[4], (Q1[0] + Q2[1] + Q0[2] +\ |
---|
365 | Q0[5] + Q2[6] + Q1[7])/6) |
---|
366 | |
---|
367 | |
---|
368 | fid.close() |
---|
369 | |
---|
370 | #Cleanup |
---|
371 | os.remove(sww.filename) |
---|
372 | |
---|
373 | def test_sww_variable3(self): |
---|
374 | """Test that sww information can be written correctly |
---|
375 | multiple timesteps using a different reduction operator (min) |
---|
376 | """ |
---|
377 | |
---|
378 | import time, os |
---|
379 | from Numeric import array, zeros, allclose, Float, concatenate |
---|
380 | from Scientific.IO.NetCDF import NetCDFFile |
---|
381 | |
---|
382 | self.domain.set_name('datatest' + str(id(self))) |
---|
383 | self.domain.format = 'sww' |
---|
384 | self.domain.smooth = True |
---|
385 | self.domain.reduction = min |
---|
386 | |
---|
387 | sww = get_dataobject(self.domain) |
---|
388 | sww.store_connectivity() |
---|
389 | sww.store_timestep('stage') |
---|
390 | |
---|
391 | self.domain.evolve_to_end(finaltime = 0.01) |
---|
392 | sww.store_timestep('stage') |
---|
393 | |
---|
394 | |
---|
395 | #Check contents |
---|
396 | #Get NetCDF |
---|
397 | fid = NetCDFFile(sww.filename, 'r') |
---|
398 | |
---|
399 | |
---|
400 | # Get the variables |
---|
401 | x = fid.variables['x'] |
---|
402 | y = fid.variables['y'] |
---|
403 | z = fid.variables['elevation'] |
---|
404 | time = fid.variables['time'] |
---|
405 | stage = fid.variables['stage'] |
---|
406 | |
---|
407 | #Check values |
---|
408 | Q = self.domain.quantities['stage'] |
---|
409 | Q0 = Q.vertex_values[:,0] |
---|
410 | Q1 = Q.vertex_values[:,1] |
---|
411 | Q2 = Q.vertex_values[:,2] |
---|
412 | |
---|
413 | A = stage[1,:] |
---|
414 | assert allclose(A[0], min(Q2[0], Q1[1])) |
---|
415 | assert allclose(A[1], min(Q0[1], Q1[3], Q2[2])) |
---|
416 | assert allclose(A[2], Q0[3]) |
---|
417 | assert allclose(A[3], min(Q0[0], Q1[5], Q2[4])) |
---|
418 | |
---|
419 | #Center point |
---|
420 | assert allclose(A[4], min(Q1[0], Q2[1], Q0[2],\ |
---|
421 | Q0[5], Q2[6], Q1[7])) |
---|
422 | |
---|
423 | |
---|
424 | fid.close() |
---|
425 | |
---|
426 | #Cleanup |
---|
427 | os.remove(sww.filename) |
---|
428 | |
---|
429 | |
---|
430 | def test_sync(self): |
---|
431 | """test_sync - Test info stored at each timestep is as expected (incl initial condition) |
---|
432 | """ |
---|
433 | |
---|
434 | import time, os, config |
---|
435 | from Numeric import array, zeros, allclose, Float, concatenate |
---|
436 | from Scientific.IO.NetCDF import NetCDFFile |
---|
437 | |
---|
438 | self.domain.set_name('synctest') |
---|
439 | self.domain.format = 'sww' |
---|
440 | self.domain.smooth = False |
---|
441 | self.domain.store = True |
---|
442 | self.domain.beta_h = 0 |
---|
443 | |
---|
444 | |
---|
445 | #Evolution |
---|
446 | for t in self.domain.evolve(yieldstep = 1.0, finaltime = 4.0): |
---|
447 | #########self.domain.write_time(track_speeds=True) |
---|
448 | stage = self.domain.quantities['stage'].vertex_values |
---|
449 | |
---|
450 | #Get NetCDF |
---|
451 | fid = NetCDFFile(self.domain.writer.filename, 'r') |
---|
452 | stage_file = fid.variables['stage'] |
---|
453 | |
---|
454 | if t == 0.0: |
---|
455 | assert allclose(stage, self.initial_stage) |
---|
456 | assert allclose(stage_file[:], stage.flat) |
---|
457 | else: |
---|
458 | assert not allclose(stage, self.initial_stage) |
---|
459 | assert not allclose(stage_file[:], stage.flat) |
---|
460 | |
---|
461 | fid.close() |
---|
462 | |
---|
463 | os.remove(self.domain.writer.filename) |
---|
464 | |
---|
465 | |
---|
466 | def test_sww_minimum_storable_height(self): |
---|
467 | """Test that sww information can be written correctly |
---|
468 | multiple timesteps using a different reduction operator (min) |
---|
469 | """ |
---|
470 | |
---|
471 | import time, os |
---|
472 | from Numeric import array, zeros, allclose, Float, concatenate |
---|
473 | from Scientific.IO.NetCDF import NetCDFFile |
---|
474 | |
---|
475 | self.domain.set_name('datatest' + str(id(self))) |
---|
476 | self.domain.format = 'sww' |
---|
477 | self.domain.smooth = True |
---|
478 | self.domain.reduction = min |
---|
479 | self.domain.minimum_storable_height = 100 |
---|
480 | |
---|
481 | sww = get_dataobject(self.domain) |
---|
482 | sww.store_connectivity() |
---|
483 | sww.store_timestep('stage') |
---|
484 | |
---|
485 | self.domain.evolve_to_end(finaltime = 0.01) |
---|
486 | sww.store_timestep('stage') |
---|
487 | |
---|
488 | |
---|
489 | #Check contents |
---|
490 | #Get NetCDF |
---|
491 | fid = NetCDFFile(sww.filename, 'r') |
---|
492 | |
---|
493 | |
---|
494 | # Get the variables |
---|
495 | x = fid.variables['x'] |
---|
496 | y = fid.variables['y'] |
---|
497 | z = fid.variables['elevation'] |
---|
498 | time = fid.variables['time'] |
---|
499 | stage = fid.variables['stage'] |
---|
500 | |
---|
501 | #Check values |
---|
502 | Q = self.domain.quantities['stage'] |
---|
503 | Q0 = Q.vertex_values[:,0] |
---|
504 | Q1 = Q.vertex_values[:,1] |
---|
505 | Q2 = Q.vertex_values[:,2] |
---|
506 | |
---|
507 | A = stage[1,:] |
---|
508 | assert allclose(stage[1,:], z[:]) |
---|
509 | fid.close() |
---|
510 | |
---|
511 | #Cleanup |
---|
512 | os.remove(sww.filename) |
---|
513 | |
---|
514 | |
---|
515 | def Not_a_test_sww_DSG(self): |
---|
516 | """Not a test, rather a look at the sww format |
---|
517 | """ |
---|
518 | |
---|
519 | import time, os |
---|
520 | from Numeric import array, zeros, allclose, Float, concatenate |
---|
521 | from Scientific.IO.NetCDF import NetCDFFile |
---|
522 | |
---|
523 | self.domain.set_name('datatest' + str(id(self))) |
---|
524 | self.domain.format = 'sww' |
---|
525 | self.domain.smooth = True |
---|
526 | self.domain.reduction = mean |
---|
527 | |
---|
528 | sww = get_dataobject(self.domain) |
---|
529 | sww.store_connectivity() |
---|
530 | sww.store_timestep('stage') |
---|
531 | |
---|
532 | #Check contents |
---|
533 | #Get NetCDF |
---|
534 | fid = NetCDFFile(sww.filename, 'r') |
---|
535 | |
---|
536 | # Get the variables |
---|
537 | x = fid.variables['x'] |
---|
538 | y = fid.variables['y'] |
---|
539 | z = fid.variables['elevation'] |
---|
540 | |
---|
541 | volumes = fid.variables['volumes'] |
---|
542 | time = fid.variables['time'] |
---|
543 | |
---|
544 | # 2D |
---|
545 | stage = fid.variables['stage'] |
---|
546 | |
---|
547 | X = x[:] |
---|
548 | Y = y[:] |
---|
549 | Z = z[:] |
---|
550 | V = volumes[:] |
---|
551 | T = time[:] |
---|
552 | S = stage[:,:] |
---|
553 | |
---|
554 | # print "****************************" |
---|
555 | # print "X ",X |
---|
556 | # print "****************************" |
---|
557 | # print "Y ",Y |
---|
558 | # print "****************************" |
---|
559 | # print "Z ",Z |
---|
560 | # print "****************************" |
---|
561 | # print "V ",V |
---|
562 | # print "****************************" |
---|
563 | # print "Time ",T |
---|
564 | # print "****************************" |
---|
565 | # print "Stage ",S |
---|
566 | # print "****************************" |
---|
567 | |
---|
568 | |
---|
569 | fid.close() |
---|
570 | |
---|
571 | #Cleanup |
---|
572 | os.remove(sww.filename) |
---|
573 | |
---|
574 | |
---|
575 | #def test_write_pts(self): |
---|
576 | # #Obsolete |
---|
577 | # |
---|
578 | # #Get (enough) datapoints |
---|
579 | # |
---|
580 | # from Numeric import array |
---|
581 | # points = array([[ 0.66666667, 0.66666667], |
---|
582 | # [ 1.33333333, 1.33333333], |
---|
583 | # [ 2.66666667, 0.66666667], |
---|
584 | # [ 0.66666667, 2.66666667], |
---|
585 | # [ 0.0, 1.0], |
---|
586 | # [ 0.0, 3.0], |
---|
587 | # [ 1.0, 0.0], |
---|
588 | # [ 1.0, 1.0], |
---|
589 | # [ 1.0, 2.0], |
---|
590 | # [ 1.0, 3.0], |
---|
591 | # [ 2.0, 1.0], |
---|
592 | # [ 3.0, 0.0], |
---|
593 | # [ 3.0, 1.0]]) |
---|
594 | # |
---|
595 | # z = points[:,0] + 2*points[:,1] |
---|
596 | # |
---|
597 | # ptsfile = 'testptsfile.pts' |
---|
598 | # write_ptsfile(ptsfile, points, z, |
---|
599 | # attribute_name = 'linear_combination') |
---|
600 | # |
---|
601 | # #Check contents |
---|
602 | # #Get NetCDF |
---|
603 | # from Scientific.IO.NetCDF import NetCDFFile |
---|
604 | # fid = NetCDFFile(ptsfile, 'r') |
---|
605 | # |
---|
606 | # # Get the variables |
---|
607 | # #print fid.variables.keys() |
---|
608 | # points1 = fid.variables['points'] |
---|
609 | # z1 = fid.variables['linear_combination'] |
---|
610 | # |
---|
611 | # #Check values# |
---|
612 | # |
---|
613 | # #print points[:] |
---|
614 | # #print ref_points |
---|
615 | # assert allclose(points, points1) |
---|
616 | # |
---|
617 | # #print attributes[:] |
---|
618 | # #print ref_elevation |
---|
619 | # assert allclose(z, z1) |
---|
620 | # |
---|
621 | # #Cleanup |
---|
622 | # fid.close() |
---|
623 | # |
---|
624 | # import os |
---|
625 | # os.remove(ptsfile) |
---|
626 | |
---|
627 | |
---|
628 | def test_dem2pts_bounding_box_v2(self): |
---|
629 | """Test conversion from dem in ascii format to native NetCDF xya format |
---|
630 | """ |
---|
631 | |
---|
632 | import time, os |
---|
633 | from Numeric import array, zeros, allclose, Float, concatenate, ones |
---|
634 | from Scientific.IO.NetCDF import NetCDFFile |
---|
635 | |
---|
636 | #Write test asc file |
---|
637 | root = 'demtest' |
---|
638 | |
---|
639 | filename = root+'.asc' |
---|
640 | fid = open(filename, 'w') |
---|
641 | fid.write("""ncols 10 |
---|
642 | nrows 10 |
---|
643 | xllcorner 2000 |
---|
644 | yllcorner 3000 |
---|
645 | cellsize 1 |
---|
646 | NODATA_value -9999 |
---|
647 | """) |
---|
648 | #Create linear function |
---|
649 | ref_points = [] |
---|
650 | ref_elevation = [] |
---|
651 | x0 = 2000 |
---|
652 | y = 3010 |
---|
653 | yvec = range(10) |
---|
654 | xvec = range(10) |
---|
655 | z = -1 |
---|
656 | for i in range(10): |
---|
657 | y = y - 1 |
---|
658 | for j in range(10): |
---|
659 | x = x0 + xvec[j] |
---|
660 | z += 1 |
---|
661 | ref_points.append ([x,y]) |
---|
662 | ref_elevation.append(z) |
---|
663 | fid.write('%f ' %z) |
---|
664 | fid.write('\n') |
---|
665 | |
---|
666 | fid.close() |
---|
667 | |
---|
668 | #print 'sending pts', ref_points |
---|
669 | #print 'sending elev', ref_elevation |
---|
670 | |
---|
671 | #Write prj file with metadata |
---|
672 | metafilename = root+'.prj' |
---|
673 | fid = open(metafilename, 'w') |
---|
674 | |
---|
675 | |
---|
676 | fid.write("""Projection UTM |
---|
677 | Zone 56 |
---|
678 | Datum WGS84 |
---|
679 | Zunits NO |
---|
680 | Units METERS |
---|
681 | Spheroid WGS84 |
---|
682 | Xshift 0.0000000000 |
---|
683 | Yshift 10000000.0000000000 |
---|
684 | Parameters |
---|
685 | """) |
---|
686 | fid.close() |
---|
687 | |
---|
688 | #Convert to NetCDF pts |
---|
689 | convert_dem_from_ascii2netcdf(root) |
---|
690 | dem2pts(root, easting_min=2002.0, easting_max=2007.0, |
---|
691 | northing_min=3003.0, northing_max=3006.0) |
---|
692 | |
---|
693 | #Check contents |
---|
694 | #Get NetCDF |
---|
695 | fid = NetCDFFile(root+'.pts', 'r') |
---|
696 | |
---|
697 | # Get the variables |
---|
698 | #print fid.variables.keys() |
---|
699 | points = fid.variables['points'] |
---|
700 | elevation = fid.variables['elevation'] |
---|
701 | |
---|
702 | #Check values |
---|
703 | assert fid.xllcorner[0] == 2002.0 |
---|
704 | assert fid.yllcorner[0] == 3003.0 |
---|
705 | |
---|
706 | #create new reference points |
---|
707 | newz = [] |
---|
708 | newz[0:5] = ref_elevation[32:38] |
---|
709 | newz[6:11] = ref_elevation[42:48] |
---|
710 | newz[12:17] = ref_elevation[52:58] |
---|
711 | newz[18:23] = ref_elevation[62:68] |
---|
712 | ref_elevation = [] |
---|
713 | ref_elevation = newz |
---|
714 | ref_points = [] |
---|
715 | x0 = 2002 |
---|
716 | y = 3007 |
---|
717 | yvec = range(4) |
---|
718 | xvec = range(6) |
---|
719 | for i in range(4): |
---|
720 | y = y - 1 |
---|
721 | ynew = y - 3003.0 |
---|
722 | for j in range(6): |
---|
723 | x = x0 + xvec[j] |
---|
724 | xnew = x - 2002.0 |
---|
725 | ref_points.append ([xnew,ynew]) #Relative point values |
---|
726 | |
---|
727 | assert allclose(points, ref_points) |
---|
728 | |
---|
729 | assert allclose(elevation, ref_elevation) |
---|
730 | |
---|
731 | #Cleanup |
---|
732 | fid.close() |
---|
733 | |
---|
734 | |
---|
735 | os.remove(root + '.pts') |
---|
736 | os.remove(root + '.dem') |
---|
737 | os.remove(root + '.asc') |
---|
738 | os.remove(root + '.prj') |
---|
739 | |
---|
740 | |
---|
741 | def test_dem2pts_bounding_box_removeNullvalues_v2(self): |
---|
742 | """Test conversion from dem in ascii format to native NetCDF xya format |
---|
743 | """ |
---|
744 | |
---|
745 | import time, os |
---|
746 | from Numeric import array, zeros, allclose, Float, concatenate, ones |
---|
747 | from Scientific.IO.NetCDF import NetCDFFile |
---|
748 | |
---|
749 | #Write test asc file |
---|
750 | root = 'demtest' |
---|
751 | |
---|
752 | filename = root+'.asc' |
---|
753 | fid = open(filename, 'w') |
---|
754 | fid.write("""ncols 10 |
---|
755 | nrows 10 |
---|
756 | xllcorner 2000 |
---|
757 | yllcorner 3000 |
---|
758 | cellsize 1 |
---|
759 | NODATA_value -9999 |
---|
760 | """) |
---|
761 | #Create linear function |
---|
762 | ref_points = [] |
---|
763 | ref_elevation = [] |
---|
764 | x0 = 2000 |
---|
765 | y = 3010 |
---|
766 | yvec = range(10) |
---|
767 | xvec = range(10) |
---|
768 | #z = range(100) |
---|
769 | z = zeros(100) |
---|
770 | NODATA_value = -9999 |
---|
771 | count = -1 |
---|
772 | for i in range(10): |
---|
773 | y = y - 1 |
---|
774 | for j in range(10): |
---|
775 | x = x0 + xvec[j] |
---|
776 | ref_points.append ([x,y]) |
---|
777 | count += 1 |
---|
778 | z[count] = (4*i - 3*j)%13 |
---|
779 | if j == 4: z[count] = NODATA_value #column inside clipping region |
---|
780 | if j == 8: z[count] = NODATA_value #column outside clipping region |
---|
781 | if i == 9: z[count] = NODATA_value #row outside clipping region |
---|
782 | if i == 4 and j == 6: z[count] = NODATA_value #arbitrary point inside clipping region |
---|
783 | ref_elevation.append( z[count] ) |
---|
784 | fid.write('%f ' %z[count]) |
---|
785 | fid.write('\n') |
---|
786 | |
---|
787 | fid.close() |
---|
788 | |
---|
789 | #print 'sending elev', ref_elevation |
---|
790 | |
---|
791 | #Write prj file with metadata |
---|
792 | metafilename = root+'.prj' |
---|
793 | fid = open(metafilename, 'w') |
---|
794 | |
---|
795 | |
---|
796 | fid.write("""Projection UTM |
---|
797 | Zone 56 |
---|
798 | Datum WGS84 |
---|
799 | Zunits NO |
---|
800 | Units METERS |
---|
801 | Spheroid WGS84 |
---|
802 | Xshift 0.0000000000 |
---|
803 | Yshift 10000000.0000000000 |
---|
804 | Parameters |
---|
805 | """) |
---|
806 | fid.close() |
---|
807 | |
---|
808 | #Convert to NetCDF pts |
---|
809 | convert_dem_from_ascii2netcdf(root) |
---|
810 | dem2pts(root, easting_min=2002.0, easting_max=2007.0, |
---|
811 | northing_min=3003.0, northing_max=3006.0) |
---|
812 | |
---|
813 | #Check contents |
---|
814 | #Get NetCDF |
---|
815 | fid = NetCDFFile(root+'.pts', 'r') |
---|
816 | |
---|
817 | # Get the variables |
---|
818 | #print fid.variables.keys() |
---|
819 | points = fid.variables['points'] |
---|
820 | elevation = fid.variables['elevation'] |
---|
821 | |
---|
822 | #Check values |
---|
823 | assert fid.xllcorner[0] == 2002.0 |
---|
824 | assert fid.yllcorner[0] == 3003.0 |
---|
825 | |
---|
826 | #create new reference points |
---|
827 | newz = zeros(19) |
---|
828 | newz[0:2] = ref_elevation[32:34] |
---|
829 | newz[2:5] = ref_elevation[35:38] |
---|
830 | newz[5:7] = ref_elevation[42:44] |
---|
831 | newz[7] = ref_elevation[45] |
---|
832 | newz[8] = ref_elevation[47] |
---|
833 | newz[9:11] = ref_elevation[52:54] |
---|
834 | newz[11:14] = ref_elevation[55:58] |
---|
835 | newz[14:16] = ref_elevation[62:64] |
---|
836 | newz[16:19] = ref_elevation[65:68] |
---|
837 | |
---|
838 | |
---|
839 | ref_elevation = newz |
---|
840 | ref_points = [] |
---|
841 | new_ref_points = [] |
---|
842 | x0 = 2002 |
---|
843 | y = 3007 |
---|
844 | yvec = range(4) |
---|
845 | xvec = range(6) |
---|
846 | for i in range(4): |
---|
847 | y = y - 1 |
---|
848 | ynew = y - 3003.0 |
---|
849 | for j in range(6): |
---|
850 | x = x0 + xvec[j] |
---|
851 | xnew = x - 2002.0 |
---|
852 | if j <> 2 and (i<>1 or j<>4): |
---|
853 | ref_points.append([x,y]) |
---|
854 | new_ref_points.append ([xnew,ynew]) |
---|
855 | |
---|
856 | |
---|
857 | assert allclose(points, new_ref_points) |
---|
858 | assert allclose(elevation, ref_elevation) |
---|
859 | |
---|
860 | #Cleanup |
---|
861 | fid.close() |
---|
862 | |
---|
863 | |
---|
864 | os.remove(root + '.pts') |
---|
865 | os.remove(root + '.dem') |
---|
866 | os.remove(root + '.asc') |
---|
867 | os.remove(root + '.prj') |
---|
868 | |
---|
869 | |
---|
870 | def test_dem2pts_bounding_box_removeNullvalues_v3(self): |
---|
871 | """Test conversion from dem in ascii format to native NetCDF xya format |
---|
872 | Check missing values on clipping boundary |
---|
873 | """ |
---|
874 | |
---|
875 | import time, os |
---|
876 | from Numeric import array, zeros, allclose, Float, concatenate, ones |
---|
877 | from Scientific.IO.NetCDF import NetCDFFile |
---|
878 | |
---|
879 | #Write test asc file |
---|
880 | root = 'demtest' |
---|
881 | |
---|
882 | filename = root+'.asc' |
---|
883 | fid = open(filename, 'w') |
---|
884 | fid.write("""ncols 10 |
---|
885 | nrows 10 |
---|
886 | xllcorner 2000 |
---|
887 | yllcorner 3000 |
---|
888 | cellsize 1 |
---|
889 | NODATA_value -9999 |
---|
890 | """) |
---|
891 | #Create linear function |
---|
892 | ref_points = [] |
---|
893 | ref_elevation = [] |
---|
894 | x0 = 2000 |
---|
895 | y = 3010 |
---|
896 | yvec = range(10) |
---|
897 | xvec = range(10) |
---|
898 | #z = range(100) |
---|
899 | z = zeros(100) |
---|
900 | NODATA_value = -9999 |
---|
901 | count = -1 |
---|
902 | for i in range(10): |
---|
903 | y = y - 1 |
---|
904 | for j in range(10): |
---|
905 | x = x0 + xvec[j] |
---|
906 | ref_points.append ([x,y]) |
---|
907 | count += 1 |
---|
908 | z[count] = (4*i - 3*j)%13 |
---|
909 | if j == 4: z[count] = NODATA_value #column inside clipping region |
---|
910 | if j == 8: z[count] = NODATA_value #column outside clipping region |
---|
911 | if i == 6: z[count] = NODATA_value #row on clipping boundary |
---|
912 | if i == 4 and j == 6: z[count] = NODATA_value #arbitrary point inside clipping region |
---|
913 | ref_elevation.append( z[count] ) |
---|
914 | fid.write('%f ' %z[count]) |
---|
915 | fid.write('\n') |
---|
916 | |
---|
917 | fid.close() |
---|
918 | |
---|
919 | #print 'sending elev', ref_elevation |
---|
920 | |
---|
921 | #Write prj file with metadata |
---|
922 | metafilename = root+'.prj' |
---|
923 | fid = open(metafilename, 'w') |
---|
924 | |
---|
925 | |
---|
926 | fid.write("""Projection UTM |
---|
927 | Zone 56 |
---|
928 | Datum WGS84 |
---|
929 | Zunits NO |
---|
930 | Units METERS |
---|
931 | Spheroid WGS84 |
---|
932 | Xshift 0.0000000000 |
---|
933 | Yshift 10000000.0000000000 |
---|
934 | Parameters |
---|
935 | """) |
---|
936 | fid.close() |
---|
937 | |
---|
938 | #Convert to NetCDF pts |
---|
939 | convert_dem_from_ascii2netcdf(root) |
---|
940 | dem2pts(root, easting_min=2002.0, easting_max=2007.0, |
---|
941 | northing_min=3003.0, northing_max=3006.0) |
---|
942 | |
---|
943 | #Check contents |
---|
944 | #Get NetCDF |
---|
945 | fid = NetCDFFile(root+'.pts', 'r') |
---|
946 | |
---|
947 | # Get the variables |
---|
948 | #print fid.variables.keys() |
---|
949 | points = fid.variables['points'] |
---|
950 | elevation = fid.variables['elevation'] |
---|
951 | |
---|
952 | #Check values |
---|
953 | assert fid.xllcorner[0] == 2002.0 |
---|
954 | assert fid.yllcorner[0] == 3003.0 |
---|
955 | |
---|
956 | #create new reference points |
---|
957 | newz = zeros(14) |
---|
958 | newz[0:2] = ref_elevation[32:34] |
---|
959 | newz[2:5] = ref_elevation[35:38] |
---|
960 | newz[5:7] = ref_elevation[42:44] |
---|
961 | newz[7] = ref_elevation[45] |
---|
962 | newz[8] = ref_elevation[47] |
---|
963 | newz[9:11] = ref_elevation[52:54] |
---|
964 | newz[11:14] = ref_elevation[55:58] |
---|
965 | |
---|
966 | |
---|
967 | |
---|
968 | ref_elevation = newz |
---|
969 | ref_points = [] |
---|
970 | new_ref_points = [] |
---|
971 | x0 = 2002 |
---|
972 | y = 3007 |
---|
973 | yvec = range(4) |
---|
974 | xvec = range(6) |
---|
975 | for i in range(4): |
---|
976 | y = y - 1 |
---|
977 | ynew = y - 3003.0 |
---|
978 | for j in range(6): |
---|
979 | x = x0 + xvec[j] |
---|
980 | xnew = x - 2002.0 |
---|
981 | if j <> 2 and (i<>1 or j<>4) and i<>3: |
---|
982 | ref_points.append([x,y]) |
---|
983 | new_ref_points.append ([xnew,ynew]) |
---|
984 | |
---|
985 | |
---|
986 | #print points[:],points[:].shape |
---|
987 | #print new_ref_points, len(new_ref_points) |
---|
988 | |
---|
989 | assert allclose(elevation, ref_elevation) |
---|
990 | assert allclose(points, new_ref_points) |
---|
991 | |
---|
992 | |
---|
993 | #Cleanup |
---|
994 | fid.close() |
---|
995 | |
---|
996 | |
---|
997 | os.remove(root + '.pts') |
---|
998 | os.remove(root + '.dem') |
---|
999 | os.remove(root + '.asc') |
---|
1000 | os.remove(root + '.prj') |
---|
1001 | |
---|
1002 | |
---|
1003 | def test_hecras_cross_sections2pts(self): |
---|
1004 | """Test conversion from HECRAS cross sections in ascii format |
---|
1005 | to native NetCDF pts format |
---|
1006 | """ |
---|
1007 | |
---|
1008 | import time, os |
---|
1009 | from Numeric import array, zeros, allclose, Float, concatenate |
---|
1010 | from Scientific.IO.NetCDF import NetCDFFile |
---|
1011 | |
---|
1012 | #Write test asc file |
---|
1013 | root = 'hecrastest' |
---|
1014 | |
---|
1015 | filename = root+'.sdf' |
---|
1016 | fid = open(filename, 'w') |
---|
1017 | fid.write(""" |
---|
1018 | # RAS export file created on Mon 15Aug2005 11:42 |
---|
1019 | # by HEC-RAS Version 3.1.1 |
---|
1020 | |
---|
1021 | BEGIN HEADER: |
---|
1022 | UNITS: METRIC |
---|
1023 | DTM TYPE: TIN |
---|
1024 | DTM: v:\1\cit\perth_topo\river_tin |
---|
1025 | STREAM LAYER: c:\\x_local\hecras\21_02_03\up_canning_cent3d.shp |
---|
1026 | CROSS-SECTION LAYER: c:\\x_local\hecras\21_02_03\up_can_xs3d.shp |
---|
1027 | MAP PROJECTION: UTM |
---|
1028 | PROJECTION ZONE: 50 |
---|
1029 | DATUM: AGD66 |
---|
1030 | VERTICAL DATUM: |
---|
1031 | NUMBER OF REACHES: 19 |
---|
1032 | NUMBER OF CROSS-SECTIONS: 2 |
---|
1033 | END HEADER: |
---|
1034 | |
---|
1035 | |
---|
1036 | BEGIN CROSS-SECTIONS: |
---|
1037 | |
---|
1038 | CROSS-SECTION: |
---|
1039 | STREAM ID:Southern-Wungong |
---|
1040 | REACH ID:Southern-Wungong |
---|
1041 | STATION:21410 |
---|
1042 | CUT LINE: |
---|
1043 | 407546.08 , 6437277.542 |
---|
1044 | 407329.32 , 6437489.482 |
---|
1045 | 407283.11 , 6437541.232 |
---|
1046 | SURFACE LINE: |
---|
1047 | 407546.08, 6437277.54, 52.14 |
---|
1048 | 407538.88, 6437284.58, 51.07 |
---|
1049 | 407531.68, 6437291.62, 50.56 |
---|
1050 | 407524.48, 6437298.66, 49.58 |
---|
1051 | 407517.28, 6437305.70, 49.09 |
---|
1052 | 407510.08, 6437312.74, 48.76 |
---|
1053 | END: |
---|
1054 | |
---|
1055 | CROSS-SECTION: |
---|
1056 | STREAM ID:Swan River |
---|
1057 | REACH ID:Swan Mouth |
---|
1058 | STATION:840.* |
---|
1059 | CUT LINE: |
---|
1060 | 381178.0855 , 6452559.0685 |
---|
1061 | 380485.4755 , 6453169.272 |
---|
1062 | SURFACE LINE: |
---|
1063 | 381178.09, 6452559.07, 4.17 |
---|
1064 | 381169.49, 6452566.64, 4.26 |
---|
1065 | 381157.78, 6452576.96, 4.34 |
---|
1066 | 381155.97, 6452578.56, 4.35 |
---|
1067 | 381143.72, 6452589.35, 4.43 |
---|
1068 | 381136.69, 6452595.54, 4.58 |
---|
1069 | 381114.74, 6452614.88, 4.41 |
---|
1070 | 381075.53, 6452649.43, 4.17 |
---|
1071 | 381071.47, 6452653.00, 3.99 |
---|
1072 | 381063.46, 6452660.06, 3.67 |
---|
1073 | 381054.41, 6452668.03, 3.67 |
---|
1074 | END: |
---|
1075 | END CROSS-SECTIONS: |
---|
1076 | """) |
---|
1077 | |
---|
1078 | fid.close() |
---|
1079 | |
---|
1080 | |
---|
1081 | #Convert to NetCDF pts |
---|
1082 | hecras_cross_sections2pts(root) |
---|
1083 | |
---|
1084 | #Check contents |
---|
1085 | #Get NetCDF |
---|
1086 | fid = NetCDFFile(root+'.pts', 'r') |
---|
1087 | |
---|
1088 | # Get the variables |
---|
1089 | #print fid.variables.keys() |
---|
1090 | points = fid.variables['points'] |
---|
1091 | elevation = fid.variables['elevation'] |
---|
1092 | |
---|
1093 | #Check values |
---|
1094 | ref_points = [[407546.08, 6437277.54], |
---|
1095 | [407538.88, 6437284.58], |
---|
1096 | [407531.68, 6437291.62], |
---|
1097 | [407524.48, 6437298.66], |
---|
1098 | [407517.28, 6437305.70], |
---|
1099 | [407510.08, 6437312.74]] |
---|
1100 | |
---|
1101 | ref_points += [[381178.09, 6452559.07], |
---|
1102 | [381169.49, 6452566.64], |
---|
1103 | [381157.78, 6452576.96], |
---|
1104 | [381155.97, 6452578.56], |
---|
1105 | [381143.72, 6452589.35], |
---|
1106 | [381136.69, 6452595.54], |
---|
1107 | [381114.74, 6452614.88], |
---|
1108 | [381075.53, 6452649.43], |
---|
1109 | [381071.47, 6452653.00], |
---|
1110 | [381063.46, 6452660.06], |
---|
1111 | [381054.41, 6452668.03]] |
---|
1112 | |
---|
1113 | |
---|
1114 | ref_elevation = [52.14, 51.07, 50.56, 49.58, 49.09, 48.76] |
---|
1115 | ref_elevation += [4.17, 4.26, 4.34, 4.35, 4.43, 4.58, 4.41, 4.17, 3.99, 3.67, 3.67] |
---|
1116 | |
---|
1117 | #print points[:] |
---|
1118 | #print ref_points |
---|
1119 | assert allclose(points, ref_points) |
---|
1120 | |
---|
1121 | #print attributes[:] |
---|
1122 | #print ref_elevation |
---|
1123 | assert allclose(elevation, ref_elevation) |
---|
1124 | |
---|
1125 | #Cleanup |
---|
1126 | fid.close() |
---|
1127 | |
---|
1128 | |
---|
1129 | os.remove(root + '.sdf') |
---|
1130 | os.remove(root + '.pts') |
---|
1131 | |
---|
1132 | |
---|
1133 | |
---|
1134 | def test_sww2dem_asc_elevation(self): |
---|
1135 | """Test that sww information can be converted correctly to asc/prj |
---|
1136 | format readable by e.g. ArcView |
---|
1137 | """ |
---|
1138 | |
---|
1139 | import time, os |
---|
1140 | from Numeric import array, zeros, allclose, Float, concatenate |
---|
1141 | from Scientific.IO.NetCDF import NetCDFFile |
---|
1142 | |
---|
1143 | #Setup |
---|
1144 | self.domain.set_name('datatest') |
---|
1145 | |
---|
1146 | prjfile = self.domain.get_name() + '_elevation.prj' |
---|
1147 | ascfile = self.domain.get_name() + '_elevation.asc' |
---|
1148 | swwfile = self.domain.get_name() + '.sww' |
---|
1149 | |
---|
1150 | self.domain.set_datadir('.') |
---|
1151 | self.domain.format = 'sww' |
---|
1152 | self.domain.smooth = True |
---|
1153 | self.domain.set_quantity('elevation', lambda x,y: -x-y) |
---|
1154 | |
---|
1155 | self.domain.geo_reference = Geo_reference(56,308500,6189000) |
---|
1156 | |
---|
1157 | sww = get_dataobject(self.domain) |
---|
1158 | sww.store_connectivity() |
---|
1159 | sww.store_timestep('stage') |
---|
1160 | |
---|
1161 | self.domain.evolve_to_end(finaltime = 0.01) |
---|
1162 | sww.store_timestep('stage') |
---|
1163 | |
---|
1164 | cellsize = 0.25 |
---|
1165 | #Check contents |
---|
1166 | #Get NetCDF |
---|
1167 | |
---|
1168 | fid = NetCDFFile(sww.filename, 'r') |
---|
1169 | |
---|
1170 | # Get the variables |
---|
1171 | x = fid.variables['x'][:] |
---|
1172 | y = fid.variables['y'][:] |
---|
1173 | z = fid.variables['elevation'][:] |
---|
1174 | time = fid.variables['time'][:] |
---|
1175 | stage = fid.variables['stage'][:] |
---|
1176 | |
---|
1177 | |
---|
1178 | #Export to ascii/prj files |
---|
1179 | sww2dem(self.domain.get_name(), |
---|
1180 | quantity = 'elevation', |
---|
1181 | cellsize = cellsize, |
---|
1182 | verbose = False, |
---|
1183 | format = 'asc') |
---|
1184 | |
---|
1185 | #Check prj (meta data) |
---|
1186 | prjid = open(prjfile) |
---|
1187 | lines = prjid.readlines() |
---|
1188 | prjid.close() |
---|
1189 | |
---|
1190 | L = lines[0].strip().split() |
---|
1191 | assert L[0].strip().lower() == 'projection' |
---|
1192 | assert L[1].strip().lower() == 'utm' |
---|
1193 | |
---|
1194 | L = lines[1].strip().split() |
---|
1195 | assert L[0].strip().lower() == 'zone' |
---|
1196 | assert L[1].strip().lower() == '56' |
---|
1197 | |
---|
1198 | L = lines[2].strip().split() |
---|
1199 | assert L[0].strip().lower() == 'datum' |
---|
1200 | assert L[1].strip().lower() == 'wgs84' |
---|
1201 | |
---|
1202 | L = lines[3].strip().split() |
---|
1203 | assert L[0].strip().lower() == 'zunits' |
---|
1204 | assert L[1].strip().lower() == 'no' |
---|
1205 | |
---|
1206 | L = lines[4].strip().split() |
---|
1207 | assert L[0].strip().lower() == 'units' |
---|
1208 | assert L[1].strip().lower() == 'meters' |
---|
1209 | |
---|
1210 | L = lines[5].strip().split() |
---|
1211 | assert L[0].strip().lower() == 'spheroid' |
---|
1212 | assert L[1].strip().lower() == 'wgs84' |
---|
1213 | |
---|
1214 | L = lines[6].strip().split() |
---|
1215 | assert L[0].strip().lower() == 'xshift' |
---|
1216 | assert L[1].strip().lower() == '500000' |
---|
1217 | |
---|
1218 | L = lines[7].strip().split() |
---|
1219 | assert L[0].strip().lower() == 'yshift' |
---|
1220 | assert L[1].strip().lower() == '10000000' |
---|
1221 | |
---|
1222 | L = lines[8].strip().split() |
---|
1223 | assert L[0].strip().lower() == 'parameters' |
---|
1224 | |
---|
1225 | |
---|
1226 | #Check asc file |
---|
1227 | ascid = open(ascfile) |
---|
1228 | lines = ascid.readlines() |
---|
1229 | ascid.close() |
---|
1230 | |
---|
1231 | L = lines[0].strip().split() |
---|
1232 | assert L[0].strip().lower() == 'ncols' |
---|
1233 | assert L[1].strip().lower() == '5' |
---|
1234 | |
---|
1235 | L = lines[1].strip().split() |
---|
1236 | assert L[0].strip().lower() == 'nrows' |
---|
1237 | assert L[1].strip().lower() == '5' |
---|
1238 | |
---|
1239 | L = lines[2].strip().split() |
---|
1240 | assert L[0].strip().lower() == 'xllcorner' |
---|
1241 | assert allclose(float(L[1].strip().lower()), 308500) |
---|
1242 | |
---|
1243 | L = lines[3].strip().split() |
---|
1244 | assert L[0].strip().lower() == 'yllcorner' |
---|
1245 | assert allclose(float(L[1].strip().lower()), 6189000) |
---|
1246 | |
---|
1247 | L = lines[4].strip().split() |
---|
1248 | assert L[0].strip().lower() == 'cellsize' |
---|
1249 | assert allclose(float(L[1].strip().lower()), cellsize) |
---|
1250 | |
---|
1251 | L = lines[5].strip().split() |
---|
1252 | assert L[0].strip() == 'NODATA_value' |
---|
1253 | assert L[1].strip().lower() == '-9999' |
---|
1254 | |
---|
1255 | #Check grid values |
---|
1256 | for j in range(5): |
---|
1257 | L = lines[6+j].strip().split() |
---|
1258 | y = (4-j) * cellsize |
---|
1259 | for i in range(5): |
---|
1260 | assert allclose(float(L[i]), -i*cellsize - y) |
---|
1261 | |
---|
1262 | |
---|
1263 | fid.close() |
---|
1264 | |
---|
1265 | #Cleanup |
---|
1266 | os.remove(prjfile) |
---|
1267 | os.remove(ascfile) |
---|
1268 | os.remove(swwfile) |
---|
1269 | |
---|
1270 | |
---|
1271 | |
---|
1272 | def test_sww2dem_larger(self): |
---|
1273 | """Test that sww information can be converted correctly to asc/prj |
---|
1274 | format readable by e.g. ArcView. Here: |
---|
1275 | |
---|
1276 | ncols 11 |
---|
1277 | nrows 11 |
---|
1278 | xllcorner 308500 |
---|
1279 | yllcorner 6189000 |
---|
1280 | cellsize 10.000000 |
---|
1281 | NODATA_value -9999 |
---|
1282 | -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 |
---|
1283 | -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 |
---|
1284 | -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 |
---|
1285 | -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 |
---|
1286 | -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 |
---|
1287 | -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 |
---|
1288 | -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 |
---|
1289 | -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 |
---|
1290 | -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 |
---|
1291 | -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 |
---|
1292 | 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 |
---|
1293 | |
---|
1294 | """ |
---|
1295 | |
---|
1296 | import time, os |
---|
1297 | from Numeric import array, zeros, allclose, Float, concatenate |
---|
1298 | from Scientific.IO.NetCDF import NetCDFFile |
---|
1299 | |
---|
1300 | #Setup |
---|
1301 | |
---|
1302 | from mesh_factory import rectangular |
---|
1303 | |
---|
1304 | #Create basic mesh (100m x 100m) |
---|
1305 | points, vertices, boundary = rectangular(2, 2, 100, 100) |
---|
1306 | |
---|
1307 | #Create shallow water domain |
---|
1308 | domain = Domain(points, vertices, boundary) |
---|
1309 | domain.default_order = 2 |
---|
1310 | |
---|
1311 | domain.set_name('datatest') |
---|
1312 | |
---|
1313 | prjfile = domain.get_name() + '_elevation.prj' |
---|
1314 | ascfile = domain.get_name() + '_elevation.asc' |
---|
1315 | swwfile = domain.get_name() + '.sww' |
---|
1316 | |
---|
1317 | domain.set_datadir('.') |
---|
1318 | domain.format = 'sww' |
---|
1319 | domain.smooth = True |
---|
1320 | domain.geo_reference = Geo_reference(56, 308500, 6189000) |
---|
1321 | |
---|
1322 | # |
---|
1323 | domain.set_quantity('elevation', lambda x,y: -x-y) |
---|
1324 | domain.set_quantity('stage', 0) |
---|
1325 | |
---|
1326 | B = Transmissive_boundary(domain) |
---|
1327 | domain.set_boundary( {'left': B, 'right': B, 'top': B, 'bottom': B}) |
---|
1328 | |
---|
1329 | |
---|
1330 | # |
---|
1331 | sww = get_dataobject(domain) |
---|
1332 | sww.store_connectivity() |
---|
1333 | sww.store_timestep('stage') |
---|
1334 | |
---|
1335 | domain.evolve_to_end(finaltime = 0.01) |
---|
1336 | sww.store_timestep('stage') |
---|
1337 | |
---|
1338 | cellsize = 10 #10m grid |
---|
1339 | |
---|
1340 | |
---|
1341 | #Check contents |
---|
1342 | #Get NetCDF |
---|
1343 | |
---|
1344 | fid = NetCDFFile(sww.filename, 'r') |
---|
1345 | |
---|
1346 | # Get the variables |
---|
1347 | x = fid.variables['x'][:] |
---|
1348 | y = fid.variables['y'][:] |
---|
1349 | z = fid.variables['elevation'][:] |
---|
1350 | time = fid.variables['time'][:] |
---|
1351 | stage = fid.variables['stage'][:] |
---|
1352 | |
---|
1353 | |
---|
1354 | #Export to ascii/prj files |
---|
1355 | sww2dem(domain.get_name(), |
---|
1356 | quantity = 'elevation', |
---|
1357 | cellsize = cellsize, |
---|
1358 | verbose = False, |
---|
1359 | format = 'asc') |
---|
1360 | |
---|
1361 | |
---|
1362 | #Check prj (meta data) |
---|
1363 | prjid = open(prjfile) |
---|
1364 | lines = prjid.readlines() |
---|
1365 | prjid.close() |
---|
1366 | |
---|
1367 | L = lines[0].strip().split() |
---|
1368 | assert L[0].strip().lower() == 'projection' |
---|
1369 | assert L[1].strip().lower() == 'utm' |
---|
1370 | |
---|
1371 | L = lines[1].strip().split() |
---|
1372 | assert L[0].strip().lower() == 'zone' |
---|
1373 | assert L[1].strip().lower() == '56' |
---|
1374 | |
---|
1375 | L = lines[2].strip().split() |
---|
1376 | assert L[0].strip().lower() == 'datum' |
---|
1377 | assert L[1].strip().lower() == 'wgs84' |
---|
1378 | |
---|
1379 | L = lines[3].strip().split() |
---|
1380 | assert L[0].strip().lower() == 'zunits' |
---|
1381 | assert L[1].strip().lower() == 'no' |
---|
1382 | |
---|
1383 | L = lines[4].strip().split() |
---|
1384 | assert L[0].strip().lower() == 'units' |
---|
1385 | assert L[1].strip().lower() == 'meters' |
---|
1386 | |
---|
1387 | L = lines[5].strip().split() |
---|
1388 | assert L[0].strip().lower() == 'spheroid' |
---|
1389 | assert L[1].strip().lower() == 'wgs84' |
---|
1390 | |
---|
1391 | L = lines[6].strip().split() |
---|
1392 | assert L[0].strip().lower() == 'xshift' |
---|
1393 | assert L[1].strip().lower() == '500000' |
---|
1394 | |
---|
1395 | L = lines[7].strip().split() |
---|
1396 | assert L[0].strip().lower() == 'yshift' |
---|
1397 | assert L[1].strip().lower() == '10000000' |
---|
1398 | |
---|
1399 | L = lines[8].strip().split() |
---|
1400 | assert L[0].strip().lower() == 'parameters' |
---|
1401 | |
---|
1402 | |
---|
1403 | #Check asc file |
---|
1404 | ascid = open(ascfile) |
---|
1405 | lines = ascid.readlines() |
---|
1406 | ascid.close() |
---|
1407 | |
---|
1408 | L = lines[0].strip().split() |
---|
1409 | assert L[0].strip().lower() == 'ncols' |
---|
1410 | assert L[1].strip().lower() == '11' |
---|
1411 | |
---|
1412 | L = lines[1].strip().split() |
---|
1413 | assert L[0].strip().lower() == 'nrows' |
---|
1414 | assert L[1].strip().lower() == '11' |
---|
1415 | |
---|
1416 | L = lines[2].strip().split() |
---|
1417 | assert L[0].strip().lower() == 'xllcorner' |
---|
1418 | assert allclose(float(L[1].strip().lower()), 308500) |
---|
1419 | |
---|
1420 | L = lines[3].strip().split() |
---|
1421 | assert L[0].strip().lower() == 'yllcorner' |
---|
1422 | assert allclose(float(L[1].strip().lower()), 6189000) |
---|
1423 | |
---|
1424 | L = lines[4].strip().split() |
---|
1425 | assert L[0].strip().lower() == 'cellsize' |
---|
1426 | assert allclose(float(L[1].strip().lower()), cellsize) |
---|
1427 | |
---|
1428 | L = lines[5].strip().split() |
---|
1429 | assert L[0].strip() == 'NODATA_value' |
---|
1430 | assert L[1].strip().lower() == '-9999' |
---|
1431 | |
---|
1432 | #Check grid values (FIXME: Use same strategy for other sww2dem tests) |
---|
1433 | for i, line in enumerate(lines[6:]): |
---|
1434 | for j, value in enumerate( line.split() ): |
---|
1435 | #assert allclose(float(value), -(10-i+j)*cellsize) |
---|
1436 | assert float(value) == -(10-i+j)*cellsize |
---|
1437 | |
---|
1438 | |
---|
1439 | fid.close() |
---|
1440 | |
---|
1441 | #Cleanup |
---|
1442 | os.remove(prjfile) |
---|
1443 | os.remove(ascfile) |
---|
1444 | os.remove(swwfile) |
---|
1445 | |
---|
1446 | |
---|
1447 | |
---|
1448 | def test_sww2dem_boundingbox(self): |
---|
1449 | """Test that sww information can be converted correctly to asc/prj |
---|
1450 | format readable by e.g. ArcView. |
---|
1451 | This will test that mesh can be restricted by bounding box |
---|
1452 | |
---|
1453 | Original extent is 100m x 100m: |
---|
1454 | |
---|
1455 | Eastings: 308500 - 308600 |
---|
1456 | Northings: 6189000 - 6189100 |
---|
1457 | |
---|
1458 | Bounding box changes this to the 50m x 50m square defined by |
---|
1459 | |
---|
1460 | Eastings: 308530 - 308570 |
---|
1461 | Northings: 6189050 - 6189100 |
---|
1462 | |
---|
1463 | The cropped values should be |
---|
1464 | |
---|
1465 | -130 -140 -150 -160 -170 |
---|
1466 | -120 -130 -140 -150 -160 |
---|
1467 | -110 -120 -130 -140 -150 |
---|
1468 | -100 -110 -120 -130 -140 |
---|
1469 | -90 -100 -110 -120 -130 |
---|
1470 | -80 -90 -100 -110 -120 |
---|
1471 | |
---|
1472 | and the new lower reference point should be |
---|
1473 | Eastings: 308530 |
---|
1474 | Northings: 6189050 |
---|
1475 | |
---|
1476 | Original dataset is the same as in test_sww2dem_larger() |
---|
1477 | |
---|
1478 | """ |
---|
1479 | |
---|
1480 | import time, os |
---|
1481 | from Numeric import array, zeros, allclose, Float, concatenate |
---|
1482 | from Scientific.IO.NetCDF import NetCDFFile |
---|
1483 | |
---|
1484 | #Setup |
---|
1485 | |
---|
1486 | from mesh_factory import rectangular |
---|
1487 | |
---|
1488 | #Create basic mesh (100m x 100m) |
---|
1489 | points, vertices, boundary = rectangular(2, 2, 100, 100) |
---|
1490 | |
---|
1491 | #Create shallow water domain |
---|
1492 | domain = Domain(points, vertices, boundary) |
---|
1493 | domain.default_order = 2 |
---|
1494 | |
---|
1495 | domain.set_name('datatest') |
---|
1496 | |
---|
1497 | prjfile = domain.get_name() + '_elevation.prj' |
---|
1498 | ascfile = domain.get_name() + '_elevation.asc' |
---|
1499 | swwfile = domain.get_name() + '.sww' |
---|
1500 | |
---|
1501 | domain.set_datadir('.') |
---|
1502 | domain.format = 'sww' |
---|
1503 | domain.smooth = True |
---|
1504 | domain.geo_reference = Geo_reference(56, 308500, 6189000) |
---|
1505 | |
---|
1506 | # |
---|
1507 | domain.set_quantity('elevation', lambda x,y: -x-y) |
---|
1508 | domain.set_quantity('stage', 0) |
---|
1509 | |
---|
1510 | B = Transmissive_boundary(domain) |
---|
1511 | domain.set_boundary( {'left': B, 'right': B, 'top': B, 'bottom': B}) |
---|
1512 | |
---|
1513 | |
---|
1514 | # |
---|
1515 | sww = get_dataobject(domain) |
---|
1516 | sww.store_connectivity() |
---|
1517 | sww.store_timestep('stage') |
---|
1518 | |
---|
1519 | domain.evolve_to_end(finaltime = 0.01) |
---|
1520 | sww.store_timestep('stage') |
---|
1521 | |
---|
1522 | cellsize = 10 #10m grid |
---|
1523 | |
---|
1524 | |
---|
1525 | #Check contents |
---|
1526 | #Get NetCDF |
---|
1527 | |
---|
1528 | fid = NetCDFFile(sww.filename, 'r') |
---|
1529 | |
---|
1530 | # Get the variables |
---|
1531 | x = fid.variables['x'][:] |
---|
1532 | y = fid.variables['y'][:] |
---|
1533 | z = fid.variables['elevation'][:] |
---|
1534 | time = fid.variables['time'][:] |
---|
1535 | stage = fid.variables['stage'][:] |
---|
1536 | |
---|
1537 | |
---|
1538 | #Export to ascii/prj files |
---|
1539 | sww2dem(domain.get_name(), |
---|
1540 | quantity = 'elevation', |
---|
1541 | cellsize = cellsize, |
---|
1542 | easting_min = 308530, |
---|
1543 | easting_max = 308570, |
---|
1544 | northing_min = 6189050, |
---|
1545 | northing_max = 6189100, |
---|
1546 | verbose = False, |
---|
1547 | format = 'asc') |
---|
1548 | |
---|
1549 | fid.close() |
---|
1550 | |
---|
1551 | |
---|
1552 | #Check prj (meta data) |
---|
1553 | prjid = open(prjfile) |
---|
1554 | lines = prjid.readlines() |
---|
1555 | prjid.close() |
---|
1556 | |
---|
1557 | L = lines[0].strip().split() |
---|
1558 | assert L[0].strip().lower() == 'projection' |
---|
1559 | assert L[1].strip().lower() == 'utm' |
---|
1560 | |
---|
1561 | L = lines[1].strip().split() |
---|
1562 | assert L[0].strip().lower() == 'zone' |
---|
1563 | assert L[1].strip().lower() == '56' |
---|
1564 | |
---|
1565 | L = lines[2].strip().split() |
---|
1566 | assert L[0].strip().lower() == 'datum' |
---|
1567 | assert L[1].strip().lower() == 'wgs84' |
---|
1568 | |
---|
1569 | L = lines[3].strip().split() |
---|
1570 | assert L[0].strip().lower() == 'zunits' |
---|
1571 | assert L[1].strip().lower() == 'no' |
---|
1572 | |
---|
1573 | L = lines[4].strip().split() |
---|
1574 | assert L[0].strip().lower() == 'units' |
---|
1575 | assert L[1].strip().lower() == 'meters' |
---|
1576 | |
---|
1577 | L = lines[5].strip().split() |
---|
1578 | assert L[0].strip().lower() == 'spheroid' |
---|
1579 | assert L[1].strip().lower() == 'wgs84' |
---|
1580 | |
---|
1581 | L = lines[6].strip().split() |
---|
1582 | assert L[0].strip().lower() == 'xshift' |
---|
1583 | assert L[1].strip().lower() == '500000' |
---|
1584 | |
---|
1585 | L = lines[7].strip().split() |
---|
1586 | assert L[0].strip().lower() == 'yshift' |
---|
1587 | assert L[1].strip().lower() == '10000000' |
---|
1588 | |
---|
1589 | L = lines[8].strip().split() |
---|
1590 | assert L[0].strip().lower() == 'parameters' |
---|
1591 | |
---|
1592 | |
---|
1593 | #Check asc file |
---|
1594 | ascid = open(ascfile) |
---|
1595 | lines = ascid.readlines() |
---|
1596 | ascid.close() |
---|
1597 | |
---|
1598 | L = lines[0].strip().split() |
---|
1599 | assert L[0].strip().lower() == 'ncols' |
---|
1600 | assert L[1].strip().lower() == '5' |
---|
1601 | |
---|
1602 | L = lines[1].strip().split() |
---|
1603 | assert L[0].strip().lower() == 'nrows' |
---|
1604 | assert L[1].strip().lower() == '6' |
---|
1605 | |
---|
1606 | L = lines[2].strip().split() |
---|
1607 | assert L[0].strip().lower() == 'xllcorner' |
---|
1608 | assert allclose(float(L[1].strip().lower()), 308530) |
---|
1609 | |
---|
1610 | L = lines[3].strip().split() |
---|
1611 | assert L[0].strip().lower() == 'yllcorner' |
---|
1612 | assert allclose(float(L[1].strip().lower()), 6189050) |
---|
1613 | |
---|
1614 | L = lines[4].strip().split() |
---|
1615 | assert L[0].strip().lower() == 'cellsize' |
---|
1616 | assert allclose(float(L[1].strip().lower()), cellsize) |
---|
1617 | |
---|
1618 | L = lines[5].strip().split() |
---|
1619 | assert L[0].strip() == 'NODATA_value' |
---|
1620 | assert L[1].strip().lower() == '-9999' |
---|
1621 | |
---|
1622 | #Check grid values |
---|
1623 | for i, line in enumerate(lines[6:]): |
---|
1624 | for j, value in enumerate( line.split() ): |
---|
1625 | #assert float(value) == -(10-i+j)*cellsize |
---|
1626 | assert float(value) == -(10-i+j+3)*cellsize |
---|
1627 | |
---|
1628 | |
---|
1629 | |
---|
1630 | #Cleanup |
---|
1631 | os.remove(prjfile) |
---|
1632 | os.remove(ascfile) |
---|
1633 | os.remove(swwfile) |
---|
1634 | |
---|
1635 | |
---|
1636 | |
---|
1637 | def test_sww2dem_asc_stage_reduction(self): |
---|
1638 | """Test that sww information can be converted correctly to asc/prj |
---|
1639 | format readable by e.g. ArcView |
---|
1640 | |
---|
1641 | This tests the reduction of quantity stage using min |
---|
1642 | """ |
---|
1643 | |
---|
1644 | import time, os |
---|
1645 | from Numeric import array, zeros, allclose, Float, concatenate |
---|
1646 | from Scientific.IO.NetCDF import NetCDFFile |
---|
1647 | |
---|
1648 | #Setup |
---|
1649 | self.domain.set_name('datatest') |
---|
1650 | |
---|
1651 | prjfile = self.domain.get_name() + '_stage.prj' |
---|
1652 | ascfile = self.domain.get_name() + '_stage.asc' |
---|
1653 | swwfile = self.domain.get_name() + '.sww' |
---|
1654 | |
---|
1655 | self.domain.set_datadir('.') |
---|
1656 | self.domain.format = 'sww' |
---|
1657 | self.domain.smooth = True |
---|
1658 | self.domain.set_quantity('elevation', lambda x,y: -x-y) |
---|
1659 | |
---|
1660 | self.domain.geo_reference = Geo_reference(56,308500,6189000) |
---|
1661 | |
---|
1662 | |
---|
1663 | sww = get_dataobject(self.domain) |
---|
1664 | sww.store_connectivity() |
---|
1665 | sww.store_timestep('stage') |
---|
1666 | |
---|
1667 | self.domain.evolve_to_end(finaltime = 0.01) |
---|
1668 | sww.store_timestep('stage') |
---|
1669 | |
---|
1670 | cellsize = 0.25 |
---|
1671 | #Check contents |
---|
1672 | #Get NetCDF |
---|
1673 | |
---|
1674 | fid = NetCDFFile(sww.filename, 'r') |
---|
1675 | |
---|
1676 | # Get the variables |
---|
1677 | x = fid.variables['x'][:] |
---|
1678 | y = fid.variables['y'][:] |
---|
1679 | z = fid.variables['elevation'][:] |
---|
1680 | time = fid.variables['time'][:] |
---|
1681 | stage = fid.variables['stage'][:] |
---|
1682 | |
---|
1683 | |
---|
1684 | #Export to ascii/prj files |
---|
1685 | sww2dem(self.domain.get_name(), |
---|
1686 | quantity = 'stage', |
---|
1687 | cellsize = cellsize, |
---|
1688 | reduction = min, |
---|
1689 | format = 'asc') |
---|
1690 | |
---|
1691 | |
---|
1692 | #Check asc file |
---|
1693 | ascid = open(ascfile) |
---|
1694 | lines = ascid.readlines() |
---|
1695 | ascid.close() |
---|
1696 | |
---|
1697 | L = lines[0].strip().split() |
---|
1698 | assert L[0].strip().lower() == 'ncols' |
---|
1699 | assert L[1].strip().lower() == '5' |
---|
1700 | |
---|
1701 | L = lines[1].strip().split() |
---|
1702 | assert L[0].strip().lower() == 'nrows' |
---|
1703 | assert L[1].strip().lower() == '5' |
---|
1704 | |
---|
1705 | L = lines[2].strip().split() |
---|
1706 | assert L[0].strip().lower() == 'xllcorner' |
---|
1707 | assert allclose(float(L[1].strip().lower()), 308500) |
---|
1708 | |
---|
1709 | L = lines[3].strip().split() |
---|
1710 | assert L[0].strip().lower() == 'yllcorner' |
---|
1711 | assert allclose(float(L[1].strip().lower()), 6189000) |
---|
1712 | |
---|
1713 | L = lines[4].strip().split() |
---|
1714 | assert L[0].strip().lower() == 'cellsize' |
---|
1715 | assert allclose(float(L[1].strip().lower()), cellsize) |
---|
1716 | |
---|
1717 | L = lines[5].strip().split() |
---|
1718 | assert L[0].strip() == 'NODATA_value' |
---|
1719 | assert L[1].strip().lower() == '-9999' |
---|
1720 | |
---|
1721 | |
---|
1722 | #Check grid values (where applicable) |
---|
1723 | for j in range(5): |
---|
1724 | if j%2 == 0: |
---|
1725 | L = lines[6+j].strip().split() |
---|
1726 | jj = 4-j |
---|
1727 | for i in range(5): |
---|
1728 | if i%2 == 0: |
---|
1729 | index = jj/2 + i/2*3 |
---|
1730 | val0 = stage[0,index] |
---|
1731 | val1 = stage[1,index] |
---|
1732 | |
---|
1733 | #print i, j, index, ':', L[i], val0, val1 |
---|
1734 | assert allclose(float(L[i]), min(val0, val1)) |
---|
1735 | |
---|
1736 | |
---|
1737 | fid.close() |
---|
1738 | |
---|
1739 | #Cleanup |
---|
1740 | os.remove(prjfile) |
---|
1741 | os.remove(ascfile) |
---|
1742 | #os.remove(swwfile) |
---|
1743 | |
---|
1744 | |
---|
1745 | |
---|
1746 | def test_sww2dem_asc_derived_quantity(self): |
---|
1747 | """Test that sww information can be converted correctly to asc/prj |
---|
1748 | format readable by e.g. ArcView |
---|
1749 | |
---|
1750 | This tests the use of derived quantities |
---|
1751 | """ |
---|
1752 | |
---|
1753 | import time, os |
---|
1754 | from Numeric import array, zeros, allclose, Float, concatenate |
---|
1755 | from Scientific.IO.NetCDF import NetCDFFile |
---|
1756 | |
---|
1757 | #Setup |
---|
1758 | self.domain.set_name('datatest') |
---|
1759 | |
---|
1760 | prjfile = self.domain.get_name() + '_depth.prj' |
---|
1761 | ascfile = self.domain.get_name() + '_depth.asc' |
---|
1762 | swwfile = self.domain.get_name() + '.sww' |
---|
1763 | |
---|
1764 | self.domain.set_datadir('.') |
---|
1765 | self.domain.format = 'sww' |
---|
1766 | self.domain.smooth = True |
---|
1767 | self.domain.set_quantity('elevation', lambda x,y: -x-y) |
---|
1768 | self.domain.set_quantity('stage', 0.0) |
---|
1769 | |
---|
1770 | self.domain.geo_reference = Geo_reference(56,308500,6189000) |
---|
1771 | |
---|
1772 | |
---|
1773 | sww = get_dataobject(self.domain) |
---|
1774 | sww.store_connectivity() |
---|
1775 | sww.store_timestep('stage') |
---|
1776 | |
---|
1777 | self.domain.evolve_to_end(finaltime = 0.01) |
---|
1778 | sww.store_timestep('stage') |
---|
1779 | |
---|
1780 | cellsize = 0.25 |
---|
1781 | #Check contents |
---|
1782 | #Get NetCDF |
---|
1783 | |
---|
1784 | fid = NetCDFFile(sww.filename, 'r') |
---|
1785 | |
---|
1786 | # Get the variables |
---|
1787 | x = fid.variables['x'][:] |
---|
1788 | y = fid.variables['y'][:] |
---|
1789 | z = fid.variables['elevation'][:] |
---|
1790 | time = fid.variables['time'][:] |
---|
1791 | stage = fid.variables['stage'][:] |
---|
1792 | |
---|
1793 | |
---|
1794 | #Export to ascii/prj files |
---|
1795 | sww2dem(self.domain.get_name(), |
---|
1796 | basename_out = 'datatest_depth', |
---|
1797 | quantity = 'stage - elevation', |
---|
1798 | cellsize = cellsize, |
---|
1799 | reduction = min, |
---|
1800 | format = 'asc', |
---|
1801 | verbose = False) |
---|
1802 | |
---|
1803 | |
---|
1804 | #Check asc file |
---|
1805 | ascid = open(ascfile) |
---|
1806 | lines = ascid.readlines() |
---|
1807 | ascid.close() |
---|
1808 | |
---|
1809 | L = lines[0].strip().split() |
---|
1810 | assert L[0].strip().lower() == 'ncols' |
---|
1811 | assert L[1].strip().lower() == '5' |
---|
1812 | |
---|
1813 | L = lines[1].strip().split() |
---|
1814 | assert L[0].strip().lower() == 'nrows' |
---|
1815 | assert L[1].strip().lower() == '5' |
---|
1816 | |
---|
1817 | L = lines[2].strip().split() |
---|
1818 | assert L[0].strip().lower() == 'xllcorner' |
---|
1819 | assert allclose(float(L[1].strip().lower()), 308500) |
---|
1820 | |
---|
1821 | L = lines[3].strip().split() |
---|
1822 | assert L[0].strip().lower() == 'yllcorner' |
---|
1823 | assert allclose(float(L[1].strip().lower()), 6189000) |
---|
1824 | |
---|
1825 | L = lines[4].strip().split() |
---|
1826 | assert L[0].strip().lower() == 'cellsize' |
---|
1827 | assert allclose(float(L[1].strip().lower()), cellsize) |
---|
1828 | |
---|
1829 | L = lines[5].strip().split() |
---|
1830 | assert L[0].strip() == 'NODATA_value' |
---|
1831 | assert L[1].strip().lower() == '-9999' |
---|
1832 | |
---|
1833 | |
---|
1834 | #Check grid values (where applicable) |
---|
1835 | for j in range(5): |
---|
1836 | if j%2 == 0: |
---|
1837 | L = lines[6+j].strip().split() |
---|
1838 | jj = 4-j |
---|
1839 | for i in range(5): |
---|
1840 | if i%2 == 0: |
---|
1841 | index = jj/2 + i/2*3 |
---|
1842 | val0 = stage[0,index] - z[index] |
---|
1843 | val1 = stage[1,index] - z[index] |
---|
1844 | |
---|
1845 | #print i, j, index, ':', L[i], val0, val1 |
---|
1846 | assert allclose(float(L[i]), min(val0, val1)) |
---|
1847 | |
---|
1848 | |
---|
1849 | fid.close() |
---|
1850 | |
---|
1851 | #Cleanup |
---|
1852 | os.remove(prjfile) |
---|
1853 | os.remove(ascfile) |
---|
1854 | #os.remove(swwfile) |
---|
1855 | |
---|
1856 | |
---|
1857 | |
---|
1858 | |
---|
1859 | |
---|
1860 | def test_sww2dem_asc_missing_points(self): |
---|
1861 | """Test that sww information can be converted correctly to asc/prj |
---|
1862 | format readable by e.g. ArcView |
---|
1863 | |
---|
1864 | This test includes the writing of missing values |
---|
1865 | """ |
---|
1866 | |
---|
1867 | import time, os |
---|
1868 | from Numeric import array, zeros, allclose, Float, concatenate |
---|
1869 | from Scientific.IO.NetCDF import NetCDFFile |
---|
1870 | |
---|
1871 | #Setup mesh not coinciding with rectangle. |
---|
1872 | #This will cause missing values to occur in gridded data |
---|
1873 | |
---|
1874 | |
---|
1875 | points = [ [1.0, 1.0], |
---|
1876 | [0.5, 0.5], [1.0, 0.5], |
---|
1877 | [0.0, 0.0], [0.5, 0.0], [1.0, 0.0]] |
---|
1878 | |
---|
1879 | vertices = [ [4,1,3], [5,2,4], [1,4,2], [2,0,1]] |
---|
1880 | |
---|
1881 | #Create shallow water domain |
---|
1882 | domain = Domain(points, vertices) |
---|
1883 | domain.default_order=2 |
---|
1884 | |
---|
1885 | |
---|
1886 | #Set some field values |
---|
1887 | domain.set_quantity('elevation', lambda x,y: -x-y) |
---|
1888 | domain.set_quantity('friction', 0.03) |
---|
1889 | |
---|
1890 | |
---|
1891 | ###################### |
---|
1892 | # Boundary conditions |
---|
1893 | B = Transmissive_boundary(domain) |
---|
1894 | domain.set_boundary( {'exterior': B} ) |
---|
1895 | |
---|
1896 | |
---|
1897 | ###################### |
---|
1898 | #Initial condition - with jumps |
---|
1899 | |
---|
1900 | bed = domain.quantities['elevation'].vertex_values |
---|
1901 | stage = zeros(bed.shape, Float) |
---|
1902 | |
---|
1903 | h = 0.3 |
---|
1904 | for i in range(stage.shape[0]): |
---|
1905 | if i % 2 == 0: |
---|
1906 | stage[i,:] = bed[i,:] + h |
---|
1907 | else: |
---|
1908 | stage[i,:] = bed[i,:] |
---|
1909 | |
---|
1910 | domain.set_quantity('stage', stage) |
---|
1911 | domain.distribute_to_vertices_and_edges() |
---|
1912 | |
---|
1913 | domain.set_name('datatest') |
---|
1914 | |
---|
1915 | prjfile = domain.get_name() + '_elevation.prj' |
---|
1916 | ascfile = domain.get_name() + '_elevation.asc' |
---|
1917 | swwfile = domain.get_name() + '.sww' |
---|
1918 | |
---|
1919 | domain.set_datadir('.') |
---|
1920 | domain.format = 'sww' |
---|
1921 | domain.smooth = True |
---|
1922 | |
---|
1923 | domain.geo_reference = Geo_reference(56,308500,6189000) |
---|
1924 | |
---|
1925 | sww = get_dataobject(domain) |
---|
1926 | sww.store_connectivity() |
---|
1927 | sww.store_timestep('stage') |
---|
1928 | |
---|
1929 | cellsize = 0.25 |
---|
1930 | #Check contents |
---|
1931 | #Get NetCDF |
---|
1932 | |
---|
1933 | fid = NetCDFFile(swwfile, 'r') |
---|
1934 | |
---|
1935 | # Get the variables |
---|
1936 | x = fid.variables['x'][:] |
---|
1937 | y = fid.variables['y'][:] |
---|
1938 | z = fid.variables['elevation'][:] |
---|
1939 | time = fid.variables['time'][:] |
---|
1940 | |
---|
1941 | try: |
---|
1942 | geo_reference = Geo_reference(NetCDFObject=fid) |
---|
1943 | except AttributeError, e: |
---|
1944 | geo_reference = Geo_reference(DEFAULT_ZONE,0,0) |
---|
1945 | |
---|
1946 | #Export to ascii/prj files |
---|
1947 | sww2dem(domain.get_name(), |
---|
1948 | quantity = 'elevation', |
---|
1949 | cellsize = cellsize, |
---|
1950 | verbose = False, |
---|
1951 | format = 'asc') |
---|
1952 | |
---|
1953 | |
---|
1954 | #Check asc file |
---|
1955 | ascid = open(ascfile) |
---|
1956 | lines = ascid.readlines() |
---|
1957 | ascid.close() |
---|
1958 | |
---|
1959 | L = lines[0].strip().split() |
---|
1960 | assert L[0].strip().lower() == 'ncols' |
---|
1961 | assert L[1].strip().lower() == '5' |
---|
1962 | |
---|
1963 | L = lines[1].strip().split() |
---|
1964 | assert L[0].strip().lower() == 'nrows' |
---|
1965 | assert L[1].strip().lower() == '5' |
---|
1966 | |
---|
1967 | L = lines[2].strip().split() |
---|
1968 | assert L[0].strip().lower() == 'xllcorner' |
---|
1969 | assert allclose(float(L[1].strip().lower()), 308500) |
---|
1970 | |
---|
1971 | L = lines[3].strip().split() |
---|
1972 | assert L[0].strip().lower() == 'yllcorner' |
---|
1973 | assert allclose(float(L[1].strip().lower()), 6189000) |
---|
1974 | |
---|
1975 | L = lines[4].strip().split() |
---|
1976 | assert L[0].strip().lower() == 'cellsize' |
---|
1977 | assert allclose(float(L[1].strip().lower()), cellsize) |
---|
1978 | |
---|
1979 | L = lines[5].strip().split() |
---|
1980 | assert L[0].strip() == 'NODATA_value' |
---|
1981 | assert L[1].strip().lower() == '-9999' |
---|
1982 | |
---|
1983 | #Check grid values |
---|
1984 | for j in range(5): |
---|
1985 | L = lines[6+j].strip().split() |
---|
1986 | assert len(L) == 5 |
---|
1987 | y = (4-j) * cellsize |
---|
1988 | |
---|
1989 | for i in range(5): |
---|
1990 | #print i |
---|
1991 | if i+j >= 4: |
---|
1992 | assert allclose(float(L[i]), -i*cellsize - y) |
---|
1993 | else: |
---|
1994 | #Missing values |
---|
1995 | assert allclose(float(L[i]), -9999) |
---|
1996 | |
---|
1997 | |
---|
1998 | |
---|
1999 | fid.close() |
---|
2000 | |
---|
2001 | #Cleanup |
---|
2002 | os.remove(prjfile) |
---|
2003 | os.remove(ascfile) |
---|
2004 | os.remove(swwfile) |
---|
2005 | |
---|
2006 | def test_sww2ers_simple(self): |
---|
2007 | """Test that sww information can be converted correctly to asc/prj |
---|
2008 | format readable by e.g. ArcView |
---|
2009 | """ |
---|
2010 | |
---|
2011 | import time, os |
---|
2012 | from Numeric import array, zeros, allclose, Float, concatenate |
---|
2013 | from Scientific.IO.NetCDF import NetCDFFile |
---|
2014 | |
---|
2015 | |
---|
2016 | NODATA_value = 1758323 |
---|
2017 | |
---|
2018 | #Setup |
---|
2019 | self.domain.set_name('datatest') |
---|
2020 | |
---|
2021 | headerfile = self.domain.get_name() + '.ers' |
---|
2022 | swwfile = self.domain.get_name() + '.sww' |
---|
2023 | |
---|
2024 | self.domain.set_datadir('.') |
---|
2025 | self.domain.format = 'sww' |
---|
2026 | self.domain.smooth = True |
---|
2027 | self.domain.set_quantity('elevation', lambda x,y: -x-y) |
---|
2028 | |
---|
2029 | self.domain.geo_reference = Geo_reference(56,308500,6189000) |
---|
2030 | |
---|
2031 | sww = get_dataobject(self.domain) |
---|
2032 | sww.store_connectivity() |
---|
2033 | sww.store_timestep('stage') |
---|
2034 | |
---|
2035 | self.domain.evolve_to_end(finaltime = 0.01) |
---|
2036 | sww.store_timestep('stage') |
---|
2037 | |
---|
2038 | cellsize = 0.25 |
---|
2039 | #Check contents |
---|
2040 | #Get NetCDF |
---|
2041 | |
---|
2042 | fid = NetCDFFile(sww.filename, 'r') |
---|
2043 | |
---|
2044 | # Get the variables |
---|
2045 | x = fid.variables['x'][:] |
---|
2046 | y = fid.variables['y'][:] |
---|
2047 | z = fid.variables['elevation'][:] |
---|
2048 | time = fid.variables['time'][:] |
---|
2049 | stage = fid.variables['stage'][:] |
---|
2050 | |
---|
2051 | |
---|
2052 | #Export to ers files |
---|
2053 | sww2dem(self.domain.get_name(), |
---|
2054 | quantity = 'elevation', |
---|
2055 | cellsize = cellsize, |
---|
2056 | NODATA_value = NODATA_value, |
---|
2057 | verbose = False, |
---|
2058 | format = 'ers') |
---|
2059 | |
---|
2060 | #Check header data |
---|
2061 | from ermapper_grids import read_ermapper_header, read_ermapper_data |
---|
2062 | |
---|
2063 | header = read_ermapper_header(self.domain.get_name() + '_elevation.ers') |
---|
2064 | #print header |
---|
2065 | assert header['projection'].lower() == '"utm-56"' |
---|
2066 | assert header['datum'].lower() == '"wgs84"' |
---|
2067 | assert header['units'].lower() == '"meters"' |
---|
2068 | assert header['value'].lower() == '"elevation"' |
---|
2069 | assert header['xdimension'] == '0.25' |
---|
2070 | assert header['ydimension'] == '0.25' |
---|
2071 | assert float(header['eastings']) == 308500.0 #xllcorner |
---|
2072 | assert float(header['northings']) == 6189000.0 #yllcorner |
---|
2073 | assert int(header['nroflines']) == 5 |
---|
2074 | assert int(header['nrofcellsperline']) == 5 |
---|
2075 | assert int(header['nullcellvalue']) == NODATA_value |
---|
2076 | #FIXME - there is more in the header |
---|
2077 | |
---|
2078 | |
---|
2079 | #Check grid data |
---|
2080 | grid = read_ermapper_data(self.domain.get_name() + '_elevation') |
---|
2081 | |
---|
2082 | #FIXME (Ole): Why is this the desired reference grid for -x-y? |
---|
2083 | ref_grid = [NODATA_value, NODATA_value, NODATA_value, NODATA_value, NODATA_value, |
---|
2084 | -1, -1.25, -1.5, -1.75, -2.0, |
---|
2085 | -0.75, -1.0, -1.25, -1.5, -1.75, |
---|
2086 | -0.5, -0.75, -1.0, -1.25, -1.5, |
---|
2087 | -0.25, -0.5, -0.75, -1.0, -1.25] |
---|
2088 | |
---|
2089 | |
---|
2090 | #print grid |
---|
2091 | assert allclose(grid, ref_grid) |
---|
2092 | |
---|
2093 | fid.close() |
---|
2094 | |
---|
2095 | #Cleanup |
---|
2096 | #FIXME the file clean-up doesn't work (eg Permission Denied Error) |
---|
2097 | #Done (Ole) - it was because sww2ers didn't close it's sww file |
---|
2098 | os.remove(sww.filename) |
---|
2099 | os.remove(self.domain.get_name() + '_elevation') |
---|
2100 | os.remove(self.domain.get_name() + '_elevation.ers') |
---|
2101 | |
---|
2102 | |
---|
2103 | |
---|
2104 | def test_sww2pts_centroids(self): |
---|
2105 | """Test that sww information can be converted correctly to pts data at specified coordinates |
---|
2106 | - in this case, the centroids. |
---|
2107 | """ |
---|
2108 | |
---|
2109 | import time, os |
---|
2110 | from Numeric import array, zeros, allclose, Float, concatenate, NewAxis |
---|
2111 | from Scientific.IO.NetCDF import NetCDFFile |
---|
2112 | from anuga.geospatial_data.geospatial_data import Geospatial_data |
---|
2113 | |
---|
2114 | # Used for points that lie outside mesh |
---|
2115 | NODATA_value = 1758323 |
---|
2116 | |
---|
2117 | # Setup |
---|
2118 | self.domain.set_name('datatest') |
---|
2119 | |
---|
2120 | ptsfile = self.domain.get_name() + '_elevation.pts' |
---|
2121 | swwfile = self.domain.get_name() + '.sww' |
---|
2122 | |
---|
2123 | self.domain.set_datadir('.') |
---|
2124 | self.domain.format = 'sww' |
---|
2125 | self.smooth = True #self.set_store_vertices_uniquely(False) |
---|
2126 | self.domain.set_quantity('elevation', lambda x,y: -x-y) |
---|
2127 | |
---|
2128 | self.domain.geo_reference = Geo_reference(56,308500,6189000) |
---|
2129 | |
---|
2130 | sww = get_dataobject(self.domain) |
---|
2131 | sww.store_connectivity() |
---|
2132 | sww.store_timestep('stage') |
---|
2133 | |
---|
2134 | self.domain.evolve_to_end(finaltime = 0.01) |
---|
2135 | sww.store_timestep('stage') |
---|
2136 | |
---|
2137 | # Check contents in NetCDF |
---|
2138 | fid = NetCDFFile(sww.filename, 'r') |
---|
2139 | |
---|
2140 | # Get the variables |
---|
2141 | x = fid.variables['x'][:] |
---|
2142 | y = fid.variables['y'][:] |
---|
2143 | elevation = fid.variables['elevation'][:] |
---|
2144 | time = fid.variables['time'][:] |
---|
2145 | stage = fid.variables['stage'][:] |
---|
2146 | |
---|
2147 | volumes = fid.variables['volumes'][:] |
---|
2148 | |
---|
2149 | |
---|
2150 | # Invoke interpolation for vertex points |
---|
2151 | points = concatenate( (x[:,NewAxis],y[:,NewAxis]), axis=1 ) |
---|
2152 | sww2pts(self.domain.get_name(), |
---|
2153 | quantity = 'elevation', |
---|
2154 | data_points = points, |
---|
2155 | NODATA_value = NODATA_value, |
---|
2156 | verbose = False) |
---|
2157 | ref_point_values = elevation |
---|
2158 | point_values = Geospatial_data(ptsfile).get_attributes() |
---|
2159 | #print 'P', point_values |
---|
2160 | #print 'Ref', ref_point_values |
---|
2161 | assert allclose(point_values, ref_point_values) |
---|
2162 | |
---|
2163 | |
---|
2164 | |
---|
2165 | # Invoke interpolation for centroids |
---|
2166 | points = self.domain.get_centroid_coordinates() |
---|
2167 | #print points |
---|
2168 | sww2pts(self.domain.get_name(), |
---|
2169 | quantity = 'elevation', |
---|
2170 | data_points = points, |
---|
2171 | NODATA_value = NODATA_value, |
---|
2172 | verbose = False) |
---|
2173 | ref_point_values = [-0.5, -0.5, -1, -1, -1, -1, -1.5, -1.5] #At centroids |
---|
2174 | |
---|
2175 | |
---|
2176 | point_values = Geospatial_data(ptsfile).get_attributes() |
---|
2177 | #print 'P', point_values |
---|
2178 | #print 'Ref', ref_point_values |
---|
2179 | assert allclose(point_values, ref_point_values) |
---|
2180 | |
---|
2181 | |
---|
2182 | |
---|
2183 | fid.close() |
---|
2184 | |
---|
2185 | #Cleanup |
---|
2186 | os.remove(sww.filename) |
---|
2187 | os.remove(ptsfile) |
---|
2188 | |
---|
2189 | |
---|
2190 | |
---|
2191 | |
---|
2192 | def test_ferret2sww1(self): |
---|
2193 | """Test that georeferencing etc works when converting from |
---|
2194 | ferret format (lat/lon) to sww format (UTM) |
---|
2195 | """ |
---|
2196 | from Scientific.IO.NetCDF import NetCDFFile |
---|
2197 | import os, sys |
---|
2198 | |
---|
2199 | #The test file has |
---|
2200 | # LON = 150.66667, 150.83334, 151, 151.16667 |
---|
2201 | # LAT = -34.5, -34.33333, -34.16667, -34 ; |
---|
2202 | # TIME = 0, 0.1, 0.6, 1.1, 1.6, 2.1 ; |
---|
2203 | # |
---|
2204 | # First value (index=0) in small_ha.nc is 0.3400644 cm, |
---|
2205 | # Fourth value (index==3) is -6.50198 cm |
---|
2206 | |
---|
2207 | |
---|
2208 | |
---|
2209 | #Read |
---|
2210 | from anuga.coordinate_transforms.redfearn import redfearn |
---|
2211 | #fid = NetCDFFile(self.test_MOST_file) |
---|
2212 | fid = NetCDFFile(self.test_MOST_file + '_ha.nc') |
---|
2213 | first_value = fid.variables['HA'][:][0,0,0] |
---|
2214 | fourth_value = fid.variables['HA'][:][0,0,3] |
---|
2215 | fid.close() |
---|
2216 | |
---|
2217 | |
---|
2218 | #Call conversion (with zero origin) |
---|
2219 | #ferret2sww('small', verbose=False, |
---|
2220 | # origin = (56, 0, 0)) |
---|
2221 | ferret2sww(self.test_MOST_file, verbose=False, |
---|
2222 | origin = (56, 0, 0)) |
---|
2223 | |
---|
2224 | #Work out the UTM coordinates for first point |
---|
2225 | zone, e, n = redfearn(-34.5, 150.66667) |
---|
2226 | #print zone, e, n |
---|
2227 | |
---|
2228 | #Read output file 'small.sww' |
---|
2229 | #fid = NetCDFFile('small.sww') |
---|
2230 | fid = NetCDFFile(self.test_MOST_file + '.sww') |
---|
2231 | |
---|
2232 | x = fid.variables['x'][:] |
---|
2233 | y = fid.variables['y'][:] |
---|
2234 | |
---|
2235 | #Check that first coordinate is correctly represented |
---|
2236 | assert allclose(x[0], e) |
---|
2237 | assert allclose(y[0], n) |
---|
2238 | |
---|
2239 | #Check first value |
---|
2240 | stage = fid.variables['stage'][:] |
---|
2241 | xmomentum = fid.variables['xmomentum'][:] |
---|
2242 | ymomentum = fid.variables['ymomentum'][:] |
---|
2243 | |
---|
2244 | #print ymomentum |
---|
2245 | |
---|
2246 | assert allclose(stage[0,0], first_value/100) #Meters |
---|
2247 | |
---|
2248 | #Check fourth value |
---|
2249 | assert allclose(stage[0,3], fourth_value/100) #Meters |
---|
2250 | |
---|
2251 | fid.close() |
---|
2252 | |
---|
2253 | #Cleanup |
---|
2254 | import os |
---|
2255 | os.remove(self.test_MOST_file + '.sww') |
---|
2256 | |
---|
2257 | |
---|
2258 | def test_ferret2sww_2(self): |
---|
2259 | """Test that georeferencing etc works when converting from |
---|
2260 | ferret format (lat/lon) to sww format (UTM) |
---|
2261 | """ |
---|
2262 | from Scientific.IO.NetCDF import NetCDFFile |
---|
2263 | |
---|
2264 | #The test file has |
---|
2265 | # LON = 150.66667, 150.83334, 151, 151.16667 |
---|
2266 | # LAT = -34.5, -34.33333, -34.16667, -34 ; |
---|
2267 | # TIME = 0, 0.1, 0.6, 1.1, 1.6, 2.1 ; |
---|
2268 | # |
---|
2269 | # First value (index=0) in small_ha.nc is 0.3400644 cm, |
---|
2270 | # Fourth value (index==3) is -6.50198 cm |
---|
2271 | |
---|
2272 | |
---|
2273 | from anuga.coordinate_transforms.redfearn import redfearn |
---|
2274 | |
---|
2275 | #fid = NetCDFFile('small_ha.nc') |
---|
2276 | fid = NetCDFFile(self.test_MOST_file + '_ha.nc') |
---|
2277 | |
---|
2278 | #Pick a coordinate and a value |
---|
2279 | |
---|
2280 | time_index = 1 |
---|
2281 | lat_index = 0 |
---|
2282 | lon_index = 2 |
---|
2283 | |
---|
2284 | test_value = fid.variables['HA'][:][time_index, lat_index, lon_index] |
---|
2285 | test_time = fid.variables['TIME'][:][time_index] |
---|
2286 | test_lat = fid.variables['LAT'][:][lat_index] |
---|
2287 | test_lon = fid.variables['LON'][:][lon_index] |
---|
2288 | |
---|
2289 | linear_point_index = lat_index*4 + lon_index |
---|
2290 | fid.close() |
---|
2291 | |
---|
2292 | #Call conversion (with zero origin) |
---|
2293 | ferret2sww(self.test_MOST_file, verbose=False, |
---|
2294 | origin = (56, 0, 0)) |
---|
2295 | |
---|
2296 | |
---|
2297 | #Work out the UTM coordinates for test point |
---|
2298 | zone, e, n = redfearn(test_lat, test_lon) |
---|
2299 | |
---|
2300 | #Read output file 'small.sww' |
---|
2301 | fid = NetCDFFile(self.test_MOST_file + '.sww') |
---|
2302 | |
---|
2303 | x = fid.variables['x'][:] |
---|
2304 | y = fid.variables['y'][:] |
---|
2305 | |
---|
2306 | #Check that test coordinate is correctly represented |
---|
2307 | assert allclose(x[linear_point_index], e) |
---|
2308 | assert allclose(y[linear_point_index], n) |
---|
2309 | |
---|
2310 | #Check test value |
---|
2311 | stage = fid.variables['stage'][:] |
---|
2312 | |
---|
2313 | assert allclose(stage[time_index, linear_point_index], test_value/100) |
---|
2314 | |
---|
2315 | fid.close() |
---|
2316 | |
---|
2317 | #Cleanup |
---|
2318 | import os |
---|
2319 | os.remove(self.test_MOST_file + '.sww') |
---|
2320 | |
---|
2321 | |
---|
2322 | def test_ferret2sww_lat_long(self): |
---|
2323 | # Test that min lat long works |
---|
2324 | |
---|
2325 | #The test file has |
---|
2326 | # LON = 150.66667, 150.83334, 151, 151.16667 |
---|
2327 | # LAT = -34.5, -34.33333, -34.16667, -34 ; |
---|
2328 | |
---|
2329 | #Read |
---|
2330 | from anuga.coordinate_transforms.redfearn import redfearn |
---|
2331 | fid = NetCDFFile(self.test_MOST_file + '_ha.nc') |
---|
2332 | first_value = fid.variables['HA'][:][0,0,0] |
---|
2333 | fourth_value = fid.variables['HA'][:][0,0,3] |
---|
2334 | fid.close() |
---|
2335 | |
---|
2336 | |
---|
2337 | #Call conversion (with zero origin) |
---|
2338 | #ferret2sww('small', verbose=False, |
---|
2339 | # origin = (56, 0, 0)) |
---|
2340 | ferret2sww(self.test_MOST_file, verbose=False, |
---|
2341 | origin = (56, 0, 0), minlat=-34.5, maxlat=-34) |
---|
2342 | |
---|
2343 | #Work out the UTM coordinates for first point |
---|
2344 | zone, e, n = redfearn(-34.5, 150.66667) |
---|
2345 | #print zone, e, n |
---|
2346 | |
---|
2347 | #Read output file 'small.sww' |
---|
2348 | #fid = NetCDFFile('small.sww') |
---|
2349 | fid = NetCDFFile(self.test_MOST_file + '.sww') |
---|
2350 | |
---|
2351 | x = fid.variables['x'][:] |
---|
2352 | y = fid.variables['y'][:] |
---|
2353 | #Check that first coordinate is correctly represented |
---|
2354 | assert 16 == len(x) |
---|
2355 | |
---|
2356 | fid.close() |
---|
2357 | |
---|
2358 | #Cleanup |
---|
2359 | import os |
---|
2360 | os.remove(self.test_MOST_file + '.sww') |
---|
2361 | |
---|
2362 | |
---|
2363 | def test_ferret2sww_lat_longII(self): |
---|
2364 | # Test that min lat long works |
---|
2365 | |
---|
2366 | #The test file has |
---|
2367 | # LON = 150.66667, 150.83334, 151, 151.16667 |
---|
2368 | # LAT = -34.5, -34.33333, -34.16667, -34 ; |
---|
2369 | |
---|
2370 | #Read |
---|
2371 | from anuga.coordinate_transforms.redfearn import redfearn |
---|
2372 | fid = NetCDFFile(self.test_MOST_file + '_ha.nc') |
---|
2373 | first_value = fid.variables['HA'][:][0,0,0] |
---|
2374 | fourth_value = fid.variables['HA'][:][0,0,3] |
---|
2375 | fid.close() |
---|
2376 | |
---|
2377 | |
---|
2378 | #Call conversion (with zero origin) |
---|
2379 | #ferret2sww('small', verbose=False, |
---|
2380 | # origin = (56, 0, 0)) |
---|
2381 | ferret2sww(self.test_MOST_file, verbose=False, |
---|
2382 | origin = (56, 0, 0), minlat=-34.4, maxlat=-34.2) |
---|
2383 | |
---|
2384 | #Work out the UTM coordinates for first point |
---|
2385 | zone, e, n = redfearn(-34.5, 150.66667) |
---|
2386 | #print zone, e, n |
---|
2387 | |
---|
2388 | #Read output file 'small.sww' |
---|
2389 | #fid = NetCDFFile('small.sww') |
---|
2390 | fid = NetCDFFile(self.test_MOST_file + '.sww') |
---|
2391 | |
---|
2392 | x = fid.variables['x'][:] |
---|
2393 | y = fid.variables['y'][:] |
---|
2394 | #Check that first coordinate is correctly represented |
---|
2395 | assert 12 == len(x) |
---|
2396 | |
---|
2397 | fid.close() |
---|
2398 | |
---|
2399 | #Cleanup |
---|
2400 | import os |
---|
2401 | os.remove(self.test_MOST_file + '.sww') |
---|
2402 | |
---|
2403 | def test_ferret2sww3(self): |
---|
2404 | """Elevation included |
---|
2405 | """ |
---|
2406 | from Scientific.IO.NetCDF import NetCDFFile |
---|
2407 | |
---|
2408 | #The test file has |
---|
2409 | # LON = 150.66667, 150.83334, 151, 151.16667 |
---|
2410 | # LAT = -34.5, -34.33333, -34.16667, -34 ; |
---|
2411 | # ELEVATION = [-1 -2 -3 -4 |
---|
2412 | # -5 -6 -7 -8 |
---|
2413 | # ... |
---|
2414 | # ... -16] |
---|
2415 | # where the top left corner is -1m, |
---|
2416 | # and the ll corner is -13.0m |
---|
2417 | # |
---|
2418 | # First value (index=0) in small_ha.nc is 0.3400644 cm, |
---|
2419 | # Fourth value (index==3) is -6.50198 cm |
---|
2420 | |
---|
2421 | from anuga.coordinate_transforms.redfearn import redfearn |
---|
2422 | import os |
---|
2423 | fid1 = NetCDFFile('test_ha.nc','w') |
---|
2424 | fid2 = NetCDFFile('test_ua.nc','w') |
---|
2425 | fid3 = NetCDFFile('test_va.nc','w') |
---|
2426 | fid4 = NetCDFFile('test_e.nc','w') |
---|
2427 | |
---|
2428 | h1_list = [150.66667,150.83334,151.] |
---|
2429 | h2_list = [-34.5,-34.33333] |
---|
2430 | |
---|
2431 | long_name = 'LON' |
---|
2432 | lat_name = 'LAT' |
---|
2433 | time_name = 'TIME' |
---|
2434 | |
---|
2435 | nx = 3 |
---|
2436 | ny = 2 |
---|
2437 | |
---|
2438 | for fid in [fid1,fid2,fid3]: |
---|
2439 | fid.createDimension(long_name,nx) |
---|
2440 | fid.createVariable(long_name,'d',(long_name,)) |
---|
2441 | fid.variables[long_name].point_spacing='uneven' |
---|
2442 | fid.variables[long_name].units='degrees_east' |
---|
2443 | fid.variables[long_name].assignValue(h1_list) |
---|
2444 | |
---|
2445 | fid.createDimension(lat_name,ny) |
---|
2446 | fid.createVariable(lat_name,'d',(lat_name,)) |
---|
2447 | fid.variables[lat_name].point_spacing='uneven' |
---|
2448 | fid.variables[lat_name].units='degrees_north' |
---|
2449 | fid.variables[lat_name].assignValue(h2_list) |
---|
2450 | |
---|
2451 | fid.createDimension(time_name,2) |
---|
2452 | fid.createVariable(time_name,'d',(time_name,)) |
---|
2453 | fid.variables[time_name].point_spacing='uneven' |
---|
2454 | fid.variables[time_name].units='seconds' |
---|
2455 | fid.variables[time_name].assignValue([0.,1.]) |
---|
2456 | if fid == fid3: break |
---|
2457 | |
---|
2458 | |
---|
2459 | for fid in [fid4]: |
---|
2460 | fid.createDimension(long_name,nx) |
---|
2461 | fid.createVariable(long_name,'d',(long_name,)) |
---|
2462 | fid.variables[long_name].point_spacing='uneven' |
---|
2463 | fid.variables[long_name].units='degrees_east' |
---|
2464 | fid.variables[long_name].assignValue(h1_list) |
---|
2465 | |
---|
2466 | fid.createDimension(lat_name,ny) |
---|
2467 | fid.createVariable(lat_name,'d',(lat_name,)) |
---|
2468 | fid.variables[lat_name].point_spacing='uneven' |
---|
2469 | fid.variables[lat_name].units='degrees_north' |
---|
2470 | fid.variables[lat_name].assignValue(h2_list) |
---|
2471 | |
---|
2472 | name = {} |
---|
2473 | name[fid1]='HA' |
---|
2474 | name[fid2]='UA' |
---|
2475 | name[fid3]='VA' |
---|
2476 | name[fid4]='ELEVATION' |
---|
2477 | |
---|
2478 | units = {} |
---|
2479 | units[fid1]='cm' |
---|
2480 | units[fid2]='cm/s' |
---|
2481 | units[fid3]='cm/s' |
---|
2482 | units[fid4]='m' |
---|
2483 | |
---|
2484 | values = {} |
---|
2485 | values[fid1]=[[[5., 10.,15.], [13.,18.,23.]],[[50.,100.,150.],[130.,180.,230.]]] |
---|
2486 | values[fid2]=[[[1., 2.,3.], [4.,5.,6.]],[[7.,8.,9.],[10.,11.,12.]]] |
---|
2487 | values[fid3]=[[[13., 12.,11.], [10.,9.,8.]],[[7.,6.,5.],[4.,3.,2.]]] |
---|
2488 | values[fid4]=[[-3000,-3100,-3200],[-4000,-5000,-6000]] |
---|
2489 | |
---|
2490 | for fid in [fid1,fid2,fid3]: |
---|
2491 | fid.createVariable(name[fid],'d',(time_name,lat_name,long_name)) |
---|
2492 | fid.variables[name[fid]].point_spacing='uneven' |
---|
2493 | fid.variables[name[fid]].units=units[fid] |
---|
2494 | fid.variables[name[fid]].assignValue(values[fid]) |
---|
2495 | fid.variables[name[fid]].missing_value = -99999999. |
---|
2496 | if fid == fid3: break |
---|
2497 | |
---|
2498 | for fid in [fid4]: |
---|
2499 | fid.createVariable(name[fid],'d',(lat_name,long_name)) |
---|
2500 | fid.variables[name[fid]].point_spacing='uneven' |
---|
2501 | fid.variables[name[fid]].units=units[fid] |
---|
2502 | fid.variables[name[fid]].assignValue(values[fid]) |
---|
2503 | fid.variables[name[fid]].missing_value = -99999999. |
---|
2504 | |
---|
2505 | |
---|
2506 | fid1.sync(); fid1.close() |
---|
2507 | fid2.sync(); fid2.close() |
---|
2508 | fid3.sync(); fid3.close() |
---|
2509 | fid4.sync(); fid4.close() |
---|
2510 | |
---|
2511 | fid1 = NetCDFFile('test_ha.nc','r') |
---|
2512 | fid2 = NetCDFFile('test_e.nc','r') |
---|
2513 | fid3 = NetCDFFile('test_va.nc','r') |
---|
2514 | |
---|
2515 | |
---|
2516 | first_amp = fid1.variables['HA'][:][0,0,0] |
---|
2517 | third_amp = fid1.variables['HA'][:][0,0,2] |
---|
2518 | first_elevation = fid2.variables['ELEVATION'][0,0] |
---|
2519 | third_elevation= fid2.variables['ELEVATION'][:][0,2] |
---|
2520 | first_speed = fid3.variables['VA'][0,0,0] |
---|
2521 | third_speed = fid3.variables['VA'][:][0,0,2] |
---|
2522 | |
---|
2523 | fid1.close() |
---|
2524 | fid2.close() |
---|
2525 | fid3.close() |
---|
2526 | |
---|
2527 | #Call conversion (with zero origin) |
---|
2528 | ferret2sww('test', verbose=False, |
---|
2529 | origin = (56, 0, 0), inverted_bathymetry=False) |
---|
2530 | |
---|
2531 | os.remove('test_va.nc') |
---|
2532 | os.remove('test_ua.nc') |
---|
2533 | os.remove('test_ha.nc') |
---|
2534 | os.remove('test_e.nc') |
---|
2535 | |
---|
2536 | #Read output file 'test.sww' |
---|
2537 | fid = NetCDFFile('test.sww') |
---|
2538 | |
---|
2539 | |
---|
2540 | #Check first value |
---|
2541 | elevation = fid.variables['elevation'][:] |
---|
2542 | stage = fid.variables['stage'][:] |
---|
2543 | xmomentum = fid.variables['xmomentum'][:] |
---|
2544 | ymomentum = fid.variables['ymomentum'][:] |
---|
2545 | |
---|
2546 | #print ymomentum |
---|
2547 | first_height = first_amp/100 - first_elevation |
---|
2548 | third_height = third_amp/100 - third_elevation |
---|
2549 | first_momentum=first_speed*first_height/100 |
---|
2550 | third_momentum=third_speed*third_height/100 |
---|
2551 | |
---|
2552 | assert allclose(ymomentum[0][0],first_momentum) #Meters |
---|
2553 | assert allclose(ymomentum[0][2],third_momentum) #Meters |
---|
2554 | |
---|
2555 | fid.close() |
---|
2556 | |
---|
2557 | #Cleanup |
---|
2558 | os.remove('test.sww') |
---|
2559 | |
---|
2560 | |
---|
2561 | |
---|
2562 | def test_ferret2sww4(self): |
---|
2563 | """Like previous but with augmented variable names as |
---|
2564 | in files produced by ferret as opposed to MOST |
---|
2565 | """ |
---|
2566 | from Scientific.IO.NetCDF import NetCDFFile |
---|
2567 | |
---|
2568 | #The test file has |
---|
2569 | # LON = 150.66667, 150.83334, 151, 151.16667 |
---|
2570 | # LAT = -34.5, -34.33333, -34.16667, -34 ; |
---|
2571 | # ELEVATION = [-1 -2 -3 -4 |
---|
2572 | # -5 -6 -7 -8 |
---|
2573 | # ... |
---|
2574 | # ... -16] |
---|
2575 | # where the top left corner is -1m, |
---|
2576 | # and the ll corner is -13.0m |
---|
2577 | # |
---|
2578 | # First value (index=0) in small_ha.nc is 0.3400644 cm, |
---|
2579 | # Fourth value (index==3) is -6.50198 cm |
---|
2580 | |
---|
2581 | from anuga.coordinate_transforms.redfearn import redfearn |
---|
2582 | import os |
---|
2583 | fid1 = NetCDFFile('test_ha.nc','w') |
---|
2584 | fid2 = NetCDFFile('test_ua.nc','w') |
---|
2585 | fid3 = NetCDFFile('test_va.nc','w') |
---|
2586 | fid4 = NetCDFFile('test_e.nc','w') |
---|
2587 | |
---|
2588 | h1_list = [150.66667,150.83334,151.] |
---|
2589 | h2_list = [-34.5,-34.33333] |
---|
2590 | |
---|
2591 | # long_name = 'LON961_1261' |
---|
2592 | # lat_name = 'LAT481_841' |
---|
2593 | # time_name = 'TIME1' |
---|
2594 | |
---|
2595 | long_name = 'LON' |
---|
2596 | lat_name = 'LAT' |
---|
2597 | time_name = 'TIME' |
---|
2598 | |
---|
2599 | nx = 3 |
---|
2600 | ny = 2 |
---|
2601 | |
---|
2602 | for fid in [fid1,fid2,fid3]: |
---|
2603 | fid.createDimension(long_name,nx) |
---|
2604 | fid.createVariable(long_name,'d',(long_name,)) |
---|
2605 | fid.variables[long_name].point_spacing='uneven' |
---|
2606 | fid.variables[long_name].units='degrees_east' |
---|
2607 | fid.variables[long_name].assignValue(h1_list) |
---|
2608 | |
---|
2609 | fid.createDimension(lat_name,ny) |
---|
2610 | fid.createVariable(lat_name,'d',(lat_name,)) |
---|
2611 | fid.variables[lat_name].point_spacing='uneven' |
---|
2612 | fid.variables[lat_name].units='degrees_north' |
---|
2613 | fid.variables[lat_name].assignValue(h2_list) |
---|
2614 | |
---|
2615 | fid.createDimension(time_name,2) |
---|
2616 | fid.createVariable(time_name,'d',(time_name,)) |
---|
2617 | fid.variables[time_name].point_spacing='uneven' |
---|
2618 | fid.variables[time_name].units='seconds' |
---|
2619 | fid.variables[time_name].assignValue([0.,1.]) |
---|
2620 | if fid == fid3: break |
---|
2621 | |
---|
2622 | |
---|
2623 | for fid in [fid4]: |
---|
2624 | fid.createDimension(long_name,nx) |
---|
2625 | fid.createVariable(long_name,'d',(long_name,)) |
---|
2626 | fid.variables[long_name].point_spacing='uneven' |
---|
2627 | fid.variables[long_name].units='degrees_east' |
---|
2628 | fid.variables[long_name].assignValue(h1_list) |
---|
2629 | |
---|
2630 | fid.createDimension(lat_name,ny) |
---|
2631 | fid.createVariable(lat_name,'d',(lat_name,)) |
---|
2632 | fid.variables[lat_name].point_spacing='uneven' |
---|
2633 | fid.variables[lat_name].units='degrees_north' |
---|
2634 | fid.variables[lat_name].assignValue(h2_list) |
---|
2635 | |
---|
2636 | name = {} |
---|
2637 | name[fid1]='HA' |
---|
2638 | name[fid2]='UA' |
---|
2639 | name[fid3]='VA' |
---|
2640 | name[fid4]='ELEVATION' |
---|
2641 | |
---|
2642 | units = {} |
---|
2643 | units[fid1]='cm' |
---|
2644 | units[fid2]='cm/s' |
---|
2645 | units[fid3]='cm/s' |
---|
2646 | units[fid4]='m' |
---|
2647 | |
---|
2648 | values = {} |
---|
2649 | values[fid1]=[[[5., 10.,15.], [13.,18.,23.]],[[50.,100.,150.],[130.,180.,230.]]] |
---|
2650 | values[fid2]=[[[1., 2.,3.], [4.,5.,6.]],[[7.,8.,9.],[10.,11.,12.]]] |
---|
2651 | values[fid3]=[[[13., 12.,11.], [10.,9.,8.]],[[7.,6.,5.],[4.,3.,2.]]] |
---|
2652 | values[fid4]=[[-3000,-3100,-3200],[-4000,-5000,-6000]] |
---|
2653 | |
---|
2654 | for fid in [fid1,fid2,fid3]: |
---|
2655 | fid.createVariable(name[fid],'d',(time_name,lat_name,long_name)) |
---|
2656 | fid.variables[name[fid]].point_spacing='uneven' |
---|
2657 | fid.variables[name[fid]].units=units[fid] |
---|
2658 | fid.variables[name[fid]].assignValue(values[fid]) |
---|
2659 | fid.variables[name[fid]].missing_value = -99999999. |
---|
2660 | if fid == fid3: break |
---|
2661 | |
---|
2662 | for fid in [fid4]: |
---|
2663 | fid.createVariable(name[fid],'d',(lat_name,long_name)) |
---|
2664 | fid.variables[name[fid]].point_spacing='uneven' |
---|
2665 | fid.variables[name[fid]].units=units[fid] |
---|
2666 | fid.variables[name[fid]].assignValue(values[fid]) |
---|
2667 | fid.variables[name[fid]].missing_value = -99999999. |
---|
2668 | |
---|
2669 | |
---|
2670 | fid1.sync(); fid1.close() |
---|
2671 | fid2.sync(); fid2.close() |
---|
2672 | fid3.sync(); fid3.close() |
---|
2673 | fid4.sync(); fid4.close() |
---|
2674 | |
---|
2675 | fid1 = NetCDFFile('test_ha.nc','r') |
---|
2676 | fid2 = NetCDFFile('test_e.nc','r') |
---|
2677 | fid3 = NetCDFFile('test_va.nc','r') |
---|
2678 | |
---|
2679 | |
---|
2680 | first_amp = fid1.variables['HA'][:][0,0,0] |
---|
2681 | third_amp = fid1.variables['HA'][:][0,0,2] |
---|
2682 | first_elevation = fid2.variables['ELEVATION'][0,0] |
---|
2683 | third_elevation= fid2.variables['ELEVATION'][:][0,2] |
---|
2684 | first_speed = fid3.variables['VA'][0,0,0] |
---|
2685 | third_speed = fid3.variables['VA'][:][0,0,2] |
---|
2686 | |
---|
2687 | fid1.close() |
---|
2688 | fid2.close() |
---|
2689 | fid3.close() |
---|
2690 | |
---|
2691 | #Call conversion (with zero origin) |
---|
2692 | ferret2sww('test', verbose=False, origin = (56, 0, 0) |
---|
2693 | , inverted_bathymetry=False) |
---|
2694 | |
---|
2695 | os.remove('test_va.nc') |
---|
2696 | os.remove('test_ua.nc') |
---|
2697 | os.remove('test_ha.nc') |
---|
2698 | os.remove('test_e.nc') |
---|
2699 | |
---|
2700 | #Read output file 'test.sww' |
---|
2701 | fid = NetCDFFile('test.sww') |
---|
2702 | |
---|
2703 | |
---|
2704 | #Check first value |
---|
2705 | elevation = fid.variables['elevation'][:] |
---|
2706 | stage = fid.variables['stage'][:] |
---|
2707 | xmomentum = fid.variables['xmomentum'][:] |
---|
2708 | ymomentum = fid.variables['ymomentum'][:] |
---|
2709 | |
---|
2710 | #print ymomentum |
---|
2711 | first_height = first_amp/100 - first_elevation |
---|
2712 | third_height = third_amp/100 - third_elevation |
---|
2713 | first_momentum=first_speed*first_height/100 |
---|
2714 | third_momentum=third_speed*third_height/100 |
---|
2715 | |
---|
2716 | assert allclose(ymomentum[0][0],first_momentum) #Meters |
---|
2717 | assert allclose(ymomentum[0][2],third_momentum) #Meters |
---|
2718 | |
---|
2719 | fid.close() |
---|
2720 | |
---|
2721 | #Cleanup |
---|
2722 | os.remove('test.sww') |
---|
2723 | |
---|
2724 | |
---|
2725 | |
---|
2726 | |
---|
2727 | def test_ferret2sww_nz_origin(self): |
---|
2728 | from Scientific.IO.NetCDF import NetCDFFile |
---|
2729 | from anuga.coordinate_transforms.redfearn import redfearn |
---|
2730 | |
---|
2731 | #Call conversion (with nonzero origin) |
---|
2732 | ferret2sww(self.test_MOST_file, verbose=False, |
---|
2733 | origin = (56, 100000, 200000)) |
---|
2734 | |
---|
2735 | |
---|
2736 | #Work out the UTM coordinates for first point |
---|
2737 | zone, e, n = redfearn(-34.5, 150.66667) |
---|
2738 | |
---|
2739 | #Read output file 'small.sww' |
---|
2740 | #fid = NetCDFFile('small.sww', 'r') |
---|
2741 | fid = NetCDFFile(self.test_MOST_file + '.sww') |
---|
2742 | |
---|
2743 | x = fid.variables['x'][:] |
---|
2744 | y = fid.variables['y'][:] |
---|
2745 | |
---|
2746 | #Check that first coordinate is correctly represented |
---|
2747 | assert allclose(x[0], e-100000) |
---|
2748 | assert allclose(y[0], n-200000) |
---|
2749 | |
---|
2750 | fid.close() |
---|
2751 | |
---|
2752 | #Cleanup |
---|
2753 | os.remove(self.test_MOST_file + '.sww') |
---|
2754 | |
---|
2755 | |
---|
2756 | def test_ferret2sww_lat_longII(self): |
---|
2757 | # Test that min lat long works |
---|
2758 | |
---|
2759 | #The test file has |
---|
2760 | # LON = 150.66667, 150.83334, 151, 151.16667 |
---|
2761 | # LAT = -34.5, -34.33333, -34.16667, -34 ; |
---|
2762 | |
---|
2763 | #Read |
---|
2764 | from anuga.coordinate_transforms.redfearn import redfearn |
---|
2765 | fid = NetCDFFile(self.test_MOST_file + '_ha.nc') |
---|
2766 | first_value = fid.variables['HA'][:][0,0,0] |
---|
2767 | fourth_value = fid.variables['HA'][:][0,0,3] |
---|
2768 | fid.close() |
---|
2769 | |
---|
2770 | |
---|
2771 | #Call conversion (with zero origin) |
---|
2772 | #ferret2sww('small', verbose=False, |
---|
2773 | # origin = (56, 0, 0)) |
---|
2774 | try: |
---|
2775 | ferret2sww(self.test_MOST_file, verbose=False, |
---|
2776 | origin = (56, 0, 0), minlat=-34.5, maxlat=-35) |
---|
2777 | except AssertionError: |
---|
2778 | pass |
---|
2779 | else: |
---|
2780 | self.failUnless(0 ==1, 'Bad input did not throw exception error!') |
---|
2781 | |
---|
2782 | def test_sww_extent(self): |
---|
2783 | """Not a test, rather a look at the sww format |
---|
2784 | """ |
---|
2785 | |
---|
2786 | import time, os |
---|
2787 | from Numeric import array, zeros, allclose, Float, concatenate |
---|
2788 | from Scientific.IO.NetCDF import NetCDFFile |
---|
2789 | |
---|
2790 | self.domain.set_name('datatest' + str(id(self))) |
---|
2791 | self.domain.format = 'sww' |
---|
2792 | self.domain.smooth = True |
---|
2793 | self.domain.reduction = mean |
---|
2794 | self.domain.set_datadir('.') |
---|
2795 | |
---|
2796 | |
---|
2797 | sww = get_dataobject(self.domain) |
---|
2798 | sww.store_connectivity() |
---|
2799 | sww.store_timestep('stage') |
---|
2800 | self.domain.time = 2. |
---|
2801 | |
---|
2802 | #Modify stage at second timestep |
---|
2803 | stage = self.domain.quantities['stage'].vertex_values |
---|
2804 | self.domain.set_quantity('stage', stage/2) |
---|
2805 | |
---|
2806 | sww.store_timestep('stage') |
---|
2807 | |
---|
2808 | file_and_extension_name = self.domain.get_name() + ".sww" |
---|
2809 | #print "file_and_extension_name",file_and_extension_name |
---|
2810 | [xmin, xmax, ymin, ymax, stagemin, stagemax] = \ |
---|
2811 | extent_sww(file_and_extension_name ) |
---|
2812 | |
---|
2813 | assert allclose(xmin, 0.0) |
---|
2814 | assert allclose(xmax, 1.0) |
---|
2815 | assert allclose(ymin, 0.0) |
---|
2816 | assert allclose(ymax, 1.0) |
---|
2817 | assert allclose(stagemin, -0.85) |
---|
2818 | assert allclose(stagemax, 0.15) |
---|
2819 | |
---|
2820 | |
---|
2821 | #Cleanup |
---|
2822 | os.remove(sww.filename) |
---|
2823 | |
---|
2824 | |
---|
2825 | |
---|
2826 | def test_sww2domain1(self): |
---|
2827 | ################################################ |
---|
2828 | #Create a test domain, and evolve and save it. |
---|
2829 | ################################################ |
---|
2830 | from mesh_factory import rectangular |
---|
2831 | from Numeric import array |
---|
2832 | |
---|
2833 | #Create basic mesh |
---|
2834 | |
---|
2835 | yiel=0.01 |
---|
2836 | points, vertices, boundary = rectangular(10,10) |
---|
2837 | |
---|
2838 | #Create shallow water domain |
---|
2839 | domain = Domain(points, vertices, boundary) |
---|
2840 | domain.geo_reference = Geo_reference(56,11,11) |
---|
2841 | domain.smooth = False |
---|
2842 | domain.store = True |
---|
2843 | domain.set_name('bedslope') |
---|
2844 | domain.default_order=2 |
---|
2845 | #Bed-slope and friction |
---|
2846 | domain.set_quantity('elevation', lambda x,y: -x/3) |
---|
2847 | domain.set_quantity('friction', 0.1) |
---|
2848 | # Boundary conditions |
---|
2849 | from math import sin, pi |
---|
2850 | Br = Reflective_boundary(domain) |
---|
2851 | Bt = Transmissive_boundary(domain) |
---|
2852 | Bd = Dirichlet_boundary([0.2,0.,0.]) |
---|
2853 | Bw = Time_boundary(domain=domain,f=lambda t: [(0.1*sin(t*2*pi)), 0.0, 0.0]) |
---|
2854 | |
---|
2855 | #domain.set_boundary({'left': Bd, 'right': Br, 'top': Br, 'bottom': Br}) |
---|
2856 | domain.set_boundary({'left': Bd, 'right': Bd, 'top': Bd, 'bottom': Bd}) |
---|
2857 | |
---|
2858 | domain.quantities_to_be_stored.extend(['xmomentum','ymomentum']) |
---|
2859 | #Initial condition |
---|
2860 | h = 0.05 |
---|
2861 | elevation = domain.quantities['elevation'].vertex_values |
---|
2862 | domain.set_quantity('stage', elevation + h) |
---|
2863 | |
---|
2864 | domain.check_integrity() |
---|
2865 | #Evolution |
---|
2866 | for t in domain.evolve(yieldstep = yiel, finaltime = 0.05): |
---|
2867 | #domain.write_time() |
---|
2868 | pass |
---|
2869 | |
---|
2870 | |
---|
2871 | ########################################## |
---|
2872 | #Import the example's file as a new domain |
---|
2873 | ########################################## |
---|
2874 | from data_manager import sww2domain |
---|
2875 | from Numeric import allclose |
---|
2876 | import os |
---|
2877 | |
---|
2878 | filename = domain.datadir + os.sep + domain.get_name() + '.sww' |
---|
2879 | domain2 = sww2domain(filename,None,fail_if_NaN=False,verbose = False) |
---|
2880 | #points, vertices, boundary = rectangular(15,15) |
---|
2881 | #domain2.boundary = boundary |
---|
2882 | ################### |
---|
2883 | ##NOW TEST IT!!! |
---|
2884 | ################### |
---|
2885 | |
---|
2886 | #os.remove(domain.get_name() + '.sww') |
---|
2887 | os.remove(filename) |
---|
2888 | |
---|
2889 | bits = ['vertex_coordinates'] |
---|
2890 | for quantity in ['elevation']+domain.quantities_to_be_stored: |
---|
2891 | bits.append('get_quantity("%s").get_integral()' %quantity) |
---|
2892 | bits.append('get_quantity("%s").get_values()' %quantity) |
---|
2893 | |
---|
2894 | for bit in bits: |
---|
2895 | #print 'testing that domain.'+bit+' has been restored' |
---|
2896 | #print bit |
---|
2897 | #print 'done' |
---|
2898 | assert allclose(eval('domain.'+bit),eval('domain2.'+bit)) |
---|
2899 | |
---|
2900 | ###################################### |
---|
2901 | #Now evolve them both, just to be sure |
---|
2902 | ######################################x |
---|
2903 | domain.time = 0. |
---|
2904 | from time import sleep |
---|
2905 | |
---|
2906 | final = .1 |
---|
2907 | domain.set_quantity('friction', 0.1) |
---|
2908 | domain.store = False |
---|
2909 | domain.set_boundary({'left': Bd, 'right': Bd, 'top': Bd, 'bottom': Bd}) |
---|
2910 | |
---|
2911 | |
---|
2912 | for t in domain.evolve(yieldstep = yiel, finaltime = final): |
---|
2913 | #domain.write_time() |
---|
2914 | pass |
---|
2915 | |
---|
2916 | final = final - (domain2.starttime-domain.starttime) |
---|
2917 | #BUT since domain1 gets time hacked back to 0: |
---|
2918 | final = final + (domain2.starttime-domain.starttime) |
---|
2919 | |
---|
2920 | domain2.smooth = False |
---|
2921 | domain2.store = False |
---|
2922 | domain2.default_order=2 |
---|
2923 | domain2.set_quantity('friction', 0.1) |
---|
2924 | #Bed-slope and friction |
---|
2925 | # Boundary conditions |
---|
2926 | Bd2=Dirichlet_boundary([0.2,0.,0.]) |
---|
2927 | domain2.boundary = domain.boundary |
---|
2928 | #print 'domain2.boundary' |
---|
2929 | #print domain2.boundary |
---|
2930 | domain2.set_boundary({'left': Bd, 'right': Bd, 'top': Bd, 'bottom': Bd}) |
---|
2931 | #domain2.set_boundary({'exterior': Bd}) |
---|
2932 | |
---|
2933 | domain2.check_integrity() |
---|
2934 | |
---|
2935 | for t in domain2.evolve(yieldstep = yiel, finaltime = final): |
---|
2936 | #domain2.write_time() |
---|
2937 | pass |
---|
2938 | |
---|
2939 | ################### |
---|
2940 | ##NOW TEST IT!!! |
---|
2941 | ################## |
---|
2942 | |
---|
2943 | bits = ['vertex_coordinates'] |
---|
2944 | |
---|
2945 | for quantity in ['elevation','stage', 'ymomentum','xmomentum']: |
---|
2946 | bits.append('get_quantity("%s").get_integral()' %quantity) |
---|
2947 | bits.append('get_quantity("%s").get_values()' %quantity) |
---|
2948 | |
---|
2949 | #print bits |
---|
2950 | for bit in bits: |
---|
2951 | #print bit |
---|
2952 | #print eval('domain.'+bit) |
---|
2953 | #print eval('domain2.'+bit) |
---|
2954 | |
---|
2955 | #print eval('domain.'+bit+'-domain2.'+bit) |
---|
2956 | msg = 'Values in the two domains are different for ' + bit |
---|
2957 | assert allclose(eval('domain.'+bit),eval('domain2.'+bit), |
---|
2958 | rtol=1.e-5, atol=3.e-8), msg |
---|
2959 | |
---|
2960 | |
---|
2961 | def test_sww2domain2(self): |
---|
2962 | ################################################################## |
---|
2963 | #Same as previous test, but this checks how NaNs are handled. |
---|
2964 | ################################################################## |
---|
2965 | |
---|
2966 | |
---|
2967 | from mesh_factory import rectangular |
---|
2968 | from Numeric import array |
---|
2969 | |
---|
2970 | #Create basic mesh |
---|
2971 | points, vertices, boundary = rectangular(2,2) |
---|
2972 | |
---|
2973 | #Create shallow water domain |
---|
2974 | domain = Domain(points, vertices, boundary) |
---|
2975 | domain.smooth = False |
---|
2976 | domain.store = True |
---|
2977 | domain.set_name('test_file') |
---|
2978 | domain.set_datadir('.') |
---|
2979 | domain.default_order=2 |
---|
2980 | domain.quantities_to_be_stored=['stage'] |
---|
2981 | |
---|
2982 | domain.set_quantity('elevation', lambda x,y: -x/3) |
---|
2983 | domain.set_quantity('friction', 0.1) |
---|
2984 | |
---|
2985 | from math import sin, pi |
---|
2986 | Br = Reflective_boundary(domain) |
---|
2987 | Bt = Transmissive_boundary(domain) |
---|
2988 | Bd = Dirichlet_boundary([0.2,0.,0.]) |
---|
2989 | Bw = Time_boundary(domain=domain, |
---|
2990 | f=lambda t: [(0.1*sin(t*2*pi)), 0.0, 0.0]) |
---|
2991 | |
---|
2992 | domain.set_boundary({'left': Bd, 'right': Br, 'top': Br, 'bottom': Br}) |
---|
2993 | |
---|
2994 | h = 0.05 |
---|
2995 | elevation = domain.quantities['elevation'].vertex_values |
---|
2996 | domain.set_quantity('stage', elevation + h) |
---|
2997 | |
---|
2998 | domain.check_integrity() |
---|
2999 | |
---|
3000 | for t in domain.evolve(yieldstep = 1, finaltime = 2.0): |
---|
3001 | pass |
---|
3002 | #domain.write_time() |
---|
3003 | |
---|
3004 | |
---|
3005 | |
---|
3006 | ################################## |
---|
3007 | #Import the file as a new domain |
---|
3008 | ################################## |
---|
3009 | from data_manager import sww2domain |
---|
3010 | from Numeric import allclose |
---|
3011 | import os |
---|
3012 | |
---|
3013 | filename = domain.datadir + os.sep + domain.get_name() + '.sww' |
---|
3014 | |
---|
3015 | #Fail because NaNs are present |
---|
3016 | try: |
---|
3017 | domain2 = sww2domain(filename,boundary,fail_if_NaN=True,verbose=False) |
---|
3018 | except: |
---|
3019 | #Now import it, filling NaNs to be 0 |
---|
3020 | filler = 0 |
---|
3021 | domain2 = sww2domain(filename,None,fail_if_NaN=False,NaN_filler = filler,verbose=False) |
---|
3022 | |
---|
3023 | #Clean up |
---|
3024 | os.remove(filename) |
---|
3025 | |
---|
3026 | |
---|
3027 | bits = [ 'geo_reference.get_xllcorner()', |
---|
3028 | 'geo_reference.get_yllcorner()', |
---|
3029 | 'vertex_coordinates'] |
---|
3030 | |
---|
3031 | for quantity in ['elevation']+domain.quantities_to_be_stored: |
---|
3032 | bits.append('get_quantity("%s").get_integral()' %quantity) |
---|
3033 | bits.append('get_quantity("%s").get_values()' %quantity) |
---|
3034 | |
---|
3035 | for bit in bits: |
---|
3036 | # print 'testing that domain.'+bit+' has been restored' |
---|
3037 | assert allclose(eval('domain.'+bit),eval('domain2.'+bit)) |
---|
3038 | |
---|
3039 | assert max(max(domain2.get_quantity('xmomentum').get_values()))==filler |
---|
3040 | assert min(min(domain2.get_quantity('xmomentum').get_values()))==filler |
---|
3041 | assert max(max(domain2.get_quantity('ymomentum').get_values()))==filler |
---|
3042 | assert min(min(domain2.get_quantity('ymomentum').get_values()))==filler |
---|
3043 | |
---|
3044 | |
---|
3045 | |
---|
3046 | #def test_weed(self): |
---|
3047 | from data_manager import weed |
---|
3048 | |
---|
3049 | coordinates1 = [[0.,0.],[1.,0.],[1.,1.],[1.,0.],[2.,0.],[1.,1.]] |
---|
3050 | volumes1 = [[0,1,2],[3,4,5]] |
---|
3051 | boundary1= {(0,1): 'external',(1,2): 'not external',(2,0): 'external',(3,4): 'external',(4,5): 'external',(5,3): 'not external'} |
---|
3052 | coordinates2,volumes2,boundary2=weed(coordinates1,volumes1,boundary1) |
---|
3053 | |
---|
3054 | points2 = {(0.,0.):None,(1.,0.):None,(1.,1.):None,(2.,0.):None} |
---|
3055 | |
---|
3056 | assert len(points2)==len(coordinates2) |
---|
3057 | for i in range(len(coordinates2)): |
---|
3058 | coordinate = tuple(coordinates2[i]) |
---|
3059 | assert points2.has_key(coordinate) |
---|
3060 | points2[coordinate]=i |
---|
3061 | |
---|
3062 | for triangle in volumes1: |
---|
3063 | for coordinate in triangle: |
---|
3064 | assert coordinates2[points2[tuple(coordinates1[coordinate])]][0]==coordinates1[coordinate][0] |
---|
3065 | assert coordinates2[points2[tuple(coordinates1[coordinate])]][1]==coordinates1[coordinate][1] |
---|
3066 | |
---|
3067 | |
---|
3068 | #FIXME This fails - smooth makes the comparism too hard for allclose |
---|
3069 | def ztest_sww2domain3(self): |
---|
3070 | ################################################ |
---|
3071 | #DOMAIN.SMOOTH = TRUE !!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
3072 | ################################################ |
---|
3073 | from mesh_factory import rectangular |
---|
3074 | from Numeric import array |
---|
3075 | #Create basic mesh |
---|
3076 | |
---|
3077 | yiel=0.01 |
---|
3078 | points, vertices, boundary = rectangular(10,10) |
---|
3079 | |
---|
3080 | #Create shallow water domain |
---|
3081 | domain = Domain(points, vertices, boundary) |
---|
3082 | domain.geo_reference = Geo_reference(56,11,11) |
---|
3083 | domain.smooth = True |
---|
3084 | domain.store = True |
---|
3085 | domain.set_name('bedslope') |
---|
3086 | domain.default_order=2 |
---|
3087 | #Bed-slope and friction |
---|
3088 | domain.set_quantity('elevation', lambda x,y: -x/3) |
---|
3089 | domain.set_quantity('friction', 0.1) |
---|
3090 | # Boundary conditions |
---|
3091 | from math import sin, pi |
---|
3092 | Br = Reflective_boundary(domain) |
---|
3093 | Bt = Transmissive_boundary(domain) |
---|
3094 | Bd = Dirichlet_boundary([0.2,0.,0.]) |
---|
3095 | Bw = Time_boundary(domain=domain, |
---|
3096 | f=lambda t: [(0.1*sin(t*2*pi)), 0.0, 0.0]) |
---|
3097 | |
---|
3098 | domain.set_boundary({'left': Bd, 'right': Bd, 'top': Bd, 'bottom': Bd}) |
---|
3099 | |
---|
3100 | domain.quantities_to_be_stored.extend(['xmomentum','ymomentum']) |
---|
3101 | #Initial condition |
---|
3102 | h = 0.05 |
---|
3103 | elevation = domain.quantities['elevation'].vertex_values |
---|
3104 | domain.set_quantity('stage', elevation + h) |
---|
3105 | |
---|
3106 | |
---|
3107 | domain.check_integrity() |
---|
3108 | #Evolution |
---|
3109 | for t in domain.evolve(yieldstep = yiel, finaltime = 0.05): |
---|
3110 | # domain.write_time() |
---|
3111 | pass |
---|
3112 | |
---|
3113 | |
---|
3114 | ########################################## |
---|
3115 | #Import the example's file as a new domain |
---|
3116 | ########################################## |
---|
3117 | from data_manager import sww2domain |
---|
3118 | from Numeric import allclose |
---|
3119 | import os |
---|
3120 | |
---|
3121 | filename = domain.datadir + os.sep + domain.get_name() + '.sww' |
---|
3122 | domain2 = sww2domain(filename,None,fail_if_NaN=False,verbose = False) |
---|
3123 | #points, vertices, boundary = rectangular(15,15) |
---|
3124 | #domain2.boundary = boundary |
---|
3125 | ################### |
---|
3126 | ##NOW TEST IT!!! |
---|
3127 | ################### |
---|
3128 | |
---|
3129 | os.remove(domain.get_name() + '.sww') |
---|
3130 | |
---|
3131 | #FIXME smooth domain so that they can be compared |
---|
3132 | |
---|
3133 | |
---|
3134 | bits = []#'vertex_coordinates'] |
---|
3135 | for quantity in ['elevation']+domain.quantities_to_be_stored: |
---|
3136 | bits.append('quantities["%s"].get_integral()'%quantity) |
---|
3137 | |
---|
3138 | |
---|
3139 | for bit in bits: |
---|
3140 | #print 'testing that domain.'+bit+' has been restored' |
---|
3141 | #print bit |
---|
3142 | #print 'done' |
---|
3143 | #print ('domain.'+bit), eval('domain.'+bit) |
---|
3144 | #print ('domain2.'+bit), eval('domain2.'+bit) |
---|
3145 | assert allclose(eval('domain.'+bit),eval('domain2.'+bit),rtol=1.0e-1,atol=1.e-3) |
---|
3146 | pass |
---|
3147 | |
---|
3148 | ###################################### |
---|
3149 | #Now evolve them both, just to be sure |
---|
3150 | ######################################x |
---|
3151 | domain.time = 0. |
---|
3152 | from time import sleep |
---|
3153 | |
---|
3154 | final = .5 |
---|
3155 | domain.set_quantity('friction', 0.1) |
---|
3156 | domain.store = False |
---|
3157 | domain.set_boundary({'left': Bd, 'right': Bd, 'top': Bd, 'bottom': Br}) |
---|
3158 | |
---|
3159 | for t in domain.evolve(yieldstep = yiel, finaltime = final): |
---|
3160 | #domain.write_time() |
---|
3161 | pass |
---|
3162 | |
---|
3163 | domain2.smooth = True |
---|
3164 | domain2.store = False |
---|
3165 | domain2.default_order=2 |
---|
3166 | domain2.set_quantity('friction', 0.1) |
---|
3167 | #Bed-slope and friction |
---|
3168 | # Boundary conditions |
---|
3169 | Bd2=Dirichlet_boundary([0.2,0.,0.]) |
---|
3170 | Br2 = Reflective_boundary(domain2) |
---|
3171 | domain2.boundary = domain.boundary |
---|
3172 | #print 'domain2.boundary' |
---|
3173 | #print domain2.boundary |
---|
3174 | domain2.set_boundary({'left': Bd2, 'right': Bd2, 'top': Bd2, 'bottom': Br2}) |
---|
3175 | #domain2.boundary = domain.boundary |
---|
3176 | #domain2.set_boundary({'exterior': Bd}) |
---|
3177 | |
---|
3178 | domain2.check_integrity() |
---|
3179 | |
---|
3180 | for t in domain2.evolve(yieldstep = yiel, finaltime = final): |
---|
3181 | #domain2.write_time() |
---|
3182 | pass |
---|
3183 | |
---|
3184 | ################### |
---|
3185 | ##NOW TEST IT!!! |
---|
3186 | ################## |
---|
3187 | |
---|
3188 | print '><><><><>>' |
---|
3189 | bits = [ 'vertex_coordinates'] |
---|
3190 | |
---|
3191 | for quantity in ['elevation','xmomentum','ymomentum']:#+domain.quantities_to_be_stored: |
---|
3192 | #bits.append('quantities["%s"].get_integral()'%quantity) |
---|
3193 | bits.append('get_quantity("%s").get_values()' %quantity) |
---|
3194 | |
---|
3195 | for bit in bits: |
---|
3196 | print bit |
---|
3197 | assert allclose(eval('domain.'+bit),eval('domain2.'+bit)) |
---|
3198 | |
---|
3199 | |
---|
3200 | def test_decimate_dem(self): |
---|
3201 | """Test decimation of dem file |
---|
3202 | """ |
---|
3203 | |
---|
3204 | import os |
---|
3205 | from Numeric import ones, allclose, Float, arange |
---|
3206 | from Scientific.IO.NetCDF import NetCDFFile |
---|
3207 | |
---|
3208 | #Write test dem file |
---|
3209 | root = 'decdemtest' |
---|
3210 | |
---|
3211 | filename = root + '.dem' |
---|
3212 | fid = NetCDFFile(filename, 'w') |
---|
3213 | |
---|
3214 | fid.institution = 'Geoscience Australia' |
---|
3215 | fid.description = 'NetCDF DEM format for compact and portable ' +\ |
---|
3216 | 'storage of spatial point data' |
---|
3217 | |
---|
3218 | nrows = 15 |
---|
3219 | ncols = 18 |
---|
3220 | |
---|
3221 | fid.ncols = ncols |
---|
3222 | fid.nrows = nrows |
---|
3223 | fid.xllcorner = 2000.5 |
---|
3224 | fid.yllcorner = 3000.5 |
---|
3225 | fid.cellsize = 25 |
---|
3226 | fid.NODATA_value = -9999 |
---|
3227 | |
---|
3228 | fid.zone = 56 |
---|
3229 | fid.false_easting = 0.0 |
---|
3230 | fid.false_northing = 0.0 |
---|
3231 | fid.projection = 'UTM' |
---|
3232 | fid.datum = 'WGS84' |
---|
3233 | fid.units = 'METERS' |
---|
3234 | |
---|
3235 | fid.createDimension('number_of_points', nrows*ncols) |
---|
3236 | |
---|
3237 | fid.createVariable('elevation', Float, ('number_of_points',)) |
---|
3238 | |
---|
3239 | elevation = fid.variables['elevation'] |
---|
3240 | |
---|
3241 | elevation[:] = (arange(nrows*ncols)) |
---|
3242 | |
---|
3243 | fid.close() |
---|
3244 | |
---|
3245 | #generate the elevation values expected in the decimated file |
---|
3246 | ref_elevation = [( 0+ 1+ 2+ 18+ 19+ 20+ 36+ 37+ 38) / 9.0, |
---|
3247 | ( 4+ 5+ 6+ 22+ 23+ 24+ 40+ 41+ 42) / 9.0, |
---|
3248 | ( 8+ 9+ 10+ 26+ 27+ 28+ 44+ 45+ 46) / 9.0, |
---|
3249 | ( 12+ 13+ 14+ 30+ 31+ 32+ 48+ 49+ 50) / 9.0, |
---|
3250 | ( 72+ 73+ 74+ 90+ 91+ 92+108+109+110) / 9.0, |
---|
3251 | ( 76+ 77+ 78+ 94+ 95+ 96+112+113+114) / 9.0, |
---|
3252 | ( 80+ 81+ 82+ 98+ 99+100+116+117+118) / 9.0, |
---|
3253 | ( 84+ 85+ 86+102+103+104+120+121+122) / 9.0, |
---|
3254 | (144+145+146+162+163+164+180+181+182) / 9.0, |
---|
3255 | (148+149+150+166+167+168+184+185+186) / 9.0, |
---|
3256 | (152+153+154+170+171+172+188+189+190) / 9.0, |
---|
3257 | (156+157+158+174+175+176+192+193+194) / 9.0, |
---|
3258 | (216+217+218+234+235+236+252+253+254) / 9.0, |
---|
3259 | (220+221+222+238+239+240+256+257+258) / 9.0, |
---|
3260 | (224+225+226+242+243+244+260+261+262) / 9.0, |
---|
3261 | (228+229+230+246+247+248+264+265+266) / 9.0] |
---|
3262 | |
---|
3263 | #generate a stencil for computing the decimated values |
---|
3264 | stencil = ones((3,3), Float) / 9.0 |
---|
3265 | |
---|
3266 | decimate_dem(root, stencil=stencil, cellsize_new=100) |
---|
3267 | |
---|
3268 | #Open decimated NetCDF file |
---|
3269 | fid = NetCDFFile(root + '_100.dem', 'r') |
---|
3270 | |
---|
3271 | # Get decimated elevation |
---|
3272 | elevation = fid.variables['elevation'] |
---|
3273 | |
---|
3274 | #Check values |
---|
3275 | assert allclose(elevation, ref_elevation) |
---|
3276 | |
---|
3277 | #Cleanup |
---|
3278 | fid.close() |
---|
3279 | |
---|
3280 | os.remove(root + '.dem') |
---|
3281 | os.remove(root + '_100.dem') |
---|
3282 | |
---|
3283 | def test_decimate_dem_NODATA(self): |
---|
3284 | """Test decimation of dem file that includes NODATA values |
---|
3285 | """ |
---|
3286 | |
---|
3287 | import os |
---|
3288 | from Numeric import ones, allclose, Float, arange, reshape |
---|
3289 | from Scientific.IO.NetCDF import NetCDFFile |
---|
3290 | |
---|
3291 | #Write test dem file |
---|
3292 | root = 'decdemtest' |
---|
3293 | |
---|
3294 | filename = root + '.dem' |
---|
3295 | fid = NetCDFFile(filename, 'w') |
---|
3296 | |
---|
3297 | fid.institution = 'Geoscience Australia' |
---|
3298 | fid.description = 'NetCDF DEM format for compact and portable ' +\ |
---|
3299 | 'storage of spatial point data' |
---|
3300 | |
---|
3301 | nrows = 15 |
---|
3302 | ncols = 18 |
---|
3303 | NODATA_value = -9999 |
---|
3304 | |
---|
3305 | fid.ncols = ncols |
---|
3306 | fid.nrows = nrows |
---|
3307 | fid.xllcorner = 2000.5 |
---|
3308 | fid.yllcorner = 3000.5 |
---|
3309 | fid.cellsize = 25 |
---|
3310 | fid.NODATA_value = NODATA_value |
---|
3311 | |
---|
3312 | fid.zone = 56 |
---|
3313 | fid.false_easting = 0.0 |
---|
3314 | fid.false_northing = 0.0 |
---|
3315 | fid.projection = 'UTM' |
---|
3316 | fid.datum = 'WGS84' |
---|
3317 | fid.units = 'METERS' |
---|
3318 | |
---|
3319 | fid.createDimension('number_of_points', nrows*ncols) |
---|
3320 | |
---|
3321 | fid.createVariable('elevation', Float, ('number_of_points',)) |
---|
3322 | |
---|
3323 | elevation = fid.variables['elevation'] |
---|
3324 | |
---|
3325 | #generate initial elevation values |
---|
3326 | elevation_tmp = (arange(nrows*ncols)) |
---|
3327 | #add some NODATA values |
---|
3328 | elevation_tmp[0] = NODATA_value |
---|
3329 | elevation_tmp[95] = NODATA_value |
---|
3330 | elevation_tmp[188] = NODATA_value |
---|
3331 | elevation_tmp[189] = NODATA_value |
---|
3332 | elevation_tmp[190] = NODATA_value |
---|
3333 | elevation_tmp[209] = NODATA_value |
---|
3334 | elevation_tmp[252] = NODATA_value |
---|
3335 | |
---|
3336 | elevation[:] = elevation_tmp |
---|
3337 | |
---|
3338 | fid.close() |
---|
3339 | |
---|
3340 | #generate the elevation values expected in the decimated file |
---|
3341 | ref_elevation = [NODATA_value, |
---|
3342 | ( 4+ 5+ 6+ 22+ 23+ 24+ 40+ 41+ 42) / 9.0, |
---|
3343 | ( 8+ 9+ 10+ 26+ 27+ 28+ 44+ 45+ 46) / 9.0, |
---|
3344 | ( 12+ 13+ 14+ 30+ 31+ 32+ 48+ 49+ 50) / 9.0, |
---|
3345 | ( 72+ 73+ 74+ 90+ 91+ 92+108+109+110) / 9.0, |
---|
3346 | NODATA_value, |
---|
3347 | ( 80+ 81+ 82+ 98+ 99+100+116+117+118) / 9.0, |
---|
3348 | ( 84+ 85+ 86+102+103+104+120+121+122) / 9.0, |
---|
3349 | (144+145+146+162+163+164+180+181+182) / 9.0, |
---|
3350 | (148+149+150+166+167+168+184+185+186) / 9.0, |
---|
3351 | NODATA_value, |
---|
3352 | (156+157+158+174+175+176+192+193+194) / 9.0, |
---|
3353 | NODATA_value, |
---|
3354 | (220+221+222+238+239+240+256+257+258) / 9.0, |
---|
3355 | (224+225+226+242+243+244+260+261+262) / 9.0, |
---|
3356 | (228+229+230+246+247+248+264+265+266) / 9.0] |
---|
3357 | |
---|
3358 | #generate a stencil for computing the decimated values |
---|
3359 | stencil = ones((3,3), Float) / 9.0 |
---|
3360 | |
---|
3361 | decimate_dem(root, stencil=stencil, cellsize_new=100) |
---|
3362 | |
---|
3363 | #Open decimated NetCDF file |
---|
3364 | fid = NetCDFFile(root + '_100.dem', 'r') |
---|
3365 | |
---|
3366 | # Get decimated elevation |
---|
3367 | elevation = fid.variables['elevation'] |
---|
3368 | |
---|
3369 | #Check values |
---|
3370 | assert allclose(elevation, ref_elevation) |
---|
3371 | |
---|
3372 | #Cleanup |
---|
3373 | fid.close() |
---|
3374 | |
---|
3375 | os.remove(root + '.dem') |
---|
3376 | os.remove(root + '_100.dem') |
---|
3377 | |
---|
3378 | def xxxtestz_sww2ers_real(self): |
---|
3379 | """Test that sww information can be converted correctly to asc/prj |
---|
3380 | format readable by e.g. ArcView |
---|
3381 | """ |
---|
3382 | |
---|
3383 | import time, os |
---|
3384 | from Numeric import array, zeros, allclose, Float, concatenate |
---|
3385 | from Scientific.IO.NetCDF import NetCDFFile |
---|
3386 | |
---|
3387 | # the memory optimised least squares |
---|
3388 | # cellsize = 20, # this one seems to hang |
---|
3389 | # cellsize = 200000, # Ran 1 test in 269.703s |
---|
3390 | #Ran 1 test in 267.344s |
---|
3391 | # cellsize = 20000, # Ran 1 test in 460.922s |
---|
3392 | # cellsize = 2000 #Ran 1 test in 5340.250s |
---|
3393 | # cellsize = 200 #this one seems to hang, building matirx A |
---|
3394 | |
---|
3395 | # not optimised |
---|
3396 | # seems to hang |
---|
3397 | # cellsize = 2000 # Ran 1 test in 5334.563s |
---|
3398 | #Export to ascii/prj files |
---|
3399 | sww2dem('karratha_100m', |
---|
3400 | quantity = 'depth', |
---|
3401 | cellsize = 200000, |
---|
3402 | verbose = True) |
---|
3403 | |
---|
3404 | def test_read_asc(self): |
---|
3405 | """Test conversion from dem in ascii format to native NetCDF xya format |
---|
3406 | """ |
---|
3407 | |
---|
3408 | import time, os |
---|
3409 | from Numeric import array, zeros, allclose, Float, concatenate |
---|
3410 | from Scientific.IO.NetCDF import NetCDFFile |
---|
3411 | |
---|
3412 | from data_manager import _read_asc |
---|
3413 | #Write test asc file |
---|
3414 | filename = tempfile.mktemp(".000") |
---|
3415 | fid = open(filename, 'w') |
---|
3416 | fid.write("""ncols 7 |
---|
3417 | nrows 4 |
---|
3418 | xllcorner 2000.5 |
---|
3419 | yllcorner 3000.5 |
---|
3420 | cellsize 25 |
---|
3421 | NODATA_value -9999 |
---|
3422 | 97.921 99.285 125.588 180.830 258.645 342.872 415.836 |
---|
3423 | 473.157 514.391 553.893 607.120 678.125 777.283 883.038 |
---|
3424 | 984.494 1040.349 1008.161 900.738 730.882 581.430 514.980 |
---|
3425 | 502.645 516.230 504.739 450.604 388.500 338.097 514.980 |
---|
3426 | """) |
---|
3427 | fid.close() |
---|
3428 | bath_metadata, grid = _read_asc(filename, verbose=False) |
---|
3429 | self.failUnless(bath_metadata['xllcorner'] == 2000.5, 'Failed') |
---|
3430 | self.failUnless(bath_metadata['yllcorner'] == 3000.5, 'Failed') |
---|
3431 | self.failUnless(bath_metadata['cellsize'] == 25, 'Failed') |
---|
3432 | self.failUnless(bath_metadata['NODATA_value'] == -9999, 'Failed') |
---|
3433 | self.failUnless(grid[0][0] == 97.921, 'Failed') |
---|
3434 | self.failUnless(grid[3][6] == 514.980, 'Failed') |
---|
3435 | |
---|
3436 | os.remove(filename) |
---|
3437 | |
---|
3438 | def test_asc_csiro2sww(self): |
---|
3439 | import tempfile |
---|
3440 | |
---|
3441 | bath_dir = tempfile.mkdtemp() |
---|
3442 | bath_dir_filename = bath_dir + os.sep +'ba19940524.000' |
---|
3443 | #bath_dir = 'bath_data_manager_test' |
---|
3444 | #print "os.getcwd( )",os.getcwd( ) |
---|
3445 | elevation_dir = tempfile.mkdtemp() |
---|
3446 | #elevation_dir = 'elev_expanded' |
---|
3447 | elevation_dir_filename1 = elevation_dir + os.sep +'el19940524.000' |
---|
3448 | elevation_dir_filename2 = elevation_dir + os.sep +'el19940524.001' |
---|
3449 | |
---|
3450 | fid = open(bath_dir_filename, 'w') |
---|
3451 | fid.write(""" ncols 3 |
---|
3452 | nrows 2 |
---|
3453 | xllcorner 148.00000 |
---|
3454 | yllcorner -38.00000 |
---|
3455 | cellsize 0.25 |
---|
3456 | nodata_value -9999.0 |
---|
3457 | 9000.000 -1000.000 3000.0 |
---|
3458 | -1000.000 9000.000 -1000.000 |
---|
3459 | """) |
---|
3460 | fid.close() |
---|
3461 | |
---|
3462 | fid = open(elevation_dir_filename1, 'w') |
---|
3463 | fid.write(""" ncols 3 |
---|
3464 | nrows 2 |
---|
3465 | xllcorner 148.00000 |
---|
3466 | yllcorner -38.00000 |
---|
3467 | cellsize 0.25 |
---|
3468 | nodata_value -9999.0 |
---|
3469 | 9000.000 0.000 3000.0 |
---|
3470 | 0.000 9000.000 0.000 |
---|
3471 | """) |
---|
3472 | fid.close() |
---|
3473 | |
---|
3474 | fid = open(elevation_dir_filename2, 'w') |
---|
3475 | fid.write(""" ncols 3 |
---|
3476 | nrows 2 |
---|
3477 | xllcorner 148.00000 |
---|
3478 | yllcorner -38.00000 |
---|
3479 | cellsize 0.25 |
---|
3480 | nodata_value -9999.0 |
---|
3481 | 9000.000 4000.000 4000.0 |
---|
3482 | 4000.000 9000.000 4000.000 |
---|
3483 | """) |
---|
3484 | fid.close() |
---|
3485 | |
---|
3486 | ucur_dir = tempfile.mkdtemp() |
---|
3487 | ucur_dir_filename1 = ucur_dir + os.sep +'uc19940524.000' |
---|
3488 | ucur_dir_filename2 = ucur_dir + os.sep +'uc19940524.001' |
---|
3489 | |
---|
3490 | fid = open(ucur_dir_filename1, 'w') |
---|
3491 | fid.write(""" ncols 3 |
---|
3492 | nrows 2 |
---|
3493 | xllcorner 148.00000 |
---|
3494 | yllcorner -38.00000 |
---|
3495 | cellsize 0.25 |
---|
3496 | nodata_value -9999.0 |
---|
3497 | 90.000 60.000 30.0 |
---|
3498 | 10.000 10.000 10.000 |
---|
3499 | """) |
---|
3500 | fid.close() |
---|
3501 | fid = open(ucur_dir_filename2, 'w') |
---|
3502 | fid.write(""" ncols 3 |
---|
3503 | nrows 2 |
---|
3504 | xllcorner 148.00000 |
---|
3505 | yllcorner -38.00000 |
---|
3506 | cellsize 0.25 |
---|
3507 | nodata_value -9999.0 |
---|
3508 | 90.000 60.000 30.0 |
---|
3509 | 10.000 10.000 10.000 |
---|
3510 | """) |
---|
3511 | fid.close() |
---|
3512 | |
---|
3513 | vcur_dir = tempfile.mkdtemp() |
---|
3514 | vcur_dir_filename1 = vcur_dir + os.sep +'vc19940524.000' |
---|
3515 | vcur_dir_filename2 = vcur_dir + os.sep +'vc19940524.001' |
---|
3516 | |
---|
3517 | fid = open(vcur_dir_filename1, 'w') |
---|
3518 | fid.write(""" ncols 3 |
---|
3519 | nrows 2 |
---|
3520 | xllcorner 148.00000 |
---|
3521 | yllcorner -38.00000 |
---|
3522 | cellsize 0.25 |
---|
3523 | nodata_value -9999.0 |
---|
3524 | 90.000 60.000 30.0 |
---|
3525 | 10.000 10.000 10.000 |
---|
3526 | """) |
---|
3527 | fid.close() |
---|
3528 | fid = open(vcur_dir_filename2, 'w') |
---|
3529 | fid.write(""" ncols 3 |
---|
3530 | nrows 2 |
---|
3531 | xllcorner 148.00000 |
---|
3532 | yllcorner -38.00000 |
---|
3533 | cellsize 0.25 |
---|
3534 | nodata_value -9999.0 |
---|
3535 | 90.000 60.000 30.0 |
---|
3536 | 10.000 10.000 10.000 |
---|
3537 | """) |
---|
3538 | fid.close() |
---|
3539 | |
---|
3540 | sww_file = 'a_test.sww' |
---|
3541 | asc_csiro2sww(bath_dir,elevation_dir, ucur_dir, vcur_dir, sww_file) |
---|
3542 | |
---|
3543 | # check the sww file |
---|
3544 | |
---|
3545 | fid = NetCDFFile(sww_file, 'r') #Open existing file for read |
---|
3546 | x = fid.variables['x'][:] |
---|
3547 | y = fid.variables['y'][:] |
---|
3548 | z = fid.variables['z'][:] |
---|
3549 | stage = fid.variables['stage'][:] |
---|
3550 | xmomentum = fid.variables['xmomentum'][:] |
---|
3551 | geo_ref = Geo_reference(NetCDFObject=fid) |
---|
3552 | #print "geo_ref",geo_ref |
---|
3553 | x_ref = geo_ref.get_xllcorner() |
---|
3554 | y_ref = geo_ref.get_yllcorner() |
---|
3555 | self.failUnless(geo_ref.get_zone() == 55, 'Failed') |
---|
3556 | assert allclose(x_ref, 587798.418) # (-38, 148) |
---|
3557 | assert allclose(y_ref, 5793123.477)# (-38, 148.5) |
---|
3558 | |
---|
3559 | #Zone: 55 |
---|
3560 | #Easting: 588095.674 Northing: 5821451.722 |
---|
3561 | #Latitude: -37 45 ' 0.00000 '' Longitude: 148 0 ' 0.00000 '' |
---|
3562 | assert allclose((x[0],y[0]), (588095.674 - x_ref, 5821451.722 - y_ref)) |
---|
3563 | |
---|
3564 | #Zone: 55 |
---|
3565 | #Easting: 632145.632 Northing: 5820863.269 |
---|
3566 | #Latitude: -37 45 ' 0.00000 '' Longitude: 148 30 ' 0.00000 '' |
---|
3567 | assert allclose((x[2],y[2]), (632145.632 - x_ref, 5820863.269 - y_ref)) |
---|
3568 | |
---|
3569 | #Zone: 55 |
---|
3570 | #Easting: 609748.788 Northing: 5793447.860 |
---|
3571 | #Latitude: -38 0 ' 0.00000 '' Longitude: 148 15 ' 0.00000 '' |
---|
3572 | assert allclose((x[4],y[4]), (609748.788 - x_ref, 5793447.86 - y_ref)) |
---|
3573 | |
---|
3574 | assert allclose(z[0],9000.0 ) |
---|
3575 | assert allclose(stage[0][1],0.0 ) |
---|
3576 | |
---|
3577 | #(4000+1000)*60 |
---|
3578 | assert allclose(xmomentum[1][1],300000.0 ) |
---|
3579 | |
---|
3580 | |
---|
3581 | fid.close() |
---|
3582 | |
---|
3583 | #tidy up |
---|
3584 | os.remove(bath_dir_filename) |
---|
3585 | os.rmdir(bath_dir) |
---|
3586 | |
---|
3587 | os.remove(elevation_dir_filename1) |
---|
3588 | os.remove(elevation_dir_filename2) |
---|
3589 | os.rmdir(elevation_dir) |
---|
3590 | |
---|
3591 | os.remove(ucur_dir_filename1) |
---|
3592 | os.remove(ucur_dir_filename2) |
---|
3593 | os.rmdir(ucur_dir) |
---|
3594 | |
---|
3595 | os.remove(vcur_dir_filename1) |
---|
3596 | os.remove(vcur_dir_filename2) |
---|
3597 | os.rmdir(vcur_dir) |
---|
3598 | |
---|
3599 | |
---|
3600 | # remove sww file |
---|
3601 | os.remove(sww_file) |
---|
3602 | |
---|
3603 | def test_asc_csiro2sww2(self): |
---|
3604 | import tempfile |
---|
3605 | |
---|
3606 | bath_dir = tempfile.mkdtemp() |
---|
3607 | bath_dir_filename = bath_dir + os.sep +'ba19940524.000' |
---|
3608 | #bath_dir = 'bath_data_manager_test' |
---|
3609 | #print "os.getcwd( )",os.getcwd( ) |
---|
3610 | elevation_dir = tempfile.mkdtemp() |
---|
3611 | #elevation_dir = 'elev_expanded' |
---|
3612 | elevation_dir_filename1 = elevation_dir + os.sep +'el19940524.000' |
---|
3613 | elevation_dir_filename2 = elevation_dir + os.sep +'el19940524.001' |
---|
3614 | |
---|
3615 | fid = open(bath_dir_filename, 'w') |
---|
3616 | fid.write(""" ncols 3 |
---|
3617 | nrows 2 |
---|
3618 | xllcorner 148.00000 |
---|
3619 | yllcorner -38.00000 |
---|
3620 | cellsize 0.25 |
---|
3621 | nodata_value -9999.0 |
---|
3622 | 9000.000 -1000.000 3000.0 |
---|
3623 | -1000.000 9000.000 -1000.000 |
---|
3624 | """) |
---|
3625 | fid.close() |
---|
3626 | |
---|
3627 | fid = open(elevation_dir_filename1, 'w') |
---|
3628 | fid.write(""" ncols 3 |
---|
3629 | nrows 2 |
---|
3630 | xllcorner 148.00000 |
---|
3631 | yllcorner -38.00000 |
---|
3632 | cellsize 0.25 |
---|
3633 | nodata_value -9999.0 |
---|
3634 | 9000.000 0.000 3000.0 |
---|
3635 | 0.000 -9999.000 -9999.000 |
---|
3636 | """) |
---|
3637 | fid.close() |
---|
3638 | |
---|
3639 | fid = open(elevation_dir_filename2, 'w') |
---|
3640 | fid.write(""" ncols 3 |
---|
3641 | nrows 2 |
---|
3642 | xllcorner 148.00000 |
---|
3643 | yllcorner -38.00000 |
---|
3644 | cellsize 0.25 |
---|
3645 | nodata_value -9999.0 |
---|
3646 | 9000.000 4000.000 4000.0 |
---|
3647 | 4000.000 9000.000 4000.000 |
---|
3648 | """) |
---|
3649 | fid.close() |
---|
3650 | |
---|
3651 | ucur_dir = tempfile.mkdtemp() |
---|
3652 | ucur_dir_filename1 = ucur_dir + os.sep +'uc19940524.000' |
---|
3653 | ucur_dir_filename2 = ucur_dir + os.sep +'uc19940524.001' |
---|
3654 | |
---|
3655 | fid = open(ucur_dir_filename1, 'w') |
---|
3656 | fid.write(""" ncols 3 |
---|
3657 | nrows 2 |
---|
3658 | xllcorner 148.00000 |
---|
3659 | yllcorner -38.00000 |
---|
3660 | cellsize 0.25 |
---|
3661 | nodata_value -9999.0 |
---|
3662 | 90.000 60.000 30.0 |
---|
3663 | 10.000 10.000 10.000 |
---|
3664 | """) |
---|
3665 | fid.close() |
---|
3666 | fid = open(ucur_dir_filename2, 'w') |
---|
3667 | fid.write(""" ncols 3 |
---|
3668 | nrows 2 |
---|
3669 | xllcorner 148.00000 |
---|
3670 | yllcorner -38.00000 |
---|
3671 | cellsize 0.25 |
---|
3672 | nodata_value -9999.0 |
---|
3673 | 90.000 60.000 30.0 |
---|
3674 | 10.000 10.000 10.000 |
---|
3675 | """) |
---|
3676 | fid.close() |
---|
3677 | |
---|
3678 | vcur_dir = tempfile.mkdtemp() |
---|
3679 | vcur_dir_filename1 = vcur_dir + os.sep +'vc19940524.000' |
---|
3680 | vcur_dir_filename2 = vcur_dir + os.sep +'vc19940524.001' |
---|
3681 | |
---|
3682 | fid = open(vcur_dir_filename1, 'w') |
---|
3683 | fid.write(""" ncols 3 |
---|
3684 | nrows 2 |
---|
3685 | xllcorner 148.00000 |
---|
3686 | yllcorner -38.00000 |
---|
3687 | cellsize 0.25 |
---|
3688 | nodata_value -9999.0 |
---|
3689 | 90.000 60.000 30.0 |
---|
3690 | 10.000 10.000 10.000 |
---|
3691 | """) |
---|
3692 | fid.close() |
---|
3693 | fid = open(vcur_dir_filename2, 'w') |
---|
3694 | fid.write(""" ncols 3 |
---|
3695 | nrows 2 |
---|
3696 | xllcorner 148.00000 |
---|
3697 | yllcorner -38.00000 |
---|
3698 | cellsize 0.25 |
---|
3699 | nodata_value -9999.0 |
---|
3700 | 90.000 60.000 30.0 |
---|
3701 | 10.000 10.000 10.000 |
---|
3702 | """) |
---|
3703 | fid.close() |
---|
3704 | |
---|
3705 | try: |
---|
3706 | asc_csiro2sww(bath_dir,elevation_dir, ucur_dir, |
---|
3707 | vcur_dir, sww_file) |
---|
3708 | except: |
---|
3709 | #tidy up |
---|
3710 | os.remove(bath_dir_filename) |
---|
3711 | os.rmdir(bath_dir) |
---|
3712 | |
---|
3713 | os.remove(elevation_dir_filename1) |
---|
3714 | os.remove(elevation_dir_filename2) |
---|
3715 | os.rmdir(elevation_dir) |
---|
3716 | |
---|
3717 | os.remove(ucur_dir_filename1) |
---|
3718 | os.remove(ucur_dir_filename2) |
---|
3719 | os.rmdir(ucur_dir) |
---|
3720 | |
---|
3721 | os.remove(vcur_dir_filename1) |
---|
3722 | os.remove(vcur_dir_filename2) |
---|
3723 | os.rmdir(vcur_dir) |
---|
3724 | else: |
---|
3725 | #tidy up |
---|
3726 | os.remove(bath_dir_filename) |
---|
3727 | os.rmdir(bath_dir) |
---|
3728 | |
---|
3729 | os.remove(elevation_dir_filename1) |
---|
3730 | os.remove(elevation_dir_filename2) |
---|
3731 | os.rmdir(elevation_dir) |
---|
3732 | raise 'Should raise exception' |
---|
3733 | |
---|
3734 | os.remove(ucur_dir_filename1) |
---|
3735 | os.remove(ucur_dir_filename2) |
---|
3736 | os.rmdir(ucur_dir) |
---|
3737 | |
---|
3738 | os.remove(vcur_dir_filename1) |
---|
3739 | os.remove(vcur_dir_filename2) |
---|
3740 | os.rmdir(vcur_dir) |
---|
3741 | |
---|
3742 | |
---|
3743 | |
---|
3744 | def test_asc_csiro2sww3(self): |
---|
3745 | import tempfile |
---|
3746 | |
---|
3747 | bath_dir = tempfile.mkdtemp() |
---|
3748 | bath_dir_filename = bath_dir + os.sep +'ba19940524.000' |
---|
3749 | #bath_dir = 'bath_data_manager_test' |
---|
3750 | #print "os.getcwd( )",os.getcwd( ) |
---|
3751 | elevation_dir = tempfile.mkdtemp() |
---|
3752 | #elevation_dir = 'elev_expanded' |
---|
3753 | elevation_dir_filename1 = elevation_dir + os.sep +'el19940524.000' |
---|
3754 | elevation_dir_filename2 = elevation_dir + os.sep +'el19940524.001' |
---|
3755 | |
---|
3756 | fid = open(bath_dir_filename, 'w') |
---|
3757 | fid.write(""" ncols 3 |
---|
3758 | nrows 2 |
---|
3759 | xllcorner 148.00000 |
---|
3760 | yllcorner -38.00000 |
---|
3761 | cellsize 0.25 |
---|
3762 | nodata_value -9999.0 |
---|
3763 | 9000.000 -1000.000 3000.0 |
---|
3764 | -1000.000 9000.000 -1000.000 |
---|
3765 | """) |
---|
3766 | fid.close() |
---|
3767 | |
---|
3768 | fid = open(elevation_dir_filename1, 'w') |
---|
3769 | fid.write(""" ncols 3 |
---|
3770 | nrows 2 |
---|
3771 | xllcorner 148.00000 |
---|
3772 | yllcorner -38.00000 |
---|
3773 | cellsize 0.25 |
---|
3774 | nodata_value -9999.0 |
---|
3775 | 9000.000 0.000 3000.0 |
---|
3776 | 0.000 -9999.000 -9999.000 |
---|
3777 | """) |
---|
3778 | fid.close() |
---|
3779 | |
---|
3780 | fid = open(elevation_dir_filename2, 'w') |
---|
3781 | fid.write(""" ncols 3 |
---|
3782 | nrows 2 |
---|
3783 | xllcorner 148.00000 |
---|
3784 | yllcorner -38.00000 |
---|
3785 | cellsize 0.25 |
---|
3786 | nodata_value -9999.0 |
---|
3787 | 9000.000 4000.000 4000.0 |
---|
3788 | 4000.000 9000.000 4000.000 |
---|
3789 | """) |
---|
3790 | fid.close() |
---|
3791 | |
---|
3792 | ucur_dir = tempfile.mkdtemp() |
---|
3793 | ucur_dir_filename1 = ucur_dir + os.sep +'uc19940524.000' |
---|
3794 | ucur_dir_filename2 = ucur_dir + os.sep +'uc19940524.001' |
---|
3795 | |
---|
3796 | fid = open(ucur_dir_filename1, 'w') |
---|
3797 | fid.write(""" ncols 3 |
---|
3798 | nrows 2 |
---|
3799 | xllcorner 148.00000 |
---|
3800 | yllcorner -38.00000 |
---|
3801 | cellsize 0.25 |
---|
3802 | nodata_value -9999.0 |
---|
3803 | 90.000 60.000 30.0 |
---|
3804 | 10.000 10.000 10.000 |
---|
3805 | """) |
---|
3806 | fid.close() |
---|
3807 | fid = open(ucur_dir_filename2, 'w') |
---|
3808 | fid.write(""" ncols 3 |
---|
3809 | nrows 2 |
---|
3810 | xllcorner 148.00000 |
---|
3811 | yllcorner -38.00000 |
---|
3812 | cellsize 0.25 |
---|
3813 | nodata_value -9999.0 |
---|
3814 | 90.000 60.000 30.0 |
---|
3815 | 10.000 10.000 10.000 |
---|
3816 | """) |
---|
3817 | fid.close() |
---|
3818 | |
---|
3819 | vcur_dir = tempfile.mkdtemp() |
---|
3820 | vcur_dir_filename1 = vcur_dir + os.sep +'vc19940524.000' |
---|
3821 | vcur_dir_filename2 = vcur_dir + os.sep +'vc19940524.001' |
---|
3822 | |
---|
3823 | fid = open(vcur_dir_filename1, 'w') |
---|
3824 | fid.write(""" ncols 3 |
---|
3825 | nrows 2 |
---|
3826 | xllcorner 148.00000 |
---|
3827 | yllcorner -38.00000 |
---|
3828 | cellsize 0.25 |
---|
3829 | nodata_value -9999.0 |
---|
3830 | 90.000 60.000 30.0 |
---|
3831 | 10.000 10.000 10.000 |
---|
3832 | """) |
---|
3833 | fid.close() |
---|
3834 | fid = open(vcur_dir_filename2, 'w') |
---|
3835 | fid.write(""" ncols 3 |
---|
3836 | nrows 2 |
---|
3837 | xllcorner 148.00000 |
---|
3838 | yllcorner -38.00000 |
---|
3839 | cellsize 0.25 |
---|
3840 | nodata_value -9999.0 |
---|
3841 | 90.000 60.000 30.0 |
---|
3842 | 10.000 10.000 10.000 |
---|
3843 | """) |
---|
3844 | fid.close() |
---|
3845 | |
---|
3846 | sww_file = 'a_test.sww' |
---|
3847 | asc_csiro2sww(bath_dir,elevation_dir, ucur_dir, vcur_dir, |
---|
3848 | sww_file, fail_on_NaN = False, elevation_NaN_filler = 0, |
---|
3849 | mean_stage = 100) |
---|
3850 | |
---|
3851 | # check the sww file |
---|
3852 | |
---|
3853 | fid = NetCDFFile(sww_file, 'r') #Open existing file for read |
---|
3854 | x = fid.variables['x'][:] |
---|
3855 | y = fid.variables['y'][:] |
---|
3856 | z = fid.variables['z'][:] |
---|
3857 | stage = fid.variables['stage'][:] |
---|
3858 | xmomentum = fid.variables['xmomentum'][:] |
---|
3859 | geo_ref = Geo_reference(NetCDFObject=fid) |
---|
3860 | #print "geo_ref",geo_ref |
---|
3861 | x_ref = geo_ref.get_xllcorner() |
---|
3862 | y_ref = geo_ref.get_yllcorner() |
---|
3863 | self.failUnless(geo_ref.get_zone() == 55, 'Failed') |
---|
3864 | assert allclose(x_ref, 587798.418) # (-38, 148) |
---|
3865 | assert allclose(y_ref, 5793123.477)# (-38, 148.5) |
---|
3866 | |
---|
3867 | #Zone: 55 |
---|
3868 | #Easting: 588095.674 Northing: 5821451.722 |
---|
3869 | #Latitude: -37 45 ' 0.00000 '' Longitude: 148 0 ' 0.00000 '' |
---|
3870 | assert allclose((x[0],y[0]), (588095.674 - x_ref, 5821451.722 - y_ref)) |
---|
3871 | |
---|
3872 | #Zone: 55 |
---|
3873 | #Easting: 632145.632 Northing: 5820863.269 |
---|
3874 | #Latitude: -37 45 ' 0.00000 '' Longitude: 148 30 ' 0.00000 '' |
---|
3875 | assert allclose((x[2],y[2]), (632145.632 - x_ref, 5820863.269 - y_ref)) |
---|
3876 | |
---|
3877 | #Zone: 55 |
---|
3878 | #Easting: 609748.788 Northing: 5793447.860 |
---|
3879 | #Latitude: -38 0 ' 0.00000 '' Longitude: 148 15 ' 0.00000 '' |
---|
3880 | assert allclose((x[4],y[4]), (609748.788 - x_ref, 5793447.86 - y_ref)) |
---|
3881 | |
---|
3882 | assert allclose(z[0],9000.0 ) |
---|
3883 | assert allclose(stage[0][4],100.0 ) |
---|
3884 | assert allclose(stage[0][5],100.0 ) |
---|
3885 | |
---|
3886 | #(100.0 - 9000)*10 |
---|
3887 | assert allclose(xmomentum[0][4], -89000.0 ) |
---|
3888 | |
---|
3889 | #(100.0 - -1000.000)*10 |
---|
3890 | assert allclose(xmomentum[0][5], 11000.0 ) |
---|
3891 | |
---|
3892 | fid.close() |
---|
3893 | |
---|
3894 | #tidy up |
---|
3895 | os.remove(bath_dir_filename) |
---|
3896 | os.rmdir(bath_dir) |
---|
3897 | |
---|
3898 | os.remove(elevation_dir_filename1) |
---|
3899 | os.remove(elevation_dir_filename2) |
---|
3900 | os.rmdir(elevation_dir) |
---|
3901 | |
---|
3902 | os.remove(ucur_dir_filename1) |
---|
3903 | os.remove(ucur_dir_filename2) |
---|
3904 | os.rmdir(ucur_dir) |
---|
3905 | |
---|
3906 | os.remove(vcur_dir_filename1) |
---|
3907 | os.remove(vcur_dir_filename2) |
---|
3908 | os.rmdir(vcur_dir) |
---|
3909 | |
---|
3910 | # remove sww file |
---|
3911 | os.remove(sww_file) |
---|
3912 | |
---|
3913 | |
---|
3914 | def test_asc_csiro2sww4(self): |
---|
3915 | """ |
---|
3916 | Test specifying the extent |
---|
3917 | """ |
---|
3918 | |
---|
3919 | import tempfile |
---|
3920 | |
---|
3921 | bath_dir = tempfile.mkdtemp() |
---|
3922 | bath_dir_filename = bath_dir + os.sep +'ba19940524.000' |
---|
3923 | #bath_dir = 'bath_data_manager_test' |
---|
3924 | #print "os.getcwd( )",os.getcwd( ) |
---|
3925 | elevation_dir = tempfile.mkdtemp() |
---|
3926 | #elevation_dir = 'elev_expanded' |
---|
3927 | elevation_dir_filename1 = elevation_dir + os.sep +'el19940524.000' |
---|
3928 | elevation_dir_filename2 = elevation_dir + os.sep +'el19940524.001' |
---|
3929 | |
---|
3930 | fid = open(bath_dir_filename, 'w') |
---|
3931 | fid.write(""" ncols 4 |
---|
3932 | nrows 4 |
---|
3933 | xllcorner 148.00000 |
---|
3934 | yllcorner -38.00000 |
---|
3935 | cellsize 0.25 |
---|
3936 | nodata_value -9999.0 |
---|
3937 | -9000.000 -1000.000 -3000.0 -2000.000 |
---|
3938 | -1000.000 9000.000 -1000.000 -3000.000 |
---|
3939 | -4000.000 6000.000 2000.000 -5000.000 |
---|
3940 | -9000.000 -1000.000 -3000.0 -2000.000 |
---|
3941 | """) |
---|
3942 | fid.close() |
---|
3943 | |
---|
3944 | fid = open(elevation_dir_filename1, 'w') |
---|
3945 | fid.write(""" ncols 4 |
---|
3946 | nrows 4 |
---|
3947 | xllcorner 148.00000 |
---|
3948 | yllcorner -38.00000 |
---|
3949 | cellsize 0.25 |
---|
3950 | nodata_value -9999.0 |
---|
3951 | -900.000 -100.000 -300.0 -200.000 |
---|
3952 | -100.000 900.000 -100.000 -300.000 |
---|
3953 | -400.000 600.000 200.000 -500.000 |
---|
3954 | -900.000 -100.000 -300.0 -200.000 |
---|
3955 | """) |
---|
3956 | fid.close() |
---|
3957 | |
---|
3958 | fid = open(elevation_dir_filename2, 'w') |
---|
3959 | fid.write(""" ncols 4 |
---|
3960 | nrows 4 |
---|
3961 | xllcorner 148.00000 |
---|
3962 | yllcorner -38.00000 |
---|
3963 | cellsize 0.25 |
---|
3964 | nodata_value -9999.0 |
---|
3965 | -990.000 -110.000 -330.0 -220.000 |
---|
3966 | -110.000 990.000 -110.000 -330.000 |
---|
3967 | -440.000 660.000 220.000 -550.000 |
---|
3968 | -990.000 -110.000 -330.0 -220.000 |
---|
3969 | """) |
---|
3970 | fid.close() |
---|
3971 | |
---|
3972 | ucur_dir = tempfile.mkdtemp() |
---|
3973 | ucur_dir_filename1 = ucur_dir + os.sep +'uc19940524.000' |
---|
3974 | ucur_dir_filename2 = ucur_dir + os.sep +'uc19940524.001' |
---|
3975 | |
---|
3976 | fid = open(ucur_dir_filename1, 'w') |
---|
3977 | fid.write(""" ncols 4 |
---|
3978 | nrows 4 |
---|
3979 | xllcorner 148.00000 |
---|
3980 | yllcorner -38.00000 |
---|
3981 | cellsize 0.25 |
---|
3982 | nodata_value -9999.0 |
---|
3983 | -90.000 -10.000 -30.0 -20.000 |
---|
3984 | -10.000 90.000 -10.000 -30.000 |
---|
3985 | -40.000 60.000 20.000 -50.000 |
---|
3986 | -90.000 -10.000 -30.0 -20.000 |
---|
3987 | """) |
---|
3988 | fid.close() |
---|
3989 | fid = open(ucur_dir_filename2, 'w') |
---|
3990 | fid.write(""" ncols 4 |
---|
3991 | nrows 4 |
---|
3992 | xllcorner 148.00000 |
---|
3993 | yllcorner -38.00000 |
---|
3994 | cellsize 0.25 |
---|
3995 | nodata_value -9999.0 |
---|
3996 | -90.000 -10.000 -30.0 -20.000 |
---|
3997 | -10.000 99.000 -11.000 -30.000 |
---|
3998 | -40.000 66.000 22.000 -50.000 |
---|
3999 | -90.000 -10.000 -30.0 -20.000 |
---|
4000 | """) |
---|
4001 | fid.close() |
---|
4002 | |
---|
4003 | vcur_dir = tempfile.mkdtemp() |
---|
4004 | vcur_dir_filename1 = vcur_dir + os.sep +'vc19940524.000' |
---|
4005 | vcur_dir_filename2 = vcur_dir + os.sep +'vc19940524.001' |
---|
4006 | |
---|
4007 | fid = open(vcur_dir_filename1, 'w') |
---|
4008 | fid.write(""" ncols 4 |
---|
4009 | nrows 4 |
---|
4010 | xllcorner 148.00000 |
---|
4011 | yllcorner -38.00000 |
---|
4012 | cellsize 0.25 |
---|
4013 | nodata_value -9999.0 |
---|
4014 | -90.000 -10.000 -30.0 -20.000 |
---|
4015 | -10.000 80.000 -20.000 -30.000 |
---|
4016 | -40.000 50.000 10.000 -50.000 |
---|
4017 | -90.000 -10.000 -30.0 -20.000 |
---|
4018 | """) |
---|
4019 | fid.close() |
---|
4020 | fid = open(vcur_dir_filename2, 'w') |
---|
4021 | fid.write(""" ncols 4 |
---|
4022 | nrows 4 |
---|
4023 | xllcorner 148.00000 |
---|
4024 | yllcorner -38.00000 |
---|
4025 | cellsize 0.25 |
---|
4026 | nodata_value -9999.0 |
---|
4027 | -90.000 -10.000 -30.0 -20.000 |
---|
4028 | -10.000 88.000 -22.000 -30.000 |
---|
4029 | -40.000 55.000 11.000 -50.000 |
---|
4030 | -90.000 -10.000 -30.0 -20.000 |
---|
4031 | """) |
---|
4032 | fid.close() |
---|
4033 | |
---|
4034 | sww_file = tempfile.mktemp(".sww") |
---|
4035 | #sww_file = 'a_test.sww' |
---|
4036 | asc_csiro2sww(bath_dir,elevation_dir, ucur_dir, vcur_dir, |
---|
4037 | sww_file, fail_on_NaN = False, elevation_NaN_filler = 0, |
---|
4038 | mean_stage = 100, |
---|
4039 | minlat = -37.6, maxlat = -37.6, |
---|
4040 | minlon = 148.3, maxlon = 148.3 |
---|
4041 | #,verbose = True |
---|
4042 | ) |
---|
4043 | |
---|
4044 | # check the sww file |
---|
4045 | |
---|
4046 | fid = NetCDFFile(sww_file, 'r') #Open existing file for read |
---|
4047 | x = fid.variables['x'][:] |
---|
4048 | y = fid.variables['y'][:] |
---|
4049 | z = fid.variables['z'][:] |
---|
4050 | stage = fid.variables['stage'][:] |
---|
4051 | xmomentum = fid.variables['xmomentum'][:] |
---|
4052 | ymomentum = fid.variables['ymomentum'][:] |
---|
4053 | geo_ref = Geo_reference(NetCDFObject=fid) |
---|
4054 | #print "geo_ref",geo_ref |
---|
4055 | x_ref = geo_ref.get_xllcorner() |
---|
4056 | y_ref = geo_ref.get_yllcorner() |
---|
4057 | self.failUnless(geo_ref.get_zone() == 55, 'Failed') |
---|
4058 | |
---|
4059 | assert allclose(fid.starttime, 0.0) # (-37.45, 148.25) |
---|
4060 | assert allclose(x_ref, 610120.388) # (-37.45, 148.25) |
---|
4061 | assert allclose(y_ref, 5820863.269 )# (-37.45, 148.5) |
---|
4062 | |
---|
4063 | #Easting: 632145.632 Northing: 5820863.269 |
---|
4064 | #Latitude: -37 45 ' 0.00000 '' Longitude: 148 30 ' 0.00000 '' |
---|
4065 | |
---|
4066 | #print "x",x |
---|
4067 | #print "y",y |
---|
4068 | self.failUnless(len(x) == 4,'failed') # 2*2 |
---|
4069 | self.failUnless(len(x) == 4,'failed') # 2*2 |
---|
4070 | |
---|
4071 | #Zone: 55 |
---|
4072 | #Easting: 632145.632 Northing: 5820863.269 |
---|
4073 | #Latitude: -37 45 ' 0.00000 '' Longitude: 148 30 ' 0.00000 '' |
---|
4074 | # magic number - y is close enough for me. |
---|
4075 | assert allclose(x[3], 632145.63 - x_ref) |
---|
4076 | assert allclose(y[3], 5820863.269 - y_ref + 5.22155314684e-005) |
---|
4077 | |
---|
4078 | assert allclose(z[0],9000.0 ) #z is elevation info |
---|
4079 | #print "z",z |
---|
4080 | # 2 time steps, 4 points |
---|
4081 | self.failUnless(xmomentum.shape == (2,4), 'failed') |
---|
4082 | self.failUnless(ymomentum.shape == (2,4), 'failed') |
---|
4083 | |
---|
4084 | #(100.0 - -1000.000)*10 |
---|
4085 | #assert allclose(xmomentum[0][5], 11000.0 ) |
---|
4086 | |
---|
4087 | fid.close() |
---|
4088 | |
---|
4089 | # is the sww file readable? |
---|
4090 | #Lets see if we can convert it to a dem! |
---|
4091 | #print "sww_file",sww_file |
---|
4092 | #dem_file = tempfile.mktemp(".dem") |
---|
4093 | domain = sww2domain(sww_file) ###, dem_file) |
---|
4094 | domain.check_integrity() |
---|
4095 | |
---|
4096 | #tidy up |
---|
4097 | os.remove(bath_dir_filename) |
---|
4098 | os.rmdir(bath_dir) |
---|
4099 | |
---|
4100 | os.remove(elevation_dir_filename1) |
---|
4101 | os.remove(elevation_dir_filename2) |
---|
4102 | os.rmdir(elevation_dir) |
---|
4103 | |
---|
4104 | os.remove(ucur_dir_filename1) |
---|
4105 | os.remove(ucur_dir_filename2) |
---|
4106 | os.rmdir(ucur_dir) |
---|
4107 | |
---|
4108 | os.remove(vcur_dir_filename1) |
---|
4109 | os.remove(vcur_dir_filename2) |
---|
4110 | os.rmdir(vcur_dir) |
---|
4111 | |
---|
4112 | |
---|
4113 | |
---|
4114 | |
---|
4115 | # remove sww file |
---|
4116 | os.remove(sww_file) |
---|
4117 | |
---|
4118 | # remove dem file |
---|
4119 | #os.remove(dem_file) |
---|
4120 | |
---|
4121 | def test_get_min_max_indexes(self): |
---|
4122 | latitudes = [3,2,1,0] |
---|
4123 | longitudes = [0,10,20,30] |
---|
4124 | |
---|
4125 | # k - lat |
---|
4126 | # l - lon |
---|
4127 | kmin, kmax, lmin, lmax = data_manager._get_min_max_indexes( |
---|
4128 | latitudes,longitudes, |
---|
4129 | -10,4,-10,31) |
---|
4130 | |
---|
4131 | #print "kmin",kmin;print "kmax",kmax |
---|
4132 | #print "lmin",lmin;print "lmax",lmax |
---|
4133 | latitudes_new = latitudes[kmin:kmax] |
---|
4134 | longitudes_news = longitudes[lmin:lmax] |
---|
4135 | #print "latitudes_new", latitudes_new |
---|
4136 | #print "longitudes_news",longitudes_news |
---|
4137 | self.failUnless(latitudes == latitudes_new and \ |
---|
4138 | longitudes == longitudes_news, |
---|
4139 | 'failed') |
---|
4140 | |
---|
4141 | ## 2nd test |
---|
4142 | kmin, kmax, lmin, lmax = data_manager._get_min_max_indexes( |
---|
4143 | latitudes,longitudes, |
---|
4144 | 0.5,2.5,5,25) |
---|
4145 | #print "kmin",kmin;print "kmax",kmax |
---|
4146 | #print "lmin",lmin;print "lmax",lmax |
---|
4147 | latitudes_new = latitudes[kmin:kmax] |
---|
4148 | longitudes_news = longitudes[lmin:lmax] |
---|
4149 | #print "latitudes_new", latitudes_new |
---|
4150 | #print "longitudes_news",longitudes_news |
---|
4151 | |
---|
4152 | self.failUnless(latitudes == latitudes_new and \ |
---|
4153 | longitudes == longitudes_news, |
---|
4154 | 'failed') |
---|
4155 | |
---|
4156 | ## 3rd test |
---|
4157 | kmin, kmax, lmin, lmax = data_manager._get_min_max_indexes(\ |
---|
4158 | latitudes, |
---|
4159 | longitudes, |
---|
4160 | 1.1,1.9,12,17) |
---|
4161 | #print "kmin",kmin;print "kmax",kmax |
---|
4162 | #print "lmin",lmin;print "lmax",lmax |
---|
4163 | latitudes_new = latitudes[kmin:kmax] |
---|
4164 | longitudes_news = longitudes[lmin:lmax] |
---|
4165 | #print "latitudes_new", latitudes_new |
---|
4166 | #print "longitudes_news",longitudes_news |
---|
4167 | |
---|
4168 | self.failUnless(latitudes_new == [2, 1] and \ |
---|
4169 | longitudes_news == [10, 20], |
---|
4170 | 'failed') |
---|
4171 | |
---|
4172 | |
---|
4173 | ## 4th test |
---|
4174 | kmin, kmax, lmin, lmax = data_manager._get_min_max_indexes( |
---|
4175 | latitudes,longitudes, |
---|
4176 | -0.1,1.9,-2,17) |
---|
4177 | #print "kmin",kmin;print "kmax",kmax |
---|
4178 | #print "lmin",lmin;print "lmax",lmax |
---|
4179 | latitudes_new = latitudes[kmin:kmax] |
---|
4180 | longitudes_news = longitudes[lmin:lmax] |
---|
4181 | #print "latitudes_new", latitudes_new |
---|
4182 | #print "longitudes_news",longitudes_news |
---|
4183 | |
---|
4184 | self.failUnless(latitudes_new == [2, 1, 0] and \ |
---|
4185 | longitudes_news == [0, 10, 20], |
---|
4186 | 'failed') |
---|
4187 | ## 5th test |
---|
4188 | kmin, kmax, lmin, lmax = data_manager._get_min_max_indexes( |
---|
4189 | latitudes,longitudes, |
---|
4190 | 0.1,1.9,2,17) |
---|
4191 | #print "kmin",kmin;print "kmax",kmax |
---|
4192 | #print "lmin",lmin;print "lmax",lmax |
---|
4193 | latitudes_new = latitudes[kmin:kmax] |
---|
4194 | longitudes_news = longitudes[lmin:lmax] |
---|
4195 | #print "latitudes_new", latitudes_new |
---|
4196 | #print "longitudes_news",longitudes_news |
---|
4197 | |
---|
4198 | self.failUnless(latitudes_new == [2, 1, 0] and \ |
---|
4199 | longitudes_news == [0, 10, 20], |
---|
4200 | 'failed') |
---|
4201 | |
---|
4202 | ## 6th test |
---|
4203 | |
---|
4204 | kmin, kmax, lmin, lmax = data_manager._get_min_max_indexes( |
---|
4205 | latitudes,longitudes, |
---|
4206 | 1.5,4,18,32) |
---|
4207 | #print "kmin",kmin;print "kmax",kmax |
---|
4208 | #print "lmin",lmin;print "lmax",lmax |
---|
4209 | latitudes_new = latitudes[kmin:kmax] |
---|
4210 | longitudes_news = longitudes[lmin:lmax] |
---|
4211 | #print "latitudes_new", latitudes_new |
---|
4212 | #print "longitudes_news",longitudes_news |
---|
4213 | |
---|
4214 | self.failUnless(latitudes_new == [3, 2, 1] and \ |
---|
4215 | longitudes_news == [10, 20, 30], |
---|
4216 | 'failed') |
---|
4217 | |
---|
4218 | |
---|
4219 | ## 7th test |
---|
4220 | m2d = array([[0,1,2,3],[4,5,6,7],[8,9,10,11],[12,13,14,15]]) |
---|
4221 | kmin, kmax, lmin, lmax = data_manager._get_min_max_indexes( |
---|
4222 | latitudes,longitudes, |
---|
4223 | 1.5,1.5,15,15) |
---|
4224 | #print "kmin",kmin;print "kmax",kmax |
---|
4225 | #print "lmin",lmin;print "lmax",lmax |
---|
4226 | latitudes_new = latitudes[kmin:kmax] |
---|
4227 | longitudes_news = longitudes[lmin:lmax] |
---|
4228 | m2d = m2d[kmin:kmax,lmin:lmax] |
---|
4229 | #print "m2d", m2d |
---|
4230 | #print "latitudes_new", latitudes_new |
---|
4231 | #print "longitudes_news",longitudes_news |
---|
4232 | |
---|
4233 | self.failUnless(latitudes_new == [2, 1] and \ |
---|
4234 | longitudes_news == [10, 20], |
---|
4235 | 'failed') |
---|
4236 | |
---|
4237 | self.failUnless(m2d == [[5,6],[9,10]], |
---|
4238 | 'failed') |
---|
4239 | |
---|
4240 | def test_get_min_max_indexes_lat_ascending(self): |
---|
4241 | latitudes = [0,1,2,3] |
---|
4242 | longitudes = [0,10,20,30] |
---|
4243 | |
---|
4244 | # k - lat |
---|
4245 | # l - lon |
---|
4246 | kmin, kmax, lmin, lmax = data_manager._get_min_max_indexes( |
---|
4247 | latitudes,longitudes, |
---|
4248 | -10,4,-10,31) |
---|
4249 | |
---|
4250 | #print "kmin",kmin;print "kmax",kmax |
---|
4251 | #print "lmin",lmin;print "lmax",lmax |
---|
4252 | latitudes_new = latitudes[kmin:kmax] |
---|
4253 | longitudes_news = longitudes[lmin:lmax] |
---|
4254 | #print "latitudes_new", latitudes_new |
---|
4255 | #print "longitudes_news",longitudes_news |
---|
4256 | self.failUnless(latitudes == latitudes_new and \ |
---|
4257 | longitudes == longitudes_news, |
---|
4258 | 'failed') |
---|
4259 | |
---|
4260 | ## 3rd test |
---|
4261 | kmin, kmax, lmin, lmax = data_manager._get_min_max_indexes(\ |
---|
4262 | latitudes, |
---|
4263 | longitudes, |
---|
4264 | 1.1,1.9,12,17) |
---|
4265 | #print "kmin",kmin;print "kmax",kmax |
---|
4266 | #print "lmin",lmin;print "lmax",lmax |
---|
4267 | latitudes_new = latitudes[kmin:kmax] |
---|
4268 | longitudes_news = longitudes[lmin:lmax] |
---|
4269 | #print "latitudes_new", latitudes_new |
---|
4270 | #print "longitudes_news",longitudes_news |
---|
4271 | |
---|
4272 | self.failUnless(latitudes_new == [1, 2] and \ |
---|
4273 | longitudes_news == [10, 20], |
---|
4274 | 'failed') |
---|
4275 | |
---|
4276 | def test_get_min_max_indexes2(self): |
---|
4277 | latitudes = [-30,-35,-40,-45] |
---|
4278 | longitudes = [148,149,150,151] |
---|
4279 | |
---|
4280 | m2d = array([[0,1,2,3],[4,5,6,7],[8,9,10,11],[12,13,14,15]]) |
---|
4281 | |
---|
4282 | # k - lat |
---|
4283 | # l - lon |
---|
4284 | kmin, kmax, lmin, lmax = data_manager._get_min_max_indexes( |
---|
4285 | latitudes,longitudes, |
---|
4286 | -37,-27,147,149.5) |
---|
4287 | |
---|
4288 | #print "kmin",kmin;print "kmax",kmax |
---|
4289 | #print "lmin",lmin;print "lmax",lmax |
---|
4290 | #print "m2d", m2d |
---|
4291 | #print "latitudes", latitudes |
---|
4292 | #print "longitudes",longitudes |
---|
4293 | #print "latitudes[kmax]", latitudes[kmax] |
---|
4294 | latitudes_new = latitudes[kmin:kmax] |
---|
4295 | longitudes_new = longitudes[lmin:lmax] |
---|
4296 | m2d = m2d[kmin:kmax,lmin:lmax] |
---|
4297 | #print "m2d", m2d |
---|
4298 | #print "latitudes_new", latitudes_new |
---|
4299 | #print "longitudes_new",longitudes_new |
---|
4300 | |
---|
4301 | self.failUnless(latitudes_new == [-30, -35, -40] and \ |
---|
4302 | longitudes_new == [148, 149,150], |
---|
4303 | 'failed') |
---|
4304 | self.failUnless(m2d == [[0,1,2],[4,5,6],[8,9,10]], |
---|
4305 | 'failed') |
---|
4306 | |
---|
4307 | def test_get_min_max_indexes3(self): |
---|
4308 | latitudes = [-30,-35,-40,-45,-50,-55,-60] |
---|
4309 | longitudes = [148,149,150,151] |
---|
4310 | |
---|
4311 | # k - lat |
---|
4312 | # l - lon |
---|
4313 | kmin, kmax, lmin, lmax = data_manager._get_min_max_indexes( |
---|
4314 | latitudes,longitudes, |
---|
4315 | -43,-37,148.5,149.5) |
---|
4316 | |
---|
4317 | |
---|
4318 | #print "kmin",kmin;print "kmax",kmax |
---|
4319 | #print "lmin",lmin;print "lmax",lmax |
---|
4320 | #print "latitudes", latitudes |
---|
4321 | #print "longitudes",longitudes |
---|
4322 | latitudes_new = latitudes[kmin:kmax] |
---|
4323 | longitudes_news = longitudes[lmin:lmax] |
---|
4324 | #print "latitudes_new", latitudes_new |
---|
4325 | #print "longitudes_news",longitudes_news |
---|
4326 | |
---|
4327 | self.failUnless(latitudes_new == [-35, -40, -45] and \ |
---|
4328 | longitudes_news == [148, 149,150], |
---|
4329 | 'failed') |
---|
4330 | |
---|
4331 | def test_get_min_max_indexes4(self): |
---|
4332 | latitudes = [-30,-35,-40,-45,-50,-55,-60] |
---|
4333 | longitudes = [148,149,150,151] |
---|
4334 | |
---|
4335 | # k - lat |
---|
4336 | # l - lon |
---|
4337 | kmin, kmax, lmin, lmax = data_manager._get_min_max_indexes( |
---|
4338 | latitudes,longitudes) |
---|
4339 | |
---|
4340 | #print "kmin",kmin;print "kmax",kmax |
---|
4341 | #print "lmin",lmin;print "lmax",lmax |
---|
4342 | #print "latitudes", latitudes |
---|
4343 | #print "longitudes",longitudes |
---|
4344 | latitudes_new = latitudes[kmin:kmax] |
---|
4345 | longitudes_news = longitudes[lmin:lmax] |
---|
4346 | #print "latitudes_new", latitudes_new |
---|
4347 | #print "longitudes_news",longitudes_news |
---|
4348 | |
---|
4349 | self.failUnless(latitudes_new == latitudes and \ |
---|
4350 | longitudes_news == longitudes, |
---|
4351 | 'failed') |
---|
4352 | |
---|
4353 | def test_tsh2sww(self): |
---|
4354 | import os |
---|
4355 | import tempfile |
---|
4356 | |
---|
4357 | tsh_file = tempfile.mktemp(".tsh") |
---|
4358 | file = open(tsh_file,"w") |
---|
4359 | file.write("4 3 # <vertex #> <x> <y> [attributes]\n \ |
---|
4360 | 0 0.0 0.0 0.0 0.0 0.01 \n \ |
---|
4361 | 1 1.0 0.0 10.0 10.0 0.02 \n \ |
---|
4362 | 2 0.0 1.0 0.0 10.0 0.03 \n \ |
---|
4363 | 3 0.5 0.25 8.0 12.0 0.04 \n \ |
---|
4364 | # Vert att title \n \ |
---|
4365 | elevation \n \ |
---|
4366 | stage \n \ |
---|
4367 | friction \n \ |
---|
4368 | 2 # <triangle #> [<vertex #>] [<neigbouring triangle #>] \n\ |
---|
4369 | 0 0 3 2 -1 -1 1 dsg\n\ |
---|
4370 | 1 0 1 3 -1 0 -1 ole nielsen\n\ |
---|
4371 | 4 # <segment #> <vertex #> <vertex #> [boundary tag] \n\ |
---|
4372 | 0 1 0 2 \n\ |
---|
4373 | 1 0 2 3 \n\ |
---|
4374 | 2 2 3 \n\ |
---|
4375 | 3 3 1 1 \n\ |
---|
4376 | 3 0 # <x> <y> [attributes] ...Mesh Vertices... \n \ |
---|
4377 | 0 216.0 -86.0 \n \ |
---|
4378 | 1 160.0 -167.0 \n \ |
---|
4379 | 2 114.0 -91.0 \n \ |
---|
4380 | 3 # <vertex #> <vertex #> [boundary tag] ...Mesh Segments... \n \ |
---|
4381 | 0 0 1 0 \n \ |
---|
4382 | 1 1 2 0 \n \ |
---|
4383 | 2 2 0 0 \n \ |
---|
4384 | 0 # <x> <y> ...Mesh Holes... \n \ |
---|
4385 | 0 # <x> <y> <attribute>...Mesh Regions... \n \ |
---|
4386 | 0 # <x> <y> <attribute>...Mesh Regions, area... \n\ |
---|
4387 | #Geo reference \n \ |
---|
4388 | 56 \n \ |
---|
4389 | 140 \n \ |
---|
4390 | 120 \n") |
---|
4391 | file.close() |
---|
4392 | |
---|
4393 | #sww_file = tempfile.mktemp(".sww") |
---|
4394 | #print "sww_file",sww_file |
---|
4395 | #print "sww_file",tsh_file |
---|
4396 | tsh2sww(tsh_file) |
---|
4397 | |
---|
4398 | os.remove(tsh_file) |
---|
4399 | os.remove(tsh_file[:-4] + '.sww') |
---|
4400 | |
---|
4401 | |
---|
4402 | |
---|
4403 | |
---|
4404 | ########## testing nbed class ################## |
---|
4405 | def test_exposure_csv_loading(self): |
---|
4406 | file_name = tempfile.mktemp(".xya") |
---|
4407 | file = open(file_name,"w") |
---|
4408 | file.write("LATITUDE, LONGITUDE ,sound , speed \n\ |
---|
4409 | 115.0, -21.0, splat, 0.0\n\ |
---|
4410 | 114.0, -21.7, pow, 10.0\n\ |
---|
4411 | 114.5, -21.4, bang, 40.0\n") |
---|
4412 | file.close() |
---|
4413 | exposure = Exposure_csv(file_name, title_check_list = ['speed','sound']) |
---|
4414 | exposure.get_column("sound") |
---|
4415 | |
---|
4416 | self.failUnless(exposure._attribute_dic['sound'][2]==' bang', |
---|
4417 | 'FAILED!') |
---|
4418 | self.failUnless(exposure._attribute_dic['speed'][2]==' 40.0', |
---|
4419 | 'FAILED!') |
---|
4420 | |
---|
4421 | os.remove(file_name) |
---|
4422 | |
---|
4423 | def test_exposure_csv_loadingII(self): |
---|
4424 | |
---|
4425 | |
---|
4426 | file_name = tempfile.mktemp(".xya") |
---|
4427 | file = open(file_name,"w") |
---|
4428 | file.write("LATITUDE, LONGITUDE ,sound , speed \n\ |
---|
4429 | 115.0, -21.0, splat, 0.0\n\ |
---|
4430 | 114.0, -21.7, pow, 10.0\n\ |
---|
4431 | 114.5, -21.4, bang, 40.0\n") |
---|
4432 | file.close() |
---|
4433 | exposure = Exposure_csv(file_name) |
---|
4434 | exposure.get_column("sound") |
---|
4435 | |
---|
4436 | self.failUnless(exposure._attribute_dic['sound'][2]==' bang', |
---|
4437 | 'FAILED!') |
---|
4438 | self.failUnless(exposure._attribute_dic['speed'][2]==' 40.0', |
---|
4439 | 'FAILED!') |
---|
4440 | |
---|
4441 | os.remove(file_name) |
---|
4442 | |
---|
4443 | def test_exposure_csv_loading_title_check_list(self): |
---|
4444 | |
---|
4445 | # I can't get cvs.reader to close the exposure file |
---|
4446 | # The hacks below are to get around this. |
---|
4447 | if sys.platform == 'win32': |
---|
4448 | file_name = tempfile.gettempdir() + \ |
---|
4449 | "test_exposure_csv_loading_title_check_list.xya" |
---|
4450 | else: |
---|
4451 | file_name = tempfile.mktemp(".xya") |
---|
4452 | file = open(file_name,"w") |
---|
4453 | file.write("LATITUDE, LONGITUDE ,sound , speed \n\ |
---|
4454 | 115.0, -21.0, splat, 0.0\n\ |
---|
4455 | 114.0, -21.7, pow, 10.0\n\ |
---|
4456 | 114.5, -21.4, bang, 40.0\n") |
---|
4457 | file.close() |
---|
4458 | try: |
---|
4459 | exposure = Exposure_csv(file_name, title_check_list = ['SOUND']) |
---|
4460 | except IOError: |
---|
4461 | pass |
---|
4462 | else: |
---|
4463 | self.failUnless(0 ==1, 'Assertion not thrown error!') |
---|
4464 | |
---|
4465 | if not sys.platform == 'win32': |
---|
4466 | os.remove(file_name) |
---|
4467 | |
---|
4468 | def test_exposure_csv_cmp(self): |
---|
4469 | file_name = tempfile.mktemp(".xya") |
---|
4470 | file = open(file_name,"w") |
---|
4471 | file.write("LATITUDE, LONGITUDE ,sound , speed \n\ |
---|
4472 | 115.0, -21.0, splat, 0.0\n\ |
---|
4473 | 114.0, -21.7, pow, 10.0\n\ |
---|
4474 | 114.5, -21.4, bang, 40.0\n") |
---|
4475 | file.close() |
---|
4476 | |
---|
4477 | e1 = Exposure_csv(file_name) |
---|
4478 | e2 = Exposure_csv(file_name) |
---|
4479 | os.remove(file_name) |
---|
4480 | |
---|
4481 | self.failUnless(cmp(e1,e2)==0, |
---|
4482 | 'FAILED!') |
---|
4483 | |
---|
4484 | self.failUnless(cmp(e1,"hey")==1, |
---|
4485 | 'FAILED!') |
---|
4486 | |
---|
4487 | file_name = tempfile.mktemp(".xya") |
---|
4488 | file = open(file_name,"w") |
---|
4489 | # Note, this has less spaces in the title, |
---|
4490 | # the instances will be the same. |
---|
4491 | file.write("LATITUDE,LONGITUDE ,sound, speed \n\ |
---|
4492 | 115.0, -21.0, splat, 0.0\n\ |
---|
4493 | 114.0, -21.7, pow, 10.0\n\ |
---|
4494 | 114.5, -21.4, bang, 40.0\n") |
---|
4495 | file.close() |
---|
4496 | e3 = Exposure_csv(file_name) |
---|
4497 | os.remove(file_name) |
---|
4498 | |
---|
4499 | self.failUnless(cmp(e3,e2)==0, |
---|
4500 | 'FAILED!') |
---|
4501 | |
---|
4502 | file_name = tempfile.mktemp(".xya") |
---|
4503 | file = open(file_name,"w") |
---|
4504 | # Note, 40 changed to 44 . |
---|
4505 | file.write("LATITUDE,LONGITUDE ,sound, speed \n\ |
---|
4506 | 115.0, -21.0, splat, 0.0\n\ |
---|
4507 | 114.0, -21.7, pow, 10.0\n\ |
---|
4508 | 114.5, -21.4, bang, 44.0\n") |
---|
4509 | file.close() |
---|
4510 | e4 = Exposure_csv(file_name) |
---|
4511 | os.remove(file_name) |
---|
4512 | #print "e4",e4._attribute_dic |
---|
4513 | #print "e2",e2._attribute_dic |
---|
4514 | self.failUnless(cmp(e4,e2)<>0, |
---|
4515 | 'FAILED!') |
---|
4516 | |
---|
4517 | file_name = tempfile.mktemp(".xya") |
---|
4518 | file = open(file_name,"w") |
---|
4519 | # Note, the first two columns are swapped. |
---|
4520 | file.write("LONGITUDE,LATITUDE ,sound, speed \n\ |
---|
4521 | -21.0,115.0, splat, 0.0\n\ |
---|
4522 | -21.7,114.0, pow, 10.0\n\ |
---|
4523 | -21.4,114.5, bang, 40.0\n") |
---|
4524 | file.close() |
---|
4525 | e5 = Exposure_csv(file_name) |
---|
4526 | os.remove(file_name) |
---|
4527 | |
---|
4528 | self.failUnless(cmp(e3,e5)<>0, |
---|
4529 | 'FAILED!') |
---|
4530 | |
---|
4531 | def test_exposure_csv_saving(self): |
---|
4532 | |
---|
4533 | |
---|
4534 | file_name = tempfile.mktemp(".xya") |
---|
4535 | file = open(file_name,"w") |
---|
4536 | file.write("LATITUDE, LONGITUDE ,sound , speed \n\ |
---|
4537 | 115.0, -21.0, splat, 0.0\n\ |
---|
4538 | 114.0, -21.7, pow, 10.0\n\ |
---|
4539 | 114.5, -21.4, bang, 40.0\n") |
---|
4540 | file.close() |
---|
4541 | e1 = Exposure_csv(file_name) |
---|
4542 | |
---|
4543 | file_name2 = tempfile.mktemp(".xya") |
---|
4544 | e1.save(file_name = file_name2) |
---|
4545 | e2 = Exposure_csv(file_name2) |
---|
4546 | |
---|
4547 | self.failUnless(cmp(e1,e2)==0, |
---|
4548 | 'FAILED!') |
---|
4549 | os.remove(file_name) |
---|
4550 | os.remove(file_name2) |
---|
4551 | |
---|
4552 | def test_exposure_csv_get_location(self): |
---|
4553 | file_name = tempfile.mktemp(".xya") |
---|
4554 | file = open(file_name,"w") |
---|
4555 | file.write("LONGITUDE , LATITUDE, sound , speed \n\ |
---|
4556 | 150.916666667, -34.5, splat, 0.0\n\ |
---|
4557 | 150.0, -34.0, pow, 10.0\n") |
---|
4558 | file.close() |
---|
4559 | e1 = Exposure_csv(file_name) |
---|
4560 | |
---|
4561 | gsd = e1.get_location() |
---|
4562 | |
---|
4563 | points = gsd.get_data_points(absolute=True) |
---|
4564 | |
---|
4565 | assert allclose(points[0][0], 308728.009) |
---|
4566 | assert allclose(points[0][1], 6180432.601) |
---|
4567 | assert allclose(points[1][0], 222908.705) |
---|
4568 | assert allclose(points[1][1], 6233785.284) |
---|
4569 | self.failUnless(gsd.get_geo_reference().get_zone() == 56, |
---|
4570 | 'Bad zone error!') |
---|
4571 | |
---|
4572 | os.remove(file_name) |
---|
4573 | |
---|
4574 | def test_exposure_csv_set_column_get_column(self): |
---|
4575 | file_name = tempfile.mktemp(".xya") |
---|
4576 | file = open(file_name,"w") |
---|
4577 | file.write("LONGITUDE , LATITUDE, sound , speed \n\ |
---|
4578 | 150.916666667, -34.5, splat, 0.0\n\ |
---|
4579 | 150.0, -34.0, pow, 10.0\n") |
---|
4580 | file.close() |
---|
4581 | e1 = Exposure_csv(file_name) |
---|
4582 | os.remove(file_name) |
---|
4583 | |
---|
4584 | new_title = "feast" |
---|
4585 | new_values = ["chicken","soup"] |
---|
4586 | e1.set_column(new_title, new_values) |
---|
4587 | returned_values = e1.get_column(new_title) |
---|
4588 | self.failUnless(returned_values == new_values, |
---|
4589 | ' Error!') |
---|
4590 | |
---|
4591 | file_name2 = tempfile.mktemp(".xya") |
---|
4592 | e1.save(file_name = file_name2) |
---|
4593 | e2 = Exposure_csv(file_name2) |
---|
4594 | returned_values = e2.get_column(new_title) |
---|
4595 | self.failUnless(returned_values == new_values, |
---|
4596 | ' Error!') |
---|
4597 | os.remove(file_name2) |
---|
4598 | |
---|
4599 | def test_exposure_csv_set_column_get_column_error_checking(self): |
---|
4600 | file_name = tempfile.mktemp(".xya") |
---|
4601 | file = open(file_name,"w") |
---|
4602 | file.write("LONGITUDE , LATITUDE, sound , speed \n\ |
---|
4603 | 150.916666667, -34.5, splat, 0.0\n\ |
---|
4604 | 150.0, -34.0, pow, 10.0\n") |
---|
4605 | file.close() |
---|
4606 | e1 = Exposure_csv(file_name) |
---|
4607 | os.remove(file_name) |
---|
4608 | |
---|
4609 | new_title = "sound" |
---|
4610 | new_values = [12.5,7.6] |
---|
4611 | try: |
---|
4612 | e1.set_column(new_title, new_values) |
---|
4613 | except TitleValueError: |
---|
4614 | pass |
---|
4615 | else: |
---|
4616 | self.failUnless(0 ==1, 'Error not thrown error!') |
---|
4617 | |
---|
4618 | e1.set_column(new_title, new_values, overwrite=True) |
---|
4619 | returned_values = e1.get_column(new_title) |
---|
4620 | self.failUnless(returned_values == new_values, |
---|
4621 | ' Error!') |
---|
4622 | |
---|
4623 | new2_title = "short list" |
---|
4624 | new2_values = [12.5] |
---|
4625 | try: |
---|
4626 | e1.set_column(new2_title, new2_values) |
---|
4627 | except DataMissingValuesError: |
---|
4628 | pass |
---|
4629 | else: |
---|
4630 | self.failUnless(0 ==1, 'Error not thrown error!') |
---|
4631 | |
---|
4632 | new2_title = "long list" |
---|
4633 | new2_values = [12.5, 7,8] |
---|
4634 | try: |
---|
4635 | e1.set_column(new2_title, new2_values) |
---|
4636 | except DataMissingValuesError: |
---|
4637 | pass |
---|
4638 | else: |
---|
4639 | self.failUnless(0 ==1, 'Error not thrown error!') |
---|
4640 | file_name2 = tempfile.mktemp(".xya") |
---|
4641 | e1.save(file_name = file_name2) |
---|
4642 | e2 = Exposure_csv(file_name2) |
---|
4643 | returned_values = e2.get_column(new_title) |
---|
4644 | for returned, new in map(None, returned_values, new_values): |
---|
4645 | self.failUnless(returned == str(new), ' Error!') |
---|
4646 | #self.failUnless(returned_values == new_values, ' Error!') |
---|
4647 | os.remove(file_name2) |
---|
4648 | |
---|
4649 | try: |
---|
4650 | e1.get_column("toe jam") |
---|
4651 | except TitleValueError: |
---|
4652 | pass |
---|
4653 | else: |
---|
4654 | self.failUnless(0 ==1, 'Error not thrown error!') |
---|
4655 | |
---|
4656 | def test_exposure_csv_loading_x_y(self): |
---|
4657 | |
---|
4658 | |
---|
4659 | file_name = tempfile.mktemp(".xya") |
---|
4660 | file = open(file_name,"w") |
---|
4661 | file.write("x, y ,sound , speed \n\ |
---|
4662 | 115.0, 7, splat, 0.0\n\ |
---|
4663 | 114.0, 8.0, pow, 10.0\n\ |
---|
4664 | 114.5, 9., bang, 40.0\n") |
---|
4665 | file.close() |
---|
4666 | e1 = Exposure_csv(file_name, is_x_y_locations=True) |
---|
4667 | gsd = e1.get_location() |
---|
4668 | |
---|
4669 | points = gsd.get_data_points(absolute=True) |
---|
4670 | |
---|
4671 | assert allclose(points[0][0], 115) |
---|
4672 | assert allclose(points[0][1], 7) |
---|
4673 | assert allclose(points[1][0], 114) |
---|
4674 | assert allclose(points[1][1], 8) |
---|
4675 | assert allclose(points[2][0], 114.5) |
---|
4676 | assert allclose(points[2][1], 9) |
---|
4677 | self.failUnless(gsd.get_geo_reference().get_zone() == -1, |
---|
4678 | 'Bad zone error!') |
---|
4679 | |
---|
4680 | os.remove(file_name) |
---|
4681 | |
---|
4682 | |
---|
4683 | def test_exposure_csv_loading_x_y2(self): |
---|
4684 | |
---|
4685 | csv_file = tempfile.mktemp(".csv") |
---|
4686 | fd = open(csv_file,'wb') |
---|
4687 | writer = csv.writer(fd) |
---|
4688 | writer.writerow(['x','y','STR_VALUE','C_VALUE','ROOF_TYPE','WALLS', 'SHORE_DIST']) |
---|
4689 | writer.writerow([5.5,0.5,'199770','130000','Metal','Timber',20]) |
---|
4690 | writer.writerow([4.5,1.0,'150000','76000','Metal','Double Brick',20]) |
---|
4691 | writer.writerow([4.5,1.5,'150000','76000','Metal','Brick Veneer',20]) |
---|
4692 | fd.close() |
---|
4693 | |
---|
4694 | e1 = Exposure_csv(csv_file) |
---|
4695 | gsd = e1.get_location() |
---|
4696 | |
---|
4697 | points = gsd.get_data_points(absolute=True) |
---|
4698 | assert allclose(points[0][0], 5.5) |
---|
4699 | assert allclose(points[0][1], 0.5) |
---|
4700 | assert allclose(points[1][0], 4.5) |
---|
4701 | assert allclose(points[1][1], 1.0) |
---|
4702 | assert allclose(points[2][0], 4.5) |
---|
4703 | assert allclose(points[2][1], 1.5) |
---|
4704 | self.failUnless(gsd.get_geo_reference().get_zone() == -1, |
---|
4705 | 'Bad zone error!') |
---|
4706 | |
---|
4707 | os.remove(csv_file) |
---|
4708 | |
---|
4709 | #### TESTS FOR URS 2 SWW ### |
---|
4710 | |
---|
4711 | def create_mux(self, points_num=None): |
---|
4712 | # write all the mux stuff. |
---|
4713 | time_step_count = 3 |
---|
4714 | time_step = 0.5 |
---|
4715 | |
---|
4716 | longitudes = [150.66667, 150.83334, 151., 151.16667] |
---|
4717 | latitudes = [-34.5, -34.33333, -34.16667, -34] |
---|
4718 | |
---|
4719 | if points_num == None: |
---|
4720 | points_num = len(longitudes) * len(latitudes) |
---|
4721 | |
---|
4722 | lonlatdeps = [] |
---|
4723 | quantities = ['HA','UA','VA'] |
---|
4724 | mux_names = ['-z-mux','-e-mux','-n-mux'] |
---|
4725 | quantities_init = [[],[],[]] |
---|
4726 | # urs binary is latitude fastest |
---|
4727 | for i,lon in enumerate(longitudes): |
---|
4728 | for j,lat in enumerate(latitudes): |
---|
4729 | _ , e, n = redfearn(lat, lon) |
---|
4730 | lonlatdeps.append([lon, lat, n]) |
---|
4731 | quantities_init[0].append(e) # HA |
---|
4732 | quantities_init[1].append(n ) # UA |
---|
4733 | quantities_init[2].append(e) # VA |
---|
4734 | #print "lonlatdeps",lonlatdeps |
---|
4735 | |
---|
4736 | file_handle, base_name = tempfile.mkstemp("") |
---|
4737 | os.close(file_handle) |
---|
4738 | os.remove(base_name) |
---|
4739 | |
---|
4740 | files = [] |
---|
4741 | for i,q in enumerate(quantities): |
---|
4742 | quantities_init[i] = ensure_numeric(quantities_init[i]) |
---|
4743 | #print "HA_init", HA_init |
---|
4744 | q_time = zeros((time_step_count, points_num), Float) |
---|
4745 | for time in range(time_step_count): |
---|
4746 | q_time[time,:] = quantities_init[i] #* time * 4 |
---|
4747 | |
---|
4748 | #Write C files |
---|
4749 | columns = 3 # long, lat , depth |
---|
4750 | file = base_name + mux_names[i] |
---|
4751 | #print "base_name file",file |
---|
4752 | f = open(file, 'wb') |
---|
4753 | files.append(file) |
---|
4754 | f.write(pack('i',points_num)) |
---|
4755 | f.write(pack('i',time_step_count)) |
---|
4756 | f.write(pack('f',time_step)) |
---|
4757 | |
---|
4758 | #write lat/long info |
---|
4759 | for lonlatdep in lonlatdeps: |
---|
4760 | for float in lonlatdep: |
---|
4761 | f.write(pack('f',float)) |
---|
4762 | |
---|
4763 | # Write quantity info |
---|
4764 | for time in range(time_step_count): |
---|
4765 | for point_i in range(points_num): |
---|
4766 | f.write(pack('f',q_time[time,point_i])) |
---|
4767 | #print " mux_names[i]", mux_names[i] |
---|
4768 | #print "f.write(pack('f',q_time[time,i]))", q_time[time,point_i] |
---|
4769 | f.close() |
---|
4770 | return base_name, files |
---|
4771 | |
---|
4772 | def write_mux(self,lat_long_points, time_step_count, time_step, |
---|
4773 | depth=None, ha=None, ua=None, va=None |
---|
4774 | ): |
---|
4775 | """ |
---|
4776 | This will write 3 non-gridded mux files, for testing. |
---|
4777 | If no quantities are passed in, |
---|
4778 | na and va quantities will be the Easting values. |
---|
4779 | Depth and ua will be the Northing value. |
---|
4780 | """ |
---|
4781 | #print "lat_long_points", lat_long_points |
---|
4782 | #print "time_step_count",time_step_count |
---|
4783 | #print "time_step", |
---|
4784 | |
---|
4785 | points_num = len(lat_long_points) |
---|
4786 | lonlatdeps = [] |
---|
4787 | quantities = ['HA','UA','VA'] |
---|
4788 | mux_names = ['-z-mux','-e-mux','-n-mux'] |
---|
4789 | quantities_init = [[],[],[]] |
---|
4790 | # urs binary is latitude fastest |
---|
4791 | for point in lat_long_points: |
---|
4792 | lat = point[0] |
---|
4793 | lon = point[1] |
---|
4794 | _ , e, n = redfearn(lat, lon) |
---|
4795 | if depth is None: |
---|
4796 | this_depth = n |
---|
4797 | else: |
---|
4798 | this_depth = depth |
---|
4799 | if ha is None: |
---|
4800 | this_ha = e |
---|
4801 | else: |
---|
4802 | this_ha = ha |
---|
4803 | if ua is None: |
---|
4804 | this_ua = n |
---|
4805 | else: |
---|
4806 | this_ua = ua |
---|
4807 | if va is None: |
---|
4808 | this_va = e |
---|
4809 | else: |
---|
4810 | this_va = va |
---|
4811 | lonlatdeps.append([lon, lat, this_depth]) |
---|
4812 | quantities_init[0].append(this_ha) # HA |
---|
4813 | quantities_init[1].append(this_ua) # UA |
---|
4814 | quantities_init[2].append(this_va) # VA |
---|
4815 | |
---|
4816 | file_handle, base_name = tempfile.mkstemp("") |
---|
4817 | os.close(file_handle) |
---|
4818 | os.remove(base_name) |
---|
4819 | |
---|
4820 | files = [] |
---|
4821 | for i,q in enumerate(quantities): |
---|
4822 | quantities_init[i] = ensure_numeric(quantities_init[i]) |
---|
4823 | #print "HA_init", HA_init |
---|
4824 | q_time = zeros((time_step_count, points_num), Float) |
---|
4825 | for time in range(time_step_count): |
---|
4826 | q_time[time,:] = quantities_init[i] #* time * 4 |
---|
4827 | |
---|
4828 | #Write C files |
---|
4829 | columns = 3 # long, lat , depth |
---|
4830 | file = base_name + mux_names[i] |
---|
4831 | #print "base_name file",file |
---|
4832 | f = open(file, 'wb') |
---|
4833 | files.append(file) |
---|
4834 | f.write(pack('i',points_num)) |
---|
4835 | f.write(pack('i',time_step_count)) |
---|
4836 | f.write(pack('f',time_step)) |
---|
4837 | |
---|
4838 | #write lat/long info |
---|
4839 | for lonlatdep in lonlatdeps: |
---|
4840 | for float in lonlatdep: |
---|
4841 | f.write(pack('f',float)) |
---|
4842 | |
---|
4843 | # Write quantity info |
---|
4844 | for time in range(time_step_count): |
---|
4845 | for point_i in range(points_num): |
---|
4846 | f.write(pack('f',q_time[time,point_i])) |
---|
4847 | #print " mux_names[i]", mux_names[i] |
---|
4848 | #print "f.write(pack('f',q_time[time,i]))", q_time[time,point_i] |
---|
4849 | f.close() |
---|
4850 | return base_name, files |
---|
4851 | |
---|
4852 | |
---|
4853 | def delete_mux(self, files): |
---|
4854 | for file in files: |
---|
4855 | os.remove(file) |
---|
4856 | |
---|
4857 | def test_urs2sww_test_fail(self): |
---|
4858 | points_num = -100 |
---|
4859 | time_step_count = 45 |
---|
4860 | time_step = -7 |
---|
4861 | file_handle, base_name = tempfile.mkstemp("") |
---|
4862 | os.close(file_handle) |
---|
4863 | os.remove(base_name) |
---|
4864 | |
---|
4865 | files = [] |
---|
4866 | quantities = ['HA','UA','VA'] |
---|
4867 | mux_names = ['-z-mux','-e-mux','-n-mux'] |
---|
4868 | for i,q in enumerate(quantities): |
---|
4869 | #Write C files |
---|
4870 | columns = 3 # long, lat , depth |
---|
4871 | file = base_name + mux_names[i] |
---|
4872 | f = open(file, 'wb') |
---|
4873 | files.append(file) |
---|
4874 | f.write(pack('i',points_num)) |
---|
4875 | f.write(pack('i',time_step_count)) |
---|
4876 | f.write(pack('f',time_step)) |
---|
4877 | |
---|
4878 | f.close() |
---|
4879 | tide = 1 |
---|
4880 | try: |
---|
4881 | urs2sww(base_name, remove_nc_files=True, mean_stage=tide) |
---|
4882 | except ANUGAError: |
---|
4883 | pass |
---|
4884 | else: |
---|
4885 | self.delete_mux(files) |
---|
4886 | msg = 'Should have raised exception' |
---|
4887 | raise msg |
---|
4888 | sww_file = base_name + '.sww' |
---|
4889 | self.delete_mux(files) |
---|
4890 | |
---|
4891 | def test_urs2sww_test_fail2(self): |
---|
4892 | base_name = 'Harry-high-pants' |
---|
4893 | try: |
---|
4894 | urs2sww(base_name) |
---|
4895 | except IOError: |
---|
4896 | pass |
---|
4897 | else: |
---|
4898 | self.delete_mux(files) |
---|
4899 | msg = 'Should have raised exception' |
---|
4900 | raise msg |
---|
4901 | |
---|
4902 | def test_urs2sww(self): |
---|
4903 | tide = 1 |
---|
4904 | base_name, files = self.create_mux() |
---|
4905 | urs2sww(base_name |
---|
4906 | #, origin=(0,0,0) |
---|
4907 | , mean_stage=tide |
---|
4908 | , remove_nc_files=True |
---|
4909 | ) |
---|
4910 | sww_file = base_name + '.sww' |
---|
4911 | |
---|
4912 | #Let's interigate the sww file |
---|
4913 | # Note, the sww info is not gridded. It is point data. |
---|
4914 | fid = NetCDFFile(sww_file) |
---|
4915 | |
---|
4916 | x = fid.variables['x'][:] |
---|
4917 | y = fid.variables['y'][:] |
---|
4918 | geo_reference = Geo_reference(NetCDFObject=fid) |
---|
4919 | |
---|
4920 | |
---|
4921 | #Check that first coordinate is correctly represented |
---|
4922 | #Work out the UTM coordinates for first point |
---|
4923 | zone, e, n = redfearn(-34.5, 150.66667) |
---|
4924 | |
---|
4925 | assert allclose(geo_reference.get_absolute([[x[0],y[0]]]), [e,n]) |
---|
4926 | |
---|
4927 | # Make x and y absolute |
---|
4928 | points = geo_reference.get_absolute(map(None, x, y)) |
---|
4929 | points = ensure_numeric(points) |
---|
4930 | x = points[:,0] |
---|
4931 | y = points[:,1] |
---|
4932 | |
---|
4933 | #Check first value |
---|
4934 | stage = fid.variables['stage'][:] |
---|
4935 | xmomentum = fid.variables['xmomentum'][:] |
---|
4936 | ymomentum = fid.variables['ymomentum'][:] |
---|
4937 | elevation = fid.variables['elevation'][:] |
---|
4938 | assert allclose(stage[0,0], e +tide) #Meters |
---|
4939 | |
---|
4940 | #Check the momentums - ua |
---|
4941 | #momentum = velocity*(stage-elevation) |
---|
4942 | # elevation = - depth |
---|
4943 | #momentum = velocity_ua *(stage+depth) |
---|
4944 | # = n*(e+tide+n) based on how I'm writing these files |
---|
4945 | # |
---|
4946 | answer_x = n*(e+tide+n) |
---|
4947 | actual_x = xmomentum[0,0] |
---|
4948 | #print "answer_x",answer_x |
---|
4949 | #print "actual_x",actual_x |
---|
4950 | assert allclose(answer_x, actual_x) #Meters |
---|
4951 | |
---|
4952 | #Check the momentums - va |
---|
4953 | #momentum = velocity*(stage-elevation) |
---|
4954 | # -(-elevation) since elevation is inverted in mux files |
---|
4955 | #momentum = velocity_va *(stage+elevation) |
---|
4956 | # = e*(e+tide+n) based on how I'm writing these files |
---|
4957 | answer_y = e*(e+tide+n) * -1 # talking into account mux file format |
---|
4958 | actual_y = ymomentum[0,0] |
---|
4959 | #print "answer_y",answer_y |
---|
4960 | #print "actual_y",actual_y |
---|
4961 | assert allclose(answer_y, actual_y) #Meters |
---|
4962 | |
---|
4963 | assert allclose(answer_x, actual_x) #Meters |
---|
4964 | |
---|
4965 | # check the stage values, first time step. |
---|
4966 | # These arrays are equal since the Easting values were used as |
---|
4967 | # the stage |
---|
4968 | assert allclose(stage[0], x +tide) #Meters |
---|
4969 | |
---|
4970 | # check the elevation values. |
---|
4971 | # -ve since urs measures depth, sww meshers height, |
---|
4972 | # these arrays are equal since the northing values were used as |
---|
4973 | # the elevation |
---|
4974 | assert allclose(-elevation, y) #Meters |
---|
4975 | |
---|
4976 | fid.close() |
---|
4977 | self.delete_mux(files) |
---|
4978 | os.remove(sww_file) |
---|
4979 | |
---|
4980 | def test_urs2sww_momentum(self): |
---|
4981 | tide = 1 |
---|
4982 | time_step_count = 3 |
---|
4983 | time_step = 2 |
---|
4984 | #lat_long_points =[(-21.5,114.5),(-21.5,115),(-21.,114.5), (-21.,115.)] |
---|
4985 | # This is gridded |
---|
4986 | lat_long_points =[(-21.5,114.5),(-21,114.5),(-21.5,115), (-21.,115.)] |
---|
4987 | depth=20 |
---|
4988 | ha=2 |
---|
4989 | ua=5 |
---|
4990 | va=-10 #-ve added to take into account mux file format where south |
---|
4991 | # is positive. |
---|
4992 | base_name, files = self.write_mux(lat_long_points, |
---|
4993 | time_step_count, time_step, |
---|
4994 | depth=depth, |
---|
4995 | ha=ha, |
---|
4996 | ua=ua, |
---|
4997 | va=va) |
---|
4998 | # write_mux(self,lat_long_points, time_step_count, time_step, |
---|
4999 | # depth=None, ha=None, ua=None, va=None |
---|
5000 | urs2sww(base_name |
---|
5001 | #, origin=(0,0,0) |
---|
5002 | , mean_stage=tide |
---|
5003 | , remove_nc_files=True |
---|
5004 | ) |
---|
5005 | sww_file = base_name + '.sww' |
---|
5006 | |
---|
5007 | #Let's interigate the sww file |
---|
5008 | # Note, the sww info is not gridded. It is point data. |
---|
5009 | fid = NetCDFFile(sww_file) |
---|
5010 | |
---|
5011 | x = fid.variables['x'][:] |
---|
5012 | y = fid.variables['y'][:] |
---|
5013 | geo_reference = Geo_reference(NetCDFObject=fid) |
---|
5014 | |
---|
5015 | #Check first value |
---|
5016 | stage = fid.variables['stage'][:] |
---|
5017 | xmomentum = fid.variables['xmomentum'][:] |
---|
5018 | ymomentum = fid.variables['ymomentum'][:] |
---|
5019 | elevation = fid.variables['elevation'][:] |
---|
5020 | #assert allclose(stage[0,0], e + tide) #Meters |
---|
5021 | #print "xmomentum", xmomentum |
---|
5022 | #print "ymomentum", ymomentum |
---|
5023 | #Check the momentums - ua |
---|
5024 | #momentum = velocity*water height |
---|
5025 | #water height = mux_depth + mux_height +tide |
---|
5026 | #water height = mux_depth + mux_height +tide |
---|
5027 | #momentum = velocity*(mux_depth + mux_height +tide) |
---|
5028 | # |
---|
5029 | |
---|
5030 | answer = 115 |
---|
5031 | actual = xmomentum[0,0] |
---|
5032 | assert allclose(answer, actual) #Meters^2/ sec |
---|
5033 | answer = 230 |
---|
5034 | actual = ymomentum[0,0] |
---|
5035 | #print "answer",answer |
---|
5036 | #print "actual",actual |
---|
5037 | assert allclose(answer, actual) #Meters^2/ sec |
---|
5038 | |
---|
5039 | # check the stage values, first time step. |
---|
5040 | # These arrays are equal since the Easting values were used as |
---|
5041 | # the stage |
---|
5042 | |
---|
5043 | #assert allclose(stage[0], x +tide) #Meters |
---|
5044 | |
---|
5045 | # check the elevation values. |
---|
5046 | # -ve since urs measures depth, sww meshers height, |
---|
5047 | # these arrays are equal since the northing values were used as |
---|
5048 | # the elevation |
---|
5049 | #assert allclose(-elevation, y) #Meters |
---|
5050 | |
---|
5051 | fid.close() |
---|
5052 | self.delete_mux(files) |
---|
5053 | os.remove(sww_file) |
---|
5054 | |
---|
5055 | |
---|
5056 | def test_urs2sww_origin(self): |
---|
5057 | tide = 1 |
---|
5058 | base_name, files = self.create_mux() |
---|
5059 | urs2sww(base_name |
---|
5060 | , origin=(0,0,0) |
---|
5061 | , mean_stage=tide |
---|
5062 | , remove_nc_files=True |
---|
5063 | ) |
---|
5064 | sww_file = base_name + '.sww' |
---|
5065 | |
---|
5066 | #Let's interigate the sww file |
---|
5067 | # Note, the sww info is not gridded. It is point data. |
---|
5068 | fid = NetCDFFile(sww_file) |
---|
5069 | |
---|
5070 | # x and y are absolute |
---|
5071 | x = fid.variables['x'][:] |
---|
5072 | y = fid.variables['y'][:] |
---|
5073 | geo_reference = Geo_reference(NetCDFObject=fid) |
---|
5074 | |
---|
5075 | |
---|
5076 | #Check that first coordinate is correctly represented |
---|
5077 | #Work out the UTM coordinates for first point |
---|
5078 | zone, e, n = redfearn(-34.5, 150.66667) |
---|
5079 | |
---|
5080 | assert allclose([x[0],y[0]], [e,n]) |
---|
5081 | |
---|
5082 | |
---|
5083 | #Check first value |
---|
5084 | stage = fid.variables['stage'][:] |
---|
5085 | xmomentum = fid.variables['xmomentum'][:] |
---|
5086 | ymomentum = fid.variables['ymomentum'][:] |
---|
5087 | elevation = fid.variables['elevation'][:] |
---|
5088 | assert allclose(stage[0,0], e +tide) #Meters |
---|
5089 | |
---|
5090 | #Check the momentums - ua |
---|
5091 | #momentum = velocity*(stage-elevation) |
---|
5092 | #momentum = velocity*(stage+elevation) |
---|
5093 | # -(-elevation) since elevation is inverted in mux files |
---|
5094 | # = n*(e+tide+n) based on how I'm writing these files |
---|
5095 | answer = n*(e+tide+n) |
---|
5096 | actual = xmomentum[0,0] |
---|
5097 | assert allclose(answer, actual) #Meters |
---|
5098 | |
---|
5099 | # check the stage values, first time step. |
---|
5100 | # These arrays are equal since the Easting values were used as |
---|
5101 | # the stage |
---|
5102 | assert allclose(stage[0], x +tide) #Meters |
---|
5103 | |
---|
5104 | # check the elevation values. |
---|
5105 | # -ve since urs measures depth, sww meshers height, |
---|
5106 | # these arrays are equal since the northing values were used as |
---|
5107 | # the elevation |
---|
5108 | assert allclose(-elevation, y) #Meters |
---|
5109 | |
---|
5110 | fid.close() |
---|
5111 | self.delete_mux(files) |
---|
5112 | os.remove(sww_file) |
---|
5113 | |
---|
5114 | def test_urs2sww_minmaxlatlong(self): |
---|
5115 | |
---|
5116 | #longitudes = [150.66667, 150.83334, 151., 151.16667] |
---|
5117 | #latitudes = [-34.5, -34.33333, -34.16667, -34] |
---|
5118 | |
---|
5119 | tide = 1 |
---|
5120 | base_name, files = self.create_mux() |
---|
5121 | urs2sww(base_name, |
---|
5122 | minlat=-34.5, |
---|
5123 | maxlat=-34, |
---|
5124 | minlon= 150.66667, |
---|
5125 | maxlon= 151.16667, |
---|
5126 | mean_stage=tide, |
---|
5127 | remove_nc_files=True |
---|
5128 | ) |
---|
5129 | sww_file = base_name + '.sww' |
---|
5130 | |
---|
5131 | #Let's interigate the sww file |
---|
5132 | # Note, the sww info is not gridded. It is point data. |
---|
5133 | fid = NetCDFFile(sww_file) |
---|
5134 | |
---|
5135 | |
---|
5136 | # Make x and y absolute |
---|
5137 | x = fid.variables['x'][:] |
---|
5138 | y = fid.variables['y'][:] |
---|
5139 | geo_reference = Geo_reference(NetCDFObject=fid) |
---|
5140 | points = geo_reference.get_absolute(map(None, x, y)) |
---|
5141 | points = ensure_numeric(points) |
---|
5142 | x = points[:,0] |
---|
5143 | y = points[:,1] |
---|
5144 | |
---|
5145 | #Check that first coordinate is correctly represented |
---|
5146 | #Work out the UTM coordinates for first point |
---|
5147 | zone, e, n = redfearn(-34.5, 150.66667) |
---|
5148 | assert allclose([x[0],y[0]], [e,n]) |
---|
5149 | |
---|
5150 | |
---|
5151 | #Check first value |
---|
5152 | stage = fid.variables['stage'][:] |
---|
5153 | xmomentum = fid.variables['xmomentum'][:] |
---|
5154 | ymomentum = fid.variables['ymomentum'][:] |
---|
5155 | elevation = fid.variables['elevation'][:] |
---|
5156 | assert allclose(stage[0,0], e +tide) #Meters |
---|
5157 | |
---|
5158 | #Check the momentums - ua |
---|
5159 | #momentum = velocity*(stage-elevation) |
---|
5160 | #momentum = velocity*(stage+elevation) |
---|
5161 | # -(-elevation) since elevation is inverted in mux files |
---|
5162 | # = n*(e+tide+n) based on how I'm writing these files |
---|
5163 | answer = n*(e+tide+n) |
---|
5164 | actual = xmomentum[0,0] |
---|
5165 | assert allclose(answer, actual) #Meters |
---|
5166 | |
---|
5167 | # check the stage values, first time step. |
---|
5168 | # These arrays are equal since the Easting values were used as |
---|
5169 | # the stage |
---|
5170 | assert allclose(stage[0], x +tide) #Meters |
---|
5171 | |
---|
5172 | # check the elevation values. |
---|
5173 | # -ve since urs measures depth, sww meshers height, |
---|
5174 | # these arrays are equal since the northing values were used as |
---|
5175 | # the elevation |
---|
5176 | assert allclose(-elevation, y) #Meters |
---|
5177 | |
---|
5178 | fid.close() |
---|
5179 | self.delete_mux(files) |
---|
5180 | os.remove(sww_file) |
---|
5181 | |
---|
5182 | def test_lon_lat2grid(self): |
---|
5183 | lonlatdep = [ |
---|
5184 | [ 113.06700134 , -26.06669998 , 1. ] , |
---|
5185 | [ 113.06700134 , -26.33329964 , 3. ] , |
---|
5186 | [ 113.19999695 , -26.06669998 , 2. ] , |
---|
5187 | [ 113.19999695 , -26.33329964 , 4. ] ] |
---|
5188 | |
---|
5189 | long, lat, quantity = lon_lat2grid(lonlatdep) |
---|
5190 | |
---|
5191 | for i, result in enumerate(lat): |
---|
5192 | assert lonlatdep [i][1] == result |
---|
5193 | assert len(lat) == 2 |
---|
5194 | |
---|
5195 | for i, result in enumerate(long): |
---|
5196 | assert lonlatdep [i*2][0] == result |
---|
5197 | assert len(long) == 2 |
---|
5198 | |
---|
5199 | for i,q in enumerate(quantity): |
---|
5200 | assert q == i+1 |
---|
5201 | |
---|
5202 | def test_lon_lat2grid_bad(self): |
---|
5203 | lonlatdep = [ |
---|
5204 | [ -26.06669998, 113.06700134, 1. ], |
---|
5205 | [ -26.06669998 , 113.19999695 , 2. ], |
---|
5206 | [ -26.06669998 , 113.33300018, 3. ], |
---|
5207 | [ -26.06669998 , 113.43299866 , 4. ], |
---|
5208 | [ -26.20000076 , 113.06700134, 5. ], |
---|
5209 | [ -26.20000076 , 113.19999695 , 6. ], |
---|
5210 | [ -26.20000076 , 113.33300018 , 7. ], |
---|
5211 | [ -26.20000076 , 113.43299866 , 8. ], |
---|
5212 | [ -26.33329964 , 113.06700134, 9. ], |
---|
5213 | [ -26.33329964 , 113.19999695 , 10. ], |
---|
5214 | [ -26.33329964 , 113.33300018 , 11. ], |
---|
5215 | [ -26.33329964 , 113.43299866 , 12. ], |
---|
5216 | [ -26.43330002 , 113.06700134 , 13 ], |
---|
5217 | [ -26.43330002 , 113.19999695 , 14. ], |
---|
5218 | [ -26.43330002 , 113.33300018, 15. ], |
---|
5219 | [ -26.43330002 , 113.43299866, 16. ]] |
---|
5220 | try: |
---|
5221 | long, lat, quantity = lon_lat2grid(lonlatdep) |
---|
5222 | except AssertionError: |
---|
5223 | pass |
---|
5224 | else: |
---|
5225 | msg = 'Should have raised exception' |
---|
5226 | raise msg |
---|
5227 | |
---|
5228 | def test_lon_lat2gridII(self): |
---|
5229 | lonlatdep = [ |
---|
5230 | [ 113.06700134 , -26.06669998 , 1. ] , |
---|
5231 | [ 113.06700134 , -26.33329964 , 2. ] , |
---|
5232 | [ 113.19999695 , -26.06669998 , 3. ] , |
---|
5233 | [ 113.19999695 , -26.344329964 , 4. ] ] |
---|
5234 | try: |
---|
5235 | long, lat, quantity = lon_lat2grid(lonlatdep) |
---|
5236 | except AssertionError: |
---|
5237 | pass |
---|
5238 | else: |
---|
5239 | msg = 'Should have raised exception' |
---|
5240 | raise msg |
---|
5241 | |
---|
5242 | #### END TESTS FOR URS 2 SWW ### |
---|
5243 | |
---|
5244 | #### TESTS URS UNGRIDDED 2 SWW ### |
---|
5245 | def test_URS_points_needed(self): |
---|
5246 | |
---|
5247 | ll_lat = -21.5 |
---|
5248 | ll_long = 114.5 |
---|
5249 | grid_spacing = 1./60. |
---|
5250 | lat_amount = 30 |
---|
5251 | long_amount = 30 |
---|
5252 | zone = 50 |
---|
5253 | |
---|
5254 | boundary_polygon = [[250000,7660000],[280000,7660000], |
---|
5255 | [280000,7630000],[250000,7630000]] |
---|
5256 | geo=URS_points_needed(boundary_polygon, zone, |
---|
5257 | ll_lat, ll_long, grid_spacing, |
---|
5258 | lat_amount, long_amount) |
---|
5259 | # to test this geo, can info from it be transfered onto the boundary |
---|
5260 | # poly? |
---|
5261 | #Maybe see if I can fit the data to the polygon - have to represent |
---|
5262 | # the poly as points though. |
---|
5263 | #geo.export_points_file("results.txt", as_lat_long=True) |
---|
5264 | results = ImmutableSet(geo.get_data_points(as_lat_long=True)) |
---|
5265 | #print 'results',results |
---|
5266 | |
---|
5267 | # These are a set of points that have to be in results |
---|
5268 | points = [] |
---|
5269 | for i in range(18): |
---|
5270 | lat = -21.0 - 8./60 - grid_spacing * i |
---|
5271 | points.append((lat,degminsec2decimal_degrees(114,35,0))) |
---|
5272 | points.append((lat,degminsec2decimal_degrees(114,36,0))) |
---|
5273 | points.append((lat,degminsec2decimal_degrees(114,52,0))) |
---|
5274 | points.append((lat,degminsec2decimal_degrees(114,53,0))) |
---|
5275 | geo_answer = Geospatial_data(data_points=points, |
---|
5276 | points_are_lats_longs=True) |
---|
5277 | #geo_answer.export_points_file("answer.txt", as_lat_long=True) |
---|
5278 | answer = ImmutableSet(points) |
---|
5279 | |
---|
5280 | outs = answer.difference(results) |
---|
5281 | #print "outs", outs |
---|
5282 | # This doesn't work. Though visualising the results shows that |
---|
5283 | # it is correct. |
---|
5284 | #assert answer.issubset(results) |
---|
5285 | # this is why; |
---|
5286 | #point (-21.133333333333333, 114.58333333333333) |
---|
5287 | #result (-21.133333332232368, 114.58333333300342) |
---|
5288 | |
---|
5289 | for point in points: |
---|
5290 | found = False |
---|
5291 | for result in results: |
---|
5292 | if allclose(point, result): |
---|
5293 | found = True |
---|
5294 | break |
---|
5295 | if not found: |
---|
5296 | assert False |
---|
5297 | |
---|
5298 | |
---|
5299 | def dave_test_URS_points_needed(self): |
---|
5300 | ll_lat = -21.51667 |
---|
5301 | ll_long = 114.51667 |
---|
5302 | grid_spacing = 2./60. |
---|
5303 | lat_amount = 15 |
---|
5304 | long_amount = 15 |
---|
5305 | |
---|
5306 | |
---|
5307 | boundary_polygon = [[250000,7660000],[280000,7660000], |
---|
5308 | [280000,7630000],[250000,7630000]] |
---|
5309 | URS_points_needed_to_file('a_test_example',boundary_polygon, ll_lat, ll_long, grid_spacing, \ |
---|
5310 | lat_amount, long_amount) |
---|
5311 | |
---|
5312 | def X_test_URS_points_neededII(self): |
---|
5313 | ll_lat = -21.5 |
---|
5314 | ll_long = 114.5 |
---|
5315 | grid_spacing = 1./60. |
---|
5316 | lat_amount = 30 |
---|
5317 | long_amount = 30 |
---|
5318 | |
---|
5319 | # change this so lats and longs are inputed, then converted |
---|
5320 | |
---|
5321 | #boundary_polygon = [[7660000,250000],[7660000,280000], |
---|
5322 | # [7630000,280000],[7630000,250000]] |
---|
5323 | URS_points_needed(boundary_polygon, ll_lat, ll_long, grid_spacing, \ |
---|
5324 | lat_amount, long_amount) |
---|
5325 | |
---|
5326 | #### END TESTS URS UNGRIDDED 2 SWW ### |
---|
5327 | def test_Urs_points(self): |
---|
5328 | time_step_count = 3 |
---|
5329 | time_step = 2 |
---|
5330 | lat_long_points =[(-21.5,114.5),(-21.5,115),(-21.,115)] |
---|
5331 | base_name, files = self.write_mux(lat_long_points, |
---|
5332 | time_step_count, time_step) |
---|
5333 | for file in files: |
---|
5334 | urs = Urs_points(file) |
---|
5335 | assert time_step_count == urs.time_step_count |
---|
5336 | assert time_step == urs.time_step |
---|
5337 | |
---|
5338 | for lat_lon, dep in map(None, lat_long_points, urs.lonlatdep): |
---|
5339 | _ , e, n = redfearn(lat_lon[0], lat_lon[1]) |
---|
5340 | assert allclose(n, dep[2]) |
---|
5341 | |
---|
5342 | count = 0 |
---|
5343 | for slice in urs: |
---|
5344 | count += 1 |
---|
5345 | #print slice |
---|
5346 | for lat_lon, quantity in map(None, lat_long_points, slice): |
---|
5347 | _ , e, n = redfearn(lat_lon[0], lat_lon[1]) |
---|
5348 | #print "quantity", quantity |
---|
5349 | #print "e", e |
---|
5350 | #print "n", n |
---|
5351 | if file[-5:] == 'z-mux' or file[-5:] == 'n-mux' : |
---|
5352 | assert allclose(e, quantity) |
---|
5353 | if file[-5:] == 'e-mux': |
---|
5354 | assert allclose(n, quantity) |
---|
5355 | assert count == time_step_count |
---|
5356 | |
---|
5357 | self.delete_mux(files) |
---|
5358 | |
---|
5359 | def test_urs_ungridded2sww (self): |
---|
5360 | |
---|
5361 | #Zone: 50 |
---|
5362 | #Easting: 240992.578 Northing: 7620442.472 |
---|
5363 | #Latitude: -21 30 ' 0.00000 '' Longitude: 114 30 ' 0.00000 '' |
---|
5364 | lat_long = [[-21.5,114.5],[-21,114.5],[-21,115]] |
---|
5365 | time_step_count = 2 |
---|
5366 | time_step = 400 |
---|
5367 | tide = 9000000 |
---|
5368 | base_name, files = self.write_mux(lat_long, |
---|
5369 | time_step_count, time_step) |
---|
5370 | urs_ungridded2sww(base_name, mean_stage=tide) |
---|
5371 | |
---|
5372 | # now I want to check the sww file ... |
---|
5373 | sww_file = base_name + '.sww' |
---|
5374 | |
---|
5375 | #Let's interigate the sww file |
---|
5376 | # Note, the sww info is not gridded. It is point data. |
---|
5377 | fid = NetCDFFile(sww_file) |
---|
5378 | |
---|
5379 | # Make x and y absolute |
---|
5380 | x = fid.variables['x'][:] |
---|
5381 | y = fid.variables['y'][:] |
---|
5382 | geo_reference = Geo_reference(NetCDFObject=fid) |
---|
5383 | points = geo_reference.get_absolute(map(None, x, y)) |
---|
5384 | points = ensure_numeric(points) |
---|
5385 | x = points[:,0] |
---|
5386 | y = points[:,1] |
---|
5387 | |
---|
5388 | #Check that first coordinate is correctly represented |
---|
5389 | #Work out the UTM coordinates for first point |
---|
5390 | zone, e, n = redfearn(lat_long[0][0], lat_long[0][1]) |
---|
5391 | assert allclose([x[0],y[0]], [e,n]) |
---|
5392 | |
---|
5393 | #Check the time vector |
---|
5394 | times = fid.variables['time'][:] |
---|
5395 | |
---|
5396 | times_actual = [] |
---|
5397 | for i in range(time_step_count): |
---|
5398 | times_actual.append(time_step * i) |
---|
5399 | |
---|
5400 | assert allclose(ensure_numeric(times), |
---|
5401 | ensure_numeric(times_actual)) |
---|
5402 | |
---|
5403 | #Check first value |
---|
5404 | stage = fid.variables['stage'][:] |
---|
5405 | xmomentum = fid.variables['xmomentum'][:] |
---|
5406 | ymomentum = fid.variables['ymomentum'][:] |
---|
5407 | elevation = fid.variables['elevation'][:] |
---|
5408 | assert allclose(stage[0,0], e +tide) #Meters |
---|
5409 | |
---|
5410 | |
---|
5411 | #Check the momentums - ua |
---|
5412 | #momentum = velocity*(stage-elevation) |
---|
5413 | # elevation = - depth |
---|
5414 | #momentum = velocity_ua *(stage+depth) |
---|
5415 | # = n*(e+tide+n) based on how I'm writing these files |
---|
5416 | # |
---|
5417 | answer_x = n*(e+tide+n) |
---|
5418 | actual_x = xmomentum[0,0] |
---|
5419 | #print "answer_x",answer_x |
---|
5420 | #print "actual_x",actual_x |
---|
5421 | assert allclose(answer_x, actual_x) #Meters |
---|
5422 | |
---|
5423 | #Check the momentums - va |
---|
5424 | #momentum = velocity*(stage-elevation) |
---|
5425 | # elevation = - depth |
---|
5426 | #momentum = velocity_va *(stage+depth) |
---|
5427 | # = e*(e+tide+n) based on how I'm writing these files |
---|
5428 | # |
---|
5429 | answer_y = -1*e*(e+tide+n) |
---|
5430 | actual_y = ymomentum[0,0] |
---|
5431 | #print "answer_y",answer_y |
---|
5432 | #print "actual_y",actual_y |
---|
5433 | assert allclose(answer_y, actual_y) #Meters |
---|
5434 | |
---|
5435 | # check the stage values, first time step. |
---|
5436 | # These arrays are equal since the Easting values were used as |
---|
5437 | # the stage |
---|
5438 | assert allclose(stage[0], x +tide) #Meters |
---|
5439 | # check the elevation values. |
---|
5440 | # -ve since urs measures depth, sww meshers height, |
---|
5441 | # these arrays are equal since the northing values were used as |
---|
5442 | # the elevation |
---|
5443 | assert allclose(-elevation, y) #Meters |
---|
5444 | |
---|
5445 | fid.close() |
---|
5446 | self.delete_mux(files) |
---|
5447 | os.remove(sww_file) |
---|
5448 | |
---|
5449 | def test_urs_ungridded2swwII (self): |
---|
5450 | |
---|
5451 | #Zone: 50 |
---|
5452 | #Easting: 240992.578 Northing: 7620442.472 |
---|
5453 | #Latitude: -21 30 ' 0.00000 '' Longitude: 114 30 ' 0.00000 '' |
---|
5454 | lat_long = [[-21.5,114.5],[-21,114.5],[-21,115]] |
---|
5455 | time_step_count = 2 |
---|
5456 | time_step = 400 |
---|
5457 | tide = 9000000 |
---|
5458 | geo_reference = Geo_reference(50, 3434543,34534543) |
---|
5459 | base_name, files = self.write_mux(lat_long, |
---|
5460 | time_step_count, time_step) |
---|
5461 | urs_ungridded2sww(base_name, mean_stage=tide, origin = geo_reference) |
---|
5462 | |
---|
5463 | # now I want to check the sww file ... |
---|
5464 | sww_file = base_name + '.sww' |
---|
5465 | |
---|
5466 | #Let's interigate the sww file |
---|
5467 | # Note, the sww info is not gridded. It is point data. |
---|
5468 | fid = NetCDFFile(sww_file) |
---|
5469 | |
---|
5470 | # Make x and y absolute |
---|
5471 | x = fid.variables['x'][:] |
---|
5472 | y = fid.variables['y'][:] |
---|
5473 | geo_reference = Geo_reference(NetCDFObject=fid) |
---|
5474 | points = geo_reference.get_absolute(map(None, x, y)) |
---|
5475 | points = ensure_numeric(points) |
---|
5476 | x = points[:,0] |
---|
5477 | y = points[:,1] |
---|
5478 | |
---|
5479 | #Check that first coordinate is correctly represented |
---|
5480 | #Work out the UTM coordinates for first point |
---|
5481 | zone, e, n = redfearn(lat_long[0][0], lat_long[0][1]) |
---|
5482 | assert allclose([x[0],y[0]], [e,n]) |
---|
5483 | |
---|
5484 | #Check the time vector |
---|
5485 | times = fid.variables['time'][:] |
---|
5486 | |
---|
5487 | times_actual = [] |
---|
5488 | for i in range(time_step_count): |
---|
5489 | times_actual.append(time_step * i) |
---|
5490 | |
---|
5491 | assert allclose(ensure_numeric(times), |
---|
5492 | ensure_numeric(times_actual)) |
---|
5493 | |
---|
5494 | #Check first value |
---|
5495 | stage = fid.variables['stage'][:] |
---|
5496 | xmomentum = fid.variables['xmomentum'][:] |
---|
5497 | ymomentum = fid.variables['ymomentum'][:] |
---|
5498 | elevation = fid.variables['elevation'][:] |
---|
5499 | assert allclose(stage[0,0], e +tide) #Meters |
---|
5500 | |
---|
5501 | #Check the momentums - ua |
---|
5502 | #momentum = velocity*(stage-elevation) |
---|
5503 | # elevation = - depth |
---|
5504 | #momentum = velocity_ua *(stage+depth) |
---|
5505 | # = n*(e+tide+n) based on how I'm writing these files |
---|
5506 | # |
---|
5507 | answer_x = n*(e+tide+n) |
---|
5508 | actual_x = xmomentum[0,0] |
---|
5509 | #print "answer_x",answer_x |
---|
5510 | #print "actual_x",actual_x |
---|
5511 | assert allclose(answer_x, actual_x) #Meters |
---|
5512 | |
---|
5513 | #Check the momentums - va |
---|
5514 | #momentum = velocity*(stage-elevation) |
---|
5515 | # elevation = - depth |
---|
5516 | #momentum = velocity_va *(stage+depth) |
---|
5517 | # = e*(e+tide+n) based on how I'm writing these files |
---|
5518 | # |
---|
5519 | answer_y = -1*e*(e+tide+n) |
---|
5520 | actual_y = ymomentum[0,0] |
---|
5521 | #print "answer_y",answer_y |
---|
5522 | #print "actual_y",actual_y |
---|
5523 | assert allclose(answer_y, actual_y) #Meters |
---|
5524 | |
---|
5525 | # check the stage values, first time step. |
---|
5526 | # These arrays are equal since the Easting values were used as |
---|
5527 | # the stage |
---|
5528 | assert allclose(stage[0], x +tide) #Meters |
---|
5529 | # check the elevation values. |
---|
5530 | # -ve since urs measures depth, sww meshers height, |
---|
5531 | # these arrays are equal since the northing values were used as |
---|
5532 | # the elevation |
---|
5533 | assert allclose(-elevation, y) #Meters |
---|
5534 | |
---|
5535 | fid.close() |
---|
5536 | self.delete_mux(files) |
---|
5537 | #os.remove(sww_file) |
---|
5538 | |
---|
5539 | def test_urs_ungridded2swwIII (self): |
---|
5540 | |
---|
5541 | #Zone: 50 |
---|
5542 | #Easting: 240992.578 Northing: 7620442.472 |
---|
5543 | #Latitude: -21 30 ' 0.00000 '' Longitude: 114 30 ' 0.00000 '' |
---|
5544 | lat_long = [[-21.5,114.5],[-21,114.5],[-21,115]] |
---|
5545 | time_step_count = 2 |
---|
5546 | time_step = 400 |
---|
5547 | tide = 9000000 |
---|
5548 | base_name, files = self.write_mux(lat_long, |
---|
5549 | time_step_count, time_step) |
---|
5550 | urs_ungridded2sww(base_name, mean_stage=tide, origin =(50,23432,4343)) |
---|
5551 | |
---|
5552 | # now I want to check the sww file ... |
---|
5553 | sww_file = base_name + '.sww' |
---|
5554 | |
---|
5555 | #Let's interigate the sww file |
---|
5556 | # Note, the sww info is not gridded. It is point data. |
---|
5557 | fid = NetCDFFile(sww_file) |
---|
5558 | |
---|
5559 | # Make x and y absolute |
---|
5560 | x = fid.variables['x'][:] |
---|
5561 | y = fid.variables['y'][:] |
---|
5562 | geo_reference = Geo_reference(NetCDFObject=fid) |
---|
5563 | points = geo_reference.get_absolute(map(None, x, y)) |
---|
5564 | points = ensure_numeric(points) |
---|
5565 | x = points[:,0] |
---|
5566 | y = points[:,1] |
---|
5567 | |
---|
5568 | #Check that first coordinate is correctly represented |
---|
5569 | #Work out the UTM coordinates for first point |
---|
5570 | zone, e, n = redfearn(lat_long[0][0], lat_long[0][1]) |
---|
5571 | assert allclose([x[0],y[0]], [e,n]) |
---|
5572 | |
---|
5573 | #Check the time vector |
---|
5574 | times = fid.variables['time'][:] |
---|
5575 | |
---|
5576 | times_actual = [] |
---|
5577 | for i in range(time_step_count): |
---|
5578 | times_actual.append(time_step * i) |
---|
5579 | |
---|
5580 | assert allclose(ensure_numeric(times), |
---|
5581 | ensure_numeric(times_actual)) |
---|
5582 | |
---|
5583 | #Check first value |
---|
5584 | stage = fid.variables['stage'][:] |
---|
5585 | xmomentum = fid.variables['xmomentum'][:] |
---|
5586 | ymomentum = fid.variables['ymomentum'][:] |
---|
5587 | elevation = fid.variables['elevation'][:] |
---|
5588 | assert allclose(stage[0,0], e +tide) #Meters |
---|
5589 | |
---|
5590 | #Check the momentums - ua |
---|
5591 | #momentum = velocity*(stage-elevation) |
---|
5592 | # elevation = - depth |
---|
5593 | #momentum = velocity_ua *(stage+depth) |
---|
5594 | # = n*(e+tide+n) based on how I'm writing these files |
---|
5595 | # |
---|
5596 | answer_x = n*(e+tide+n) |
---|
5597 | actual_x = xmomentum[0,0] |
---|
5598 | #print "answer_x",answer_x |
---|
5599 | #print "actual_x",actual_x |
---|
5600 | assert allclose(answer_x, actual_x) #Meters |
---|
5601 | |
---|
5602 | #Check the momentums - va |
---|
5603 | #momentum = velocity*(stage-elevation) |
---|
5604 | # elevation = - depth |
---|
5605 | #momentum = velocity_va *(stage+depth) |
---|
5606 | # = e*(e+tide+n) based on how I'm writing these files |
---|
5607 | # |
---|
5608 | answer_y = -1*e*(e+tide+n) |
---|
5609 | actual_y = ymomentum[0,0] |
---|
5610 | #print "answer_y",answer_y |
---|
5611 | #print "actual_y",actual_y |
---|
5612 | assert allclose(answer_y, actual_y) #Meters |
---|
5613 | |
---|
5614 | # check the stage values, first time step. |
---|
5615 | # These arrays are equal since the Easting values were used as |
---|
5616 | # the stage |
---|
5617 | assert allclose(stage[0], x +tide) #Meters |
---|
5618 | # check the elevation values. |
---|
5619 | # -ve since urs measures depth, sww meshers height, |
---|
5620 | # these arrays are equal since the northing values were used as |
---|
5621 | # the elevation |
---|
5622 | assert allclose(-elevation, y) #Meters |
---|
5623 | |
---|
5624 | fid.close() |
---|
5625 | self.delete_mux(files) |
---|
5626 | os.remove(sww_file) |
---|
5627 | |
---|
5628 | def test_urs_ungridded2sww_mint_maxt (self): |
---|
5629 | |
---|
5630 | #Zone: 50 |
---|
5631 | #Easting: 240992.578 Northing: 7620442.472 |
---|
5632 | #Latitude: -21 30 ' 0.00000 '' Longitude: 114 30 ' 0.00000 '' |
---|
5633 | lat_long = [[-21.5,114.5],[-21,114.5],[-21,115]] |
---|
5634 | time_step_count = 6 |
---|
5635 | time_step = 100 |
---|
5636 | tide = 9000000 |
---|
5637 | base_name, files = self.write_mux(lat_long, |
---|
5638 | time_step_count, time_step) |
---|
5639 | urs_ungridded2sww(base_name, mean_stage=tide, origin =(50,23432,4343), |
---|
5640 | mint=101, maxt=500) |
---|
5641 | |
---|
5642 | # now I want to check the sww file ... |
---|
5643 | sww_file = base_name + '.sww' |
---|
5644 | |
---|
5645 | #Let's interigate the sww file |
---|
5646 | # Note, the sww info is not gridded. It is point data. |
---|
5647 | fid = NetCDFFile(sww_file) |
---|
5648 | |
---|
5649 | # Make x and y absolute |
---|
5650 | x = fid.variables['x'][:] |
---|
5651 | y = fid.variables['y'][:] |
---|
5652 | geo_reference = Geo_reference(NetCDFObject=fid) |
---|
5653 | points = geo_reference.get_absolute(map(None, x, y)) |
---|
5654 | points = ensure_numeric(points) |
---|
5655 | x = points[:,0] |
---|
5656 | y = points[:,1] |
---|
5657 | |
---|
5658 | #Check that first coordinate is correctly represented |
---|
5659 | #Work out the UTM coordinates for first point |
---|
5660 | zone, e, n = redfearn(lat_long[0][0], lat_long[0][1]) |
---|
5661 | assert allclose([x[0],y[0]], [e,n]) |
---|
5662 | |
---|
5663 | #Check the time vector |
---|
5664 | times = fid.variables['time'][:] |
---|
5665 | |
---|
5666 | times_actual = [200,300,400,500] |
---|
5667 | |
---|
5668 | assert allclose(ensure_numeric(times), |
---|
5669 | ensure_numeric(times_actual)) |
---|
5670 | |
---|
5671 | #Check first value |
---|
5672 | stage = fid.variables['stage'][:] |
---|
5673 | xmomentum = fid.variables['xmomentum'][:] |
---|
5674 | ymomentum = fid.variables['ymomentum'][:] |
---|
5675 | elevation = fid.variables['elevation'][:] |
---|
5676 | assert allclose(stage[0,0], e +tide) #Meters |
---|
5677 | |
---|
5678 | #Check the momentums - ua |
---|
5679 | #momentum = velocity*(stage-elevation) |
---|
5680 | # elevation = - depth |
---|
5681 | #momentum = velocity_ua *(stage+depth) |
---|
5682 | # = n*(e+tide+n) based on how I'm writing these files |
---|
5683 | # |
---|
5684 | answer_x = n*(e+tide+n) |
---|
5685 | actual_x = xmomentum[0,0] |
---|
5686 | #print "answer_x",answer_x |
---|
5687 | #print "actual_x",actual_x |
---|
5688 | assert allclose(answer_x, actual_x) #Meters |
---|
5689 | |
---|
5690 | #Check the momentums - va |
---|
5691 | #momentum = velocity*(stage-elevation) |
---|
5692 | # elevation = - depth |
---|
5693 | #momentum = velocity_va *(stage+depth) |
---|
5694 | # = e*(e+tide+n) based on how I'm writing these files |
---|
5695 | # |
---|
5696 | answer_y = -1*e*(e+tide+n) |
---|
5697 | actual_y = ymomentum[0,0] |
---|
5698 | #print "answer_y",answer_y |
---|
5699 | #print "actual_y",actual_y |
---|
5700 | assert allclose(answer_y, actual_y) #Meters |
---|
5701 | |
---|
5702 | # check the stage values, first time step. |
---|
5703 | # These arrays are equal since the Easting values were used as |
---|
5704 | # the stage |
---|
5705 | assert allclose(stage[0], x +tide) #Meters |
---|
5706 | # check the elevation values. |
---|
5707 | # -ve since urs measures depth, sww meshers height, |
---|
5708 | # these arrays are equal since the northing values were used as |
---|
5709 | # the elevation |
---|
5710 | assert allclose(-elevation, y) #Meters |
---|
5711 | |
---|
5712 | fid.close() |
---|
5713 | self.delete_mux(files) |
---|
5714 | os.remove(sww_file) |
---|
5715 | |
---|
5716 | def test_urs_ungridded2sww_mint_maxtII (self): |
---|
5717 | |
---|
5718 | #Zone: 50 |
---|
5719 | #Easting: 240992.578 Northing: 7620442.472 |
---|
5720 | #Latitude: -21 30 ' 0.00000 '' Longitude: 114 30 ' 0.00000 '' |
---|
5721 | lat_long = [[-21.5,114.5],[-21,114.5],[-21,115]] |
---|
5722 | time_step_count = 6 |
---|
5723 | time_step = 100 |
---|
5724 | tide = 9000000 |
---|
5725 | base_name, files = self.write_mux(lat_long, |
---|
5726 | time_step_count, time_step) |
---|
5727 | urs_ungridded2sww(base_name, mean_stage=tide, origin =(50,23432,4343), |
---|
5728 | mint=0, maxt=100000) |
---|
5729 | |
---|
5730 | # now I want to check the sww file ... |
---|
5731 | sww_file = base_name + '.sww' |
---|
5732 | |
---|
5733 | #Let's interigate the sww file |
---|
5734 | # Note, the sww info is not gridded. It is point data. |
---|
5735 | fid = NetCDFFile(sww_file) |
---|
5736 | |
---|
5737 | # Make x and y absolute |
---|
5738 | geo_reference = Geo_reference(NetCDFObject=fid) |
---|
5739 | points = geo_reference.get_absolute(map(None, fid.variables['x'][:], |
---|
5740 | fid.variables['y'][:])) |
---|
5741 | points = ensure_numeric(points) |
---|
5742 | x = points[:,0] |
---|
5743 | |
---|
5744 | #Check the time vector |
---|
5745 | times = fid.variables['time'][:] |
---|
5746 | |
---|
5747 | times_actual = [0,100,200,300,400,500] |
---|
5748 | assert allclose(ensure_numeric(times), |
---|
5749 | ensure_numeric(times_actual)) |
---|
5750 | |
---|
5751 | #Check first value |
---|
5752 | stage = fid.variables['stage'][:] |
---|
5753 | assert allclose(stage[0], x +tide) |
---|
5754 | |
---|
5755 | fid.close() |
---|
5756 | self.delete_mux(files) |
---|
5757 | os.remove(sww_file) |
---|
5758 | |
---|
5759 | def test_urs_ungridded2sww_mint_maxtIII (self): |
---|
5760 | |
---|
5761 | #Zone: 50 |
---|
5762 | #Easting: 240992.578 Northing: 7620442.472 |
---|
5763 | #Latitude: -21 30 ' 0.00000 '' Longitude: 114 30 ' 0.00000 '' |
---|
5764 | lat_long = [[-21.5,114.5],[-21,114.5],[-21,115]] |
---|
5765 | time_step_count = 6 |
---|
5766 | time_step = 100 |
---|
5767 | tide = 9000000 |
---|
5768 | base_name, files = self.write_mux(lat_long, |
---|
5769 | time_step_count, time_step) |
---|
5770 | try: |
---|
5771 | urs_ungridded2sww(base_name, mean_stage=tide, |
---|
5772 | origin =(50,23432,4343), |
---|
5773 | mint=301, maxt=399) |
---|
5774 | except: |
---|
5775 | pass |
---|
5776 | else: |
---|
5777 | self.failUnless(0 ==1, 'Bad input did not throw exception error!') |
---|
5778 | |
---|
5779 | self.delete_mux(files) |
---|
5780 | |
---|
5781 | def test_URS_points_needed_and_urs_ungridded2sww(self): |
---|
5782 | # This doesn't actually check anything |
---|
5783 | # |
---|
5784 | ll_lat = -21.5 |
---|
5785 | ll_long = 114.5 |
---|
5786 | grid_spacing = 1./60. |
---|
5787 | lat_amount = 30 |
---|
5788 | long_amount = 30 |
---|
5789 | time_step_count = 2 |
---|
5790 | time_step = 400 |
---|
5791 | tide = -200000 |
---|
5792 | zone = 50 |
---|
5793 | |
---|
5794 | boundary_polygon = [[250000,7660000],[280000,7660000], |
---|
5795 | [280000,7630000],[250000,7630000]] |
---|
5796 | geo=URS_points_needed(boundary_polygon, zone, |
---|
5797 | ll_lat, ll_long, grid_spacing, |
---|
5798 | lat_amount, long_amount) |
---|
5799 | lat_long = geo.get_data_points(as_lat_long=True) |
---|
5800 | base_name, files = self.write_mux(lat_long, |
---|
5801 | time_step_count, time_step) |
---|
5802 | urs_ungridded2sww(base_name, mean_stage=tide) |
---|
5803 | self.delete_mux(files) |
---|
5804 | os.remove( base_name + '.sww') |
---|
5805 | |
---|
5806 | def cache_test_URS_points_needed_and_urs_ungridded2sww(self): |
---|
5807 | |
---|
5808 | ll_lat = -21.5 |
---|
5809 | ll_long = 114.5 |
---|
5810 | grid_spacing = 1./60. |
---|
5811 | lat_amount = 30 |
---|
5812 | long_amount = 30 |
---|
5813 | time_step_count = 2 |
---|
5814 | time_step = 400 |
---|
5815 | tide = -200000 |
---|
5816 | zone = 50 |
---|
5817 | |
---|
5818 | boundary_polygon = [[250000,7660000],[270000,7650000], |
---|
5819 | [280000,7630000],[250000,7630000]] |
---|
5820 | geo=URS_points_needed(boundary_polygon, zone, |
---|
5821 | ll_lat, ll_long, grid_spacing, |
---|
5822 | lat_amount, long_amount, use_cache=True, |
---|
5823 | verbose=True) |
---|
5824 | |
---|
5825 | def visual_test_URS_points_needed_and_urs_ungridded2sww(self): |
---|
5826 | |
---|
5827 | ll_lat = -21.5 |
---|
5828 | ll_long = 114.5 |
---|
5829 | grid_spacing = 1./60. |
---|
5830 | lat_amount = 30 |
---|
5831 | long_amount = 30 |
---|
5832 | time_step_count = 2 |
---|
5833 | time_step = 400 |
---|
5834 | tide = -200000 |
---|
5835 | zone = 50 |
---|
5836 | |
---|
5837 | boundary_polygon = [[250000,7660000],[270000,7650000], |
---|
5838 | [280000,7630000],[250000,7630000]] |
---|
5839 | geo=URS_points_needed(boundary_polygon, zone, |
---|
5840 | ll_lat, ll_long, grid_spacing, |
---|
5841 | lat_amount, long_amount) |
---|
5842 | lat_long = geo.get_data_points(as_lat_long=True) |
---|
5843 | base_name, files = self.write_mux(lat_long, |
---|
5844 | time_step_count, time_step) |
---|
5845 | urs_ungridded2sww(base_name, mean_stage=tide) |
---|
5846 | self.delete_mux(files) |
---|
5847 | os.remove( base_name + '.sww') |
---|
5848 | # extend this so it interpolates onto the boundary. |
---|
5849 | # have it fail if there is NaN |
---|
5850 | |
---|
5851 | def davids_test_points_urs_ungridded2sww(self): |
---|
5852 | tide = 5.0 |
---|
5853 | base_name = 'o' |
---|
5854 | urs_ungridded2sww(base_name, mean_stage=tide) |
---|
5855 | |
---|