1 | #!/usr/bin/env python |
---|
2 | |
---|
3 | import unittest, os |
---|
4 | from math import sqrt, pi |
---|
5 | |
---|
6 | from anuga.config import g, epsilon |
---|
7 | from Numeric import allclose, array, zeros, ones, Float, take |
---|
8 | from anuga.utilities.numerical_tools import mean |
---|
9 | |
---|
10 | from shallow_water_domain import * |
---|
11 | |
---|
12 | |
---|
13 | #Variable windfield implemented using functions |
---|
14 | def speed(t,x,y): |
---|
15 | """Large speeds halfway between center and edges |
---|
16 | Low speeds at center and edges |
---|
17 | """ |
---|
18 | |
---|
19 | from math import sqrt, exp, cos, pi |
---|
20 | |
---|
21 | x = array(x) |
---|
22 | y = array(y) |
---|
23 | |
---|
24 | N = len(x) |
---|
25 | s = 0*x #New array |
---|
26 | |
---|
27 | for k in range(N): |
---|
28 | |
---|
29 | r = sqrt(x[k]**2 + y[k]**2) |
---|
30 | |
---|
31 | factor = exp( -(r-0.15)**2 ) |
---|
32 | |
---|
33 | s[k] = 4000 * factor * (cos(t*2*pi/150) + 2) |
---|
34 | |
---|
35 | return s |
---|
36 | |
---|
37 | |
---|
38 | def scalar_func(t,x,y): |
---|
39 | """Function that returns a scalar. |
---|
40 | Used to test error message when Numeric array is expected |
---|
41 | """ |
---|
42 | |
---|
43 | return 17.7 |
---|
44 | |
---|
45 | |
---|
46 | def angle(t,x,y): |
---|
47 | """Rotating field |
---|
48 | """ |
---|
49 | from math import sqrt, atan, pi |
---|
50 | |
---|
51 | x = array(x) |
---|
52 | y = array(y) |
---|
53 | |
---|
54 | N = len(x) |
---|
55 | a = 0*x #New array |
---|
56 | |
---|
57 | for k in range(N): |
---|
58 | r = sqrt(x[k]**2 + y[k]**2) |
---|
59 | |
---|
60 | angle = atan(y[k]/x[k]) |
---|
61 | |
---|
62 | if x[k] < 0: |
---|
63 | angle+=pi #atan in ]-pi/2; pi/2[ |
---|
64 | |
---|
65 | #Take normal direction |
---|
66 | angle -= pi/2 |
---|
67 | |
---|
68 | #Ensure positive radians |
---|
69 | if angle < 0: |
---|
70 | angle += 2*pi |
---|
71 | |
---|
72 | a[k] = angle/pi*180 |
---|
73 | |
---|
74 | return a |
---|
75 | |
---|
76 | |
---|
77 | class Test_Shallow_Water(unittest.TestCase): |
---|
78 | def setUp(self): |
---|
79 | pass |
---|
80 | |
---|
81 | def tearDown(self): |
---|
82 | pass |
---|
83 | |
---|
84 | def test_rotate(self): |
---|
85 | normal = array([0.0,-1.0]) |
---|
86 | |
---|
87 | q = array([1.0,2.0,3.0]) |
---|
88 | |
---|
89 | r = rotate(q, normal, direction = 1) |
---|
90 | assert r[0] == 1 |
---|
91 | assert r[1] == -3 |
---|
92 | assert r[2] == 2 |
---|
93 | |
---|
94 | w = rotate(r, normal, direction = -1) |
---|
95 | assert allclose(w, q) |
---|
96 | |
---|
97 | #Check error check |
---|
98 | try: |
---|
99 | rotate(r, array([1,1,1]) ) |
---|
100 | except: |
---|
101 | pass |
---|
102 | else: |
---|
103 | raise 'Should have raised an exception' |
---|
104 | |
---|
105 | def test_flux_zero_case(self): |
---|
106 | ql = zeros( 3, Float ) |
---|
107 | qr = zeros( 3, Float ) |
---|
108 | normal = zeros( 2, Float ) |
---|
109 | zl = zr = 0. |
---|
110 | flux, max_speed = flux_function(normal, ql, qr, zl, zr) |
---|
111 | |
---|
112 | assert allclose(flux, [0,0,0]) |
---|
113 | assert max_speed == 0. |
---|
114 | |
---|
115 | def test_flux_constants(self): |
---|
116 | w = 2.0 |
---|
117 | |
---|
118 | normal = array([1.,0]) |
---|
119 | ql = array([w, 0, 0]) |
---|
120 | qr = array([w, 0, 0]) |
---|
121 | zl = zr = 0. |
---|
122 | h = w - (zl+zr)/2 |
---|
123 | |
---|
124 | flux, max_speed = flux_function(normal, ql, qr, zl, zr) |
---|
125 | |
---|
126 | assert allclose(flux, [0., 0.5*g*h**2, 0.]) |
---|
127 | assert max_speed == sqrt(g*h) |
---|
128 | |
---|
129 | #def test_flux_slope(self): |
---|
130 | # #FIXME: TODO |
---|
131 | # w = 2.0 |
---|
132 | # |
---|
133 | # normal = array([1.,0]) |
---|
134 | # ql = array([w, 0, 0]) |
---|
135 | # qr = array([w, 0, 0]) |
---|
136 | # zl = zr = 0. |
---|
137 | # h = w - (zl+zr)/2 |
---|
138 | # |
---|
139 | # flux, max_speed = flux_function(normal, ql, qr, zl, zr) |
---|
140 | # |
---|
141 | # assert allclose(flux, [0., 0.5*g*h**2, 0.]) |
---|
142 | # assert max_speed == sqrt(g*h) |
---|
143 | |
---|
144 | |
---|
145 | def test_flux1(self): |
---|
146 | #Use data from previous version of abstract_2d_finite_volumes |
---|
147 | normal = array([1.,0]) |
---|
148 | ql = array([-0.2, 2, 3]) |
---|
149 | qr = array([-0.2, 2, 3]) |
---|
150 | zl = zr = -0.5 |
---|
151 | flux, max_speed = flux_function(normal, ql, qr, zl, zr) |
---|
152 | |
---|
153 | assert allclose(flux, [2.,13.77433333, 20.]) |
---|
154 | assert allclose(max_speed, 8.38130948661) |
---|
155 | |
---|
156 | |
---|
157 | def test_flux2(self): |
---|
158 | #Use data from previous version of abstract_2d_finite_volumes |
---|
159 | normal = array([0., -1.]) |
---|
160 | ql = array([-0.075, 2, 3]) |
---|
161 | qr = array([-0.075, 2, 3]) |
---|
162 | zl = zr = -0.375 |
---|
163 | flux, max_speed = flux_function(normal, ql, qr, zl, zr) |
---|
164 | |
---|
165 | assert allclose(flux, [-3.,-20.0, -30.441]) |
---|
166 | assert allclose(max_speed, 11.7146428199) |
---|
167 | |
---|
168 | def test_flux3(self): |
---|
169 | #Use data from previous version of abstract_2d_finite_volumes |
---|
170 | normal = array([-sqrt(2)/2, sqrt(2)/2]) |
---|
171 | ql = array([-0.075, 2, 3]) |
---|
172 | qr = array([-0.075, 2, 3]) |
---|
173 | zl = zr = -0.375 |
---|
174 | flux, max_speed = flux_function(normal, ql, qr, zl, zr) |
---|
175 | |
---|
176 | assert allclose(flux, [sqrt(2)/2, 4.40221112, 7.3829019]) |
---|
177 | assert allclose(max_speed, 4.0716654239) |
---|
178 | |
---|
179 | def test_flux4(self): |
---|
180 | #Use data from previous version of abstract_2d_finite_volumes |
---|
181 | normal = array([-sqrt(2)/2, sqrt(2)/2]) |
---|
182 | ql = array([-0.34319278, 0.10254161, 0.07273855]) |
---|
183 | qr = array([-0.30683287, 0.1071986, 0.05930515]) |
---|
184 | zl = zr = -0.375 |
---|
185 | flux, max_speed = flux_function(normal, ql, qr, zl, zr) |
---|
186 | |
---|
187 | assert allclose(flux, [-0.04072676, -0.07096636, -0.01604364]) |
---|
188 | assert allclose(max_speed, 1.31414103233) |
---|
189 | |
---|
190 | def test_sw_domain_simple(self): |
---|
191 | a = [0.0, 0.0] |
---|
192 | b = [0.0, 2.0] |
---|
193 | c = [2.0,0.0] |
---|
194 | d = [0.0, 4.0] |
---|
195 | e = [2.0, 2.0] |
---|
196 | f = [4.0,0.0] |
---|
197 | |
---|
198 | points = [a, b, c, d, e, f] |
---|
199 | #bac, bce, ecf, dbe, daf, dae |
---|
200 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
201 | |
---|
202 | |
---|
203 | #from anuga.abstract_2d_finite_volumes.domain import Domain as Generic_domain |
---|
204 | #msg = 'The class %s is not a subclass of the generic domain class %s'\ |
---|
205 | # %(DomainClass, Domain) |
---|
206 | #assert issubclass(DomainClass, Domain), msg |
---|
207 | |
---|
208 | domain = Domain(points, vertices) |
---|
209 | domain.check_integrity() |
---|
210 | |
---|
211 | for name in ['stage', 'xmomentum', 'ymomentum', |
---|
212 | 'elevation', 'friction']: |
---|
213 | assert domain.quantities.has_key(name) |
---|
214 | |
---|
215 | |
---|
216 | assert domain.get_conserved_quantities(0, edge=1) == 0. |
---|
217 | |
---|
218 | |
---|
219 | def test_boundary_conditions(self): |
---|
220 | |
---|
221 | a = [0.0, 0.0] |
---|
222 | b = [0.0, 2.0] |
---|
223 | c = [2.0,0.0] |
---|
224 | d = [0.0, 4.0] |
---|
225 | e = [2.0, 2.0] |
---|
226 | f = [4.0,0.0] |
---|
227 | |
---|
228 | points = [a, b, c, d, e, f] |
---|
229 | #bac, bce, ecf, dbe |
---|
230 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4] ] |
---|
231 | boundary = { (0, 0): 'Third', |
---|
232 | (0, 2): 'First', |
---|
233 | (2, 0): 'Second', |
---|
234 | (2, 1): 'Second', |
---|
235 | (3, 1): 'Second', |
---|
236 | (3, 2): 'Third'} |
---|
237 | |
---|
238 | |
---|
239 | domain = Domain(points, vertices, boundary) |
---|
240 | domain.check_integrity() |
---|
241 | |
---|
242 | |
---|
243 | domain.set_quantity('stage', [[1,2,3], [5,5,5], |
---|
244 | [0,0,9], [-6, 3, 3]]) |
---|
245 | |
---|
246 | domain.set_quantity('xmomentum', [[1,1,1], [2,2,2], |
---|
247 | [3,3,3], [4, 4, 4]]) |
---|
248 | |
---|
249 | domain.set_quantity('ymomentum', [[10,10,10], [20,20,20], |
---|
250 | [30,30,30], [40, 40, 40]]) |
---|
251 | |
---|
252 | |
---|
253 | D = Dirichlet_boundary([5,2,1]) |
---|
254 | T = Transmissive_boundary(domain) |
---|
255 | R = Reflective_boundary(domain) |
---|
256 | domain.set_boundary( {'First': D, 'Second': T, 'Third': R}) |
---|
257 | |
---|
258 | domain.update_boundary() |
---|
259 | |
---|
260 | #Stage |
---|
261 | assert domain.quantities['stage'].boundary_values[0] == 2.5 |
---|
262 | assert domain.quantities['stage'].boundary_values[0] ==\ |
---|
263 | domain.get_conserved_quantities(0, edge=0)[0] #Reflective (2.5) |
---|
264 | assert domain.quantities['stage'].boundary_values[1] == 5. #Dirichlet |
---|
265 | assert domain.quantities['stage'].boundary_values[2] ==\ |
---|
266 | domain.get_conserved_quantities(2, edge=0)[0] #Transmissive (4.5) |
---|
267 | assert domain.quantities['stage'].boundary_values[3] ==\ |
---|
268 | domain.get_conserved_quantities(2, edge=1)[0] #Transmissive (4.5) |
---|
269 | assert domain.quantities['stage'].boundary_values[4] ==\ |
---|
270 | domain.get_conserved_quantities(3, edge=1)[0] #Transmissive (-1.5) |
---|
271 | assert domain.quantities['stage'].boundary_values[5] ==\ |
---|
272 | domain.get_conserved_quantities(3, edge=2)[0] #Reflective (-1.5) |
---|
273 | |
---|
274 | #Xmomentum |
---|
275 | assert domain.quantities['xmomentum'].boundary_values[0] == 1.0 #Reflective |
---|
276 | assert domain.quantities['xmomentum'].boundary_values[1] == 2. #Dirichlet |
---|
277 | assert domain.quantities['xmomentum'].boundary_values[2] ==\ |
---|
278 | domain.get_conserved_quantities(2, edge=0)[1] #Transmissive |
---|
279 | assert domain.quantities['xmomentum'].boundary_values[3] ==\ |
---|
280 | domain.get_conserved_quantities(2, edge=1)[1] #Transmissive |
---|
281 | assert domain.quantities['xmomentum'].boundary_values[4] ==\ |
---|
282 | domain.get_conserved_quantities(3, edge=1)[1] #Transmissive |
---|
283 | assert domain.quantities['xmomentum'].boundary_values[5] == -4.0 #Reflective |
---|
284 | |
---|
285 | #Ymomentum |
---|
286 | assert domain.quantities['ymomentum'].boundary_values[0] == -10.0 #Reflective |
---|
287 | assert domain.quantities['ymomentum'].boundary_values[1] == 1. #Dirichlet |
---|
288 | assert domain.quantities['ymomentum'].boundary_values[2] == 30. #Transmissive |
---|
289 | assert domain.quantities['ymomentum'].boundary_values[3] == 30. #Transmissive |
---|
290 | assert domain.quantities['ymomentum'].boundary_values[4] == 40. #Transmissive |
---|
291 | assert domain.quantities['ymomentum'].boundary_values[5] == 40. #Reflective |
---|
292 | |
---|
293 | |
---|
294 | def test_boundary_conditionsII(self): |
---|
295 | |
---|
296 | a = [0.0, 0.0] |
---|
297 | b = [0.0, 2.0] |
---|
298 | c = [2.0,0.0] |
---|
299 | d = [0.0, 4.0] |
---|
300 | e = [2.0, 2.0] |
---|
301 | f = [4.0,0.0] |
---|
302 | |
---|
303 | points = [a, b, c, d, e, f] |
---|
304 | #bac, bce, ecf, dbe |
---|
305 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4] ] |
---|
306 | boundary = { (0, 0): 'Third', |
---|
307 | (0, 2): 'First', |
---|
308 | (2, 0): 'Second', |
---|
309 | (2, 1): 'Second', |
---|
310 | (3, 1): 'Second', |
---|
311 | (3, 2): 'Third', |
---|
312 | (0, 1): 'Internal'} |
---|
313 | |
---|
314 | |
---|
315 | domain = Domain(points, vertices, boundary) |
---|
316 | domain.check_integrity() |
---|
317 | |
---|
318 | |
---|
319 | domain.set_quantity('stage', [[1,2,3], [5,5,5], |
---|
320 | [0,0,9], [-6, 3, 3]]) |
---|
321 | |
---|
322 | domain.set_quantity('xmomentum', [[1,1,1], [2,2,2], |
---|
323 | [3,3,3], [4, 4, 4]]) |
---|
324 | |
---|
325 | domain.set_quantity('ymomentum', [[10,10,10], [20,20,20], |
---|
326 | [30,30,30], [40, 40, 40]]) |
---|
327 | |
---|
328 | |
---|
329 | D = Dirichlet_boundary([5,2,1]) |
---|
330 | T = Transmissive_boundary(domain) |
---|
331 | R = Reflective_boundary(domain) |
---|
332 | domain.set_boundary( {'First': D, 'Second': T, |
---|
333 | 'Third': R, 'Internal': None}) |
---|
334 | |
---|
335 | domain.update_boundary() |
---|
336 | domain.check_integrity() |
---|
337 | |
---|
338 | |
---|
339 | def test_compute_fluxes0(self): |
---|
340 | #Do a full triangle and check that fluxes cancel out for |
---|
341 | #the constant stage case |
---|
342 | |
---|
343 | a = [0.0, 0.0] |
---|
344 | b = [0.0, 2.0] |
---|
345 | c = [2.0,0.0] |
---|
346 | d = [0.0, 4.0] |
---|
347 | e = [2.0, 2.0] |
---|
348 | f = [4.0,0.0] |
---|
349 | |
---|
350 | points = [a, b, c, d, e, f] |
---|
351 | #bac, bce, ecf, dbe |
---|
352 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
353 | |
---|
354 | domain = Domain(points, vertices) |
---|
355 | domain.set_quantity('stage', [[2,2,2], [2,2,2], |
---|
356 | [2,2,2], [2,2,2]]) |
---|
357 | domain.check_integrity() |
---|
358 | |
---|
359 | assert allclose(domain.neighbours, [[-1,1,-1], [2,3,0], [-1,-1,1],[1,-1,-1]]) |
---|
360 | assert allclose(domain.neighbour_edges, [[-1,2,-1], [2,0,1], [-1,-1,0],[1,-1,-1]]) |
---|
361 | |
---|
362 | zl=zr=0. #Assume flat bed |
---|
363 | |
---|
364 | #Flux across right edge of volume 1 |
---|
365 | normal = domain.get_normal(1,0) |
---|
366 | ql = domain.get_conserved_quantities(vol_id=1, edge=0) |
---|
367 | qr = domain.get_conserved_quantities(vol_id=2, edge=2) |
---|
368 | flux0, max_speed = flux_function(normal, ql, qr, zl, zr) |
---|
369 | |
---|
370 | #Check that flux seen from other triangles is inverse |
---|
371 | tmp = qr; qr=ql; ql=tmp |
---|
372 | normal = domain.get_normal(2,2) |
---|
373 | flux, max_speed = flux_function(normal, ql, qr, zl, zr) |
---|
374 | assert allclose(flux + flux0, 0.) |
---|
375 | |
---|
376 | #Flux across upper edge of volume 1 |
---|
377 | normal = domain.get_normal(1,1) |
---|
378 | ql = domain.get_conserved_quantities(vol_id=1, edge=1) |
---|
379 | qr = domain.get_conserved_quantities(vol_id=3, edge=0) |
---|
380 | flux1, max_speed = flux_function(normal, ql, qr, zl, zr) |
---|
381 | |
---|
382 | #Check that flux seen from other triangles is inverse |
---|
383 | tmp = qr; qr=ql; ql=tmp |
---|
384 | normal = domain.get_normal(3,0) |
---|
385 | flux, max_speed = flux_function(normal, ql, qr, zl, zr) |
---|
386 | assert allclose(flux + flux1, 0.) |
---|
387 | |
---|
388 | #Flux across lower left hypotenuse of volume 1 |
---|
389 | normal = domain.get_normal(1,2) |
---|
390 | ql = domain.get_conserved_quantities(vol_id=1, edge=2) |
---|
391 | qr = domain.get_conserved_quantities(vol_id=0, edge=1) |
---|
392 | flux2, max_speed = flux_function(normal, ql, qr, zl, zr) |
---|
393 | |
---|
394 | #Check that flux seen from other triangles is inverse |
---|
395 | tmp = qr; qr=ql; ql=tmp |
---|
396 | normal = domain.get_normal(0,1) |
---|
397 | flux, max_speed = flux_function(normal, ql, qr, zl, zr) |
---|
398 | assert allclose(flux + flux2, 0.) |
---|
399 | |
---|
400 | |
---|
401 | #Scale by edgelengths, add up anc check that total flux is zero |
---|
402 | e0 = domain.edgelengths[1, 0] |
---|
403 | e1 = domain.edgelengths[1, 1] |
---|
404 | e2 = domain.edgelengths[1, 2] |
---|
405 | |
---|
406 | assert allclose(e0*flux0+e1*flux1+e2*flux2, 0.) |
---|
407 | |
---|
408 | #Now check that compute_flux yields zeros as well |
---|
409 | domain.compute_fluxes() |
---|
410 | |
---|
411 | for name in ['stage', 'xmomentum', 'ymomentum']: |
---|
412 | #print name, domain.quantities[name].explicit_update |
---|
413 | assert allclose(domain.quantities[name].explicit_update[1], 0) |
---|
414 | |
---|
415 | |
---|
416 | |
---|
417 | def test_compute_fluxes1(self): |
---|
418 | #Use values from previous version |
---|
419 | |
---|
420 | a = [0.0, 0.0] |
---|
421 | b = [0.0, 2.0] |
---|
422 | c = [2.0,0.0] |
---|
423 | d = [0.0, 4.0] |
---|
424 | e = [2.0, 2.0] |
---|
425 | f = [4.0,0.0] |
---|
426 | |
---|
427 | points = [a, b, c, d, e, f] |
---|
428 | #bac, bce, ecf, dbe |
---|
429 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
430 | |
---|
431 | domain = Domain(points, vertices) |
---|
432 | val0 = 2.+2.0/3 |
---|
433 | val1 = 4.+4.0/3 |
---|
434 | val2 = 8.+2.0/3 |
---|
435 | val3 = 2.+8.0/3 |
---|
436 | |
---|
437 | domain.set_quantity('stage', [[val0, val0, val0], [val1, val1, val1], |
---|
438 | [val2, val2, val2], [val3, val3, val3]]) |
---|
439 | domain.check_integrity() |
---|
440 | |
---|
441 | zl=zr=0. #Assume flat bed |
---|
442 | |
---|
443 | #Flux across right edge of volume 1 |
---|
444 | normal = domain.get_normal(1,0) #Get normal 0 of triangle 1 |
---|
445 | assert allclose(normal, [1, 0]) |
---|
446 | |
---|
447 | ql = domain.get_conserved_quantities(vol_id=1, edge=0) |
---|
448 | assert allclose(ql, [val1, 0, 0]) |
---|
449 | |
---|
450 | qr = domain.get_conserved_quantities(vol_id=2, edge=2) |
---|
451 | assert allclose(qr, [val2, 0, 0]) |
---|
452 | |
---|
453 | flux0, max_speed = flux_function(normal, ql, qr, zl, zr) |
---|
454 | |
---|
455 | #Flux across edge in the east direction (as per normal vector) |
---|
456 | assert allclose(flux0, [-15.3598804, 253.71111111, 0.]) |
---|
457 | assert allclose(max_speed, 9.21592824046) |
---|
458 | |
---|
459 | |
---|
460 | #Flux across edge in the west direction (opposite sign for xmomentum) |
---|
461 | normal_opposite = domain.get_normal(2,2) #Get normal 2 of triangle 2 |
---|
462 | assert allclose(normal_opposite, [-1, 0]) |
---|
463 | flux_opposite, max_speed = flux_function([-1, 0], ql, qr, zl, zr) |
---|
464 | assert allclose(flux_opposite, [-15.3598804, -253.71111111, 0.]) |
---|
465 | |
---|
466 | |
---|
467 | #Flux across upper edge of volume 1 |
---|
468 | normal = domain.get_normal(1,1) |
---|
469 | ql = domain.get_conserved_quantities(vol_id=1, edge=1) |
---|
470 | qr = domain.get_conserved_quantities(vol_id=3, edge=0) |
---|
471 | flux1, max_speed = flux_function(normal, ql, qr, zl, zr) |
---|
472 | assert allclose(flux1, [2.4098563, 0., 123.04444444]) |
---|
473 | assert allclose(max_speed, 7.22956891292) |
---|
474 | |
---|
475 | #Flux across lower left hypotenuse of volume 1 |
---|
476 | normal = domain.get_normal(1,2) |
---|
477 | ql = domain.get_conserved_quantities(vol_id=1, edge=2) |
---|
478 | qr = domain.get_conserved_quantities(vol_id=0, edge=1) |
---|
479 | flux2, max_speed = flux_function(normal, ql, qr, zl, zr) |
---|
480 | |
---|
481 | assert allclose(flux2, [9.63942522, -61.59685738, -61.59685738]) |
---|
482 | assert allclose(max_speed, 7.22956891292) |
---|
483 | |
---|
484 | #Scale, add up and check that compute_fluxes is correct for vol 1 |
---|
485 | e0 = domain.edgelengths[1, 0] |
---|
486 | e1 = domain.edgelengths[1, 1] |
---|
487 | e2 = domain.edgelengths[1, 2] |
---|
488 | |
---|
489 | total_flux = -(e0*flux0+e1*flux1+e2*flux2)/domain.areas[1] |
---|
490 | assert allclose(total_flux, [-0.68218178, -166.6, -35.93333333]) |
---|
491 | |
---|
492 | |
---|
493 | domain.compute_fluxes() |
---|
494 | |
---|
495 | #assert allclose(total_flux, domain.explicit_update[1,:]) |
---|
496 | for i, name in enumerate(['stage', 'xmomentum', 'ymomentum']): |
---|
497 | assert allclose(total_flux[i], |
---|
498 | domain.quantities[name].explicit_update[1]) |
---|
499 | |
---|
500 | #assert allclose(domain.explicit_update, [ |
---|
501 | # [0., -69.68888889, -69.68888889], |
---|
502 | # [-0.68218178, -166.6, -35.93333333], |
---|
503 | # [-111.77316251, 69.68888889, 0.], |
---|
504 | # [-35.68522449, 0., 69.68888889]]) |
---|
505 | |
---|
506 | assert allclose(domain.quantities['stage'].explicit_update, |
---|
507 | [0., -0.68218178, -111.77316251, -35.68522449]) |
---|
508 | assert allclose(domain.quantities['xmomentum'].explicit_update, |
---|
509 | [-69.68888889, -166.6, 69.68888889, 0]) |
---|
510 | assert allclose(domain.quantities['ymomentum'].explicit_update, |
---|
511 | [-69.68888889, -35.93333333, 0., 69.68888889]) |
---|
512 | |
---|
513 | |
---|
514 | #assert allclose(domain.quantities[name].explicit_update |
---|
515 | |
---|
516 | |
---|
517 | |
---|
518 | |
---|
519 | |
---|
520 | def test_compute_fluxes2(self): |
---|
521 | #Random values, incl momentum |
---|
522 | |
---|
523 | a = [0.0, 0.0] |
---|
524 | b = [0.0, 2.0] |
---|
525 | c = [2.0,0.0] |
---|
526 | d = [0.0, 4.0] |
---|
527 | e = [2.0, 2.0] |
---|
528 | f = [4.0,0.0] |
---|
529 | |
---|
530 | points = [a, b, c, d, e, f] |
---|
531 | #bac, bce, ecf, dbe |
---|
532 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
533 | |
---|
534 | domain = Domain(points, vertices) |
---|
535 | val0 = 2.+2.0/3 |
---|
536 | val1 = 4.+4.0/3 |
---|
537 | val2 = 8.+2.0/3 |
---|
538 | val3 = 2.+8.0/3 |
---|
539 | |
---|
540 | zl=zr=0 #Assume flat zero bed |
---|
541 | |
---|
542 | domain.set_quantity('elevation', zl*ones( (4,3) )) |
---|
543 | |
---|
544 | |
---|
545 | domain.set_quantity('stage', [[val0, val0-1, val0-2], |
---|
546 | [val1, val1+1, val1], |
---|
547 | [val2, val2-2, val2], |
---|
548 | [val3-0.5, val3, val3]]) |
---|
549 | |
---|
550 | domain.set_quantity('xmomentum', |
---|
551 | [[1, 2, 3], [3, 4, 5], |
---|
552 | [1, -1, 0], [0, -2, 2]]) |
---|
553 | |
---|
554 | domain.set_quantity('ymomentum', |
---|
555 | [[1, -1, 0], [0, -3, 2], |
---|
556 | [0, 1, 0], [-1, 2, 2]]) |
---|
557 | |
---|
558 | |
---|
559 | domain.check_integrity() |
---|
560 | |
---|
561 | |
---|
562 | |
---|
563 | #Flux across right edge of volume 1 |
---|
564 | normal = domain.get_normal(1,0) |
---|
565 | ql = domain.get_conserved_quantities(vol_id=1, edge=0) |
---|
566 | qr = domain.get_conserved_quantities(vol_id=2, edge=2) |
---|
567 | flux0, max_speed = flux_function(normal, ql, qr, zl, zr) |
---|
568 | |
---|
569 | #Flux across upper edge of volume 1 |
---|
570 | normal = domain.get_normal(1,1) |
---|
571 | ql = domain.get_conserved_quantities(vol_id=1, edge=1) |
---|
572 | qr = domain.get_conserved_quantities(vol_id=3, edge=0) |
---|
573 | flux1, max_speed = flux_function(normal, ql, qr, zl, zr) |
---|
574 | |
---|
575 | #Flux across lower left hypotenuse of volume 1 |
---|
576 | normal = domain.get_normal(1,2) |
---|
577 | ql = domain.get_conserved_quantities(vol_id=1, edge=2) |
---|
578 | qr = domain.get_conserved_quantities(vol_id=0, edge=1) |
---|
579 | flux2, max_speed = flux_function(normal, ql, qr, zl, zr) |
---|
580 | |
---|
581 | #Scale, add up and check that compute_fluxes is correct for vol 1 |
---|
582 | e0 = domain.edgelengths[1, 0] |
---|
583 | e1 = domain.edgelengths[1, 1] |
---|
584 | e2 = domain.edgelengths[1, 2] |
---|
585 | |
---|
586 | total_flux = -(e0*flux0+e1*flux1+e2*flux2)/domain.areas[1] |
---|
587 | |
---|
588 | |
---|
589 | domain.compute_fluxes() |
---|
590 | for i, name in enumerate(['stage', 'xmomentum', 'ymomentum']): |
---|
591 | assert allclose(total_flux[i], |
---|
592 | domain.quantities[name].explicit_update[1]) |
---|
593 | #assert allclose(total_flux, domain.explicit_update[1,:]) |
---|
594 | |
---|
595 | |
---|
596 | def test_compute_fluxes3(self): |
---|
597 | #Random values, incl momentum |
---|
598 | |
---|
599 | a = [0.0, 0.0] |
---|
600 | b = [0.0, 2.0] |
---|
601 | c = [2.0,0.0] |
---|
602 | d = [0.0, 4.0] |
---|
603 | e = [2.0, 2.0] |
---|
604 | f = [4.0,0.0] |
---|
605 | |
---|
606 | points = [a, b, c, d, e, f] |
---|
607 | #bac, bce, ecf, dbe |
---|
608 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
609 | |
---|
610 | domain = Domain(points, vertices) |
---|
611 | val0 = 2.+2.0/3 |
---|
612 | val1 = 4.+4.0/3 |
---|
613 | val2 = 8.+2.0/3 |
---|
614 | val3 = 2.+8.0/3 |
---|
615 | |
---|
616 | zl=zr=-3.75 #Assume constant bed (must be less than stage) |
---|
617 | domain.set_quantity('elevation', zl*ones( (4,3) )) |
---|
618 | |
---|
619 | |
---|
620 | domain.set_quantity('stage', [[val0, val0-1, val0-2], |
---|
621 | [val1, val1+1, val1], |
---|
622 | [val2, val2-2, val2], |
---|
623 | [val3-0.5, val3, val3]]) |
---|
624 | |
---|
625 | domain.set_quantity('xmomentum', |
---|
626 | [[1, 2, 3], [3, 4, 5], |
---|
627 | [1, -1, 0], [0, -2, 2]]) |
---|
628 | |
---|
629 | domain.set_quantity('ymomentum', |
---|
630 | [[1, -1, 0], [0, -3, 2], |
---|
631 | [0, 1, 0], [-1, 2, 2]]) |
---|
632 | |
---|
633 | |
---|
634 | domain.check_integrity() |
---|
635 | |
---|
636 | |
---|
637 | |
---|
638 | #Flux across right edge of volume 1 |
---|
639 | normal = domain.get_normal(1,0) |
---|
640 | ql = domain.get_conserved_quantities(vol_id=1, edge=0) |
---|
641 | qr = domain.get_conserved_quantities(vol_id=2, edge=2) |
---|
642 | flux0, max_speed = flux_function(normal, ql, qr, zl, zr) |
---|
643 | |
---|
644 | #Flux across upper edge of volume 1 |
---|
645 | normal = domain.get_normal(1,1) |
---|
646 | ql = domain.get_conserved_quantities(vol_id=1, edge=1) |
---|
647 | qr = domain.get_conserved_quantities(vol_id=3, edge=0) |
---|
648 | flux1, max_speed = flux_function(normal, ql, qr, zl, zr) |
---|
649 | |
---|
650 | #Flux across lower left hypotenuse of volume 1 |
---|
651 | normal = domain.get_normal(1,2) |
---|
652 | ql = domain.get_conserved_quantities(vol_id=1, edge=2) |
---|
653 | qr = domain.get_conserved_quantities(vol_id=0, edge=1) |
---|
654 | flux2, max_speed = flux_function(normal, ql, qr, zl, zr) |
---|
655 | |
---|
656 | #Scale, add up and check that compute_fluxes is correct for vol 1 |
---|
657 | e0 = domain.edgelengths[1, 0] |
---|
658 | e1 = domain.edgelengths[1, 1] |
---|
659 | e2 = domain.edgelengths[1, 2] |
---|
660 | |
---|
661 | total_flux = -(e0*flux0+e1*flux1+e2*flux2)/domain.areas[1] |
---|
662 | |
---|
663 | domain.compute_fluxes() |
---|
664 | for i, name in enumerate(['stage', 'xmomentum', 'ymomentum']): |
---|
665 | assert allclose(total_flux[i], |
---|
666 | domain.quantities[name].explicit_update[1]) |
---|
667 | |
---|
668 | |
---|
669 | |
---|
670 | def test_catching_negative_heights(self): |
---|
671 | |
---|
672 | a = [0.0, 0.0] |
---|
673 | b = [0.0, 2.0] |
---|
674 | c = [2.0,0.0] |
---|
675 | d = [0.0, 4.0] |
---|
676 | e = [2.0, 2.0] |
---|
677 | f = [4.0,0.0] |
---|
678 | |
---|
679 | points = [a, b, c, d, e, f] |
---|
680 | #bac, bce, ecf, dbe |
---|
681 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
682 | |
---|
683 | domain = Domain(points, vertices) |
---|
684 | val0 = 2.+2.0/3 |
---|
685 | val1 = 4.+4.0/3 |
---|
686 | val2 = 8.+2.0/3 |
---|
687 | val3 = 2.+8.0/3 |
---|
688 | |
---|
689 | zl=zr=4 #Too large |
---|
690 | domain.set_quantity('elevation', zl*ones( (4,3) )) |
---|
691 | domain.set_quantity('stage', [[val0, val0-1, val0-2], |
---|
692 | [val1, val1+1, val1], |
---|
693 | [val2, val2-2, val2], |
---|
694 | [val3-0.5, val3, val3]]) |
---|
695 | |
---|
696 | #Should fail |
---|
697 | try: |
---|
698 | domain.check_integrity() |
---|
699 | except: |
---|
700 | pass |
---|
701 | |
---|
702 | |
---|
703 | |
---|
704 | |
---|
705 | ##################################################### |
---|
706 | def test_initial_condition(self): |
---|
707 | """Test that initial condition is output at time == 0 |
---|
708 | """ |
---|
709 | |
---|
710 | from anuga.config import g |
---|
711 | import copy |
---|
712 | |
---|
713 | a = [0.0, 0.0] |
---|
714 | b = [0.0, 2.0] |
---|
715 | c = [2.0, 0.0] |
---|
716 | d = [0.0, 4.0] |
---|
717 | e = [2.0, 2.0] |
---|
718 | f = [4.0, 0.0] |
---|
719 | |
---|
720 | points = [a, b, c, d, e, f] |
---|
721 | #bac, bce, ecf, dbe |
---|
722 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
723 | |
---|
724 | domain = Domain(points, vertices) |
---|
725 | |
---|
726 | #Set up for a gradient of (3,0) at mid triangle |
---|
727 | def slope(x, y): |
---|
728 | return 3*x |
---|
729 | |
---|
730 | h = 0.1 |
---|
731 | def stage(x,y): |
---|
732 | return slope(x,y)+h |
---|
733 | |
---|
734 | domain.set_quantity('elevation', slope) |
---|
735 | domain.set_quantity('stage', stage) |
---|
736 | |
---|
737 | initial_stage = copy.copy(domain.quantities['stage'].vertex_values) |
---|
738 | |
---|
739 | domain.set_boundary({'exterior': Reflective_boundary(domain)}) |
---|
740 | |
---|
741 | #Evolution |
---|
742 | for t in domain.evolve(yieldstep = 1.0, finaltime = 2.0): |
---|
743 | stage = domain.quantities['stage'].vertex_values |
---|
744 | |
---|
745 | if t == 0.0: |
---|
746 | assert allclose(stage, initial_stage) |
---|
747 | else: |
---|
748 | assert not allclose(stage, initial_stage) |
---|
749 | |
---|
750 | os.remove(domain.filename + '.sww') |
---|
751 | |
---|
752 | |
---|
753 | |
---|
754 | ##################################################### |
---|
755 | def test_gravity(self): |
---|
756 | #Assuming no friction |
---|
757 | |
---|
758 | from anuga.config import g |
---|
759 | |
---|
760 | a = [0.0, 0.0] |
---|
761 | b = [0.0, 2.0] |
---|
762 | c = [2.0, 0.0] |
---|
763 | d = [0.0, 4.0] |
---|
764 | e = [2.0, 2.0] |
---|
765 | f = [4.0, 0.0] |
---|
766 | |
---|
767 | points = [a, b, c, d, e, f] |
---|
768 | #bac, bce, ecf, dbe |
---|
769 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
770 | |
---|
771 | domain = Domain(points, vertices) |
---|
772 | |
---|
773 | #Set up for a gradient of (3,0) at mid triangle |
---|
774 | def slope(x, y): |
---|
775 | return 3*x |
---|
776 | |
---|
777 | h = 0.1 |
---|
778 | def stage(x,y): |
---|
779 | return slope(x,y)+h |
---|
780 | |
---|
781 | domain.set_quantity('elevation', slope) |
---|
782 | domain.set_quantity('stage', stage) |
---|
783 | |
---|
784 | for name in domain.conserved_quantities: |
---|
785 | assert allclose(domain.quantities[name].explicit_update, 0) |
---|
786 | assert allclose(domain.quantities[name].semi_implicit_update, 0) |
---|
787 | |
---|
788 | domain.compute_forcing_terms() |
---|
789 | |
---|
790 | assert allclose(domain.quantities['stage'].explicit_update, 0) |
---|
791 | assert allclose(domain.quantities['xmomentum'].explicit_update, -g*h*3) |
---|
792 | assert allclose(domain.quantities['ymomentum'].explicit_update, 0) |
---|
793 | |
---|
794 | |
---|
795 | def test_manning_friction(self): |
---|
796 | from anuga.config import g |
---|
797 | |
---|
798 | a = [0.0, 0.0] |
---|
799 | b = [0.0, 2.0] |
---|
800 | c = [2.0, 0.0] |
---|
801 | d = [0.0, 4.0] |
---|
802 | e = [2.0, 2.0] |
---|
803 | f = [4.0, 0.0] |
---|
804 | |
---|
805 | points = [a, b, c, d, e, f] |
---|
806 | #bac, bce, ecf, dbe |
---|
807 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
808 | |
---|
809 | domain = Domain(points, vertices) |
---|
810 | |
---|
811 | #Set up for a gradient of (3,0) at mid triangle |
---|
812 | def slope(x, y): |
---|
813 | return 3*x |
---|
814 | |
---|
815 | h = 0.1 |
---|
816 | def stage(x,y): |
---|
817 | return slope(x,y)+h |
---|
818 | |
---|
819 | eta = 0.07 |
---|
820 | domain.set_quantity('elevation', slope) |
---|
821 | domain.set_quantity('stage', stage) |
---|
822 | domain.set_quantity('friction', eta) |
---|
823 | |
---|
824 | for name in domain.conserved_quantities: |
---|
825 | assert allclose(domain.quantities[name].explicit_update, 0) |
---|
826 | assert allclose(domain.quantities[name].semi_implicit_update, 0) |
---|
827 | |
---|
828 | domain.compute_forcing_terms() |
---|
829 | |
---|
830 | assert allclose(domain.quantities['stage'].explicit_update, 0) |
---|
831 | assert allclose(domain.quantities['xmomentum'].explicit_update, -g*h*3) |
---|
832 | assert allclose(domain.quantities['ymomentum'].explicit_update, 0) |
---|
833 | |
---|
834 | assert allclose(domain.quantities['stage'].semi_implicit_update, 0) |
---|
835 | assert allclose(domain.quantities['xmomentum'].semi_implicit_update, 0) |
---|
836 | assert allclose(domain.quantities['ymomentum'].semi_implicit_update, 0) |
---|
837 | |
---|
838 | #Create some momentum for friction to work with |
---|
839 | domain.set_quantity('xmomentum', 1) |
---|
840 | S = -g * eta**2 / h**(7.0/3) |
---|
841 | |
---|
842 | domain.compute_forcing_terms() |
---|
843 | assert allclose(domain.quantities['stage'].semi_implicit_update, 0) |
---|
844 | assert allclose(domain.quantities['xmomentum'].semi_implicit_update, S) |
---|
845 | assert allclose(domain.quantities['ymomentum'].semi_implicit_update, 0) |
---|
846 | |
---|
847 | #A more complex example |
---|
848 | domain.quantities['stage'].semi_implicit_update[:] = 0.0 |
---|
849 | domain.quantities['xmomentum'].semi_implicit_update[:] = 0.0 |
---|
850 | domain.quantities['ymomentum'].semi_implicit_update[:] = 0.0 |
---|
851 | |
---|
852 | domain.set_quantity('xmomentum', 3) |
---|
853 | domain.set_quantity('ymomentum', 4) |
---|
854 | |
---|
855 | S = -g * eta**2 * 5 / h**(7.0/3) |
---|
856 | |
---|
857 | |
---|
858 | domain.compute_forcing_terms() |
---|
859 | |
---|
860 | assert allclose(domain.quantities['stage'].semi_implicit_update, 0) |
---|
861 | assert allclose(domain.quantities['xmomentum'].semi_implicit_update, 3*S) |
---|
862 | assert allclose(domain.quantities['ymomentum'].semi_implicit_update, 4*S) |
---|
863 | |
---|
864 | def test_constant_wind_stress(self): |
---|
865 | from anuga.config import rho_a, rho_w, eta_w |
---|
866 | from math import pi, cos, sin, sqrt |
---|
867 | |
---|
868 | a = [0.0, 0.0] |
---|
869 | b = [0.0, 2.0] |
---|
870 | c = [2.0, 0.0] |
---|
871 | d = [0.0, 4.0] |
---|
872 | e = [2.0, 2.0] |
---|
873 | f = [4.0, 0.0] |
---|
874 | |
---|
875 | points = [a, b, c, d, e, f] |
---|
876 | #bac, bce, ecf, dbe |
---|
877 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
878 | |
---|
879 | |
---|
880 | domain = Domain(points, vertices) |
---|
881 | |
---|
882 | #Flat surface with 1m of water |
---|
883 | domain.set_quantity('elevation', 0) |
---|
884 | domain.set_quantity('stage', 1.0) |
---|
885 | domain.set_quantity('friction', 0) |
---|
886 | |
---|
887 | Br = Reflective_boundary(domain) |
---|
888 | domain.set_boundary({'exterior': Br}) |
---|
889 | |
---|
890 | #Setup only one forcing term, constant wind stress |
---|
891 | s = 100 |
---|
892 | phi = 135 |
---|
893 | domain.forcing_terms = [] |
---|
894 | domain.forcing_terms.append( Wind_stress(s, phi) ) |
---|
895 | |
---|
896 | domain.compute_forcing_terms() |
---|
897 | |
---|
898 | |
---|
899 | const = eta_w*rho_a/rho_w |
---|
900 | |
---|
901 | #Convert to radians |
---|
902 | phi = phi*pi/180 |
---|
903 | |
---|
904 | #Compute velocity vector (u, v) |
---|
905 | u = s*cos(phi) |
---|
906 | v = s*sin(phi) |
---|
907 | |
---|
908 | #Compute wind stress |
---|
909 | S = const * sqrt(u**2 + v**2) |
---|
910 | |
---|
911 | assert allclose(domain.quantities['stage'].explicit_update, 0) |
---|
912 | assert allclose(domain.quantities['xmomentum'].explicit_update, S*u) |
---|
913 | assert allclose(domain.quantities['ymomentum'].explicit_update, S*v) |
---|
914 | |
---|
915 | |
---|
916 | def test_variable_wind_stress(self): |
---|
917 | from anuga.config import rho_a, rho_w, eta_w |
---|
918 | from math import pi, cos, sin, sqrt |
---|
919 | |
---|
920 | a = [0.0, 0.0] |
---|
921 | b = [0.0, 2.0] |
---|
922 | c = [2.0, 0.0] |
---|
923 | d = [0.0, 4.0] |
---|
924 | e = [2.0, 2.0] |
---|
925 | f = [4.0, 0.0] |
---|
926 | |
---|
927 | points = [a, b, c, d, e, f] |
---|
928 | #bac, bce, ecf, dbe |
---|
929 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
930 | |
---|
931 | domain = Domain(points, vertices) |
---|
932 | |
---|
933 | #Flat surface with 1m of water |
---|
934 | domain.set_quantity('elevation', 0) |
---|
935 | domain.set_quantity('stage', 1.0) |
---|
936 | domain.set_quantity('friction', 0) |
---|
937 | |
---|
938 | Br = Reflective_boundary(domain) |
---|
939 | domain.set_boundary({'exterior': Br}) |
---|
940 | |
---|
941 | |
---|
942 | domain.time = 5.54 #Take a random time (not zero) |
---|
943 | |
---|
944 | #Setup only one forcing term, constant wind stress |
---|
945 | s = 100 |
---|
946 | phi = 135 |
---|
947 | domain.forcing_terms = [] |
---|
948 | domain.forcing_terms.append( Wind_stress(s = speed, phi = angle) ) |
---|
949 | |
---|
950 | domain.compute_forcing_terms() |
---|
951 | |
---|
952 | #Compute reference solution |
---|
953 | const = eta_w*rho_a/rho_w |
---|
954 | |
---|
955 | N = domain.number_of_elements |
---|
956 | |
---|
957 | xc = domain.get_centroid_coordinates() |
---|
958 | t = domain.time |
---|
959 | |
---|
960 | x = xc[:,0] |
---|
961 | y = xc[:,1] |
---|
962 | s_vec = speed(t,x,y) |
---|
963 | phi_vec = angle(t,x,y) |
---|
964 | |
---|
965 | |
---|
966 | for k in range(N): |
---|
967 | #Convert to radians |
---|
968 | phi = phi_vec[k]*pi/180 |
---|
969 | s = s_vec[k] |
---|
970 | |
---|
971 | #Compute velocity vector (u, v) |
---|
972 | u = s*cos(phi) |
---|
973 | v = s*sin(phi) |
---|
974 | |
---|
975 | #Compute wind stress |
---|
976 | S = const * sqrt(u**2 + v**2) |
---|
977 | |
---|
978 | assert allclose(domain.quantities['stage'].explicit_update[k], 0) |
---|
979 | assert allclose(domain.quantities['xmomentum'].explicit_update[k], S*u) |
---|
980 | assert allclose(domain.quantities['ymomentum'].explicit_update[k], S*v) |
---|
981 | |
---|
982 | |
---|
983 | |
---|
984 | |
---|
985 | def test_windfield_from_file(self): |
---|
986 | from anuga.config import rho_a, rho_w, eta_w |
---|
987 | from math import pi, cos, sin, sqrt |
---|
988 | from anuga.config import time_format |
---|
989 | from anuga.abstract_2d_finite_volumes.util import file_function |
---|
990 | import time |
---|
991 | |
---|
992 | |
---|
993 | a = [0.0, 0.0] |
---|
994 | b = [0.0, 2.0] |
---|
995 | c = [2.0, 0.0] |
---|
996 | d = [0.0, 4.0] |
---|
997 | e = [2.0, 2.0] |
---|
998 | f = [4.0, 0.0] |
---|
999 | |
---|
1000 | points = [a, b, c, d, e, f] |
---|
1001 | #bac, bce, ecf, dbe |
---|
1002 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
1003 | |
---|
1004 | domain = Domain(points, vertices) |
---|
1005 | |
---|
1006 | #Flat surface with 1m of water |
---|
1007 | domain.set_quantity('elevation', 0) |
---|
1008 | domain.set_quantity('stage', 1.0) |
---|
1009 | domain.set_quantity('friction', 0) |
---|
1010 | |
---|
1011 | Br = Reflective_boundary(domain) |
---|
1012 | domain.set_boundary({'exterior': Br}) |
---|
1013 | |
---|
1014 | |
---|
1015 | domain.time = 7 #Take a time that is represented in file (not zero) |
---|
1016 | |
---|
1017 | #Write wind stress file (ensure that domain.time is covered) |
---|
1018 | #Take x=1 and y=0 |
---|
1019 | filename = 'test_windstress_from_file' |
---|
1020 | start = time.mktime(time.strptime('2000', '%Y')) |
---|
1021 | fid = open(filename + '.txt', 'w') |
---|
1022 | dt = 1 #One second interval |
---|
1023 | t = 0.0 |
---|
1024 | while t <= 10.0: |
---|
1025 | t_string = time.strftime(time_format, time.gmtime(t+start)) |
---|
1026 | |
---|
1027 | fid.write('%s, %f %f\n' %(t_string, |
---|
1028 | speed(t,[1],[0])[0], |
---|
1029 | angle(t,[1],[0])[0])) |
---|
1030 | t += dt |
---|
1031 | |
---|
1032 | fid.close() |
---|
1033 | |
---|
1034 | |
---|
1035 | #Convert ASCII file to NetCDF (Which is what we really like!) |
---|
1036 | from data_manager import timefile2netcdf |
---|
1037 | timefile2netcdf(filename) |
---|
1038 | os.remove(filename + '.txt') |
---|
1039 | |
---|
1040 | |
---|
1041 | #Setup wind stress |
---|
1042 | F = file_function(filename + '.tms', quantities = ['Attribute0', |
---|
1043 | 'Attribute1']) |
---|
1044 | os.remove(filename + '.tms') |
---|
1045 | |
---|
1046 | |
---|
1047 | #print 'F(5)', F(5) |
---|
1048 | |
---|
1049 | #print 'F(5,x,y)', F(5,x=zeros(3),y=zeros(3)) |
---|
1050 | |
---|
1051 | #print dir(F) |
---|
1052 | #print F.T |
---|
1053 | #print F.precomputed_values |
---|
1054 | # |
---|
1055 | #F = file_function(filename + '.txt') |
---|
1056 | # |
---|
1057 | #print dir(F) |
---|
1058 | #print F.T |
---|
1059 | #print F.Q |
---|
1060 | |
---|
1061 | W = Wind_stress(F) |
---|
1062 | |
---|
1063 | domain.forcing_terms = [] |
---|
1064 | domain.forcing_terms.append(W) |
---|
1065 | |
---|
1066 | domain.compute_forcing_terms() |
---|
1067 | |
---|
1068 | #Compute reference solution |
---|
1069 | const = eta_w*rho_a/rho_w |
---|
1070 | |
---|
1071 | N = domain.number_of_elements |
---|
1072 | |
---|
1073 | t = domain.time |
---|
1074 | |
---|
1075 | s = speed(t,[1],[0])[0] |
---|
1076 | phi = angle(t,[1],[0])[0] |
---|
1077 | |
---|
1078 | #Convert to radians |
---|
1079 | phi = phi*pi/180 |
---|
1080 | |
---|
1081 | |
---|
1082 | #Compute velocity vector (u, v) |
---|
1083 | u = s*cos(phi) |
---|
1084 | v = s*sin(phi) |
---|
1085 | |
---|
1086 | #Compute wind stress |
---|
1087 | S = const * sqrt(u**2 + v**2) |
---|
1088 | |
---|
1089 | for k in range(N): |
---|
1090 | assert allclose(domain.quantities['stage'].explicit_update[k], 0) |
---|
1091 | assert allclose(domain.quantities['xmomentum'].explicit_update[k], S*u) |
---|
1092 | assert allclose(domain.quantities['ymomentum'].explicit_update[k], S*v) |
---|
1093 | |
---|
1094 | |
---|
1095 | |
---|
1096 | |
---|
1097 | def test_wind_stress_error_condition(self): |
---|
1098 | """Test that windstress reacts properly when forcing functions |
---|
1099 | are wrong - e.g. returns a scalar |
---|
1100 | """ |
---|
1101 | |
---|
1102 | from anuga.config import rho_a, rho_w, eta_w |
---|
1103 | from math import pi, cos, sin, sqrt |
---|
1104 | |
---|
1105 | a = [0.0, 0.0] |
---|
1106 | b = [0.0, 2.0] |
---|
1107 | c = [2.0, 0.0] |
---|
1108 | d = [0.0, 4.0] |
---|
1109 | e = [2.0, 2.0] |
---|
1110 | f = [4.0, 0.0] |
---|
1111 | |
---|
1112 | points = [a, b, c, d, e, f] |
---|
1113 | #bac, bce, ecf, dbe |
---|
1114 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
1115 | |
---|
1116 | domain = Domain(points, vertices) |
---|
1117 | |
---|
1118 | #Flat surface with 1m of water |
---|
1119 | domain.set_quantity('elevation', 0) |
---|
1120 | domain.set_quantity('stage', 1.0) |
---|
1121 | domain.set_quantity('friction', 0) |
---|
1122 | |
---|
1123 | Br = Reflective_boundary(domain) |
---|
1124 | domain.set_boundary({'exterior': Br}) |
---|
1125 | |
---|
1126 | |
---|
1127 | domain.time = 5.54 #Take a random time (not zero) |
---|
1128 | |
---|
1129 | #Setup only one forcing term, bad func |
---|
1130 | domain.forcing_terms = [] |
---|
1131 | |
---|
1132 | try: |
---|
1133 | domain.forcing_terms.append(Wind_stress(s = scalar_func, |
---|
1134 | phi = angle)) |
---|
1135 | except AssertionError: |
---|
1136 | pass |
---|
1137 | else: |
---|
1138 | msg = 'Should have raised exception' |
---|
1139 | raise msg |
---|
1140 | |
---|
1141 | |
---|
1142 | try: |
---|
1143 | domain.forcing_terms.append(Wind_stress(s = speed, |
---|
1144 | phi = scalar_func)) |
---|
1145 | except AssertionError: |
---|
1146 | pass |
---|
1147 | else: |
---|
1148 | msg = 'Should have raised exception' |
---|
1149 | raise msg |
---|
1150 | |
---|
1151 | try: |
---|
1152 | domain.forcing_terms.append(Wind_stress(s = speed, |
---|
1153 | phi = 'xx')) |
---|
1154 | except: |
---|
1155 | pass |
---|
1156 | else: |
---|
1157 | msg = 'Should have raised exception' |
---|
1158 | raise msg |
---|
1159 | |
---|
1160 | |
---|
1161 | ##################################################### |
---|
1162 | def test_first_order_extrapolator_const_z(self): |
---|
1163 | |
---|
1164 | a = [0.0, 0.0] |
---|
1165 | b = [0.0, 2.0] |
---|
1166 | c = [2.0, 0.0] |
---|
1167 | d = [0.0, 4.0] |
---|
1168 | e = [2.0, 2.0] |
---|
1169 | f = [4.0, 0.0] |
---|
1170 | |
---|
1171 | points = [a, b, c, d, e, f] |
---|
1172 | #bac, bce, ecf, dbe |
---|
1173 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
1174 | |
---|
1175 | domain = Domain(points, vertices) |
---|
1176 | val0 = 2.+2.0/3 |
---|
1177 | val1 = 4.+4.0/3 |
---|
1178 | val2 = 8.+2.0/3 |
---|
1179 | val3 = 2.+8.0/3 |
---|
1180 | |
---|
1181 | zl=zr=-3.75 #Assume constant bed (must be less than stage) |
---|
1182 | domain.set_quantity('elevation', zl*ones( (4,3) )) |
---|
1183 | domain.set_quantity('stage', [[val0, val0-1, val0-2], |
---|
1184 | [val1, val1+1, val1], |
---|
1185 | [val2, val2-2, val2], |
---|
1186 | [val3-0.5, val3, val3]]) |
---|
1187 | |
---|
1188 | |
---|
1189 | |
---|
1190 | domain.order = 1 |
---|
1191 | domain.distribute_to_vertices_and_edges() |
---|
1192 | |
---|
1193 | #Check that centroid values were distributed to vertices |
---|
1194 | C = domain.quantities['stage'].centroid_values |
---|
1195 | for i in range(3): |
---|
1196 | assert allclose( domain.quantities['stage'].vertex_values[:,i], C) |
---|
1197 | |
---|
1198 | |
---|
1199 | def test_first_order_limiter_variable_z(self): |
---|
1200 | #Check that first order limiter follows bed_slope |
---|
1201 | from Numeric import alltrue, greater_equal |
---|
1202 | from anuga.config import epsilon |
---|
1203 | |
---|
1204 | a = [0.0, 0.0] |
---|
1205 | b = [0.0, 2.0] |
---|
1206 | c = [2.0,0.0] |
---|
1207 | d = [0.0, 4.0] |
---|
1208 | e = [2.0, 2.0] |
---|
1209 | f = [4.0,0.0] |
---|
1210 | |
---|
1211 | points = [a, b, c, d, e, f] |
---|
1212 | #bac, bce, ecf, dbe |
---|
1213 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
1214 | |
---|
1215 | domain = Domain(points, vertices) |
---|
1216 | val0 = 2.+2.0/3 |
---|
1217 | val1 = 4.+4.0/3 |
---|
1218 | val2 = 8.+2.0/3 |
---|
1219 | val3 = 2.+8.0/3 |
---|
1220 | |
---|
1221 | domain.set_quantity('elevation', [[0,0,0], [6,0,0], |
---|
1222 | [6,6,6], [6,6,6]]) |
---|
1223 | domain.set_quantity('stage', [[val0, val0, val0], |
---|
1224 | [val1, val1, val1], |
---|
1225 | [val2, val2, val2], |
---|
1226 | [val3, val3, val3]]) |
---|
1227 | |
---|
1228 | E = domain.quantities['elevation'].vertex_values |
---|
1229 | L = domain.quantities['stage'].vertex_values |
---|
1230 | |
---|
1231 | |
---|
1232 | #Check that some stages are not above elevation (within eps) |
---|
1233 | #- so that the limiter has something to work with |
---|
1234 | assert not alltrue(alltrue(greater_equal(L,E-epsilon))) |
---|
1235 | |
---|
1236 | domain.order = 1 |
---|
1237 | domain.distribute_to_vertices_and_edges() |
---|
1238 | |
---|
1239 | #Check that all stages are above elevation (within eps) |
---|
1240 | assert alltrue(alltrue(greater_equal(L,E-epsilon))) |
---|
1241 | |
---|
1242 | |
---|
1243 | ##################################################### |
---|
1244 | def test_distribute_basic(self): |
---|
1245 | #Using test data generated by abstract_2d_finite_volumes-2 |
---|
1246 | #Assuming no friction and flat bed (0.0) |
---|
1247 | |
---|
1248 | a = [0.0, 0.0] |
---|
1249 | b = [0.0, 2.0] |
---|
1250 | c = [2.0, 0.0] |
---|
1251 | d = [0.0, 4.0] |
---|
1252 | e = [2.0, 2.0] |
---|
1253 | f = [4.0, 0.0] |
---|
1254 | |
---|
1255 | points = [a, b, c, d, e, f] |
---|
1256 | #bac, bce, ecf, dbe |
---|
1257 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
1258 | |
---|
1259 | domain = Domain(points, vertices) |
---|
1260 | |
---|
1261 | val0 = 2. |
---|
1262 | val1 = 4. |
---|
1263 | val2 = 8. |
---|
1264 | val3 = 2. |
---|
1265 | |
---|
1266 | domain.set_quantity('stage', [val0, val1, val2, val3], |
---|
1267 | location='centroids') |
---|
1268 | L = domain.quantities['stage'].vertex_values |
---|
1269 | |
---|
1270 | #First order |
---|
1271 | domain.order = 1 |
---|
1272 | domain.distribute_to_vertices_and_edges() |
---|
1273 | assert allclose(L[1], val1) |
---|
1274 | |
---|
1275 | #Second order |
---|
1276 | domain.order = 2 |
---|
1277 | domain.distribute_to_vertices_and_edges() |
---|
1278 | assert allclose(L[1], [2.2, 4.9, 4.9]) |
---|
1279 | |
---|
1280 | |
---|
1281 | |
---|
1282 | def test_distribute_away_from_bed(self): |
---|
1283 | #Using test data generated by abstract_2d_finite_volumes-2 |
---|
1284 | #Assuming no friction and flat bed (0.0) |
---|
1285 | |
---|
1286 | a = [0.0, 0.0] |
---|
1287 | b = [0.0, 2.0] |
---|
1288 | c = [2.0, 0.0] |
---|
1289 | d = [0.0, 4.0] |
---|
1290 | e = [2.0, 2.0] |
---|
1291 | f = [4.0, 0.0] |
---|
1292 | |
---|
1293 | points = [a, b, c, d, e, f] |
---|
1294 | #bac, bce, ecf, dbe |
---|
1295 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
1296 | |
---|
1297 | domain = Domain(points, vertices) |
---|
1298 | L = domain.quantities['stage'].vertex_values |
---|
1299 | |
---|
1300 | def stage(x,y): |
---|
1301 | return x**2 |
---|
1302 | |
---|
1303 | domain.set_quantity('stage', stage, location='centroids') |
---|
1304 | |
---|
1305 | a, b = domain.quantities['stage'].compute_gradients() |
---|
1306 | assert allclose(a[1], 3.33333334) |
---|
1307 | assert allclose(b[1], 0.0) |
---|
1308 | |
---|
1309 | domain.order = 1 |
---|
1310 | domain.distribute_to_vertices_and_edges() |
---|
1311 | assert allclose(L[1], 1.77777778) |
---|
1312 | |
---|
1313 | domain.order = 2 |
---|
1314 | domain.distribute_to_vertices_and_edges() |
---|
1315 | assert allclose(L[1], [0.57777777, 2.37777778, 2.37777778]) |
---|
1316 | |
---|
1317 | |
---|
1318 | |
---|
1319 | def test_distribute_away_from_bed1(self): |
---|
1320 | #Using test data generated by abstract_2d_finite_volumes-2 |
---|
1321 | #Assuming no friction and flat bed (0.0) |
---|
1322 | |
---|
1323 | a = [0.0, 0.0] |
---|
1324 | b = [0.0, 2.0] |
---|
1325 | c = [2.0, 0.0] |
---|
1326 | d = [0.0, 4.0] |
---|
1327 | e = [2.0, 2.0] |
---|
1328 | f = [4.0, 0.0] |
---|
1329 | |
---|
1330 | points = [a, b, c, d, e, f] |
---|
1331 | #bac, bce, ecf, dbe |
---|
1332 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
1333 | |
---|
1334 | domain = Domain(points, vertices) |
---|
1335 | L = domain.quantities['stage'].vertex_values |
---|
1336 | |
---|
1337 | def stage(x,y): |
---|
1338 | return x**4+y**2 |
---|
1339 | |
---|
1340 | domain.set_quantity('stage', stage, location='centroids') |
---|
1341 | #print domain.quantities['stage'].centroid_values |
---|
1342 | |
---|
1343 | a, b = domain.quantities['stage'].compute_gradients() |
---|
1344 | assert allclose(a[1], 25.18518519) |
---|
1345 | assert allclose(b[1], 3.33333333) |
---|
1346 | |
---|
1347 | domain.order = 1 |
---|
1348 | domain.distribute_to_vertices_and_edges() |
---|
1349 | assert allclose(L[1], 4.9382716) |
---|
1350 | |
---|
1351 | domain.order = 2 |
---|
1352 | domain.distribute_to_vertices_and_edges() |
---|
1353 | assert allclose(L[1], [1.07160494, 6.46058131, 7.28262855]) |
---|
1354 | |
---|
1355 | |
---|
1356 | |
---|
1357 | def test_distribute_near_bed(self): |
---|
1358 | #Using test data generated by abstract_2d_finite_volumes-2 |
---|
1359 | #Assuming no friction and flat bed (0.0) |
---|
1360 | |
---|
1361 | a = [0.0, 0.0] |
---|
1362 | b = [0.0, 2.0] |
---|
1363 | c = [2.0, 0.0] |
---|
1364 | d = [0.0, 4.0] |
---|
1365 | e = [2.0, 2.0] |
---|
1366 | f = [4.0, 0.0] |
---|
1367 | |
---|
1368 | points = [a, b, c, d, e, f] |
---|
1369 | #bac, bce, ecf, dbe |
---|
1370 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
1371 | |
---|
1372 | domain = Domain(points, vertices) |
---|
1373 | |
---|
1374 | |
---|
1375 | #Set up for a gradient of (3,0) at mid triangle |
---|
1376 | def slope(x, y): |
---|
1377 | return 10*x |
---|
1378 | |
---|
1379 | h = 0.1 |
---|
1380 | def stage(x,y): |
---|
1381 | return slope(x,y)+h |
---|
1382 | |
---|
1383 | domain.set_quantity('elevation', slope) |
---|
1384 | domain.set_quantity('stage', stage, location='centroids') |
---|
1385 | |
---|
1386 | #print domain.quantities['elevation'].centroid_values |
---|
1387 | #print domain.quantities['stage'].centroid_values |
---|
1388 | |
---|
1389 | E = domain.quantities['elevation'].vertex_values |
---|
1390 | L = domain.quantities['stage'].vertex_values |
---|
1391 | |
---|
1392 | #print E |
---|
1393 | domain.order = 1 |
---|
1394 | domain.distribute_to_vertices_and_edges() |
---|
1395 | ##assert allclose(L[1], [0.19999999, 20.05, 20.05]) |
---|
1396 | assert allclose(L[1], [0.1, 20.1, 20.1]) |
---|
1397 | |
---|
1398 | domain.order = 2 |
---|
1399 | domain.distribute_to_vertices_and_edges() |
---|
1400 | assert allclose(L[1], [0.1, 20.1, 20.1]) |
---|
1401 | |
---|
1402 | def test_distribute_near_bed1(self): |
---|
1403 | #Using test data generated by abstract_2d_finite_volumes-2 |
---|
1404 | #Assuming no friction and flat bed (0.0) |
---|
1405 | |
---|
1406 | a = [0.0, 0.0] |
---|
1407 | b = [0.0, 2.0] |
---|
1408 | c = [2.0, 0.0] |
---|
1409 | d = [0.0, 4.0] |
---|
1410 | e = [2.0, 2.0] |
---|
1411 | f = [4.0, 0.0] |
---|
1412 | |
---|
1413 | points = [a, b, c, d, e, f] |
---|
1414 | #bac, bce, ecf, dbe |
---|
1415 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
1416 | |
---|
1417 | domain = Domain(points, vertices) |
---|
1418 | |
---|
1419 | |
---|
1420 | #Set up for a gradient of (3,0) at mid triangle |
---|
1421 | def slope(x, y): |
---|
1422 | return x**4+y**2 |
---|
1423 | |
---|
1424 | h = 0.1 |
---|
1425 | def stage(x,y): |
---|
1426 | return slope(x,y)+h |
---|
1427 | |
---|
1428 | domain.set_quantity('elevation', slope) |
---|
1429 | domain.set_quantity('stage', stage) |
---|
1430 | |
---|
1431 | #print domain.quantities['elevation'].centroid_values |
---|
1432 | #print domain.quantities['stage'].centroid_values |
---|
1433 | |
---|
1434 | E = domain.quantities['elevation'].vertex_values |
---|
1435 | L = domain.quantities['stage'].vertex_values |
---|
1436 | |
---|
1437 | #print E |
---|
1438 | domain.order = 1 |
---|
1439 | domain.distribute_to_vertices_and_edges() |
---|
1440 | ##assert allclose(L[1], [4.19999999, 16.07142857, 20.02857143]) |
---|
1441 | assert allclose(L[1], [4.1, 16.1, 20.1]) |
---|
1442 | |
---|
1443 | domain.order = 2 |
---|
1444 | domain.distribute_to_vertices_and_edges() |
---|
1445 | assert allclose(L[1], [4.1, 16.1, 20.1]) |
---|
1446 | |
---|
1447 | |
---|
1448 | |
---|
1449 | def test_second_order_distribute_real_data(self): |
---|
1450 | #Using test data generated by abstract_2d_finite_volumes-2 |
---|
1451 | #Assuming no friction and flat bed (0.0) |
---|
1452 | |
---|
1453 | a = [0.0, 0.0] |
---|
1454 | b = [0.0, 1.0/5] |
---|
1455 | c = [0.0, 2.0/5] |
---|
1456 | d = [1.0/5, 0.0] |
---|
1457 | e = [1.0/5, 1.0/5] |
---|
1458 | f = [1.0/5, 2.0/5] |
---|
1459 | g = [2.0/5, 2.0/5] |
---|
1460 | |
---|
1461 | points = [a, b, c, d, e, f, g] |
---|
1462 | #bae, efb, cbf, feg |
---|
1463 | vertices = [ [1,0,4], [4,5,1], [2,1,5], [5,4,6]] |
---|
1464 | |
---|
1465 | domain = Domain(points, vertices) |
---|
1466 | |
---|
1467 | def slope(x, y): |
---|
1468 | return -x/3 |
---|
1469 | |
---|
1470 | domain.set_quantity('elevation', slope) |
---|
1471 | domain.set_quantity('stage', |
---|
1472 | [0.01298164, 0.00365611, |
---|
1473 | 0.01440365, -0.0381856437096], |
---|
1474 | location='centroids') |
---|
1475 | domain.set_quantity('xmomentum', |
---|
1476 | [0.00670439, 0.01263789, |
---|
1477 | 0.00647805, 0.0178180740668], |
---|
1478 | location='centroids') |
---|
1479 | domain.set_quantity('ymomentum', |
---|
1480 | [-7.23510980e-004, -6.30413883e-005, |
---|
1481 | 6.30413883e-005, 0.000200907255866], |
---|
1482 | location='centroids') |
---|
1483 | |
---|
1484 | E = domain.quantities['elevation'].vertex_values |
---|
1485 | L = domain.quantities['stage'].vertex_values |
---|
1486 | X = domain.quantities['xmomentum'].vertex_values |
---|
1487 | Y = domain.quantities['ymomentum'].vertex_values |
---|
1488 | |
---|
1489 | #print E |
---|
1490 | domain.order = 2 |
---|
1491 | domain.beta_h = 0.0 #Use first order in h-limiter |
---|
1492 | domain.distribute_to_vertices_and_edges() |
---|
1493 | |
---|
1494 | #print L[1,:] |
---|
1495 | #print X[1,:] |
---|
1496 | #print Y[1,:] |
---|
1497 | |
---|
1498 | assert allclose(L[1,:], [-0.00825735775384, |
---|
1499 | -0.00801881482869, |
---|
1500 | 0.0272445025825]) |
---|
1501 | assert allclose(X[1,:], [0.0143507718962, |
---|
1502 | 0.0142502147066, |
---|
1503 | 0.00931268339717]) |
---|
1504 | assert allclose(Y[1,:], [-0.000117062180693, |
---|
1505 | 7.94434448109e-005, |
---|
1506 | -0.000151505429018]) |
---|
1507 | |
---|
1508 | |
---|
1509 | |
---|
1510 | def test_balance_deep_and_shallow(self): |
---|
1511 | """Test that balanced limiters preserve conserved quantites. |
---|
1512 | """ |
---|
1513 | import copy |
---|
1514 | |
---|
1515 | a = [0.0, 0.0] |
---|
1516 | b = [0.0, 2.0] |
---|
1517 | c = [2.0, 0.0] |
---|
1518 | d = [0.0, 4.0] |
---|
1519 | e = [2.0, 2.0] |
---|
1520 | f = [4.0, 0.0] |
---|
1521 | |
---|
1522 | points = [a, b, c, d, e, f] |
---|
1523 | |
---|
1524 | #bac, bce, ecf, dbe |
---|
1525 | elements = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4] ] |
---|
1526 | |
---|
1527 | mesh = Domain(points, elements) |
---|
1528 | mesh.check_integrity() |
---|
1529 | |
---|
1530 | #Create a deliberate overshoot |
---|
1531 | mesh.set_quantity('stage', [[3,0,3], [2,2,6], [5,3,8], [8,3,5]]) |
---|
1532 | mesh.set_quantity('elevation', 0) #Flat bed |
---|
1533 | stage = mesh.quantities['stage'] |
---|
1534 | |
---|
1535 | ref_centroid_values = copy.copy(stage.centroid_values[:]) #Copy |
---|
1536 | |
---|
1537 | #Limit |
---|
1538 | mesh.distribute_to_vertices_and_edges() |
---|
1539 | |
---|
1540 | #Assert that quantities are conserved |
---|
1541 | from Numeric import sum |
---|
1542 | for k in range(mesh.number_of_elements): |
---|
1543 | assert allclose (ref_centroid_values[k], |
---|
1544 | sum(stage.vertex_values[k,:])/3) |
---|
1545 | |
---|
1546 | |
---|
1547 | #Now try with a non-flat bed - closely hugging initial stage in places |
---|
1548 | #This will create alphas in the range [0, 0.478260, 1] |
---|
1549 | mesh.set_quantity('stage', [[3,0,3], [2,2,6], [5,3,8], [8,3,5]]) |
---|
1550 | mesh.set_quantity('elevation', [[0,0,0], |
---|
1551 | [1.8,1.9,5.9], |
---|
1552 | [4.6,0,0], |
---|
1553 | [0,2,4]]) |
---|
1554 | stage = mesh.quantities['stage'] |
---|
1555 | |
---|
1556 | ref_centroid_values = copy.copy(stage.centroid_values[:]) #Copy |
---|
1557 | ref_vertex_values = copy.copy(stage.vertex_values[:]) #Copy |
---|
1558 | |
---|
1559 | #Limit |
---|
1560 | mesh.distribute_to_vertices_and_edges() |
---|
1561 | |
---|
1562 | |
---|
1563 | #Assert that all vertex quantities have changed |
---|
1564 | for k in range(mesh.number_of_elements): |
---|
1565 | #print ref_vertex_values[k,:], stage.vertex_values[k,:] |
---|
1566 | assert not allclose (ref_vertex_values[k,:], stage.vertex_values[k,:]) |
---|
1567 | #and assert that quantities are still conserved |
---|
1568 | from Numeric import sum |
---|
1569 | for k in range(mesh.number_of_elements): |
---|
1570 | assert allclose (ref_centroid_values[k], |
---|
1571 | sum(stage.vertex_values[k,:])/3) |
---|
1572 | |
---|
1573 | |
---|
1574 | #Also check that Python and C version produce the same |
---|
1575 | assert allclose (stage.vertex_values, |
---|
1576 | [[2,2,2], |
---|
1577 | [1.93333333, 2.03333333, 6.03333333], |
---|
1578 | [6.93333333, 4.53333333, 4.53333333], |
---|
1579 | [5.33333333, 5.33333333, 5.33333333]]) |
---|
1580 | |
---|
1581 | |
---|
1582 | |
---|
1583 | |
---|
1584 | def test_conservation_1(self): |
---|
1585 | """Test that stage is conserved globally |
---|
1586 | |
---|
1587 | This one uses a flat bed, reflective bdries and a suitable |
---|
1588 | initial condition |
---|
1589 | """ |
---|
1590 | from mesh_factory import rectangular |
---|
1591 | from Numeric import array |
---|
1592 | |
---|
1593 | #Create basic mesh |
---|
1594 | points, vertices, boundary = rectangular(6, 6) |
---|
1595 | |
---|
1596 | #Create shallow water domain |
---|
1597 | domain = Domain(points, vertices, boundary) |
---|
1598 | domain.smooth = False |
---|
1599 | domain.default_order=2 |
---|
1600 | |
---|
1601 | #IC |
---|
1602 | def x_slope(x, y): |
---|
1603 | return x/3 |
---|
1604 | |
---|
1605 | domain.set_quantity('elevation', 0) |
---|
1606 | domain.set_quantity('friction', 0) |
---|
1607 | domain.set_quantity('stage', x_slope) |
---|
1608 | |
---|
1609 | # Boundary conditions (reflective everywhere) |
---|
1610 | Br = Reflective_boundary(domain) |
---|
1611 | domain.set_boundary({'left': Br, 'right': Br, 'top': Br, 'bottom': Br}) |
---|
1612 | |
---|
1613 | domain.check_integrity() |
---|
1614 | |
---|
1615 | #domain.visualise = True #If you want to take a sticky beak |
---|
1616 | |
---|
1617 | initial_volume = domain.quantities['stage'].get_integral() |
---|
1618 | initial_xmom = domain.quantities['xmomentum'].get_integral() |
---|
1619 | |
---|
1620 | #print initial_xmom |
---|
1621 | |
---|
1622 | #Evolution |
---|
1623 | for t in domain.evolve(yieldstep = 0.05, finaltime = 5.0): |
---|
1624 | volume = domain.quantities['stage'].get_integral() |
---|
1625 | assert allclose (volume, initial_volume) |
---|
1626 | |
---|
1627 | #I don't believe that the total momentum should be the same |
---|
1628 | #It starts with zero and ends with zero though |
---|
1629 | #xmom = domain.quantities['xmomentum'].get_integral() |
---|
1630 | #print xmom |
---|
1631 | #assert allclose (xmom, initial_xmom) |
---|
1632 | |
---|
1633 | os.remove(domain.filename + '.sww') |
---|
1634 | |
---|
1635 | |
---|
1636 | def test_conservation_2(self): |
---|
1637 | """Test that stage is conserved globally |
---|
1638 | |
---|
1639 | This one uses a slopy bed, reflective bdries and a suitable |
---|
1640 | initial condition |
---|
1641 | """ |
---|
1642 | from mesh_factory import rectangular |
---|
1643 | from Numeric import array |
---|
1644 | |
---|
1645 | #Create basic mesh |
---|
1646 | points, vertices, boundary = rectangular(6, 6) |
---|
1647 | |
---|
1648 | #Create shallow water domain |
---|
1649 | domain = Domain(points, vertices, boundary) |
---|
1650 | domain.smooth = False |
---|
1651 | domain.default_order=2 |
---|
1652 | |
---|
1653 | #IC |
---|
1654 | def x_slope(x, y): |
---|
1655 | return x/3 |
---|
1656 | |
---|
1657 | domain.set_quantity('elevation', x_slope) |
---|
1658 | domain.set_quantity('friction', 0) |
---|
1659 | domain.set_quantity('stage', 0.4) #Steady |
---|
1660 | |
---|
1661 | # Boundary conditions (reflective everywhere) |
---|
1662 | Br = Reflective_boundary(domain) |
---|
1663 | domain.set_boundary({'left': Br, 'right': Br, 'top': Br, 'bottom': Br}) |
---|
1664 | |
---|
1665 | domain.check_integrity() |
---|
1666 | |
---|
1667 | #domain.visualise = True #If you want to take a sticky beak |
---|
1668 | |
---|
1669 | initial_volume = domain.quantities['stage'].get_integral() |
---|
1670 | initial_xmom = domain.quantities['xmomentum'].get_integral() |
---|
1671 | |
---|
1672 | #print initial_xmom |
---|
1673 | |
---|
1674 | #Evolution |
---|
1675 | for t in domain.evolve(yieldstep = 0.05, finaltime = 5.0): |
---|
1676 | volume = domain.quantities['stage'].get_integral() |
---|
1677 | assert allclose (volume, initial_volume) |
---|
1678 | |
---|
1679 | #FIXME: What would we expect from momentum |
---|
1680 | #xmom = domain.quantities['xmomentum'].get_integral() |
---|
1681 | #print xmom |
---|
1682 | #assert allclose (xmom, initial_xmom) |
---|
1683 | |
---|
1684 | os.remove(domain.filename + '.sww') |
---|
1685 | |
---|
1686 | def test_conservation_3(self): |
---|
1687 | """Test that stage is conserved globally |
---|
1688 | |
---|
1689 | This one uses a larger grid, convoluted bed, reflective bdries and a suitable |
---|
1690 | initial condition |
---|
1691 | """ |
---|
1692 | from mesh_factory import rectangular |
---|
1693 | from Numeric import array |
---|
1694 | |
---|
1695 | #Create basic mesh |
---|
1696 | points, vertices, boundary = rectangular(2, 1) |
---|
1697 | |
---|
1698 | #Create shallow water domain |
---|
1699 | domain = Domain(points, vertices, boundary) |
---|
1700 | domain.smooth = False |
---|
1701 | domain.default_order = 2 |
---|
1702 | domain.beta_h = 0.2 |
---|
1703 | domain.set_quantities_to_be_stored(['stage']) |
---|
1704 | |
---|
1705 | #IC |
---|
1706 | def x_slope(x, y): |
---|
1707 | z = 0*x |
---|
1708 | for i in range(len(x)): |
---|
1709 | if x[i] < 0.3: |
---|
1710 | z[i] = x[i]/3 |
---|
1711 | if 0.3 <= x[i] < 0.5: |
---|
1712 | z[i] = -0.5 |
---|
1713 | if 0.5 <= x[i] < 0.7: |
---|
1714 | z[i] = 0.39 |
---|
1715 | if 0.7 <= x[i]: |
---|
1716 | z[i] = x[i]/3 |
---|
1717 | return z |
---|
1718 | |
---|
1719 | |
---|
1720 | |
---|
1721 | domain.set_quantity('elevation', x_slope) |
---|
1722 | domain.set_quantity('friction', 0) |
---|
1723 | domain.set_quantity('stage', 0.4) #Steady |
---|
1724 | |
---|
1725 | # Boundary conditions (reflective everywhere) |
---|
1726 | Br = Reflective_boundary(domain) |
---|
1727 | domain.set_boundary({'left': Br, 'right': Br, 'top': Br, 'bottom': Br}) |
---|
1728 | |
---|
1729 | domain.check_integrity() |
---|
1730 | |
---|
1731 | #domain.visualise = True #If you want to take a sticky beak |
---|
1732 | |
---|
1733 | initial_volume = domain.quantities['stage'].get_integral() |
---|
1734 | initial_xmom = domain.quantities['xmomentum'].get_integral() |
---|
1735 | |
---|
1736 | import copy |
---|
1737 | ref_centroid_values =\ |
---|
1738 | copy.copy(domain.quantities['stage'].centroid_values) |
---|
1739 | |
---|
1740 | #print 'ORG', domain.quantities['stage'].centroid_values |
---|
1741 | domain.distribute_to_vertices_and_edges() |
---|
1742 | |
---|
1743 | |
---|
1744 | #print domain.quantities['stage'].centroid_values |
---|
1745 | assert allclose(domain.quantities['stage'].centroid_values, |
---|
1746 | ref_centroid_values) |
---|
1747 | |
---|
1748 | |
---|
1749 | #Check that initial limiter doesn't violate cons quan |
---|
1750 | assert allclose (domain.quantities['stage'].get_integral(), |
---|
1751 | initial_volume) |
---|
1752 | |
---|
1753 | #Evolution |
---|
1754 | for t in domain.evolve(yieldstep = 0.05, finaltime = 10): |
---|
1755 | volume = domain.quantities['stage'].get_integral() |
---|
1756 | #print t, volume, initial_volume |
---|
1757 | assert allclose (volume, initial_volume) |
---|
1758 | |
---|
1759 | os.remove(domain.filename + '.sww') |
---|
1760 | |
---|
1761 | def test_conservation_4(self): |
---|
1762 | """Test that stage is conserved globally |
---|
1763 | |
---|
1764 | This one uses a larger grid, convoluted bed, reflective bdries and a suitable |
---|
1765 | initial condition |
---|
1766 | """ |
---|
1767 | from mesh_factory import rectangular |
---|
1768 | from Numeric import array |
---|
1769 | |
---|
1770 | #Create basic mesh |
---|
1771 | points, vertices, boundary = rectangular(6, 6) |
---|
1772 | |
---|
1773 | #Create shallow water domain |
---|
1774 | domain = Domain(points, vertices, boundary) |
---|
1775 | domain.smooth = False |
---|
1776 | domain.default_order=2 |
---|
1777 | domain.beta_h = 0.0 |
---|
1778 | |
---|
1779 | #IC |
---|
1780 | def x_slope(x, y): |
---|
1781 | z = 0*x |
---|
1782 | for i in range(len(x)): |
---|
1783 | if x[i] < 0.3: |
---|
1784 | z[i] = x[i]/3 |
---|
1785 | if 0.3 <= x[i] < 0.5: |
---|
1786 | z[i] = -0.5 |
---|
1787 | if 0.5 <= x[i] < 0.7: |
---|
1788 | #z[i] = 0.3 #OK with beta == 0.2 |
---|
1789 | z[i] = 0.34 #OK with beta == 0.0 |
---|
1790 | #z[i] = 0.35#Fails after 80 timesteps with an error |
---|
1791 | #of the order 1.0e-5 |
---|
1792 | if 0.7 <= x[i]: |
---|
1793 | z[i] = x[i]/3 |
---|
1794 | return z |
---|
1795 | |
---|
1796 | |
---|
1797 | |
---|
1798 | domain.set_quantity('elevation', x_slope) |
---|
1799 | domain.set_quantity('friction', 0) |
---|
1800 | domain.set_quantity('stage', 0.4) #Steady |
---|
1801 | |
---|
1802 | # Boundary conditions (reflective everywhere) |
---|
1803 | Br = Reflective_boundary(domain) |
---|
1804 | domain.set_boundary({'left': Br, 'right': Br, 'top': Br, 'bottom': Br}) |
---|
1805 | |
---|
1806 | domain.check_integrity() |
---|
1807 | |
---|
1808 | #domain.visualise = True #If you want to take a sticky beak |
---|
1809 | |
---|
1810 | initial_volume = domain.quantities['stage'].get_integral() |
---|
1811 | initial_xmom = domain.quantities['xmomentum'].get_integral() |
---|
1812 | |
---|
1813 | import copy |
---|
1814 | ref_centroid_values =\ |
---|
1815 | copy.copy(domain.quantities['stage'].centroid_values) |
---|
1816 | |
---|
1817 | #Test limiter by itself |
---|
1818 | domain.distribute_to_vertices_and_edges() |
---|
1819 | |
---|
1820 | #Check that initial limiter doesn't violate cons quan |
---|
1821 | assert allclose (domain.quantities['stage'].get_integral(), |
---|
1822 | initial_volume) |
---|
1823 | #NOTE: This would fail if any initial stage was less than the |
---|
1824 | #corresponding bed elevation - but that is reasonable. |
---|
1825 | |
---|
1826 | |
---|
1827 | #Evolution |
---|
1828 | for t in domain.evolve(yieldstep = 0.05, finaltime = 10.0): |
---|
1829 | volume = domain.quantities['stage'].get_integral() |
---|
1830 | |
---|
1831 | #print t, volume, initial_volume |
---|
1832 | |
---|
1833 | |
---|
1834 | #if not allclose (volume, initial_volume): |
---|
1835 | # print 't==4.05' |
---|
1836 | # for k in range(domain.number_of_elements): |
---|
1837 | # pass |
---|
1838 | # print domain.quantities['stage'].centroid_values[k] -\ |
---|
1839 | # ref_centroid_values[k] |
---|
1840 | |
---|
1841 | assert allclose (volume, initial_volume) |
---|
1842 | |
---|
1843 | |
---|
1844 | os.remove(domain.filename + '.sww') |
---|
1845 | |
---|
1846 | |
---|
1847 | def test_conservation_5(self): |
---|
1848 | """Test that momentum is conserved globally in |
---|
1849 | steady state scenario |
---|
1850 | |
---|
1851 | This one uses a slopy bed, dirichlet and reflective bdries |
---|
1852 | """ |
---|
1853 | from mesh_factory import rectangular |
---|
1854 | from Numeric import array |
---|
1855 | |
---|
1856 | #Create basic mesh |
---|
1857 | points, vertices, boundary = rectangular(6, 6) |
---|
1858 | |
---|
1859 | #Create shallow water domain |
---|
1860 | domain = Domain(points, vertices, boundary) |
---|
1861 | domain.smooth = False |
---|
1862 | domain.default_order=2 |
---|
1863 | |
---|
1864 | #IC |
---|
1865 | def x_slope(x, y): |
---|
1866 | return x/3 |
---|
1867 | |
---|
1868 | domain.set_quantity('elevation', x_slope) |
---|
1869 | domain.set_quantity('friction', 0) |
---|
1870 | domain.set_quantity('stage', 0.4) #Steady |
---|
1871 | |
---|
1872 | # Boundary conditions (reflective everywhere) |
---|
1873 | Br = Reflective_boundary(domain) |
---|
1874 | Bleft = Dirichlet_boundary([0.5,0,0]) |
---|
1875 | Bright = Dirichlet_boundary([0.1,0,0]) |
---|
1876 | domain.set_boundary({'left': Bleft, 'right': Bright, |
---|
1877 | 'top': Br, 'bottom': Br}) |
---|
1878 | |
---|
1879 | domain.check_integrity() |
---|
1880 | |
---|
1881 | #domain.visualise = True #If you want to take a sticky beak |
---|
1882 | |
---|
1883 | initial_volume = domain.quantities['stage'].get_integral() |
---|
1884 | initial_xmom = domain.quantities['xmomentum'].get_integral() |
---|
1885 | |
---|
1886 | |
---|
1887 | #Evolution |
---|
1888 | for t in domain.evolve(yieldstep = 0.05, finaltime = 15.0): |
---|
1889 | stage = domain.quantities['stage'].get_integral() |
---|
1890 | xmom = domain.quantities['xmomentum'].get_integral() |
---|
1891 | ymom = domain.quantities['ymomentum'].get_integral() |
---|
1892 | |
---|
1893 | if allclose(t, 6): #Steady state reached |
---|
1894 | steady_xmom = domain.quantities['xmomentum'].get_integral() |
---|
1895 | steady_ymom = domain.quantities['ymomentum'].get_integral() |
---|
1896 | steady_stage = domain.quantities['stage'].get_integral() |
---|
1897 | |
---|
1898 | if t > 6: |
---|
1899 | #print '%.2f %14.8f %14.8f' %(t, ymom, steady_ymom) |
---|
1900 | assert allclose(xmom, steady_xmom) |
---|
1901 | assert allclose(ymom, steady_ymom) |
---|
1902 | assert allclose(stage, steady_stage) |
---|
1903 | |
---|
1904 | |
---|
1905 | os.remove(domain.filename + '.sww') |
---|
1906 | |
---|
1907 | |
---|
1908 | |
---|
1909 | |
---|
1910 | |
---|
1911 | def test_conservation_real(self): |
---|
1912 | """Test that momentum is conserved globally |
---|
1913 | |
---|
1914 | Stephen finally made a test that revealed the problem. |
---|
1915 | This test failed with code prior to 25 July 2005 |
---|
1916 | """ |
---|
1917 | |
---|
1918 | yieldstep = 0.01 |
---|
1919 | finaltime = 0.05 |
---|
1920 | min_depth = 1.0e-2 |
---|
1921 | |
---|
1922 | |
---|
1923 | import sys |
---|
1924 | from os import sep; sys.path.append('..'+sep+'abstract_2d_finite_volumes') |
---|
1925 | from mesh_factory import rectangular |
---|
1926 | |
---|
1927 | |
---|
1928 | #Create shallow water domain |
---|
1929 | points, vertices, boundary = rectangular(10, 10, len1=500, len2=500) |
---|
1930 | domain = Domain(points, vertices, boundary) |
---|
1931 | domain.smooth = False |
---|
1932 | domain.visualise = False |
---|
1933 | domain.default_order = 1 |
---|
1934 | domain.minimum_allowed_height = min_depth |
---|
1935 | |
---|
1936 | # Set initial condition |
---|
1937 | class Set_IC: |
---|
1938 | """Set an initial condition with a constant value, for x0<x<x1 |
---|
1939 | """ |
---|
1940 | |
---|
1941 | def __init__(self, x0=0.25, x1=0.5, h=1.0): |
---|
1942 | self.x0 = x0 |
---|
1943 | self.x1 = x1 |
---|
1944 | self.h = h |
---|
1945 | |
---|
1946 | def __call__(self, x, y): |
---|
1947 | return self.h*((x>self.x0)&(x<self.x1)) |
---|
1948 | |
---|
1949 | |
---|
1950 | domain.set_quantity('stage', Set_IC(200.0,300.0,5.0)) |
---|
1951 | |
---|
1952 | |
---|
1953 | #Boundaries |
---|
1954 | R = Reflective_boundary(domain) |
---|
1955 | domain.set_boundary( {'left': R, 'right': R, 'top':R, 'bottom': R}) |
---|
1956 | |
---|
1957 | ref = domain.quantities['stage'].get_integral() |
---|
1958 | |
---|
1959 | # Evolution |
---|
1960 | for t in domain.evolve(yieldstep = yieldstep, finaltime = finaltime): |
---|
1961 | pass |
---|
1962 | #print 'Integral stage = ',\ |
---|
1963 | # domain.quantities['stage'].get_integral(),\ |
---|
1964 | # ' Time = ',domain.time |
---|
1965 | |
---|
1966 | |
---|
1967 | now = domain.quantities['stage'].get_integral() |
---|
1968 | |
---|
1969 | msg = 'Stage not conserved: was %f, now %f' %(ref, now) |
---|
1970 | assert allclose(ref, now), msg |
---|
1971 | |
---|
1972 | os.remove(domain.filename + '.sww') |
---|
1973 | |
---|
1974 | def test_second_order_flat_bed_onestep(self): |
---|
1975 | |
---|
1976 | from mesh_factory import rectangular |
---|
1977 | from Numeric import array |
---|
1978 | |
---|
1979 | #Create basic mesh |
---|
1980 | points, vertices, boundary = rectangular(6, 6) |
---|
1981 | |
---|
1982 | #Create shallow water domain |
---|
1983 | domain = Domain(points, vertices, boundary) |
---|
1984 | domain.smooth = False |
---|
1985 | domain.default_order=2 |
---|
1986 | |
---|
1987 | # Boundary conditions |
---|
1988 | Br = Reflective_boundary(domain) |
---|
1989 | Bd = Dirichlet_boundary([0.1, 0., 0.]) |
---|
1990 | domain.set_boundary({'left': Bd, 'right': Br, 'top': Br, 'bottom': Br}) |
---|
1991 | |
---|
1992 | domain.check_integrity() |
---|
1993 | |
---|
1994 | #Evolution |
---|
1995 | for t in domain.evolve(yieldstep = 0.05, finaltime = 0.05): |
---|
1996 | pass# domain.write_time() |
---|
1997 | |
---|
1998 | #Data from earlier version of abstract_2d_finite_volumes |
---|
1999 | assert allclose(domain.min_timestep, 0.0396825396825) |
---|
2000 | assert allclose(domain.max_timestep, 0.0396825396825) |
---|
2001 | |
---|
2002 | assert allclose(domain.quantities['stage'].centroid_values[:12], |
---|
2003 | [0.00171396, 0.02656103, 0.00241523, 0.02656103, |
---|
2004 | 0.00241523, 0.02656103, 0.00241523, 0.02656103, |
---|
2005 | 0.00241523, 0.02656103, 0.00241523, 0.0272623]) |
---|
2006 | |
---|
2007 | domain.distribute_to_vertices_and_edges() |
---|
2008 | assert allclose(domain.quantities['stage'].vertex_values[:12,0], |
---|
2009 | [0.0001714, 0.02656103, 0.00024152, |
---|
2010 | 0.02656103, 0.00024152, 0.02656103, |
---|
2011 | 0.00024152, 0.02656103, 0.00024152, |
---|
2012 | 0.02656103, 0.00024152, 0.0272623]) |
---|
2013 | |
---|
2014 | assert allclose(domain.quantities['stage'].vertex_values[:12,1], |
---|
2015 | [0.00315012, 0.02656103, 0.00024152, 0.02656103, |
---|
2016 | 0.00024152, 0.02656103, 0.00024152, 0.02656103, |
---|
2017 | 0.00024152, 0.02656103, 0.00040506, 0.0272623]) |
---|
2018 | |
---|
2019 | assert allclose(domain.quantities['stage'].vertex_values[:12,2], |
---|
2020 | [0.00182037, 0.02656103, 0.00676264, |
---|
2021 | 0.02656103, 0.00676264, 0.02656103, |
---|
2022 | 0.00676264, 0.02656103, 0.00676264, |
---|
2023 | 0.02656103, 0.0065991, 0.0272623]) |
---|
2024 | |
---|
2025 | assert allclose(domain.quantities['xmomentum'].centroid_values[:12], |
---|
2026 | [0.00113961, 0.01302432, 0.00148672, |
---|
2027 | 0.01302432, 0.00148672, 0.01302432, |
---|
2028 | 0.00148672, 0.01302432, 0.00148672 , |
---|
2029 | 0.01302432, 0.00148672, 0.01337143]) |
---|
2030 | |
---|
2031 | assert allclose(domain.quantities['ymomentum'].centroid_values[:12], |
---|
2032 | [-2.91240050e-004 , 1.22721531e-004, |
---|
2033 | -1.22721531e-004, 1.22721531e-004 , |
---|
2034 | -1.22721531e-004, 1.22721531e-004, |
---|
2035 | -1.22721531e-004 , 1.22721531e-004, |
---|
2036 | -1.22721531e-004, 1.22721531e-004, |
---|
2037 | -1.22721531e-004, -4.57969873e-005]) |
---|
2038 | |
---|
2039 | os.remove(domain.filename + '.sww') |
---|
2040 | |
---|
2041 | |
---|
2042 | def test_second_order_flat_bed_moresteps(self): |
---|
2043 | |
---|
2044 | from mesh_factory import rectangular |
---|
2045 | from Numeric import array |
---|
2046 | |
---|
2047 | #Create basic mesh |
---|
2048 | points, vertices, boundary = rectangular(6, 6) |
---|
2049 | |
---|
2050 | #Create shallow water domain |
---|
2051 | domain = Domain(points, vertices, boundary) |
---|
2052 | domain.smooth = False |
---|
2053 | domain.default_order=2 |
---|
2054 | |
---|
2055 | # Boundary conditions |
---|
2056 | Br = Reflective_boundary(domain) |
---|
2057 | Bd = Dirichlet_boundary([0.1, 0., 0.]) |
---|
2058 | domain.set_boundary({'left': Bd, 'right': Br, 'top': Br, 'bottom': Br}) |
---|
2059 | |
---|
2060 | domain.check_integrity() |
---|
2061 | |
---|
2062 | #Evolution |
---|
2063 | for t in domain.evolve(yieldstep = 0.05, finaltime = 0.1): |
---|
2064 | pass |
---|
2065 | |
---|
2066 | #Data from earlier version of abstract_2d_finite_volumes |
---|
2067 | #assert allclose(domain.min_timestep, 0.0396825396825) |
---|
2068 | #assert allclose(domain.max_timestep, 0.0396825396825) |
---|
2069 | #print domain.quantities['stage'].centroid_values |
---|
2070 | |
---|
2071 | os.remove(domain.filename + '.sww') |
---|
2072 | |
---|
2073 | |
---|
2074 | def test_flatbed_first_order(self): |
---|
2075 | from mesh_factory import rectangular |
---|
2076 | from Numeric import array |
---|
2077 | |
---|
2078 | #Create basic mesh |
---|
2079 | N = 8 |
---|
2080 | points, vertices, boundary = rectangular(N, N) |
---|
2081 | |
---|
2082 | #Create shallow water domain |
---|
2083 | domain = Domain(points, vertices, boundary) |
---|
2084 | domain.smooth = False |
---|
2085 | domain.visualise = False |
---|
2086 | domain.default_order=1 |
---|
2087 | |
---|
2088 | # Boundary conditions |
---|
2089 | Br = Reflective_boundary(domain) |
---|
2090 | Bd = Dirichlet_boundary([0.2,0.,0.]) |
---|
2091 | |
---|
2092 | domain.set_boundary({'left': Bd, 'right': Br, 'top': Br, 'bottom': Br}) |
---|
2093 | domain.check_integrity() |
---|
2094 | |
---|
2095 | |
---|
2096 | #Evolution |
---|
2097 | for t in domain.evolve(yieldstep = 0.02, finaltime = 0.5): |
---|
2098 | pass |
---|
2099 | #domain.write_time() |
---|
2100 | |
---|
2101 | #FIXME: These numbers were from version before 25/10 |
---|
2102 | #assert allclose(domain.min_timestep, 0.0140413643926) |
---|
2103 | #assert allclose(domain.max_timestep, 0.0140947355753) |
---|
2104 | |
---|
2105 | for i in range(3): |
---|
2106 | #assert allclose(domain.quantities['stage'].edge_values[:4,i], |
---|
2107 | # [0.10730244,0.12337617,0.11200126,0.12605666]) |
---|
2108 | |
---|
2109 | assert allclose(domain.quantities['xmomentum'].edge_values[:4,i], |
---|
2110 | [0.07610894,0.06901572,0.07284461,0.06819712]) |
---|
2111 | |
---|
2112 | #assert allclose(domain.quantities['ymomentum'].edge_values[:4,i], |
---|
2113 | # [-0.0060238, -0.00157404, -0.00309633, -0.0001637]) |
---|
2114 | |
---|
2115 | |
---|
2116 | os.remove(domain.filename + '.sww') |
---|
2117 | |
---|
2118 | def test_flatbed_second_order(self): |
---|
2119 | from mesh_factory import rectangular |
---|
2120 | from Numeric import array |
---|
2121 | |
---|
2122 | #Create basic mesh |
---|
2123 | N = 8 |
---|
2124 | points, vertices, boundary = rectangular(N, N) |
---|
2125 | |
---|
2126 | #Create shallow water domain |
---|
2127 | domain = Domain(points, vertices, boundary) |
---|
2128 | domain.smooth = False |
---|
2129 | domain.visualise = False |
---|
2130 | domain.default_order=2 |
---|
2131 | #domain.minimum_allowed_height = 0.0 #Makes it like the 'oldstyle' balance |
---|
2132 | |
---|
2133 | # Boundary conditions |
---|
2134 | Br = Reflective_boundary(domain) |
---|
2135 | Bd = Dirichlet_boundary([0.2,0.,0.]) |
---|
2136 | |
---|
2137 | domain.set_boundary({'left': Bd, 'right': Br, 'top': Br, 'bottom': Br}) |
---|
2138 | domain.check_integrity() |
---|
2139 | |
---|
2140 | #Evolution |
---|
2141 | for t in domain.evolve(yieldstep = 0.01, finaltime = 0.03): |
---|
2142 | pass |
---|
2143 | |
---|
2144 | |
---|
2145 | assert allclose(domain.min_timestep, 0.0210448446782) |
---|
2146 | assert allclose(domain.max_timestep, 0.0210448446782) |
---|
2147 | |
---|
2148 | #print domain.quantities['stage'].vertex_values[:4,0] |
---|
2149 | #print domain.quantities['xmomentum'].vertex_values[:4,0] |
---|
2150 | #print domain.quantities['ymomentum'].vertex_values[:4,0] |
---|
2151 | |
---|
2152 | #FIXME: These numbers were from version before 25/10 |
---|
2153 | #assert allclose(domain.quantities['stage'].vertex_values[:4,0], |
---|
2154 | # [0.00101913,0.05352143,0.00104852,0.05354394]) |
---|
2155 | |
---|
2156 | #FIXME: These numbers were from version before 21/3/6 - |
---|
2157 | #could be recreated by setting maximum_allowed_speed to 0 maybe |
---|
2158 | #assert allclose(domain.quantities['xmomentum'].vertex_values[:4,0], |
---|
2159 | # [ 0.00064835, 0.03685719, 0.00085073, 0.03687313]) |
---|
2160 | |
---|
2161 | assert allclose(domain.quantities['xmomentum'].vertex_values[:4,0], |
---|
2162 | [ 0.00090581, 0.03685719, 0.00088303, 0.03687313]) |
---|
2163 | |
---|
2164 | |
---|
2165 | |
---|
2166 | #assert allclose(domain.quantities['xmomentum'].vertex_values[:4,0], |
---|
2167 | # [0.00090581,0.03685719,0.00088303,0.03687313]) |
---|
2168 | |
---|
2169 | assert allclose(domain.quantities['ymomentum'].vertex_values[:4,0], |
---|
2170 | [-0.00139463,0.0006156,-0.00060364,0.00061827]) |
---|
2171 | |
---|
2172 | |
---|
2173 | os.remove(domain.filename + '.sww') |
---|
2174 | |
---|
2175 | |
---|
2176 | def test_flatbed_second_order_vmax_0(self): |
---|
2177 | from mesh_factory import rectangular |
---|
2178 | from Numeric import array |
---|
2179 | |
---|
2180 | #Create basic mesh |
---|
2181 | N = 8 |
---|
2182 | points, vertices, boundary = rectangular(N, N) |
---|
2183 | |
---|
2184 | #Create shallow water domain |
---|
2185 | domain = Domain(points, vertices, boundary) |
---|
2186 | domain.smooth = False |
---|
2187 | domain.visualise = False |
---|
2188 | domain.default_order=2 |
---|
2189 | domain.maximum_allowed_speed = 0.0 #Makes it like the 'oldstyle' |
---|
2190 | |
---|
2191 | # Boundary conditions |
---|
2192 | Br = Reflective_boundary(domain) |
---|
2193 | Bd = Dirichlet_boundary([0.2,0.,0.]) |
---|
2194 | |
---|
2195 | domain.set_boundary({'left': Bd, 'right': Br, 'top': Br, 'bottom': Br}) |
---|
2196 | domain.check_integrity() |
---|
2197 | |
---|
2198 | #Evolution |
---|
2199 | for t in domain.evolve(yieldstep = 0.01, finaltime = 0.03): |
---|
2200 | pass |
---|
2201 | |
---|
2202 | |
---|
2203 | assert allclose(domain.min_timestep, 0.0210448446782) |
---|
2204 | assert allclose(domain.max_timestep, 0.0210448446782) |
---|
2205 | |
---|
2206 | #FIXME: These numbers were from version before 21/3/6 - |
---|
2207 | #could be recreated by setting maximum_allowed_speed to 0 maybe |
---|
2208 | assert allclose(domain.quantities['xmomentum'].vertex_values[:4,0], |
---|
2209 | [ 0.00064835, 0.03685719, 0.00085073, 0.03687313]) |
---|
2210 | |
---|
2211 | |
---|
2212 | assert allclose(domain.quantities['ymomentum'].vertex_values[:4,0], |
---|
2213 | [-0.00139463,0.0006156,-0.00060364,0.00061827]) |
---|
2214 | |
---|
2215 | |
---|
2216 | os.remove(domain.filename + '.sww') |
---|
2217 | |
---|
2218 | |
---|
2219 | |
---|
2220 | def test_flatbed_second_order_distribute(self): |
---|
2221 | #Use real data from anuga.abstract_2d_finite_volumes 2 |
---|
2222 | #painfully setup and extracted. |
---|
2223 | from mesh_factory import rectangular |
---|
2224 | from Numeric import array |
---|
2225 | |
---|
2226 | #Create basic mesh |
---|
2227 | N = 8 |
---|
2228 | points, vertices, boundary = rectangular(N, N) |
---|
2229 | |
---|
2230 | #Create shallow water domain |
---|
2231 | domain = Domain(points, vertices, boundary) |
---|
2232 | domain.smooth = False |
---|
2233 | domain.visualise = False |
---|
2234 | domain.default_order=domain.order=2 |
---|
2235 | |
---|
2236 | # Boundary conditions |
---|
2237 | Br = Reflective_boundary(domain) |
---|
2238 | Bd = Dirichlet_boundary([0.2,0.,0.]) |
---|
2239 | |
---|
2240 | domain.set_boundary({'left': Bd, 'right': Br, 'top': Br, 'bottom': Br}) |
---|
2241 | domain.check_integrity() |
---|
2242 | |
---|
2243 | |
---|
2244 | |
---|
2245 | for V in [False, True]: |
---|
2246 | if V: |
---|
2247 | #Set centroids as if system had been evolved |
---|
2248 | L = zeros(2*N*N, Float) |
---|
2249 | L[:32] = [7.21205592e-003, 5.35214298e-002, 1.00910824e-002, |
---|
2250 | 5.35439433e-002, 1.00910824e-002, 5.35439433e-002, |
---|
2251 | 1.00910824e-002, 5.35439433e-002, 1.00910824e-002, |
---|
2252 | 5.35439433e-002, 1.00910824e-002, 5.35439433e-002, |
---|
2253 | 1.00910824e-002, 5.35393928e-002, 1.02344264e-002, |
---|
2254 | 5.59605058e-002, 0.00000000e+000, 3.31027800e-004, |
---|
2255 | 0.00000000e+000, 4.37962142e-005, 0.00000000e+000, |
---|
2256 | 4.37962142e-005, 0.00000000e+000, 4.37962142e-005, |
---|
2257 | 0.00000000e+000, 4.37962142e-005, 0.00000000e+000, |
---|
2258 | 4.37962142e-005, 0.00000000e+000, 4.37962142e-005, |
---|
2259 | 0.00000000e+000, 5.57305948e-005] |
---|
2260 | |
---|
2261 | X = zeros(2*N*N, Float) |
---|
2262 | X[:32] = [6.48351607e-003, 3.68571894e-002, 8.50733285e-003, |
---|
2263 | 3.68731327e-002, 8.50733285e-003, 3.68731327e-002, |
---|
2264 | 8.50733285e-003, 3.68731327e-002, 8.50733285e-003, |
---|
2265 | 3.68731327e-002, 8.50733285e-003, 3.68731327e-002, |
---|
2266 | 8.50733285e-003, 3.68693861e-002, 8.65220973e-003, |
---|
2267 | 3.85055387e-002, 0.00000000e+000, 2.86060840e-004, |
---|
2268 | 0.00000000e+000, 3.58905503e-005, 0.00000000e+000, |
---|
2269 | 3.58905503e-005, 0.00000000e+000, 3.58905503e-005, |
---|
2270 | 0.00000000e+000, 3.58905503e-005, 0.00000000e+000, |
---|
2271 | 3.58905503e-005, 0.00000000e+000, 3.58905503e-005, |
---|
2272 | 0.00000000e+000, 4.57662812e-005] |
---|
2273 | |
---|
2274 | Y = zeros(2*N*N, Float) |
---|
2275 | Y[:32]=[-1.39463104e-003, 6.15600298e-004, -6.03637382e-004, |
---|
2276 | 6.18272251e-004, -6.03637382e-004, 6.18272251e-004, |
---|
2277 | -6.03637382e-004, 6.18272251e-004, -6.03637382e-004, |
---|
2278 | 6.18272251e-004, -6.03637382e-004, 6.18272251e-004, |
---|
2279 | -6.03637382e-004, 6.18599320e-004, -6.74622797e-004, |
---|
2280 | -1.48934756e-004, 0.00000000e+000, -5.35079969e-005, |
---|
2281 | 0.00000000e+000, -2.57264987e-005, 0.00000000e+000, |
---|
2282 | -2.57264987e-005, 0.00000000e+000, -2.57264987e-005, |
---|
2283 | 0.00000000e+000, -2.57264987e-005, 0.00000000e+000, |
---|
2284 | -2.57264987e-005, 0.00000000e+000, -2.57264987e-005, |
---|
2285 | 0.00000000e+000, -2.57635178e-005] |
---|
2286 | |
---|
2287 | |
---|
2288 | domain.set_quantity('stage', L, location='centroids') |
---|
2289 | domain.set_quantity('xmomentum', X, location='centroids') |
---|
2290 | domain.set_quantity('ymomentum', Y, location='centroids') |
---|
2291 | |
---|
2292 | domain.check_integrity() |
---|
2293 | else: |
---|
2294 | #Evolution |
---|
2295 | for t in domain.evolve(yieldstep = 0.01, finaltime = 0.03): |
---|
2296 | pass |
---|
2297 | assert allclose(domain.min_timestep, 0.0210448446782) |
---|
2298 | assert allclose(domain.max_timestep, 0.0210448446782) |
---|
2299 | |
---|
2300 | |
---|
2301 | #Centroids were correct but not vertices. |
---|
2302 | #Hence the check of distribute below. |
---|
2303 | assert allclose(domain.quantities['stage'].centroid_values[:4], |
---|
2304 | [0.00721206,0.05352143,0.01009108,0.05354394]) |
---|
2305 | |
---|
2306 | assert allclose(domain.quantities['xmomentum'].centroid_values[:4], |
---|
2307 | [0.00648352,0.03685719,0.00850733,0.03687313]) |
---|
2308 | |
---|
2309 | assert allclose(domain.quantities['ymomentum'].centroid_values[:4], |
---|
2310 | [-0.00139463,0.0006156,-0.00060364,0.00061827]) |
---|
2311 | |
---|
2312 | #print 'C17=', domain.quantities['xmomentum'].centroid_values[17] |
---|
2313 | #print 'C19=', domain.quantities['xmomentum'].centroid_values[19] |
---|
2314 | |
---|
2315 | #assert allclose(domain.quantities['xmomentum'].centroid_values[17],0.00028606084) |
---|
2316 | ##print domain.quantities['xmomentum'].centroid_values[17], V |
---|
2317 | ##print |
---|
2318 | if not V: |
---|
2319 | #FIXME: These numbers were from version before 21/3/6 - |
---|
2320 | #could be recreated by setting maximum_allowed_speed to 0 maybe |
---|
2321 | |
---|
2322 | #assert allclose(domain.quantities['xmomentum'].centroid_values[17], 0.0) |
---|
2323 | assert allclose(domain.quantities['xmomentum'].centroid_values[17], 0.000286060839592) |
---|
2324 | |
---|
2325 | else: |
---|
2326 | assert allclose(domain.quantities['xmomentum'].centroid_values[17], 0.00028606084) |
---|
2327 | |
---|
2328 | import copy |
---|
2329 | XX = copy.copy(domain.quantities['xmomentum'].centroid_values) |
---|
2330 | assert allclose(domain.quantities['xmomentum'].centroid_values, XX) |
---|
2331 | |
---|
2332 | domain.distribute_to_vertices_and_edges() |
---|
2333 | |
---|
2334 | #assert allclose(domain.quantities['xmomentum'].centroid_values, XX) |
---|
2335 | |
---|
2336 | #assert allclose(domain.quantities['xmomentum'].centroid_values[17], |
---|
2337 | # 0.0) |
---|
2338 | assert allclose(domain.quantities['xmomentum'].centroid_values[17], 0.000286060839592) |
---|
2339 | |
---|
2340 | |
---|
2341 | #FIXME: These numbers were from version before 25/10 |
---|
2342 | #assert allclose(domain.quantities['stage'].vertex_values[:4,0], |
---|
2343 | # [0.00101913,0.05352143,0.00104852,0.05354394]) |
---|
2344 | |
---|
2345 | assert allclose(domain.quantities['ymomentum'].vertex_values[:4,0], |
---|
2346 | [-0.00139463,0.0006156,-0.00060364,0.00061827]) |
---|
2347 | |
---|
2348 | |
---|
2349 | assert allclose(domain.quantities['xmomentum'].vertex_values[:4,0], |
---|
2350 | [0.00090581,0.03685719,0.00088303,0.03687313]) |
---|
2351 | |
---|
2352 | |
---|
2353 | #NB NO longer relvant: |
---|
2354 | |
---|
2355 | #This was the culprit. First triangles vertex 0 had an |
---|
2356 | #x-momentum of 0.0064835 instead of 0.00090581 and |
---|
2357 | #third triangle had 0.00850733 instead of 0.00088303 |
---|
2358 | #print domain.quantities['xmomentum'].vertex_values[:4,0] |
---|
2359 | |
---|
2360 | #print domain.quantities['xmomentum'].vertex_values[:4,0] |
---|
2361 | #assert allclose(domain.quantities['xmomentum'].vertex_values[:4,0], |
---|
2362 | # [0.00090581,0.03685719,0.00088303,0.03687313]) |
---|
2363 | |
---|
2364 | os.remove(domain.filename + '.sww') |
---|
2365 | |
---|
2366 | |
---|
2367 | |
---|
2368 | def test_bedslope_problem_first_order(self): |
---|
2369 | |
---|
2370 | from mesh_factory import rectangular |
---|
2371 | from Numeric import array |
---|
2372 | |
---|
2373 | #Create basic mesh |
---|
2374 | points, vertices, boundary = rectangular(6, 6) |
---|
2375 | |
---|
2376 | #Create shallow water domain |
---|
2377 | domain = Domain(points, vertices, boundary) |
---|
2378 | domain.smooth = False |
---|
2379 | domain.default_order=1 |
---|
2380 | |
---|
2381 | #Bed-slope and friction |
---|
2382 | def x_slope(x, y): |
---|
2383 | return -x/3 |
---|
2384 | |
---|
2385 | domain.set_quantity('elevation', x_slope) |
---|
2386 | |
---|
2387 | # Boundary conditions |
---|
2388 | Br = Reflective_boundary(domain) |
---|
2389 | domain.set_boundary({'left': Br, 'right': Br, 'top': Br, 'bottom': Br}) |
---|
2390 | |
---|
2391 | #Initial condition |
---|
2392 | domain.set_quantity('stage', Constant_height(x_slope, 0.05)) |
---|
2393 | domain.check_integrity() |
---|
2394 | |
---|
2395 | #Evolution |
---|
2396 | for t in domain.evolve(yieldstep = 0.05, finaltime = 0.05): |
---|
2397 | pass# domain.write_time() |
---|
2398 | |
---|
2399 | assert allclose(domain.min_timestep, 0.050010003001) |
---|
2400 | assert allclose(domain.max_timestep, 0.050010003001) |
---|
2401 | |
---|
2402 | |
---|
2403 | os.remove(domain.filename + '.sww') |
---|
2404 | |
---|
2405 | def test_bedslope_problem_first_order_moresteps(self): |
---|
2406 | |
---|
2407 | from mesh_factory import rectangular |
---|
2408 | from Numeric import array |
---|
2409 | |
---|
2410 | #Create basic mesh |
---|
2411 | points, vertices, boundary = rectangular(6, 6) |
---|
2412 | |
---|
2413 | #Create shallow water domain |
---|
2414 | domain = Domain(points, vertices, boundary) |
---|
2415 | domain.smooth = False |
---|
2416 | domain.default_order=1 |
---|
2417 | domain.beta_h = 0.0 #Use first order in h-limiter |
---|
2418 | |
---|
2419 | #Bed-slope and friction |
---|
2420 | def x_slope(x, y): |
---|
2421 | return -x/3 |
---|
2422 | |
---|
2423 | domain.set_quantity('elevation', x_slope) |
---|
2424 | |
---|
2425 | # Boundary conditions |
---|
2426 | Br = Reflective_boundary(domain) |
---|
2427 | domain.set_boundary({'left': Br, 'right': Br, 'top': Br, 'bottom': Br}) |
---|
2428 | |
---|
2429 | #Initial condition |
---|
2430 | domain.set_quantity('stage', Constant_height(x_slope, 0.05)) |
---|
2431 | domain.check_integrity() |
---|
2432 | |
---|
2433 | #Evolution |
---|
2434 | for t in domain.evolve(yieldstep = 0.05, finaltime = 0.5): |
---|
2435 | pass# domain.write_time() |
---|
2436 | |
---|
2437 | #Data from earlier version of abstract_2d_finite_volumes |
---|
2438 | #print domain.quantities['stage'].centroid_values |
---|
2439 | |
---|
2440 | assert allclose(domain.quantities['stage'].centroid_values, |
---|
2441 | [-0.02998628, -0.01520652, -0.03043492, |
---|
2442 | -0.0149132, -0.03004706, -0.01476251, |
---|
2443 | -0.0298215, -0.01467976, -0.02988158, |
---|
2444 | -0.01474662, -0.03036161, -0.01442995, |
---|
2445 | -0.07624583, -0.06297061, -0.07733792, |
---|
2446 | -0.06342237, -0.07695439, -0.06289595, |
---|
2447 | -0.07635559, -0.0626065, -0.07633628, |
---|
2448 | -0.06280072, -0.07739632, -0.06386738, |
---|
2449 | -0.12161738, -0.11028239, -0.1223796, |
---|
2450 | -0.11095953, -0.12189744, -0.11048616, |
---|
2451 | -0.12074535, -0.10987605, -0.12014311, |
---|
2452 | -0.10976691, -0.12096859, -0.11087692, |
---|
2453 | -0.16868259, -0.15868061, -0.16801135, |
---|
2454 | -0.1588003, -0.16674343, -0.15813323, |
---|
2455 | -0.16457595, -0.15693826, -0.16281096, |
---|
2456 | -0.15585154, -0.16283873, -0.15540068, |
---|
2457 | -0.17450362, -0.19919913, -0.18062882, |
---|
2458 | -0.19764131, -0.17783111, -0.19407213, |
---|
2459 | -0.1736915, -0.19053624, -0.17228678, |
---|
2460 | -0.19105634, -0.17920133, -0.1968828, |
---|
2461 | -0.14244395, -0.14604641, -0.14473537, |
---|
2462 | -0.1506107, -0.14510055, -0.14919522, |
---|
2463 | -0.14175896, -0.14560798, -0.13911658, |
---|
2464 | -0.14439383, -0.13924047, -0.14829043]) |
---|
2465 | |
---|
2466 | os.remove(domain.filename + '.sww') |
---|
2467 | |
---|
2468 | def test_bedslope_problem_second_order_one_step(self): |
---|
2469 | |
---|
2470 | from mesh_factory import rectangular |
---|
2471 | from Numeric import array |
---|
2472 | |
---|
2473 | #Create basic mesh |
---|
2474 | points, vertices, boundary = rectangular(6, 6) |
---|
2475 | |
---|
2476 | #Create shallow water domain |
---|
2477 | domain = Domain(points, vertices, boundary) |
---|
2478 | domain.smooth = False |
---|
2479 | domain.default_order=2 |
---|
2480 | |
---|
2481 | #Bed-slope and friction at vertices (and interpolated elsewhere) |
---|
2482 | def x_slope(x, y): |
---|
2483 | return -x/3 |
---|
2484 | |
---|
2485 | domain.set_quantity('elevation', x_slope) |
---|
2486 | |
---|
2487 | # Boundary conditions |
---|
2488 | Br = Reflective_boundary(domain) |
---|
2489 | domain.set_boundary({'left': Br, 'right': Br, 'top': Br, 'bottom': Br}) |
---|
2490 | |
---|
2491 | #Initial condition |
---|
2492 | domain.set_quantity('stage', Constant_height(x_slope, 0.05)) |
---|
2493 | domain.check_integrity() |
---|
2494 | |
---|
2495 | assert allclose(domain.quantities['stage'].centroid_values, |
---|
2496 | [0.01296296, 0.03148148, 0.01296296, |
---|
2497 | 0.03148148, 0.01296296, 0.03148148, |
---|
2498 | 0.01296296, 0.03148148, 0.01296296, |
---|
2499 | 0.03148148, 0.01296296, 0.03148148, |
---|
2500 | -0.04259259, -0.02407407, -0.04259259, |
---|
2501 | -0.02407407, -0.04259259, -0.02407407, |
---|
2502 | -0.04259259, -0.02407407, -0.04259259, |
---|
2503 | -0.02407407, -0.04259259, -0.02407407, |
---|
2504 | -0.09814815, -0.07962963, -0.09814815, |
---|
2505 | -0.07962963, -0.09814815, -0.07962963, |
---|
2506 | -0.09814815, -0.07962963, -0.09814815, |
---|
2507 | -0.07962963, -0.09814815, -0.07962963, |
---|
2508 | -0.1537037 , -0.13518519, -0.1537037, |
---|
2509 | -0.13518519, -0.1537037, -0.13518519, |
---|
2510 | -0.1537037 , -0.13518519, -0.1537037, |
---|
2511 | -0.13518519, -0.1537037, -0.13518519, |
---|
2512 | -0.20925926, -0.19074074, -0.20925926, |
---|
2513 | -0.19074074, -0.20925926, -0.19074074, |
---|
2514 | -0.20925926, -0.19074074, -0.20925926, |
---|
2515 | -0.19074074, -0.20925926, -0.19074074, |
---|
2516 | -0.26481481, -0.2462963, -0.26481481, |
---|
2517 | -0.2462963, -0.26481481, -0.2462963, |
---|
2518 | -0.26481481, -0.2462963, -0.26481481, |
---|
2519 | -0.2462963, -0.26481481, -0.2462963]) |
---|
2520 | |
---|
2521 | |
---|
2522 | #print domain.quantities['stage'].extrapolate_second_order() |
---|
2523 | #domain.distribute_to_vertices_and_edges() |
---|
2524 | #print domain.quantities['stage'].vertex_values[:,0] |
---|
2525 | |
---|
2526 | #Evolution |
---|
2527 | for t in domain.evolve(yieldstep = 0.05, finaltime = 0.05): |
---|
2528 | #domain.write_time() |
---|
2529 | pass |
---|
2530 | |
---|
2531 | |
---|
2532 | #print domain.quantities['stage'].centroid_values |
---|
2533 | assert allclose(domain.quantities['stage'].centroid_values, |
---|
2534 | [0.01290985, 0.02356019, 0.01619096, 0.02356019, 0.01619096, |
---|
2535 | 0.02356019, 0.01619096, 0.02356019, 0.01619096, 0.02356019, |
---|
2536 | 0.01619096, 0.0268413, -0.04411074, -0.0248011, -0.04186556, |
---|
2537 | -0.0248011, -0.04186556, -0.0248011, -0.04186556, -0.0248011, |
---|
2538 | -0.04186556, -0.0248011, -0.04186556, -0.02255593, |
---|
2539 | -0.09966629, -0.08035666, -0.09742112, -0.08035666, |
---|
2540 | -0.09742112, -0.08035666, -0.09742112, -0.08035666, |
---|
2541 | -0.09742112, -0.08035666, -0.09742112, -0.07811149, |
---|
2542 | -0.15522185, -0.13591222, -0.15297667, -0.13591222, |
---|
2543 | -0.15297667, -0.13591222, -0.15297667, -0.13591222, |
---|
2544 | -0.15297667, -0.13591222, -0.15297667, -0.13366704, |
---|
2545 | -0.2107774, -0.19146777, -0.20853223, -0.19146777, |
---|
2546 | -0.20853223, -0.19146777, -0.20853223, -0.19146777, |
---|
2547 | -0.20853223, -0.19146777, -0.20853223, -0.1892226, |
---|
2548 | -0.26120669, -0.24776246, -0.25865535, -0.24776246, |
---|
2549 | -0.25865535, -0.24776246, -0.25865535, -0.24776246, |
---|
2550 | -0.25865535, -0.24776246, -0.25865535, -0.24521113]) |
---|
2551 | |
---|
2552 | os.remove(domain.filename + '.sww') |
---|
2553 | |
---|
2554 | def test_bedslope_problem_second_order_two_steps(self): |
---|
2555 | |
---|
2556 | from mesh_factory import rectangular |
---|
2557 | from Numeric import array |
---|
2558 | |
---|
2559 | #Create basic mesh |
---|
2560 | points, vertices, boundary = rectangular(6, 6) |
---|
2561 | |
---|
2562 | #Create shallow water domain |
---|
2563 | domain = Domain(points, vertices, boundary) |
---|
2564 | domain.smooth = False |
---|
2565 | domain.default_order=2 |
---|
2566 | domain.beta_h = 0.0 #Use first order in h-limiter |
---|
2567 | |
---|
2568 | #Bed-slope and friction at vertices (and interpolated elsewhere) |
---|
2569 | def x_slope(x, y): |
---|
2570 | return -x/3 |
---|
2571 | |
---|
2572 | domain.set_quantity('elevation', x_slope) |
---|
2573 | |
---|
2574 | # Boundary conditions |
---|
2575 | Br = Reflective_boundary(domain) |
---|
2576 | domain.set_boundary({'left': Br, 'right': Br, 'top': Br, 'bottom': Br}) |
---|
2577 | |
---|
2578 | #Initial condition |
---|
2579 | domain.set_quantity('stage', Constant_height(x_slope, 0.05)) |
---|
2580 | domain.check_integrity() |
---|
2581 | |
---|
2582 | assert allclose(domain.quantities['stage'].centroid_values, |
---|
2583 | [0.01296296, 0.03148148, 0.01296296, |
---|
2584 | 0.03148148, 0.01296296, 0.03148148, |
---|
2585 | 0.01296296, 0.03148148, 0.01296296, |
---|
2586 | 0.03148148, 0.01296296, 0.03148148, |
---|
2587 | -0.04259259, -0.02407407, -0.04259259, |
---|
2588 | -0.02407407, -0.04259259, -0.02407407, |
---|
2589 | -0.04259259, -0.02407407, -0.04259259, |
---|
2590 | -0.02407407, -0.04259259, -0.02407407, |
---|
2591 | -0.09814815, -0.07962963, -0.09814815, |
---|
2592 | -0.07962963, -0.09814815, -0.07962963, |
---|
2593 | -0.09814815, -0.07962963, -0.09814815, |
---|
2594 | -0.07962963, -0.09814815, -0.07962963, |
---|
2595 | -0.1537037 , -0.13518519, -0.1537037, |
---|
2596 | -0.13518519, -0.1537037, -0.13518519, |
---|
2597 | -0.1537037 , -0.13518519, -0.1537037, |
---|
2598 | -0.13518519, -0.1537037, -0.13518519, |
---|
2599 | -0.20925926, -0.19074074, -0.20925926, |
---|
2600 | -0.19074074, -0.20925926, -0.19074074, |
---|
2601 | -0.20925926, -0.19074074, -0.20925926, |
---|
2602 | -0.19074074, -0.20925926, -0.19074074, |
---|
2603 | -0.26481481, -0.2462963, -0.26481481, |
---|
2604 | -0.2462963, -0.26481481, -0.2462963, |
---|
2605 | -0.26481481, -0.2462963, -0.26481481, |
---|
2606 | -0.2462963, -0.26481481, -0.2462963]) |
---|
2607 | |
---|
2608 | |
---|
2609 | #print domain.quantities['stage'].extrapolate_second_order() |
---|
2610 | #domain.distribute_to_vertices_and_edges() |
---|
2611 | #print domain.quantities['stage'].vertex_values[:,0] |
---|
2612 | |
---|
2613 | #Evolution |
---|
2614 | for t in domain.evolve(yieldstep = 0.05, finaltime = 0.1): |
---|
2615 | pass |
---|
2616 | |
---|
2617 | |
---|
2618 | #Data from earlier version of abstract_2d_finite_volumes ft=0.1 |
---|
2619 | assert allclose(domain.min_timestep, 0.0376895634803) |
---|
2620 | assert allclose(domain.max_timestep, 0.0415635655309) |
---|
2621 | |
---|
2622 | |
---|
2623 | assert allclose(domain.quantities['stage'].centroid_values, |
---|
2624 | [0.00855788, 0.01575204, 0.00994606, 0.01717072, |
---|
2625 | 0.01005985, 0.01716362, 0.01005985, 0.01716299, |
---|
2626 | 0.01007098, 0.01736248, 0.01216452, 0.02026776, |
---|
2627 | -0.04462374, -0.02479045, -0.04199789, -0.0229465, |
---|
2628 | -0.04184033, -0.02295693, -0.04184013, -0.02295675, |
---|
2629 | -0.04184486, -0.0228168, -0.04028876, -0.02036486, |
---|
2630 | -0.10029444, -0.08170809, -0.09772846, -0.08021704, |
---|
2631 | -0.09760006, -0.08022143, -0.09759984, -0.08022124, |
---|
2632 | -0.09760261, -0.08008893, -0.09603914, -0.07758209, |
---|
2633 | -0.15584152, -0.13723138, -0.15327266, -0.13572906, |
---|
2634 | -0.15314427, -0.13573349, -0.15314405, -0.13573331, |
---|
2635 | -0.15314679, -0.13560104, -0.15158523, -0.13310701, |
---|
2636 | -0.21208605, -0.19283913, -0.20955631, -0.19134189, |
---|
2637 | -0.20942821, -0.19134598, -0.20942799, -0.1913458, |
---|
2638 | -0.20943005, -0.19120952, -0.20781177, -0.18869401, |
---|
2639 | -0.25384082, -0.2463294, -0.25047649, -0.24464654, |
---|
2640 | -0.25031159, -0.24464253, -0.25031112, -0.24464253, |
---|
2641 | -0.25031463, -0.24454764, -0.24885323, -0.24286438]) |
---|
2642 | |
---|
2643 | |
---|
2644 | os.remove(domain.filename + '.sww') |
---|
2645 | |
---|
2646 | def test_bedslope_problem_second_order_two_yieldsteps(self): |
---|
2647 | |
---|
2648 | from mesh_factory import rectangular |
---|
2649 | from Numeric import array |
---|
2650 | |
---|
2651 | #Create basic mesh |
---|
2652 | points, vertices, boundary = rectangular(6, 6) |
---|
2653 | |
---|
2654 | #Create shallow water domain |
---|
2655 | domain = Domain(points, vertices, boundary) |
---|
2656 | domain.smooth = False |
---|
2657 | domain.default_order=2 |
---|
2658 | domain.beta_h = 0.0 #Use first order in h-limiter |
---|
2659 | |
---|
2660 | #Bed-slope and friction at vertices (and interpolated elsewhere) |
---|
2661 | def x_slope(x, y): |
---|
2662 | return -x/3 |
---|
2663 | |
---|
2664 | domain.set_quantity('elevation', x_slope) |
---|
2665 | |
---|
2666 | # Boundary conditions |
---|
2667 | Br = Reflective_boundary(domain) |
---|
2668 | domain.set_boundary({'left': Br, 'right': Br, 'top': Br, 'bottom': Br}) |
---|
2669 | |
---|
2670 | #Initial condition |
---|
2671 | domain.set_quantity('stage', Constant_height(x_slope, 0.05)) |
---|
2672 | domain.check_integrity() |
---|
2673 | |
---|
2674 | assert allclose(domain.quantities['stage'].centroid_values, |
---|
2675 | [0.01296296, 0.03148148, 0.01296296, |
---|
2676 | 0.03148148, 0.01296296, 0.03148148, |
---|
2677 | 0.01296296, 0.03148148, 0.01296296, |
---|
2678 | 0.03148148, 0.01296296, 0.03148148, |
---|
2679 | -0.04259259, -0.02407407, -0.04259259, |
---|
2680 | -0.02407407, -0.04259259, -0.02407407, |
---|
2681 | -0.04259259, -0.02407407, -0.04259259, |
---|
2682 | -0.02407407, -0.04259259, -0.02407407, |
---|
2683 | -0.09814815, -0.07962963, -0.09814815, |
---|
2684 | -0.07962963, -0.09814815, -0.07962963, |
---|
2685 | -0.09814815, -0.07962963, -0.09814815, |
---|
2686 | -0.07962963, -0.09814815, -0.07962963, |
---|
2687 | -0.1537037 , -0.13518519, -0.1537037, |
---|
2688 | -0.13518519, -0.1537037, -0.13518519, |
---|
2689 | -0.1537037 , -0.13518519, -0.1537037, |
---|
2690 | -0.13518519, -0.1537037, -0.13518519, |
---|
2691 | -0.20925926, -0.19074074, -0.20925926, |
---|
2692 | -0.19074074, -0.20925926, -0.19074074, |
---|
2693 | -0.20925926, -0.19074074, -0.20925926, |
---|
2694 | -0.19074074, -0.20925926, -0.19074074, |
---|
2695 | -0.26481481, -0.2462963, -0.26481481, |
---|
2696 | -0.2462963, -0.26481481, -0.2462963, |
---|
2697 | -0.26481481, -0.2462963, -0.26481481, |
---|
2698 | -0.2462963, -0.26481481, -0.2462963]) |
---|
2699 | |
---|
2700 | |
---|
2701 | #print domain.quantities['stage'].extrapolate_second_order() |
---|
2702 | #domain.distribute_to_vertices_and_edges() |
---|
2703 | #print domain.quantities['stage'].vertex_values[:,0] |
---|
2704 | |
---|
2705 | #Evolution |
---|
2706 | for t in domain.evolve(yieldstep = 0.05, finaltime = 0.1): #0.05?? |
---|
2707 | #domain.write_time() |
---|
2708 | pass |
---|
2709 | |
---|
2710 | |
---|
2711 | |
---|
2712 | assert allclose(domain.quantities['stage'].centroid_values, |
---|
2713 | [0.00855788, 0.01575204, 0.00994606, 0.01717072, 0.01005985, |
---|
2714 | 0.01716362, 0.01005985, 0.01716299, 0.01007098, 0.01736248, |
---|
2715 | 0.01216452, 0.02026776, -0.04462374, -0.02479045, -0.04199789, |
---|
2716 | -0.0229465, -0.04184033, -0.02295693, -0.04184013, |
---|
2717 | -0.02295675, -0.04184486, -0.0228168, -0.04028876, |
---|
2718 | -0.02036486, -0.10029444, -0.08170809, -0.09772846, |
---|
2719 | -0.08021704, -0.09760006, -0.08022143, -0.09759984, |
---|
2720 | -0.08022124, -0.09760261, -0.08008893, -0.09603914, |
---|
2721 | -0.07758209, -0.15584152, -0.13723138, -0.15327266, |
---|
2722 | -0.13572906, -0.15314427, -0.13573349, -0.15314405, |
---|
2723 | -0.13573331, -0.15314679, -0.13560104, -0.15158523, |
---|
2724 | -0.13310701, -0.21208605, -0.19283913, -0.20955631, |
---|
2725 | -0.19134189, -0.20942821, -0.19134598, -0.20942799, |
---|
2726 | -0.1913458, -0.20943005, -0.19120952, -0.20781177, |
---|
2727 | -0.18869401, -0.25384082, -0.2463294, -0.25047649, |
---|
2728 | -0.24464654, -0.25031159, -0.24464253, -0.25031112, |
---|
2729 | -0.24464253, -0.25031463, -0.24454764, -0.24885323, |
---|
2730 | -0.24286438]) |
---|
2731 | |
---|
2732 | os.remove(domain.filename + '.sww') |
---|
2733 | |
---|
2734 | def test_bedslope_problem_second_order_more_steps(self): |
---|
2735 | |
---|
2736 | from mesh_factory import rectangular |
---|
2737 | from Numeric import array |
---|
2738 | |
---|
2739 | #Create basic mesh |
---|
2740 | points, vertices, boundary = rectangular(6, 6) |
---|
2741 | |
---|
2742 | #Create shallow water domain |
---|
2743 | domain = Domain(points, vertices, boundary) |
---|
2744 | domain.smooth = False |
---|
2745 | domain.default_order=2 |
---|
2746 | domain.beta_h = 0.0 #Use first order in h-limiter |
---|
2747 | |
---|
2748 | #Bed-slope and friction at vertices (and interpolated elsewhere) |
---|
2749 | def x_slope(x, y): |
---|
2750 | return -x/3 |
---|
2751 | |
---|
2752 | domain.set_quantity('elevation', x_slope) |
---|
2753 | |
---|
2754 | # Boundary conditions |
---|
2755 | Br = Reflective_boundary(domain) |
---|
2756 | domain.set_boundary({'left': Br, 'right': Br, 'top': Br, 'bottom': Br}) |
---|
2757 | |
---|
2758 | #Initial condition |
---|
2759 | domain.set_quantity('stage', Constant_height(x_slope, 0.05)) |
---|
2760 | domain.check_integrity() |
---|
2761 | |
---|
2762 | assert allclose(domain.quantities['stage'].centroid_values, |
---|
2763 | [0.01296296, 0.03148148, 0.01296296, |
---|
2764 | 0.03148148, 0.01296296, 0.03148148, |
---|
2765 | 0.01296296, 0.03148148, 0.01296296, |
---|
2766 | 0.03148148, 0.01296296, 0.03148148, |
---|
2767 | -0.04259259, -0.02407407, -0.04259259, |
---|
2768 | -0.02407407, -0.04259259, -0.02407407, |
---|
2769 | -0.04259259, -0.02407407, -0.04259259, |
---|
2770 | -0.02407407, -0.04259259, -0.02407407, |
---|
2771 | -0.09814815, -0.07962963, -0.09814815, |
---|
2772 | -0.07962963, -0.09814815, -0.07962963, |
---|
2773 | -0.09814815, -0.07962963, -0.09814815, |
---|
2774 | -0.07962963, -0.09814815, -0.07962963, |
---|
2775 | -0.1537037 , -0.13518519, -0.1537037, |
---|
2776 | -0.13518519, -0.1537037, -0.13518519, |
---|
2777 | -0.1537037 , -0.13518519, -0.1537037, |
---|
2778 | -0.13518519, -0.1537037, -0.13518519, |
---|
2779 | -0.20925926, -0.19074074, -0.20925926, |
---|
2780 | -0.19074074, -0.20925926, -0.19074074, |
---|
2781 | -0.20925926, -0.19074074, -0.20925926, |
---|
2782 | -0.19074074, -0.20925926, -0.19074074, |
---|
2783 | -0.26481481, -0.2462963, -0.26481481, |
---|
2784 | -0.2462963, -0.26481481, -0.2462963, |
---|
2785 | -0.26481481, -0.2462963, -0.26481481, |
---|
2786 | -0.2462963, -0.26481481, -0.2462963]) |
---|
2787 | |
---|
2788 | |
---|
2789 | #print domain.quantities['stage'].extrapolate_second_order() |
---|
2790 | #domain.distribute_to_vertices_and_edges() |
---|
2791 | #print domain.quantities['stage'].vertex_values[:,0] |
---|
2792 | |
---|
2793 | #Evolution |
---|
2794 | for t in domain.evolve(yieldstep = 0.05, finaltime = 0.5): |
---|
2795 | pass |
---|
2796 | |
---|
2797 | |
---|
2798 | assert allclose(domain.quantities['stage'].centroid_values, |
---|
2799 | [-0.02907028, -0.01475478, -0.02973417, -0.01447186, -0.02932665, -0.01428285, |
---|
2800 | -0.02901975, -0.0141361, -0.02898816, -0.01418135, -0.02961409, -0.01403487, |
---|
2801 | -0.07597998, -0.06252591, -0.07664854, -0.06312532, -0.07638287, -0.06265139, |
---|
2802 | -0.07571145, -0.06235231, -0.0756817, -0.06245309, -0.07652292, -0.06289946, |
---|
2803 | -0.12367464, -0.11088981, -0.12237277, -0.11115338, -0.1218934, -0.1107174, |
---|
2804 | -0.12081485, -0.11000491, -0.12038451, -0.11010335, -0.12102113, -0.11012105, |
---|
2805 | -0.16909116, -0.15831543, -0.16730214, -0.15786249, -0.1665493, -0.15697919, |
---|
2806 | -0.16496618, -0.15559852, -0.16338679, -0.15509088, -0.16364092, -0.15424423, |
---|
2807 | -0.18771107, -0.19903904, -0.18903759, -0.19858437, -0.18701552, -0.19697797, |
---|
2808 | -0.1833593, -0.19505871, -0.1818806, -0.19418042, -0.18586159, -0.19576946, |
---|
2809 | -0.13986873, -0.14170053, -0.14132188, -0.14560674, -0.14095617, -0.14373292, |
---|
2810 | -0.13785933, -0.14033364, -0.13592955, -0.13936356, -0.13596008, -0.14216296]) |
---|
2811 | |
---|
2812 | assert allclose(domain.quantities['xmomentum'].centroid_values, |
---|
2813 | [ 0.00831121, 0.00317948, 0.00731797, 0.00334939, 0.00764717, 0.00348053, |
---|
2814 | 0.00788729, 0.00356522, 0.00780649, 0.00341919, 0.00693525, 0.00310375, |
---|
2815 | 0.02166196, 0.01421475, 0.02017737, 0.01316839, 0.02037015, 0.01368659, |
---|
2816 | 0.02106, 0.01399161, 0.02074514, 0.01354935, 0.01887407, 0.0123113, |
---|
2817 | 0.03775083, 0.02855197, 0.03689337, 0.02759782, 0.03732848, 0.02812072, |
---|
2818 | 0.03872545, 0.02913348, 0.03880939, 0.02803804, 0.03546499, 0.0260039, |
---|
2819 | 0.0632131, 0.04730634, 0.0576324, 0.04592336, 0.05790921, 0.04690514, |
---|
2820 | 0.05986467, 0.04871165, 0.06170068, 0.04811572, 0.05657041, 0.04416292, |
---|
2821 | 0.08489642, 0.07188097, 0.07835261, 0.06843406, 0.07986412, 0.0698247, |
---|
2822 | 0.08201071, 0.07216756, 0.08378418, 0.07273624, 0.080399, 0.06645841, |
---|
2823 | 0.01631548, 0.04691608, 0.0206632, 0.044409, 0.02115518, 0.04560305, |
---|
2824 | 0.02160608, 0.04663725, 0.02174734, 0.04795559, 0.02281427, 0.05667111]) |
---|
2825 | |
---|
2826 | |
---|
2827 | assert allclose(domain.quantities['ymomentum'].centroid_values, |
---|
2828 | [ 1.45876601e-004, -3.24627393e-004, -1.57572719e-004, -2.92790187e-004, |
---|
2829 | -9.90988382e-005, -3.06677335e-004, -1.62493106e-004, -3.71310004e-004, |
---|
2830 | -1.99445058e-004, -3.28493467e-004, 6.68217349e-005, -8.42042805e-006, |
---|
2831 | 5.05093371e-004, -1.42842214e-004, -6.81454718e-005, -5.02084057e-004, |
---|
2832 | -8.50583861e-005, -4.65443981e-004, -1.96406564e-004, -5.88889562e-004, |
---|
2833 | -2.70160173e-004, -5.35485454e-004, 2.60780997e-004, 3.12145471e-005, |
---|
2834 | 5.16189608e-004, 1.07069062e-004, 9.29989252e-005, -3.71211119e-004, |
---|
2835 | 1.16350246e-004, -3.82407830e-004, -1.62077969e-004, -6.30906636e-004, |
---|
2836 | -4.74025708e-004, -6.94463009e-004, 6.15092843e-005, 2.22106820e-004, |
---|
2837 | -6.29589294e-004, 2.43611937e-004, -5.88125094e-004, -6.94293192e-005, |
---|
2838 | -4.17914641e-004, 6.64609019e-005, -7.68334577e-004, -3.40232101e-004, |
---|
2839 | -1.67424308e-003, -7.39485066e-004, -1.59966988e-003, 5.68262838e-005, |
---|
2840 | -1.48470633e-003, -1.84554882e-003, -2.27200099e-003, -1.67506848e-003, |
---|
2841 | -1.95610258e-003, -1.47638801e-003, -1.73779477e-003, -1.85498791e-003, |
---|
2842 | -2.01357843e-003, -2.17675471e-003, -1.65783870e-003, -1.15818681e-003, |
---|
2843 | -1.18663036e-003, -2.94229849e-003, -3.59309018e-003, -5.13496584e-003, |
---|
2844 | -6.17359400e-003, -5.98761937e-003, -6.00540116e-003, -5.01121966e-003, |
---|
2845 | -4.50964850e-003, -3.06319963e-003, 6.08950810e-004, -4.79537921e-004]) |
---|
2846 | |
---|
2847 | os.remove(domain.filename + '.sww') |
---|
2848 | |
---|
2849 | |
---|
2850 | def test_temp_play(self): |
---|
2851 | |
---|
2852 | from mesh_factory import rectangular |
---|
2853 | from Numeric import array |
---|
2854 | |
---|
2855 | #Create basic mesh |
---|
2856 | points, vertices, boundary = rectangular(5, 5) |
---|
2857 | |
---|
2858 | #Create shallow water domain |
---|
2859 | domain = Domain(points, vertices, boundary) |
---|
2860 | domain.smooth = False |
---|
2861 | domain.default_order=2 |
---|
2862 | domain.beta_h = 0.0 #Use first order in h-limiter |
---|
2863 | |
---|
2864 | #Bed-slope and friction at vertices (and interpolated elsewhere) |
---|
2865 | def x_slope(x, y): |
---|
2866 | return -x/3 |
---|
2867 | |
---|
2868 | domain.set_quantity('elevation', x_slope) |
---|
2869 | |
---|
2870 | # Boundary conditions |
---|
2871 | Br = Reflective_boundary(domain) |
---|
2872 | domain.set_boundary({'left': Br, 'right': Br, 'top': Br, 'bottom': Br}) |
---|
2873 | |
---|
2874 | #Initial condition |
---|
2875 | domain.set_quantity('stage', Constant_height(x_slope, 0.05)) |
---|
2876 | domain.check_integrity() |
---|
2877 | |
---|
2878 | #Evolution |
---|
2879 | for t in domain.evolve(yieldstep = 0.05, finaltime = 0.1): |
---|
2880 | pass |
---|
2881 | |
---|
2882 | assert allclose(domain.quantities['stage'].centroid_values[:4], |
---|
2883 | [0.00206836, 0.01296714, 0.00363415, 0.01438924]) |
---|
2884 | #print domain.quantities['xmomentum'].centroid_values[:4] |
---|
2885 | assert allclose(domain.quantities['xmomentum'].centroid_values[:4], |
---|
2886 | [0.01360154, 0.00671133, 0.01264578, 0.00648503]) |
---|
2887 | assert allclose(domain.quantities['ymomentum'].centroid_values[:4], |
---|
2888 | [-1.19201077e-003, -7.23647546e-004, |
---|
2889 | -6.39083123e-005, 6.29815168e-005]) |
---|
2890 | |
---|
2891 | os.remove(domain.filename + '.sww') |
---|
2892 | |
---|
2893 | def test_complex_bed(self): |
---|
2894 | #No friction is tested here |
---|
2895 | |
---|
2896 | from mesh_factory import rectangular |
---|
2897 | from Numeric import array |
---|
2898 | |
---|
2899 | N = 12 |
---|
2900 | points, vertices, boundary = rectangular(N, N/2, len1=1.2,len2=0.6, |
---|
2901 | origin=(-0.07, 0)) |
---|
2902 | |
---|
2903 | |
---|
2904 | domain = Domain(points, vertices, boundary) |
---|
2905 | domain.smooth = False |
---|
2906 | domain.visualise = False |
---|
2907 | domain.default_order=2 |
---|
2908 | |
---|
2909 | |
---|
2910 | inflow_stage = 0.1 |
---|
2911 | Z = Weir(inflow_stage) |
---|
2912 | domain.set_quantity('elevation', Z) |
---|
2913 | |
---|
2914 | Br = Reflective_boundary(domain) |
---|
2915 | Bd = Dirichlet_boundary([inflow_stage, 0.0, 0.0]) |
---|
2916 | domain.set_boundary({'left': Bd, 'right': Br, 'bottom': Br, 'top': Br}) |
---|
2917 | |
---|
2918 | domain.set_quantity('stage', Constant_height(Z, 0.)) |
---|
2919 | |
---|
2920 | for t in domain.evolve(yieldstep = 0.02, finaltime = 0.2): |
---|
2921 | pass |
---|
2922 | |
---|
2923 | |
---|
2924 | #print domain.quantities['stage'].centroid_values |
---|
2925 | |
---|
2926 | #FIXME: These numbers were from version before 25/10 |
---|
2927 | #assert allclose(domain.quantities['stage'].centroid_values, |
---|
2928 | # [3.95822638e-002, 5.61022588e-002, 4.66437868e-002, 5.73081011e-002, |
---|
2929 | # 4.72394613e-002, 5.74684939e-002, 4.74309483e-002, 5.77458084e-002, |
---|
2930 | # 4.80628177e-002, 5.85656225e-002, 4.90498542e-002, 6.02609831e-002, |
---|
2931 | # 1.18470315e-002, 1.75136443e-002, 1.18035266e-002, 2.15565695e-002, |
---|
2932 | # 1.31620268e-002, 2.14351640e-002, 1.32351076e-002, 2.15450687e-002, |
---|
2933 | # 1.36414028e-002, 2.24274619e-002, 1.51689511e-002, 2.21789655e-002, |
---|
2934 | # -7.54337535e-003, -6.86362021e-004, -7.74146760e-003, -1.83756530e-003, |
---|
2935 | # -8.16773628e-003, -4.49916813e-004, -8.08202599e-003, -3.91118720e-004, |
---|
2936 | # -8.10292716e-003, -3.88584984e-004, -7.35226124e-003, 2.73985295e-004, |
---|
2937 | # 1.86166683e-001, 8.74070369e-002, 1.86166712e-001, 8.74035875e-002, |
---|
2938 | # 6.11666935e-002, -3.76173225e-002, -6.38333276e-002, -3.76147365e-002, |
---|
2939 | # 6.11666725e-002, 8.73846774e-002, 1.86166697e-001, 8.74171550e-002, |
---|
2940 | # -4.83333333e-002, 1.18333333e-001, -4.83333333e-002, 1.18333333e-001, |
---|
2941 | # -4.83333333e-002, -6.66666667e-003, -1.73333333e-001, -1.31666667e-001, |
---|
2942 | # -1.73333333e-001, -6.66666667e-003, -4.83333333e-002, 1.18333333e-001, |
---|
2943 | # -2.48333333e-001, -2.31666667e-001, -2.48333333e-001, -2.31666667e-001, |
---|
2944 | # -2.48333333e-001, -2.31666667e-001, -2.48333333e-001, -2.31666667e-001, |
---|
2945 | # -2.48333333e-001, -2.31666667e-001, -2.48333333e-001, -2.31666667e-001, |
---|
2946 | # -4.65000000e-001, -3.65000000e-001, -4.65000000e-001, -3.65000000e-001, |
---|
2947 | # -4.65000000e-001, -3.65000000e-001, -4.65000000e-001, -3.65000000e-001, |
---|
2948 | # -4.65000000e-001, -3.65000000e-001, -4.65000000e-001, -3.65000000e-001, |
---|
2949 | # -5.98333333e-001, -5.81666667e-001, -5.98333333e-001, -5.81666667e-001, |
---|
2950 | # -5.98333333e-001, -5.81666667e-001, -5.98333333e-001, -5.81666667e-001, |
---|
2951 | # -5.98333333e-001, -5.81666667e-001, -5.98333333e-001, -5.81666667e-001, |
---|
2952 | # -6.48333333e-001, -6.31666667e-001, -6.48333333e-001, -6.31666667e-001, |
---|
2953 | # -6.48333333e-001, -6.31666667e-001, -6.48333333e-001, -6.31666667e-001, |
---|
2954 | # -6.48333333e-001, -6.31666667e-001, -6.48333333e-001, -6.31666667e-001, |
---|
2955 | # -5.31666667e-001, -5.98333333e-001, -5.31666667e-001, -5.98333333e-001, |
---|
2956 | # -5.31666667e-001, -5.98333333e-001, -5.31666667e-001, -5.98333333e-001, |
---|
2957 | # -5.31666667e-001, -5.98333333e-001, -5.31666667e-001, -5.98333333e-001, |
---|
2958 | # -4.98333333e-001, -4.81666667e-001, -4.98333333e-001, -4.81666667e-001, |
---|
2959 | # -4.98333333e-001, -4.81666667e-001, -4.98333333e-001, -4.81666667e-001, |
---|
2960 | # -4.98333333e-001, -4.81666667e-001, -4.98333333e-001, -4.81666667e-001, |
---|
2961 | # -5.48333333e-001, -5.31666667e-001, -5.48333333e-001, -5.31666667e-001, |
---|
2962 | # -5.48333333e-001, -5.31666667e-001, -5.48333333e-001, -5.31666667e-001, |
---|
2963 | # -5.48333333e-001, -5.31666667e-001, -5.48333333e-001, -5.31666667e-001]) |
---|
2964 | |
---|
2965 | os.remove(domain.filename + '.sww') |
---|
2966 | |
---|
2967 | def test_spatio_temporal_boundary_1(self): |
---|
2968 | """Test that boundary values can be read from file and interpolated |
---|
2969 | in both time and space. |
---|
2970 | |
---|
2971 | Verify that the same steady state solution is arrived at and that |
---|
2972 | time interpolation works. |
---|
2973 | |
---|
2974 | The full solution history is not exactly the same as |
---|
2975 | file boundary must read and interpolate from *smoothed* version |
---|
2976 | as stored in sww. |
---|
2977 | """ |
---|
2978 | import time |
---|
2979 | |
---|
2980 | #Create sww file of simple propagation from left to right |
---|
2981 | #through rectangular domain |
---|
2982 | |
---|
2983 | from mesh_factory import rectangular |
---|
2984 | |
---|
2985 | #Create basic mesh |
---|
2986 | points, vertices, boundary = rectangular(3, 3) |
---|
2987 | |
---|
2988 | #Create shallow water domain |
---|
2989 | domain1 = Domain(points, vertices, boundary) |
---|
2990 | |
---|
2991 | domain1.reduction = mean |
---|
2992 | domain1.smooth = False #Exact result |
---|
2993 | |
---|
2994 | domain1.default_order = 2 |
---|
2995 | domain1.store = True |
---|
2996 | domain1.set_datadir('.') |
---|
2997 | domain1.set_name('spatio_temporal_boundary_source' + str(time.time())) |
---|
2998 | |
---|
2999 | #FIXME: This is extremely important! |
---|
3000 | #How can we test if they weren't stored? |
---|
3001 | domain1.quantities_to_be_stored = ['stage', 'xmomentum', 'ymomentum'] |
---|
3002 | |
---|
3003 | |
---|
3004 | #Bed-slope and friction at vertices (and interpolated elsewhere) |
---|
3005 | domain1.set_quantity('elevation', 0) |
---|
3006 | domain1.set_quantity('friction', 0) |
---|
3007 | |
---|
3008 | # Boundary conditions |
---|
3009 | Br = Reflective_boundary(domain1) |
---|
3010 | Bd = Dirichlet_boundary([0.3,0,0]) |
---|
3011 | domain1.set_boundary({'left': Bd, 'top': Bd, 'right': Br, 'bottom': Br}) |
---|
3012 | #Initial condition |
---|
3013 | domain1.set_quantity('stage', 0) |
---|
3014 | domain1.check_integrity() |
---|
3015 | |
---|
3016 | finaltime = 5 |
---|
3017 | #Evolution (full domain - large steps) |
---|
3018 | for t in domain1.evolve(yieldstep = 0.671, finaltime = finaltime): |
---|
3019 | pass |
---|
3020 | #domain1.write_time() |
---|
3021 | |
---|
3022 | cv1 = domain1.quantities['stage'].centroid_values |
---|
3023 | |
---|
3024 | |
---|
3025 | #Create a triangle shaped domain (reusing coordinates from domain 1), |
---|
3026 | #formed from the lower and right hand boundaries and |
---|
3027 | #the sw-ne diagonal |
---|
3028 | #from domain 1. Call it domain2 |
---|
3029 | |
---|
3030 | points = [ [0,0], [1.0/3,0], [1.0/3,1.0/3], |
---|
3031 | [2.0/3,0], [2.0/3,1.0/3], [2.0/3,2.0/3], |
---|
3032 | [1,0], [1,1.0/3], [1,2.0/3], [1,1]] |
---|
3033 | |
---|
3034 | vertices = [ [1,2,0], [3,4,1], [2,1,4], [4,5,2], |
---|
3035 | [6,7,3], [4,3,7], [7,8,4], [5,4,8], [8,9,5]] |
---|
3036 | |
---|
3037 | boundary = { (0,1):'bottom', (1,1):'bottom', (4,1): 'bottom', |
---|
3038 | (4,2):'right', (6,2):'right', (8,2):'right', |
---|
3039 | (0,0):'diagonal', (3,0):'diagonal', (8,0):'diagonal'} |
---|
3040 | |
---|
3041 | domain2 = Domain(points, vertices, boundary) |
---|
3042 | |
---|
3043 | domain2.reduction = domain1.reduction |
---|
3044 | domain2.smooth = False |
---|
3045 | domain2.default_order = 2 |
---|
3046 | |
---|
3047 | #Bed-slope and friction at vertices (and interpolated elsewhere) |
---|
3048 | domain2.set_quantity('elevation', 0) |
---|
3049 | domain2.set_quantity('friction', 0) |
---|
3050 | domain2.set_quantity('stage', 0) |
---|
3051 | |
---|
3052 | # Boundary conditions |
---|
3053 | Br = Reflective_boundary(domain2) |
---|
3054 | Bf = Spatio_temporal_boundary(domain1.filename + '.' + domain1.format, |
---|
3055 | domain2) |
---|
3056 | domain2.set_boundary({'right':Br, 'bottom':Br, 'diagonal':Bf}) |
---|
3057 | domain2.check_integrity() |
---|
3058 | |
---|
3059 | |
---|
3060 | |
---|
3061 | #Evolution (small steps) |
---|
3062 | for t in domain2.evolve(yieldstep = 0.0711, finaltime = finaltime): |
---|
3063 | pass |
---|
3064 | |
---|
3065 | |
---|
3066 | #Use output from domain1 as spatio-temporal boundary for domain2 |
---|
3067 | #and verify that results at right hand side are close. |
---|
3068 | |
---|
3069 | cv2 = domain2.quantities['stage'].centroid_values |
---|
3070 | |
---|
3071 | #print take(cv1, (12,14,16)) #Right |
---|
3072 | #print take(cv2, (4,6,8)) |
---|
3073 | #print take(cv1, (0,6,12)) #Bottom |
---|
3074 | #print take(cv2, (0,1,4)) |
---|
3075 | #print take(cv1, (0,8,16)) #Diag |
---|
3076 | #print take(cv2, (0,3,8)) |
---|
3077 | |
---|
3078 | assert allclose( take(cv1, (0,8,16)), take(cv2, (0,3,8))) #Diag |
---|
3079 | assert allclose( take(cv1, (0,6,12)), take(cv2, (0,1,4))) #Bottom |
---|
3080 | assert allclose( take(cv1, (12,14,16)), take(cv2, (4,6,8))) #RHS |
---|
3081 | |
---|
3082 | #Cleanup |
---|
3083 | os.remove(domain1.filename + '.' + domain1.format) |
---|
3084 | os.remove(domain2.filename + '.' + domain2.format) |
---|
3085 | |
---|
3086 | |
---|
3087 | |
---|
3088 | def test_spatio_temporal_boundary_2(self): |
---|
3089 | """Test that boundary values can be read from file and interpolated |
---|
3090 | in both time and space. |
---|
3091 | This is a more basic test, verifying that boundary object |
---|
3092 | produces the expected results |
---|
3093 | |
---|
3094 | |
---|
3095 | """ |
---|
3096 | import time |
---|
3097 | |
---|
3098 | #Create sww file of simple propagation from left to right |
---|
3099 | #through rectangular domain |
---|
3100 | |
---|
3101 | from mesh_factory import rectangular |
---|
3102 | |
---|
3103 | #Create basic mesh |
---|
3104 | points, vertices, boundary = rectangular(3, 3) |
---|
3105 | |
---|
3106 | #Create shallow water domain |
---|
3107 | domain1 = Domain(points, vertices, boundary) |
---|
3108 | |
---|
3109 | domain1.reduction = mean |
---|
3110 | domain1.smooth = True #To mimic MOST output |
---|
3111 | |
---|
3112 | domain1.default_order = 2 |
---|
3113 | domain1.store = True |
---|
3114 | domain1.set_datadir('.') |
---|
3115 | domain1.set_name('spatio_temporal_boundary_source' + str(time.time())) |
---|
3116 | |
---|
3117 | #FIXME: This is extremely important! |
---|
3118 | #How can we test if they weren't stored? |
---|
3119 | domain1.quantities_to_be_stored = ['stage', 'xmomentum', 'ymomentum'] |
---|
3120 | |
---|
3121 | |
---|
3122 | #Bed-slope and friction at vertices (and interpolated elsewhere) |
---|
3123 | domain1.set_quantity('elevation', 0) |
---|
3124 | domain1.set_quantity('friction', 0) |
---|
3125 | |
---|
3126 | # Boundary conditions |
---|
3127 | Br = Reflective_boundary(domain1) |
---|
3128 | Bd = Dirichlet_boundary([0.3,0,0]) |
---|
3129 | domain1.set_boundary({'left': Bd, 'top': Bd, 'right': Br, 'bottom': Br}) |
---|
3130 | #Initial condition |
---|
3131 | domain1.set_quantity('stage', 0) |
---|
3132 | domain1.check_integrity() |
---|
3133 | |
---|
3134 | finaltime = 5 |
---|
3135 | #Evolution (full domain - large steps) |
---|
3136 | for t in domain1.evolve(yieldstep = 1, finaltime = finaltime): |
---|
3137 | pass |
---|
3138 | #domain1.write_time() |
---|
3139 | |
---|
3140 | |
---|
3141 | #Create an triangle shaped domain (coinciding with some |
---|
3142 | #coordinates from domain 1), |
---|
3143 | #formed from the lower and right hand boundaries and |
---|
3144 | #the sw-ne diagonal |
---|
3145 | #from domain 1. Call it domain2 |
---|
3146 | |
---|
3147 | points = [ [0,0], [1.0/3,0], [1.0/3,1.0/3], |
---|
3148 | [2.0/3,0], [2.0/3,1.0/3], [2.0/3,2.0/3], |
---|
3149 | [1,0], [1,1.0/3], [1,2.0/3], [1,1]] |
---|
3150 | |
---|
3151 | vertices = [ [1,2,0], |
---|
3152 | [3,4,1], [2,1,4], [4,5,2], |
---|
3153 | [6,7,3], [4,3,7], [7,8,4], [5,4,8], [8,9,5]] |
---|
3154 | |
---|
3155 | boundary = { (0,1):'bottom', (1,1):'bottom', (4,1): 'bottom', |
---|
3156 | (4,2):'right', (6,2):'right', (8,2):'right', |
---|
3157 | (0,0):'diagonal', (3,0):'diagonal', (8,0):'diagonal'} |
---|
3158 | |
---|
3159 | domain2 = Domain(points, vertices, boundary) |
---|
3160 | |
---|
3161 | domain2.reduction = domain1.reduction |
---|
3162 | domain2.smooth = False |
---|
3163 | domain2.default_order = 2 |
---|
3164 | |
---|
3165 | #Bed-slope and friction at vertices (and interpolated elsewhere) |
---|
3166 | domain2.set_quantity('elevation', 0) |
---|
3167 | domain2.set_quantity('friction', 0) |
---|
3168 | domain2.set_quantity('stage', 0) |
---|
3169 | |
---|
3170 | |
---|
3171 | #Read results for specific timesteps t=1 and t=2 |
---|
3172 | from Scientific.IO.NetCDF import NetCDFFile |
---|
3173 | fid = NetCDFFile(domain1.filename + '.' + domain1.format) |
---|
3174 | |
---|
3175 | x = fid.variables['x'][:] |
---|
3176 | y = fid.variables['y'][:] |
---|
3177 | s1 = fid.variables['stage'][1,:] |
---|
3178 | s2 = fid.variables['stage'][2,:] |
---|
3179 | fid.close() |
---|
3180 | |
---|
3181 | from Numeric import take, reshape, concatenate |
---|
3182 | shp = (len(x), 1) |
---|
3183 | points = concatenate( (reshape(x, shp), reshape(y, shp)), axis=1) |
---|
3184 | #The diagonal points of domain 1 are 0, 5, 10, 15 |
---|
3185 | |
---|
3186 | #print points[0], points[5], points[10], points[15] |
---|
3187 | assert allclose( take(points, [0,5,10,15]), |
---|
3188 | [[0,0], [1.0/3, 1.0/3], [2.0/3, 2.0/3], [1,1]]) |
---|
3189 | |
---|
3190 | |
---|
3191 | # Boundary conditions |
---|
3192 | Br = Reflective_boundary(domain2) |
---|
3193 | Bf = Spatio_temporal_boundary(domain1.filename + '.' + domain1.format, |
---|
3194 | domain2) |
---|
3195 | domain2.set_boundary({'right':Br, 'bottom':Br, 'diagonal':Bf}) |
---|
3196 | domain2.check_integrity() |
---|
3197 | |
---|
3198 | #Test that interpolation points are the mid points of the all boundary |
---|
3199 | #segments |
---|
3200 | |
---|
3201 | boundary_midpoints = [[1.0/6, 0], [1.0/2, 0], [5.0/6,0], |
---|
3202 | [1.0, 1.0/6], [1.0, 1.0/2], [1.0, 5.0/6], |
---|
3203 | [1.0/6, 1.0/6], [0.5, 0.5], [5.0/6, 5.0/6]] |
---|
3204 | |
---|
3205 | boundary_midpoints.sort() |
---|
3206 | R = Bf.F.interpolation_points.tolist() |
---|
3207 | R.sort() |
---|
3208 | assert allclose(boundary_midpoints, R) |
---|
3209 | |
---|
3210 | #Check spatially interpolated output at time == 1 |
---|
3211 | domain2.time = 1 |
---|
3212 | |
---|
3213 | #First diagonal midpoint |
---|
3214 | R0 = Bf.evaluate(0,0) |
---|
3215 | assert allclose(R0[0], (s1[0] + s1[5])/2) |
---|
3216 | |
---|
3217 | #Second diagonal midpoint |
---|
3218 | R0 = Bf.evaluate(3,0) |
---|
3219 | assert allclose(R0[0], (s1[5] + s1[10])/2) |
---|
3220 | |
---|
3221 | #First diagonal midpoint |
---|
3222 | R0 = Bf.evaluate(8,0) |
---|
3223 | assert allclose(R0[0], (s1[10] + s1[15])/2) |
---|
3224 | |
---|
3225 | #Check spatially interpolated output at time == 2 |
---|
3226 | domain2.time = 2 |
---|
3227 | |
---|
3228 | #First diagonal midpoint |
---|
3229 | R0 = Bf.evaluate(0,0) |
---|
3230 | assert allclose(R0[0], (s2[0] + s2[5])/2) |
---|
3231 | |
---|
3232 | #Second diagonal midpoint |
---|
3233 | R0 = Bf.evaluate(3,0) |
---|
3234 | assert allclose(R0[0], (s2[5] + s2[10])/2) |
---|
3235 | |
---|
3236 | #First diagonal midpoint |
---|
3237 | R0 = Bf.evaluate(8,0) |
---|
3238 | assert allclose(R0[0], (s2[10] + s2[15])/2) |
---|
3239 | |
---|
3240 | |
---|
3241 | #Now check temporal interpolation |
---|
3242 | |
---|
3243 | domain2.time = 1 + 2.0/3 |
---|
3244 | |
---|
3245 | #First diagonal midpoint |
---|
3246 | R0 = Bf.evaluate(0,0) |
---|
3247 | assert allclose(R0[0], ((s1[0] + s1[5])/2 + 2.0*(s2[0] + s2[5])/2)/3) |
---|
3248 | |
---|
3249 | #Second diagonal midpoint |
---|
3250 | R0 = Bf.evaluate(3,0) |
---|
3251 | assert allclose(R0[0], ((s1[5] + s1[10])/2 + 2.0*(s2[5] + s2[10])/2)/3) |
---|
3252 | |
---|
3253 | #First diagonal midpoint |
---|
3254 | R0 = Bf.evaluate(8,0) |
---|
3255 | assert allclose(R0[0], ((s1[10] + s1[15])/2 + 2.0*(s2[10] + s2[15])/2)/3) |
---|
3256 | |
---|
3257 | |
---|
3258 | |
---|
3259 | #Cleanup |
---|
3260 | os.remove(domain1.filename + '.' + domain1.format) |
---|
3261 | |
---|
3262 | |
---|
3263 | def test_pmesh2Domain(self): |
---|
3264 | import os |
---|
3265 | import tempfile |
---|
3266 | |
---|
3267 | fileName = tempfile.mktemp(".tsh") |
---|
3268 | file = open(fileName,"w") |
---|
3269 | file.write("4 3 # <vertex #> <x> <y> [attributes]\n \ |
---|
3270 | 0 0.0 0.0 0.0 0.0 0.01 \n \ |
---|
3271 | 1 1.0 0.0 10.0 10.0 0.02 \n \ |
---|
3272 | 2 0.0 1.0 0.0 10.0 0.03 \n \ |
---|
3273 | 3 0.5 0.25 8.0 12.0 0.04 \n \ |
---|
3274 | # Vert att title \n \ |
---|
3275 | elevation \n \ |
---|
3276 | stage \n \ |
---|
3277 | friction \n \ |
---|
3278 | 2 # <triangle #> [<vertex #>] [<neigbouring triangle #>] \n\ |
---|
3279 | 0 0 3 2 -1 -1 1 dsg\n\ |
---|
3280 | 1 0 1 3 -1 0 -1 ole nielsen\n\ |
---|
3281 | 4 # <segment #> <vertex #> <vertex #> [boundary tag] \n\ |
---|
3282 | 0 1 0 2 \n\ |
---|
3283 | 1 0 2 3 \n\ |
---|
3284 | 2 2 3 \n\ |
---|
3285 | 3 3 1 1 \n\ |
---|
3286 | 3 0 # <x> <y> [attributes] ...Mesh Vertices... \n \ |
---|
3287 | 0 216.0 -86.0 \n \ |
---|
3288 | 1 160.0 -167.0 \n \ |
---|
3289 | 2 114.0 -91.0 \n \ |
---|
3290 | 3 # <vertex #> <vertex #> [boundary tag] ...Mesh Segments... \n \ |
---|
3291 | 0 0 1 0 \n \ |
---|
3292 | 1 1 2 0 \n \ |
---|
3293 | 2 2 0 0 \n \ |
---|
3294 | 0 # <x> <y> ...Mesh Holes... \n \ |
---|
3295 | 0 # <x> <y> <attribute>...Mesh Regions... \n \ |
---|
3296 | 0 # <x> <y> <attribute>...Mesh Regions, area... \n\ |
---|
3297 | #Geo reference \n \ |
---|
3298 | 56 \n \ |
---|
3299 | 140 \n \ |
---|
3300 | 120 \n") |
---|
3301 | file.close() |
---|
3302 | |
---|
3303 | tags = {} |
---|
3304 | b1 = Dirichlet_boundary(conserved_quantities = array([0.0])) |
---|
3305 | b2 = Dirichlet_boundary(conserved_quantities = array([1.0])) |
---|
3306 | b3 = Dirichlet_boundary(conserved_quantities = array([2.0])) |
---|
3307 | tags["1"] = b1 |
---|
3308 | tags["2"] = b2 |
---|
3309 | tags["3"] = b3 |
---|
3310 | |
---|
3311 | #from anuga.abstract_2d_finite_volumes.pmesh2domain import pmesh_to_domain_instance |
---|
3312 | #domain = pmesh_to_domain_instance(fileName, Domain) |
---|
3313 | |
---|
3314 | domain = Domain(mesh_filename=fileName) |
---|
3315 | #verbose=True, use_cache=True) |
---|
3316 | |
---|
3317 | #print "domain.tagged_elements", domain.tagged_elements |
---|
3318 | ## check the quantities |
---|
3319 | #print domain.quantities['elevation'].vertex_values |
---|
3320 | answer = [[0., 8., 0.], |
---|
3321 | [0., 10., 8.]] |
---|
3322 | assert allclose(domain.quantities['elevation'].vertex_values, |
---|
3323 | answer) |
---|
3324 | |
---|
3325 | #print domain.quantities['stage'].vertex_values |
---|
3326 | answer = [[0., 12., 10.], |
---|
3327 | [0., 10., 12.]] |
---|
3328 | assert allclose(domain.quantities['stage'].vertex_values, |
---|
3329 | answer) |
---|
3330 | |
---|
3331 | #print domain.quantities['friction'].vertex_values |
---|
3332 | answer = [[0.01, 0.04, 0.03], |
---|
3333 | [0.01, 0.02, 0.04]] |
---|
3334 | assert allclose(domain.quantities['friction'].vertex_values, |
---|
3335 | answer) |
---|
3336 | |
---|
3337 | #print domain.quantities['friction'].vertex_values |
---|
3338 | assert allclose(domain.tagged_elements['dsg'][0],0) |
---|
3339 | assert allclose(domain.tagged_elements['ole nielsen'][0],1) |
---|
3340 | |
---|
3341 | self.failUnless( domain.boundary[(1, 0)] == '1', |
---|
3342 | "test_tags_to_boundaries failed. Single boundary wasn't added.") |
---|
3343 | self.failUnless( domain.boundary[(1, 2)] == '2', |
---|
3344 | "test_tags_to_boundaries failed. Single boundary wasn't added.") |
---|
3345 | self.failUnless( domain.boundary[(0, 1)] == '3', |
---|
3346 | "test_tags_to_boundaries failed. Single boundary wasn't added.") |
---|
3347 | self.failUnless( domain.boundary[(0, 0)] == 'exterior', |
---|
3348 | "test_tags_to_boundaries failed. Single boundary wasn't added.") |
---|
3349 | #print "domain.boundary",domain.boundary |
---|
3350 | self.failUnless( len(domain.boundary) == 4, |
---|
3351 | "test_pmesh2Domain Too many boundaries") |
---|
3352 | #FIXME change to use get_xllcorner |
---|
3353 | #print "d.geo_reference.xllcorner",domain.geo_reference.xllcorner |
---|
3354 | self.failUnless(domain.geo_reference.xllcorner == 140.0, |
---|
3355 | "bad geo_referece") |
---|
3356 | #************ |
---|
3357 | |
---|
3358 | |
---|
3359 | domain = Domain(fileName) |
---|
3360 | |
---|
3361 | #print "domain.tagged_elements", domain.tagged_elements |
---|
3362 | ## check the quantities |
---|
3363 | #print domain.quantities['elevation'].vertex_values |
---|
3364 | answer = [[0., 8., 0.], |
---|
3365 | [0., 10., 8.]] |
---|
3366 | assert allclose(domain.quantities['elevation'].vertex_values, |
---|
3367 | answer) |
---|
3368 | |
---|
3369 | #print domain.quantities['stage'].vertex_values |
---|
3370 | answer = [[0., 12., 10.], |
---|
3371 | [0., 10., 12.]] |
---|
3372 | assert allclose(domain.quantities['stage'].vertex_values, |
---|
3373 | answer) |
---|
3374 | |
---|
3375 | #print domain.quantities['friction'].vertex_values |
---|
3376 | answer = [[0.01, 0.04, 0.03], |
---|
3377 | [0.01, 0.02, 0.04]] |
---|
3378 | assert allclose(domain.quantities['friction'].vertex_values, |
---|
3379 | answer) |
---|
3380 | |
---|
3381 | #print domain.quantities['friction'].vertex_values |
---|
3382 | assert allclose(domain.tagged_elements['dsg'][0],0) |
---|
3383 | assert allclose(domain.tagged_elements['ole nielsen'][0],1) |
---|
3384 | |
---|
3385 | self.failUnless( domain.boundary[(1, 0)] == '1', |
---|
3386 | "test_tags_to_boundaries failed. Single boundary wasn't added.") |
---|
3387 | self.failUnless( domain.boundary[(1, 2)] == '2', |
---|
3388 | "test_tags_to_boundaries failed. Single boundary wasn't added.") |
---|
3389 | self.failUnless( domain.boundary[(0, 1)] == '3', |
---|
3390 | "test_tags_to_boundaries failed. Single boundary wasn't added.") |
---|
3391 | self.failUnless( domain.boundary[(0, 0)] == 'exterior', |
---|
3392 | "test_tags_to_boundaries failed. Single boundary wasn't added.") |
---|
3393 | #print "domain.boundary",domain.boundary |
---|
3394 | self.failUnless( len(domain.boundary) == 4, |
---|
3395 | "test_pmesh2Domain Too many boundaries") |
---|
3396 | #FIXME change to use get_xllcorner |
---|
3397 | #print "d.geo_reference.xllcorner",domain.geo_reference.xllcorner |
---|
3398 | self.failUnless(domain.geo_reference.xllcorner == 140.0, |
---|
3399 | "bad geo_referece") |
---|
3400 | #************ |
---|
3401 | os.remove(fileName) |
---|
3402 | |
---|
3403 | #------------------------------------------------------------- |
---|
3404 | if __name__ == "__main__": |
---|
3405 | suite = unittest.makeSuite(Test_Shallow_Water,'test') |
---|
3406 | runner = unittest.TextTestRunner(verbosity=1) |
---|
3407 | runner.run(suite) |
---|