1 | #!/usr/bin/env python |
---|
2 | |
---|
3 | import unittest, os |
---|
4 | from os.path import join |
---|
5 | |
---|
6 | from math import pi, sqrt |
---|
7 | import tempfile |
---|
8 | |
---|
9 | from anuga.config import g, epsilon |
---|
10 | from anuga.config import netcdf_mode_r, netcdf_mode_w, netcdf_mode_a |
---|
11 | import Numeric as num |
---|
12 | from anuga.utilities.numerical_tools import mean |
---|
13 | from anuga.utilities.polygon import is_inside_polygon |
---|
14 | from anuga.coordinate_transforms.geo_reference import Geo_reference |
---|
15 | from anuga.abstract_2d_finite_volumes.quantity import Quantity |
---|
16 | from anuga.geospatial_data.geospatial_data import Geospatial_data |
---|
17 | from anuga.abstract_2d_finite_volumes.mesh_factory import rectangular_cross |
---|
18 | from anuga.utilities.system_tools import get_pathname_from_package |
---|
19 | from shallow_water_domain import * |
---|
20 | |
---|
21 | # Get gateway to C implementation of flux function for direct testing |
---|
22 | from shallow_water_ext import flux_function_central as flux_function |
---|
23 | |
---|
24 | # For test_fitting_using_shallow_water_domain example |
---|
25 | def linear_function(point): |
---|
26 | point = num.array(point) |
---|
27 | return point[:,0]+point[:,1] |
---|
28 | |
---|
29 | class Weir: |
---|
30 | """Set a bathymetry for weir with a hole and a downstream gutter |
---|
31 | x,y are assumed to be in the unit square |
---|
32 | """ |
---|
33 | |
---|
34 | def __init__(self, stage): |
---|
35 | self.inflow_stage = stage |
---|
36 | |
---|
37 | def __call__(self, x, y): |
---|
38 | |
---|
39 | N = len(x) |
---|
40 | assert N == len(y) |
---|
41 | |
---|
42 | z = num.zeros(N, num.Float) |
---|
43 | for i in range(N): |
---|
44 | z[i] = -x[i]/2 #General slope |
---|
45 | |
---|
46 | #Flattish bit to the left |
---|
47 | if x[i] < 0.3: |
---|
48 | z[i] = -x[i]/10 |
---|
49 | |
---|
50 | #Weir |
---|
51 | if x[i] >= 0.3 and x[i] < 0.4: |
---|
52 | z[i] = -x[i]+0.9 |
---|
53 | |
---|
54 | #Dip |
---|
55 | x0 = 0.6 |
---|
56 | #depth = -1.3 |
---|
57 | depth = -1.0 |
---|
58 | #plateaux = -0.9 |
---|
59 | plateaux = -0.6 |
---|
60 | if y[i] < 0.7: |
---|
61 | if x[i] > x0 and x[i] < 0.9: |
---|
62 | z[i] = depth |
---|
63 | |
---|
64 | #RHS plateaux |
---|
65 | if x[i] >= 0.9: |
---|
66 | z[i] = plateaux |
---|
67 | |
---|
68 | |
---|
69 | elif y[i] >= 0.7 and y[i] < 1.5: |
---|
70 | #Restrict and deepen |
---|
71 | if x[i] >= x0 and x[i] < 0.8: |
---|
72 | z[i] = depth-(y[i]/3-0.3) |
---|
73 | #z[i] = depth-y[i]/5 |
---|
74 | #z[i] = depth |
---|
75 | elif x[i] >= 0.8: |
---|
76 | #RHS plateaux |
---|
77 | z[i] = plateaux |
---|
78 | |
---|
79 | elif y[i] >= 1.5: |
---|
80 | if x[i] >= x0 and x[i] < 0.8 + (y[i]-1.5)/1.2: |
---|
81 | #Widen up and stay at constant depth |
---|
82 | z[i] = depth-1.5/5 |
---|
83 | elif x[i] >= 0.8 + (y[i]-1.5)/1.2: |
---|
84 | #RHS plateaux |
---|
85 | z[i] = plateaux |
---|
86 | |
---|
87 | |
---|
88 | #Hole in weir (slightly higher than inflow condition) |
---|
89 | if x[i] >= 0.3 and x[i] < 0.4 and y[i] > 0.2 and y[i] < 0.4: |
---|
90 | z[i] = -x[i]+self.inflow_stage + 0.02 |
---|
91 | |
---|
92 | #Channel behind weir |
---|
93 | x0 = 0.5 |
---|
94 | if x[i] >= 0.4 and x[i] < x0 and y[i] > 0.2 and y[i] < 0.4: |
---|
95 | z[i] = -x[i]+self.inflow_stage + 0.02 |
---|
96 | |
---|
97 | if x[i] >= x0 and x[i] < 0.6 and y[i] > 0.2 and y[i] < 0.4: |
---|
98 | #Flatten it out towards the end |
---|
99 | z[i] = -x0+self.inflow_stage + 0.02 + (x0-x[i])/5 |
---|
100 | |
---|
101 | #Hole to the east |
---|
102 | x0 = 1.1; y0 = 0.35 |
---|
103 | #if x[i] < -0.2 and y < 0.5: |
---|
104 | if num.sqrt((2*(x[i]-x0))**2 + (2*(y[i]-y0))**2) < 0.2: |
---|
105 | z[i] = num.sqrt(((x[i]-x0))**2 + ((y[i]-y0))**2)-1.0 |
---|
106 | |
---|
107 | #Tiny channel draining hole |
---|
108 | if x[i] >= 1.14 and x[i] < 1.2 and y[i] >= 0.4 and y[i] < 0.6: |
---|
109 | z[i] = -0.9 #North south |
---|
110 | |
---|
111 | if x[i] >= 0.9 and x[i] < 1.18 and y[i] >= 0.58 and y[i] < 0.65: |
---|
112 | z[i] = -1.0 + (x[i]-0.9)/3 #East west |
---|
113 | |
---|
114 | |
---|
115 | |
---|
116 | #Stuff not in use |
---|
117 | |
---|
118 | #Upward slope at inlet to the north west |
---|
119 | #if x[i] < 0.0: # and y[i] > 0.5: |
---|
120 | # #z[i] = -y[i]+0.5 #-x[i]/2 |
---|
121 | # z[i] = x[i]/4 - y[i]**2 + 0.5 |
---|
122 | |
---|
123 | #Hole to the west |
---|
124 | #x0 = -0.4; y0 = 0.35 # center |
---|
125 | #if sqrt((2*(x[i]-x0))**2 + (2*(y[i]-y0))**2) < 0.2: |
---|
126 | # z[i] = sqrt(((x[i]-x0))**2 + ((y[i]-y0))**2)-0.2 |
---|
127 | |
---|
128 | |
---|
129 | |
---|
130 | |
---|
131 | |
---|
132 | return z/2 |
---|
133 | |
---|
134 | class Weir_simple: |
---|
135 | """Set a bathymetry for weir with a hole and a downstream gutter |
---|
136 | x,y are assumed to be in the unit square |
---|
137 | """ |
---|
138 | |
---|
139 | def __init__(self, stage): |
---|
140 | self.inflow_stage = stage |
---|
141 | |
---|
142 | def __call__(self, x, y): |
---|
143 | |
---|
144 | N = len(x) |
---|
145 | assert N == len(y) |
---|
146 | |
---|
147 | z = num.zeros(N, num.Float) |
---|
148 | for i in range(N): |
---|
149 | z[i] = -x[i] #General slope |
---|
150 | |
---|
151 | #Flat bit to the left |
---|
152 | if x[i] < 0.3: |
---|
153 | z[i] = -x[i]/10 #General slope |
---|
154 | |
---|
155 | #Weir |
---|
156 | if x[i] > 0.3 and x[i] < 0.4: |
---|
157 | z[i] = -x[i]+0.9 |
---|
158 | |
---|
159 | #Dip |
---|
160 | if x[i] > 0.6 and x[i] < 0.9: |
---|
161 | z[i] = -x[i]-0.5 #-y[i]/5 |
---|
162 | |
---|
163 | #Hole in weir (slightly higher than inflow condition) |
---|
164 | if x[i] > 0.3 and x[i] < 0.4 and y[i] > 0.2 and y[i] < 0.4: |
---|
165 | z[i] = -x[i]+self.inflow_stage + 0.05 |
---|
166 | |
---|
167 | |
---|
168 | return z/2 |
---|
169 | |
---|
170 | |
---|
171 | |
---|
172 | |
---|
173 | #Variable windfield implemented using functions |
---|
174 | def speed(t,x,y): |
---|
175 | """Large speeds halfway between center and edges |
---|
176 | Low speeds at center and edges |
---|
177 | """ |
---|
178 | |
---|
179 | from math import exp, cos, pi |
---|
180 | |
---|
181 | x = num.array(x) |
---|
182 | y = num.array(y) |
---|
183 | |
---|
184 | N = len(x) |
---|
185 | s = 0*x #New array |
---|
186 | |
---|
187 | for k in range(N): |
---|
188 | |
---|
189 | r = num.sqrt(x[k]**2 + y[k]**2) |
---|
190 | |
---|
191 | factor = exp( -(r-0.15)**2 ) |
---|
192 | |
---|
193 | s[k] = 4000 * factor * (cos(t*2*pi/150) + 2) |
---|
194 | |
---|
195 | return s |
---|
196 | |
---|
197 | |
---|
198 | def scalar_func(t,x,y): |
---|
199 | """Function that returns a scalar. |
---|
200 | Used to test error message when Numeric array is expected |
---|
201 | """ |
---|
202 | |
---|
203 | return 17.7 |
---|
204 | |
---|
205 | |
---|
206 | def angle(t,x,y): |
---|
207 | """Rotating field |
---|
208 | """ |
---|
209 | from math import atan, pi |
---|
210 | |
---|
211 | x = num.array(x) |
---|
212 | y = num.array(y) |
---|
213 | |
---|
214 | N = len(x) |
---|
215 | a = 0*x #New array |
---|
216 | |
---|
217 | for k in range(N): |
---|
218 | r = num.sqrt(x[k]**2 + y[k]**2) |
---|
219 | |
---|
220 | angle = atan(y[k]/x[k]) |
---|
221 | |
---|
222 | if x[k] < 0: |
---|
223 | angle+=pi #atan in ]-pi/2; pi/2[ |
---|
224 | |
---|
225 | #Take normal direction |
---|
226 | angle -= pi/2 |
---|
227 | |
---|
228 | #Ensure positive radians |
---|
229 | if angle < 0: |
---|
230 | angle += 2*pi |
---|
231 | |
---|
232 | a[k] = angle/pi*180 |
---|
233 | |
---|
234 | return a |
---|
235 | |
---|
236 | |
---|
237 | class Test_Shallow_Water(unittest.TestCase): |
---|
238 | def setUp(self): |
---|
239 | pass |
---|
240 | |
---|
241 | def tearDown(self): |
---|
242 | pass |
---|
243 | |
---|
244 | def test_rotate(self): |
---|
245 | normal = num.array([0.0,-1.0]) |
---|
246 | |
---|
247 | q = num.array([1.0,2.0,3.0]) |
---|
248 | |
---|
249 | r = rotate(q, normal, direction = 1) |
---|
250 | assert r[0] == 1 |
---|
251 | assert r[1] == -3 |
---|
252 | assert r[2] == 2 |
---|
253 | |
---|
254 | w = rotate(r, normal, direction = -1) |
---|
255 | assert num.allclose(w, q) |
---|
256 | |
---|
257 | #Check error check |
---|
258 | try: |
---|
259 | rotate(r, num.array([1,1,1], num.Int)) #array default# |
---|
260 | except: |
---|
261 | pass |
---|
262 | else: |
---|
263 | raise 'Should have raised an exception' |
---|
264 | |
---|
265 | |
---|
266 | # Individual flux tests |
---|
267 | def test_flux_zero_case(self): |
---|
268 | ql = num.zeros( 3, num.Float ) |
---|
269 | qr = num.zeros( 3, num.Float ) |
---|
270 | normal = num.zeros( 2, num.Float ) |
---|
271 | edgeflux = num.zeros( 3, num.Float ) |
---|
272 | zl = zr = 0. |
---|
273 | H0 = 0.0 |
---|
274 | |
---|
275 | max_speed = flux_function(normal, ql, qr, zl, zr, edgeflux, epsilon, g, H0) |
---|
276 | |
---|
277 | assert num.allclose(edgeflux, [0,0,0]) |
---|
278 | assert max_speed == 0. |
---|
279 | |
---|
280 | def test_flux_constants(self): |
---|
281 | w = 2.0 |
---|
282 | |
---|
283 | normal = num.array([1.,0]) |
---|
284 | ql = num.array([w, 0, 0]) |
---|
285 | qr = num.array([w, 0, 0]) |
---|
286 | edgeflux = num.zeros(3, num.Float) |
---|
287 | zl = zr = 0. |
---|
288 | h = w - (zl+zr)/2 |
---|
289 | H0 = 0.0 |
---|
290 | |
---|
291 | max_speed = flux_function(normal, ql, qr, zl, zr, edgeflux, epsilon, g, H0) |
---|
292 | assert num.allclose(edgeflux, [0., 0.5*g*h**2, 0.]) |
---|
293 | assert max_speed == num.sqrt(g*h) |
---|
294 | |
---|
295 | #def test_flux_slope(self): |
---|
296 | # #FIXME: TODO |
---|
297 | # w = 2.0 |
---|
298 | # |
---|
299 | # normal = array([1.,0]) |
---|
300 | # ql = array([w, 0, 0]) |
---|
301 | # qr = array([w, 0, 0]) |
---|
302 | # zl = zr = 0. |
---|
303 | # h = w - (zl+zr)/2 |
---|
304 | # |
---|
305 | # flux, max_speed = flux_function(normal, ql, qr, zl, zr) |
---|
306 | # |
---|
307 | # assert allclose(flux, [0., 0.5*g*h**2, 0.]) |
---|
308 | # assert max_speed == sqrt(g*h) |
---|
309 | |
---|
310 | |
---|
311 | def test_flux1(self): |
---|
312 | #Use data from previous version of abstract_2d_finite_volumes |
---|
313 | normal = num.array([1.,0]) |
---|
314 | ql = num.array([-0.2, 2, 3]) |
---|
315 | qr = num.array([-0.2, 2, 3]) |
---|
316 | zl = zr = -0.5 |
---|
317 | edgeflux = num.zeros(3, num.Float) |
---|
318 | |
---|
319 | H0 = 0.0 |
---|
320 | |
---|
321 | max_speed = flux_function(normal, ql, qr, zl, zr, edgeflux, epsilon, g, H0) |
---|
322 | |
---|
323 | assert num.allclose(edgeflux, [2.,13.77433333, 20.]) |
---|
324 | assert num.allclose(max_speed, 8.38130948661) |
---|
325 | |
---|
326 | |
---|
327 | def test_flux2(self): |
---|
328 | #Use data from previous version of abstract_2d_finite_volumes |
---|
329 | normal = num.array([0., -1.]) |
---|
330 | ql = num.array([-0.075, 2, 3]) |
---|
331 | qr = num.array([-0.075, 2, 3]) |
---|
332 | zl = zr = -0.375 |
---|
333 | |
---|
334 | edgeflux = num.zeros(3, num.Float) |
---|
335 | H0 = 0.0 |
---|
336 | max_speed = flux_function(normal, ql, qr, zl, zr, edgeflux, epsilon, g, H0) |
---|
337 | |
---|
338 | assert num.allclose(edgeflux, [-3.,-20.0, -30.441]) |
---|
339 | assert num.allclose(max_speed, 11.7146428199) |
---|
340 | |
---|
341 | def test_flux3(self): |
---|
342 | #Use data from previous version of abstract_2d_finite_volumes |
---|
343 | normal = num.array([-sqrt(2)/2, sqrt(2)/2]) |
---|
344 | ql = num.array([-0.075, 2, 3]) |
---|
345 | qr = num.array([-0.075, 2, 3]) |
---|
346 | zl = zr = -0.375 |
---|
347 | |
---|
348 | edgeflux = num.zeros(3, num.Float) |
---|
349 | H0 = 0.0 |
---|
350 | max_speed = flux_function(normal, ql, qr, zl, zr, edgeflux, epsilon, g, H0) |
---|
351 | |
---|
352 | assert num.allclose(edgeflux, [sqrt(2)/2, 4.40221112, 7.3829019]) |
---|
353 | assert num.allclose(max_speed, 4.0716654239) |
---|
354 | |
---|
355 | def test_flux4(self): |
---|
356 | #Use data from previous version of abstract_2d_finite_volumes |
---|
357 | normal = num.array([-sqrt(2)/2, sqrt(2)/2]) |
---|
358 | ql = num.array([-0.34319278, 0.10254161, 0.07273855]) |
---|
359 | qr = num.array([-0.30683287, 0.1071986, 0.05930515]) |
---|
360 | zl = zr = -0.375 |
---|
361 | |
---|
362 | edgeflux = num.zeros(3, num.Float) |
---|
363 | H0 = 0.0 |
---|
364 | max_speed = flux_function(normal, ql, qr, zl, zr, edgeflux, epsilon, g, H0) |
---|
365 | |
---|
366 | assert num.allclose(edgeflux, [-0.04072676, -0.07096636, -0.01604364]) |
---|
367 | assert num.allclose(max_speed, 1.31414103233) |
---|
368 | |
---|
369 | def test_flux_computation(self): |
---|
370 | """test_flux_computation - test flux calculation (actual C implementation) |
---|
371 | This one tests the constant case where only the pressure term contributes to each edge and cancels out |
---|
372 | once the total flux has been summed up. |
---|
373 | """ |
---|
374 | |
---|
375 | a = [0.0, 0.0] |
---|
376 | b = [0.0, 2.0] |
---|
377 | c = [2.0,0.0] |
---|
378 | d = [0.0, 4.0] |
---|
379 | e = [2.0, 2.0] |
---|
380 | f = [4.0,0.0] |
---|
381 | |
---|
382 | points = [a, b, c, d, e, f] |
---|
383 | #bac, bce, ecf, dbe, daf, dae |
---|
384 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
385 | |
---|
386 | domain = Domain(points, vertices) |
---|
387 | domain.check_integrity() |
---|
388 | |
---|
389 | # The constant case |
---|
390 | domain.set_quantity('elevation', -1) |
---|
391 | domain.set_quantity('stage', 1) |
---|
392 | |
---|
393 | domain.compute_fluxes() |
---|
394 | assert num.allclose(domain.get_quantity('stage').explicit_update[1], 0) # Central triangle |
---|
395 | |
---|
396 | |
---|
397 | # The more general case |
---|
398 | def surface(x,y): |
---|
399 | return -x/2 |
---|
400 | |
---|
401 | domain.set_quantity('elevation', -10) |
---|
402 | domain.set_quantity('stage', surface) |
---|
403 | domain.set_quantity('xmomentum', 1) |
---|
404 | |
---|
405 | domain.compute_fluxes() |
---|
406 | |
---|
407 | #print domain.get_quantity('stage').explicit_update |
---|
408 | # FIXME (Ole): TODO the general case |
---|
409 | #assert allclose(domain.get_quantity('stage').explicit_update[1], ........??) |
---|
410 | |
---|
411 | |
---|
412 | |
---|
413 | def test_sw_domain_simple(self): |
---|
414 | a = [0.0, 0.0] |
---|
415 | b = [0.0, 2.0] |
---|
416 | c = [2.0,0.0] |
---|
417 | d = [0.0, 4.0] |
---|
418 | e = [2.0, 2.0] |
---|
419 | f = [4.0,0.0] |
---|
420 | |
---|
421 | points = [a, b, c, d, e, f] |
---|
422 | #bac, bce, ecf, dbe, daf, dae |
---|
423 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
424 | |
---|
425 | |
---|
426 | #from anuga.abstract_2d_finite_volumes.domain import Domain as Generic_domain |
---|
427 | #msg = 'The class %s is not a subclass of the generic domain class %s'\ |
---|
428 | # %(DomainClass, Domain) |
---|
429 | #assert issubclass(DomainClass, Domain), msg |
---|
430 | |
---|
431 | domain = Domain(points, vertices) |
---|
432 | domain.check_integrity() |
---|
433 | |
---|
434 | for name in ['stage', 'xmomentum', 'ymomentum', |
---|
435 | 'elevation', 'friction']: |
---|
436 | assert domain.quantities.has_key(name) |
---|
437 | |
---|
438 | |
---|
439 | assert domain.get_conserved_quantities(0, edge=1) == 0. |
---|
440 | |
---|
441 | |
---|
442 | def test_boundary_conditions(self): |
---|
443 | |
---|
444 | a = [0.0, 0.0] |
---|
445 | b = [0.0, 2.0] |
---|
446 | c = [2.0,0.0] |
---|
447 | d = [0.0, 4.0] |
---|
448 | e = [2.0, 2.0] |
---|
449 | f = [4.0,0.0] |
---|
450 | |
---|
451 | points = [a, b, c, d, e, f] |
---|
452 | #bac, bce, ecf, dbe |
---|
453 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4] ] |
---|
454 | boundary = { (0, 0): 'Third', |
---|
455 | (0, 2): 'First', |
---|
456 | (2, 0): 'Second', |
---|
457 | (2, 1): 'Second', |
---|
458 | (3, 1): 'Second', |
---|
459 | (3, 2): 'Third'} |
---|
460 | |
---|
461 | |
---|
462 | domain = Domain(points, vertices, boundary) |
---|
463 | domain.check_integrity() |
---|
464 | |
---|
465 | |
---|
466 | domain.set_quantity('stage', [[1,2,3], [5,5,5], |
---|
467 | [0,0,9], [-6, 3, 3]]) |
---|
468 | |
---|
469 | domain.set_quantity('xmomentum', [[1,1,1], [2,2,2], |
---|
470 | [3,3,3], [4, 4, 4]]) |
---|
471 | |
---|
472 | domain.set_quantity('ymomentum', [[10,10,10], [20,20,20], |
---|
473 | [30,30,30], [40, 40, 40]]) |
---|
474 | |
---|
475 | |
---|
476 | D = Dirichlet_boundary([5,2,1]) |
---|
477 | T = Transmissive_boundary(domain) |
---|
478 | R = Reflective_boundary(domain) |
---|
479 | domain.set_boundary( {'First': D, 'Second': T, 'Third': R}) |
---|
480 | |
---|
481 | domain.update_boundary() |
---|
482 | |
---|
483 | #Stage |
---|
484 | assert domain.quantities['stage'].boundary_values[0] == 2.5 |
---|
485 | assert domain.quantities['stage'].boundary_values[0] ==\ |
---|
486 | domain.get_conserved_quantities(0, edge=0)[0] #Reflective (2.5) |
---|
487 | assert domain.quantities['stage'].boundary_values[1] == 5. #Dirichlet |
---|
488 | assert domain.quantities['stage'].boundary_values[2] ==\ |
---|
489 | domain.get_conserved_quantities(2, edge=0)[0] #Transmissive (4.5) |
---|
490 | assert domain.quantities['stage'].boundary_values[3] ==\ |
---|
491 | domain.get_conserved_quantities(2, edge=1)[0] #Transmissive (4.5) |
---|
492 | assert domain.quantities['stage'].boundary_values[4] ==\ |
---|
493 | domain.get_conserved_quantities(3, edge=1)[0] #Transmissive (-1.5) |
---|
494 | assert domain.quantities['stage'].boundary_values[5] ==\ |
---|
495 | domain.get_conserved_quantities(3, edge=2)[0] #Reflective (-1.5) |
---|
496 | |
---|
497 | #Xmomentum |
---|
498 | assert domain.quantities['xmomentum'].boundary_values[0] == 1.0 #Reflective |
---|
499 | assert domain.quantities['xmomentum'].boundary_values[1] == 2. #Dirichlet |
---|
500 | assert domain.quantities['xmomentum'].boundary_values[2] ==\ |
---|
501 | domain.get_conserved_quantities(2, edge=0)[1] #Transmissive |
---|
502 | assert domain.quantities['xmomentum'].boundary_values[3] ==\ |
---|
503 | domain.get_conserved_quantities(2, edge=1)[1] #Transmissive |
---|
504 | assert domain.quantities['xmomentum'].boundary_values[4] ==\ |
---|
505 | domain.get_conserved_quantities(3, edge=1)[1] #Transmissive |
---|
506 | assert domain.quantities['xmomentum'].boundary_values[5] == -4.0 #Reflective |
---|
507 | |
---|
508 | #Ymomentum |
---|
509 | assert domain.quantities['ymomentum'].boundary_values[0] == -10.0 #Reflective |
---|
510 | assert domain.quantities['ymomentum'].boundary_values[1] == 1. #Dirichlet |
---|
511 | assert domain.quantities['ymomentum'].boundary_values[2] == 30. #Transmissive |
---|
512 | assert domain.quantities['ymomentum'].boundary_values[3] == 30. #Transmissive |
---|
513 | assert domain.quantities['ymomentum'].boundary_values[4] == 40. #Transmissive |
---|
514 | assert domain.quantities['ymomentum'].boundary_values[5] == 40. #Reflective |
---|
515 | |
---|
516 | |
---|
517 | def test_boundary_conditionsII(self): |
---|
518 | |
---|
519 | a = [0.0, 0.0] |
---|
520 | b = [0.0, 2.0] |
---|
521 | c = [2.0,0.0] |
---|
522 | d = [0.0, 4.0] |
---|
523 | e = [2.0, 2.0] |
---|
524 | f = [4.0,0.0] |
---|
525 | |
---|
526 | points = [a, b, c, d, e, f] |
---|
527 | #bac, bce, ecf, dbe |
---|
528 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4] ] |
---|
529 | boundary = { (0, 0): 'Third', |
---|
530 | (0, 2): 'First', |
---|
531 | (2, 0): 'Second', |
---|
532 | (2, 1): 'Second', |
---|
533 | (3, 1): 'Second', |
---|
534 | (3, 2): 'Third', |
---|
535 | (0, 1): 'Internal'} |
---|
536 | |
---|
537 | |
---|
538 | domain = Domain(points, vertices, boundary) |
---|
539 | domain.check_integrity() |
---|
540 | |
---|
541 | |
---|
542 | domain.set_quantity('stage', [[1,2,3], [5,5,5], |
---|
543 | [0,0,9], [-6, 3, 3]]) |
---|
544 | |
---|
545 | domain.set_quantity('xmomentum', [[1,1,1], [2,2,2], |
---|
546 | [3,3,3], [4, 4, 4]]) |
---|
547 | |
---|
548 | domain.set_quantity('ymomentum', [[10,10,10], [20,20,20], |
---|
549 | [30,30,30], [40, 40, 40]]) |
---|
550 | |
---|
551 | |
---|
552 | D = Dirichlet_boundary([5,2,1]) |
---|
553 | T = Transmissive_boundary(domain) |
---|
554 | R = Reflective_boundary(domain) |
---|
555 | domain.set_boundary( {'First': D, 'Second': T, |
---|
556 | 'Third': R, 'Internal': None}) |
---|
557 | |
---|
558 | domain.update_boundary() |
---|
559 | domain.check_integrity() |
---|
560 | |
---|
561 | |
---|
562 | |
---|
563 | |
---|
564 | def test_boundary_conditionsIII(self): |
---|
565 | """test_boundary_conditionsIII |
---|
566 | |
---|
567 | Test Transmissive_stage_zero_momentum_boundary |
---|
568 | """ |
---|
569 | |
---|
570 | a = [0.0, 0.0] |
---|
571 | b = [0.0, 2.0] |
---|
572 | c = [2.0,0.0] |
---|
573 | d = [0.0, 4.0] |
---|
574 | e = [2.0, 2.0] |
---|
575 | f = [4.0,0.0] |
---|
576 | |
---|
577 | points = [a, b, c, d, e, f] |
---|
578 | #bac, bce, ecf, dbe |
---|
579 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4] ] |
---|
580 | boundary = { (0, 0): 'Third', |
---|
581 | (0, 2): 'First', |
---|
582 | (2, 0): 'Second', |
---|
583 | (2, 1): 'Second', |
---|
584 | (3, 1): 'Second', |
---|
585 | (3, 2): 'Third'} |
---|
586 | |
---|
587 | |
---|
588 | domain = Domain(points, vertices, boundary) |
---|
589 | domain.check_integrity() |
---|
590 | |
---|
591 | |
---|
592 | domain.set_quantity('stage', [[1,2,3], [5,5,5], |
---|
593 | [0,0,9], [-6, 3, 3]]) |
---|
594 | |
---|
595 | domain.set_quantity('xmomentum', [[1,1,1], [2,2,2], |
---|
596 | [3,3,3], [4, 4, 4]]) |
---|
597 | |
---|
598 | domain.set_quantity('ymomentum', [[10,10,10], [20,20,20], |
---|
599 | [30,30,30], [40, 40, 40]]) |
---|
600 | |
---|
601 | |
---|
602 | D = Dirichlet_boundary([5,2,1]) |
---|
603 | T = Transmissive_stage_zero_momentum_boundary(domain) |
---|
604 | R = Reflective_boundary(domain) |
---|
605 | domain.set_boundary( {'First': D, 'Second': T, 'Third': R}) |
---|
606 | |
---|
607 | domain.update_boundary() |
---|
608 | |
---|
609 | # Stage |
---|
610 | assert domain.quantities['stage'].boundary_values[0] == 2.5 |
---|
611 | assert domain.quantities['stage'].boundary_values[0] ==\ |
---|
612 | domain.get_conserved_quantities(0, edge=0)[0] #Reflective (2.5) |
---|
613 | assert domain.quantities['stage'].boundary_values[1] == 5. #Dirichlet |
---|
614 | assert domain.quantities['stage'].boundary_values[2] ==\ |
---|
615 | domain.get_conserved_quantities(2, edge=0)[0] #Transmissive (4.5) |
---|
616 | assert domain.quantities['stage'].boundary_values[3] ==\ |
---|
617 | domain.get_conserved_quantities(2, edge=1)[0] #Transmissive (4.5) |
---|
618 | assert domain.quantities['stage'].boundary_values[4] ==\ |
---|
619 | domain.get_conserved_quantities(3, edge=1)[0] #Transmissive (-1.5) |
---|
620 | assert domain.quantities['stage'].boundary_values[5] ==\ |
---|
621 | domain.get_conserved_quantities(3, edge=2)[0] #Reflective (-1.5) |
---|
622 | |
---|
623 | # Xmomentum |
---|
624 | assert domain.quantities['xmomentum'].boundary_values[0] == 1.0 #Reflective |
---|
625 | assert domain.quantities['xmomentum'].boundary_values[1] == 2. #Dirichlet |
---|
626 | assert domain.quantities['xmomentum'].boundary_values[2] == 0.0 |
---|
627 | assert domain.quantities['xmomentum'].boundary_values[3] == 0.0 |
---|
628 | assert domain.quantities['xmomentum'].boundary_values[4] == 0.0 |
---|
629 | assert domain.quantities['xmomentum'].boundary_values[5] == -4.0 #Reflective |
---|
630 | |
---|
631 | # Ymomentum |
---|
632 | assert domain.quantities['ymomentum'].boundary_values[0] == -10.0 #Reflective |
---|
633 | assert domain.quantities['ymomentum'].boundary_values[1] == 1. #Dirichlet |
---|
634 | assert domain.quantities['ymomentum'].boundary_values[2] == 0.0 |
---|
635 | assert domain.quantities['ymomentum'].boundary_values[3] == 0.0 |
---|
636 | assert domain.quantities['ymomentum'].boundary_values[4] == 0.0 |
---|
637 | assert domain.quantities['ymomentum'].boundary_values[5] == 40. #Reflective |
---|
638 | |
---|
639 | |
---|
640 | |
---|
641 | |
---|
642 | def test_boundary_condition_time(self): |
---|
643 | """test_boundary_condition_time |
---|
644 | |
---|
645 | This tests that boundary conditions are evaluated |
---|
646 | using the right time from domain. |
---|
647 | |
---|
648 | """ |
---|
649 | |
---|
650 | # Setup computational domain |
---|
651 | from anuga.abstract_2d_finite_volumes.mesh_factory import rectangular_cross |
---|
652 | |
---|
653 | |
---|
654 | #-------------------------------------------------------------- |
---|
655 | # Setup computational domain |
---|
656 | #-------------------------------------------------------------- |
---|
657 | N = 5 |
---|
658 | points, vertices, boundary = rectangular_cross(N, N) |
---|
659 | domain = Domain(points, vertices, boundary) |
---|
660 | |
---|
661 | #-------------------------------------------------------------- |
---|
662 | # Setup initial conditions |
---|
663 | #-------------------------------------------------------------- |
---|
664 | domain.set_quantity('elevation', 0.0) |
---|
665 | domain.set_quantity('friction', 0.0) |
---|
666 | domain.set_quantity('stage', 0.0) |
---|
667 | |
---|
668 | |
---|
669 | #-------------------------------------------------------------- |
---|
670 | # Setup boundary conditions |
---|
671 | #-------------------------------------------------------------- |
---|
672 | Bt = Time_boundary(domain=domain, # Time dependent boundary |
---|
673 | f=lambda t: [t, 0.0, 0.0]) |
---|
674 | |
---|
675 | Br = Reflective_boundary(domain) # Reflective wall |
---|
676 | |
---|
677 | domain.set_boundary({'left': Bt, 'right': Br, 'top': Br, 'bottom': Br}) |
---|
678 | |
---|
679 | for t in domain.evolve(yieldstep = 10, finaltime = 20.0): |
---|
680 | q = Bt.evaluate() |
---|
681 | |
---|
682 | # FIXME (Ole): This test would not have passed in |
---|
683 | # changeset:5846. |
---|
684 | msg = 'Time boundary not evaluated correctly' |
---|
685 | assert num.allclose(t, q[0]), msg |
---|
686 | |
---|
687 | |
---|
688 | |
---|
689 | def test_compute_fluxes0(self): |
---|
690 | # Do a full triangle and check that fluxes cancel out for |
---|
691 | # the constant stage case |
---|
692 | |
---|
693 | a = [0.0, 0.0] |
---|
694 | b = [0.0, 2.0] |
---|
695 | c = [2.0,0.0] |
---|
696 | d = [0.0, 4.0] |
---|
697 | e = [2.0, 2.0] |
---|
698 | f = [4.0,0.0] |
---|
699 | |
---|
700 | points = [a, b, c, d, e, f] |
---|
701 | #bac, bce, ecf, dbe |
---|
702 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
703 | |
---|
704 | domain = Domain(points, vertices) |
---|
705 | domain.set_quantity('stage', [[2,2,2], [2,2,2], |
---|
706 | [2,2,2], [2,2,2]]) |
---|
707 | domain.check_integrity() |
---|
708 | |
---|
709 | assert num.allclose(domain.neighbours, [[-1,1,-1], [2,3,0], [-1,-1,1],[1,-1,-1]]) |
---|
710 | assert num.allclose(domain.neighbour_edges, [[-1,2,-1], [2,0,1], [-1,-1,0],[1,-1,-1]]) |
---|
711 | |
---|
712 | zl=zr=0. # Assume flat bed |
---|
713 | |
---|
714 | edgeflux = num.zeros(3, num.Float) |
---|
715 | edgeflux0 = num.zeros(3, num.Float) |
---|
716 | edgeflux1 = num.zeros(3, num.Float) |
---|
717 | edgeflux2 = num.zeros(3, num.Float) |
---|
718 | H0 = 0.0 |
---|
719 | |
---|
720 | # Flux across right edge of volume 1 |
---|
721 | normal = domain.get_normal(1,0) |
---|
722 | ql = domain.get_conserved_quantities(vol_id=1, edge=0) |
---|
723 | qr = domain.get_conserved_quantities(vol_id=2, edge=2) |
---|
724 | max_speed = flux_function(normal, ql, qr, zl, zr, edgeflux0, epsilon, g, H0) |
---|
725 | |
---|
726 | # Check that flux seen from other triangles is inverse |
---|
727 | tmp = qr; qr=ql; ql=tmp |
---|
728 | normal = domain.get_normal(2,2) |
---|
729 | max_speed = flux_function(normal, ql, qr, zl, zr, edgeflux, epsilon, g, H0) |
---|
730 | |
---|
731 | assert num.allclose(edgeflux0 + edgeflux, 0.) |
---|
732 | |
---|
733 | # Flux across upper edge of volume 1 |
---|
734 | normal = domain.get_normal(1,1) |
---|
735 | ql = domain.get_conserved_quantities(vol_id=1, edge=1) |
---|
736 | qr = domain.get_conserved_quantities(vol_id=3, edge=0) |
---|
737 | max_speed = flux_function(normal, ql, qr, zl, zr, edgeflux1, epsilon, g, H0) |
---|
738 | |
---|
739 | # Check that flux seen from other triangles is inverse |
---|
740 | tmp = qr; qr=ql; ql=tmp |
---|
741 | normal = domain.get_normal(3,0) |
---|
742 | max_speed = flux_function(normal, ql, qr, zl, zr, edgeflux, epsilon, g, H0) |
---|
743 | |
---|
744 | assert num.allclose(edgeflux1 + edgeflux, 0.) |
---|
745 | |
---|
746 | |
---|
747 | # Flux across lower left hypotenuse of volume 1 |
---|
748 | normal = domain.get_normal(1,2) |
---|
749 | ql = domain.get_conserved_quantities(vol_id=1, edge=2) |
---|
750 | qr = domain.get_conserved_quantities(vol_id=0, edge=1) |
---|
751 | max_speed = flux_function(normal, ql, qr, zl, zr, edgeflux2, epsilon, g, H0) |
---|
752 | |
---|
753 | # Check that flux seen from other triangles is inverse |
---|
754 | tmp = qr; qr=ql; ql=tmp |
---|
755 | normal = domain.get_normal(0,1) |
---|
756 | max_speed = flux_function(normal, ql, qr, zl, zr, edgeflux, epsilon, g, H0) |
---|
757 | assert num.allclose(edgeflux2 + edgeflux, 0.) |
---|
758 | |
---|
759 | |
---|
760 | # Scale by edgelengths, add up anc check that total flux is zero |
---|
761 | e0 = domain.edgelengths[1, 0] |
---|
762 | e1 = domain.edgelengths[1, 1] |
---|
763 | e2 = domain.edgelengths[1, 2] |
---|
764 | |
---|
765 | assert num.allclose(e0*edgeflux0+e1*edgeflux1+e2*edgeflux2, 0.) |
---|
766 | |
---|
767 | # Now check that compute_flux yields zeros as well |
---|
768 | domain.compute_fluxes() |
---|
769 | |
---|
770 | for name in ['stage', 'xmomentum', 'ymomentum']: |
---|
771 | #print name, domain.quantities[name].explicit_update |
---|
772 | assert num.allclose(domain.quantities[name].explicit_update[1], 0) |
---|
773 | |
---|
774 | |
---|
775 | |
---|
776 | def test_compute_fluxes1(self): |
---|
777 | #Use values from previous version |
---|
778 | |
---|
779 | a = [0.0, 0.0] |
---|
780 | b = [0.0, 2.0] |
---|
781 | c = [2.0,0.0] |
---|
782 | d = [0.0, 4.0] |
---|
783 | e = [2.0, 2.0] |
---|
784 | f = [4.0,0.0] |
---|
785 | |
---|
786 | points = [a, b, c, d, e, f] |
---|
787 | #bac, bce, ecf, dbe |
---|
788 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
789 | |
---|
790 | domain = Domain(points, vertices) |
---|
791 | val0 = 2.+2.0/3 |
---|
792 | val1 = 4.+4.0/3 |
---|
793 | val2 = 8.+2.0/3 |
---|
794 | val3 = 2.+8.0/3 |
---|
795 | |
---|
796 | domain.set_quantity('stage', [[val0, val0, val0], [val1, val1, val1], |
---|
797 | [val2, val2, val2], [val3, val3, val3]]) |
---|
798 | domain.check_integrity() |
---|
799 | |
---|
800 | zl=zr=0. #Assume flat bed |
---|
801 | |
---|
802 | edgeflux = num.zeros(3, num.Float) |
---|
803 | edgeflux0 = num.zeros(3, num.Float) |
---|
804 | edgeflux1 = num.zeros(3, num.Float) |
---|
805 | edgeflux2 = num.zeros(3, num.Float) |
---|
806 | H0 = 0.0 |
---|
807 | |
---|
808 | |
---|
809 | # Flux across right edge of volume 1 |
---|
810 | normal = domain.get_normal(1,0) #Get normal 0 of triangle 1 |
---|
811 | assert num.allclose(normal, [1, 0]) |
---|
812 | |
---|
813 | ql = domain.get_conserved_quantities(vol_id=1, edge=0) |
---|
814 | assert num.allclose(ql, [val1, 0, 0]) |
---|
815 | |
---|
816 | qr = domain.get_conserved_quantities(vol_id=2, edge=2) |
---|
817 | assert num.allclose(qr, [val2, 0, 0]) |
---|
818 | |
---|
819 | max_speed = flux_function(normal, ql, qr, zl, zr, edgeflux0, epsilon, g, H0) |
---|
820 | |
---|
821 | # Flux across edge in the east direction (as per normal vector) |
---|
822 | assert num.allclose(edgeflux0, [-15.3598804, 253.71111111, 0.]) |
---|
823 | assert num.allclose(max_speed, 9.21592824046) |
---|
824 | |
---|
825 | |
---|
826 | #Flux across edge in the west direction (opposite sign for xmomentum) |
---|
827 | normal_opposite = domain.get_normal(2,2) #Get normal 2 of triangle 2 |
---|
828 | assert num.allclose(normal_opposite, [-1, 0]) |
---|
829 | |
---|
830 | max_speed = flux_function(normal_opposite, ql, qr, zl, zr, edgeflux, epsilon, g, H0) |
---|
831 | #flux_opposite, max_speed = flux_function([-1, 0], ql, qr, zl, zr) |
---|
832 | assert num.allclose(edgeflux, [-15.3598804, -253.71111111, 0.]) |
---|
833 | |
---|
834 | |
---|
835 | #Flux across upper edge of volume 1 |
---|
836 | normal = domain.get_normal(1,1) |
---|
837 | ql = domain.get_conserved_quantities(vol_id=1, edge=1) |
---|
838 | qr = domain.get_conserved_quantities(vol_id=3, edge=0) |
---|
839 | max_speed = flux_function(normal, ql, qr, zl, zr, edgeflux1, epsilon, g, H0) |
---|
840 | |
---|
841 | assert num.allclose(edgeflux1, [2.4098563, 0., 123.04444444]) |
---|
842 | assert num.allclose(max_speed, 7.22956891292) |
---|
843 | |
---|
844 | #Flux across lower left hypotenuse of volume 1 |
---|
845 | normal = domain.get_normal(1,2) |
---|
846 | ql = domain.get_conserved_quantities(vol_id=1, edge=2) |
---|
847 | qr = domain.get_conserved_quantities(vol_id=0, edge=1) |
---|
848 | max_speed = flux_function(normal, ql, qr, zl, zr, edgeflux2, epsilon, g, H0) |
---|
849 | |
---|
850 | assert num.allclose(edgeflux2, [9.63942522, -61.59685738, -61.59685738]) |
---|
851 | assert num.allclose(max_speed, 7.22956891292) |
---|
852 | |
---|
853 | #Scale, add up and check that compute_fluxes is correct for vol 1 |
---|
854 | e0 = domain.edgelengths[1, 0] |
---|
855 | e1 = domain.edgelengths[1, 1] |
---|
856 | e2 = domain.edgelengths[1, 2] |
---|
857 | |
---|
858 | total_flux = -(e0*edgeflux0+e1*edgeflux1+e2*edgeflux2)/domain.areas[1] |
---|
859 | assert num.allclose(total_flux, [-0.68218178, -166.6, -35.93333333]) |
---|
860 | |
---|
861 | |
---|
862 | domain.compute_fluxes() |
---|
863 | |
---|
864 | #assert num.allclose(total_flux, domain.explicit_update[1,:]) |
---|
865 | for i, name in enumerate(['stage', 'xmomentum', 'ymomentum']): |
---|
866 | assert num.allclose(total_flux[i], |
---|
867 | domain.quantities[name].explicit_update[1]) |
---|
868 | |
---|
869 | #assert allclose(domain.explicit_update, [ |
---|
870 | # [0., -69.68888889, -69.68888889], |
---|
871 | # [-0.68218178, -166.6, -35.93333333], |
---|
872 | # [-111.77316251, 69.68888889, 0.], |
---|
873 | # [-35.68522449, 0., 69.68888889]]) |
---|
874 | |
---|
875 | assert num.allclose(domain.quantities['stage'].explicit_update, |
---|
876 | [0., -0.68218178, -111.77316251, -35.68522449]) |
---|
877 | assert num.allclose(domain.quantities['xmomentum'].explicit_update, |
---|
878 | [-69.68888889, -166.6, 69.68888889, 0]) |
---|
879 | assert num.allclose(domain.quantities['ymomentum'].explicit_update, |
---|
880 | [-69.68888889, -35.93333333, 0., 69.68888889]) |
---|
881 | |
---|
882 | |
---|
883 | #assert allclose(domain.quantities[name].explicit_update |
---|
884 | |
---|
885 | |
---|
886 | |
---|
887 | |
---|
888 | |
---|
889 | def test_compute_fluxes2(self): |
---|
890 | #Random values, incl momentum |
---|
891 | |
---|
892 | a = [0.0, 0.0] |
---|
893 | b = [0.0, 2.0] |
---|
894 | c = [2.0,0.0] |
---|
895 | d = [0.0, 4.0] |
---|
896 | e = [2.0, 2.0] |
---|
897 | f = [4.0,0.0] |
---|
898 | |
---|
899 | points = [a, b, c, d, e, f] |
---|
900 | #bac, bce, ecf, dbe |
---|
901 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
902 | |
---|
903 | domain = Domain(points, vertices) |
---|
904 | val0 = 2.+2.0/3 |
---|
905 | val1 = 4.+4.0/3 |
---|
906 | val2 = 8.+2.0/3 |
---|
907 | val3 = 2.+8.0/3 |
---|
908 | |
---|
909 | zl=zr=0 #Assume flat zero bed |
---|
910 | edgeflux = num.zeros(3, num.Float) |
---|
911 | edgeflux0 = num.zeros(3, num.Float) |
---|
912 | edgeflux1 = num.zeros(3, num.Float) |
---|
913 | edgeflux2 = num.zeros(3, num.Float) |
---|
914 | H0 = 0.0 |
---|
915 | |
---|
916 | |
---|
917 | domain.set_quantity('elevation', zl*num.ones( (4,3) )) |
---|
918 | |
---|
919 | |
---|
920 | domain.set_quantity('stage', [[val0, val0-1, val0-2], |
---|
921 | [val1, val1+1, val1], |
---|
922 | [val2, val2-2, val2], |
---|
923 | [val3-0.5, val3, val3]]) |
---|
924 | |
---|
925 | domain.set_quantity('xmomentum', |
---|
926 | [[1, 2, 3], [3, 4, 5], |
---|
927 | [1, -1, 0], [0, -2, 2]]) |
---|
928 | |
---|
929 | domain.set_quantity('ymomentum', |
---|
930 | [[1, -1, 0], [0, -3, 2], |
---|
931 | [0, 1, 0], [-1, 2, 2]]) |
---|
932 | |
---|
933 | |
---|
934 | domain.check_integrity() |
---|
935 | |
---|
936 | |
---|
937 | |
---|
938 | #Flux across right edge of volume 1 |
---|
939 | normal = domain.get_normal(1,0) |
---|
940 | ql = domain.get_conserved_quantities(vol_id=1, edge=0) |
---|
941 | qr = domain.get_conserved_quantities(vol_id=2, edge=2) |
---|
942 | max_speed = flux_function(normal, ql, qr, zl, zr, edgeflux0, epsilon, g, H0) |
---|
943 | |
---|
944 | #Flux across upper edge of volume 1 |
---|
945 | normal = domain.get_normal(1,1) |
---|
946 | ql = domain.get_conserved_quantities(vol_id=1, edge=1) |
---|
947 | qr = domain.get_conserved_quantities(vol_id=3, edge=0) |
---|
948 | max_speed = flux_function(normal, ql, qr, zl, zr, edgeflux1, epsilon, g, H0) |
---|
949 | |
---|
950 | #Flux across lower left hypotenuse of volume 1 |
---|
951 | normal = domain.get_normal(1,2) |
---|
952 | ql = domain.get_conserved_quantities(vol_id=1, edge=2) |
---|
953 | qr = domain.get_conserved_quantities(vol_id=0, edge=1) |
---|
954 | max_speed = flux_function(normal, ql, qr, zl, zr, edgeflux2, epsilon, g, H0) |
---|
955 | |
---|
956 | #Scale, add up and check that compute_fluxes is correct for vol 1 |
---|
957 | e0 = domain.edgelengths[1, 0] |
---|
958 | e1 = domain.edgelengths[1, 1] |
---|
959 | e2 = domain.edgelengths[1, 2] |
---|
960 | |
---|
961 | total_flux = -(e0*edgeflux0+e1*edgeflux1+e2*edgeflux2)/domain.areas[1] |
---|
962 | |
---|
963 | |
---|
964 | domain.compute_fluxes() |
---|
965 | for i, name in enumerate(['stage', 'xmomentum', 'ymomentum']): |
---|
966 | assert num.allclose(total_flux[i], |
---|
967 | domain.quantities[name].explicit_update[1]) |
---|
968 | #assert allclose(total_flux, domain.explicit_update[1,:]) |
---|
969 | |
---|
970 | |
---|
971 | # FIXME (Ole): Need test like this for fluxes in very shallow water. |
---|
972 | def test_compute_fluxes3(self): |
---|
973 | #Random values, incl momentum |
---|
974 | |
---|
975 | a = [0.0, 0.0] |
---|
976 | b = [0.0, 2.0] |
---|
977 | c = [2.0,0.0] |
---|
978 | d = [0.0, 4.0] |
---|
979 | e = [2.0, 2.0] |
---|
980 | f = [4.0,0.0] |
---|
981 | |
---|
982 | points = [a, b, c, d, e, f] |
---|
983 | #bac, bce, ecf, dbe |
---|
984 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
985 | |
---|
986 | domain = Domain(points, vertices) |
---|
987 | val0 = 2.+2.0/3 |
---|
988 | val1 = 4.+4.0/3 |
---|
989 | val2 = 8.+2.0/3 |
---|
990 | val3 = 2.+8.0/3 |
---|
991 | |
---|
992 | zl=zr=-3.75 #Assume constant bed (must be less than stage) |
---|
993 | domain.set_quantity('elevation', zl*num.ones( (4,3) )) |
---|
994 | |
---|
995 | |
---|
996 | edgeflux = num.zeros(3, num.Float) |
---|
997 | edgeflux0 = num.zeros(3, num.Float) |
---|
998 | edgeflux1 = num.zeros(3, num.Float) |
---|
999 | edgeflux2 = num.zeros(3, num.Float) |
---|
1000 | H0 = 0.0 |
---|
1001 | |
---|
1002 | |
---|
1003 | |
---|
1004 | domain.set_quantity('stage', [[val0, val0-1, val0-2], |
---|
1005 | [val1, val1+1, val1], |
---|
1006 | [val2, val2-2, val2], |
---|
1007 | [val3-0.5, val3, val3]]) |
---|
1008 | |
---|
1009 | domain.set_quantity('xmomentum', |
---|
1010 | [[1, 2, 3], [3, 4, 5], |
---|
1011 | [1, -1, 0], [0, -2, 2]]) |
---|
1012 | |
---|
1013 | domain.set_quantity('ymomentum', |
---|
1014 | [[1, -1, 0], [0, -3, 2], |
---|
1015 | [0, 1, 0], [-1, 2, 2]]) |
---|
1016 | |
---|
1017 | |
---|
1018 | domain.check_integrity() |
---|
1019 | |
---|
1020 | |
---|
1021 | |
---|
1022 | #Flux across right edge of volume 1 |
---|
1023 | normal = domain.get_normal(1,0) |
---|
1024 | ql = domain.get_conserved_quantities(vol_id=1, edge=0) |
---|
1025 | qr = domain.get_conserved_quantities(vol_id=2, edge=2) |
---|
1026 | max_speed = flux_function(normal, ql, qr, zl, zr, edgeflux0, epsilon, g, H0) |
---|
1027 | |
---|
1028 | #Flux across upper edge of volume 1 |
---|
1029 | normal = domain.get_normal(1,1) |
---|
1030 | ql = domain.get_conserved_quantities(vol_id=1, edge=1) |
---|
1031 | qr = domain.get_conserved_quantities(vol_id=3, edge=0) |
---|
1032 | max_speed = flux_function(normal, ql, qr, zl, zr, edgeflux1, epsilon, g, H0) |
---|
1033 | |
---|
1034 | #Flux across lower left hypotenuse of volume 1 |
---|
1035 | normal = domain.get_normal(1,2) |
---|
1036 | ql = domain.get_conserved_quantities(vol_id=1, edge=2) |
---|
1037 | qr = domain.get_conserved_quantities(vol_id=0, edge=1) |
---|
1038 | max_speed = flux_function(normal, ql, qr, zl, zr, edgeflux2, epsilon, g, H0) |
---|
1039 | |
---|
1040 | #Scale, add up and check that compute_fluxes is correct for vol 1 |
---|
1041 | e0 = domain.edgelengths[1, 0] |
---|
1042 | e1 = domain.edgelengths[1, 1] |
---|
1043 | e2 = domain.edgelengths[1, 2] |
---|
1044 | |
---|
1045 | total_flux = -(e0*edgeflux0+e1*edgeflux1+e2*edgeflux2)/domain.areas[1] |
---|
1046 | |
---|
1047 | domain.compute_fluxes() |
---|
1048 | for i, name in enumerate(['stage', 'xmomentum', 'ymomentum']): |
---|
1049 | assert num.allclose(total_flux[i], |
---|
1050 | domain.quantities[name].explicit_update[1]) |
---|
1051 | |
---|
1052 | |
---|
1053 | |
---|
1054 | def xtest_catching_negative_heights(self): |
---|
1055 | |
---|
1056 | #OBSOLETE |
---|
1057 | |
---|
1058 | a = [0.0, 0.0] |
---|
1059 | b = [0.0, 2.0] |
---|
1060 | c = [2.0,0.0] |
---|
1061 | d = [0.0, 4.0] |
---|
1062 | e = [2.0, 2.0] |
---|
1063 | f = [4.0,0.0] |
---|
1064 | |
---|
1065 | points = [a, b, c, d, e, f] |
---|
1066 | #bac, bce, ecf, dbe |
---|
1067 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
1068 | |
---|
1069 | domain = Domain(points, vertices) |
---|
1070 | val0 = 2.+2.0/3 |
---|
1071 | val1 = 4.+4.0/3 |
---|
1072 | val2 = 8.+2.0/3 |
---|
1073 | val3 = 2.+8.0/3 |
---|
1074 | |
---|
1075 | zl=zr=4 #Too large |
---|
1076 | domain.set_quantity('elevation', zl*num.ones( (4,3) )) |
---|
1077 | domain.set_quantity('stage', [[val0, val0-1, val0-2], |
---|
1078 | [val1, val1+1, val1], |
---|
1079 | [val2, val2-2, val2], |
---|
1080 | [val3-0.5, val3, val3]]) |
---|
1081 | |
---|
1082 | #Should fail |
---|
1083 | try: |
---|
1084 | domain.check_integrity() |
---|
1085 | except: |
---|
1086 | pass |
---|
1087 | |
---|
1088 | |
---|
1089 | |
---|
1090 | def test_get_wet_elements(self): |
---|
1091 | |
---|
1092 | a = [0.0, 0.0] |
---|
1093 | b = [0.0, 2.0] |
---|
1094 | c = [2.0,0.0] |
---|
1095 | d = [0.0, 4.0] |
---|
1096 | e = [2.0, 2.0] |
---|
1097 | f = [4.0,0.0] |
---|
1098 | |
---|
1099 | points = [a, b, c, d, e, f] |
---|
1100 | #bac, bce, ecf, dbe |
---|
1101 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
1102 | |
---|
1103 | domain = Domain(points, vertices) |
---|
1104 | val0 = 2.+2.0/3 |
---|
1105 | val1 = 4.+4.0/3 |
---|
1106 | val2 = 8.+2.0/3 |
---|
1107 | val3 = 2.+8.0/3 |
---|
1108 | |
---|
1109 | zl=zr=5 |
---|
1110 | domain.set_quantity('elevation', zl*num.ones( (4,3) )) |
---|
1111 | domain.set_quantity('stage', [[val0, val0-1, val0-2], |
---|
1112 | [val1, val1+1, val1], |
---|
1113 | [val2, val2-2, val2], |
---|
1114 | [val3-0.5, val3, val3]]) |
---|
1115 | |
---|
1116 | |
---|
1117 | |
---|
1118 | #print domain.get_quantity('elevation').get_values(location='centroids') |
---|
1119 | #print domain.get_quantity('stage').get_values(location='centroids') |
---|
1120 | domain.check_integrity() |
---|
1121 | |
---|
1122 | indices = domain.get_wet_elements() |
---|
1123 | assert num.allclose(indices, [1,2]) |
---|
1124 | |
---|
1125 | indices = domain.get_wet_elements(indices=[0,1,3]) |
---|
1126 | assert num.allclose(indices, [1]) |
---|
1127 | |
---|
1128 | |
---|
1129 | |
---|
1130 | def test_get_maximum_inundation_1(self): |
---|
1131 | |
---|
1132 | a = [0.0, 0.0] |
---|
1133 | b = [0.0, 2.0] |
---|
1134 | c = [2.0,0.0] |
---|
1135 | d = [0.0, 4.0] |
---|
1136 | e = [2.0, 2.0] |
---|
1137 | f = [4.0,0.0] |
---|
1138 | |
---|
1139 | points = [a, b, c, d, e, f] |
---|
1140 | #bac, bce, ecf, dbe |
---|
1141 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
1142 | |
---|
1143 | domain = Domain(points, vertices) |
---|
1144 | |
---|
1145 | domain.set_quantity('elevation', lambda x, y: x+2*y) #2 4 4 6 |
---|
1146 | domain.set_quantity('stage', 3) |
---|
1147 | |
---|
1148 | domain.check_integrity() |
---|
1149 | |
---|
1150 | indices = domain.get_wet_elements() |
---|
1151 | assert num.allclose(indices, [0]) |
---|
1152 | |
---|
1153 | q = domain.get_maximum_inundation_elevation() |
---|
1154 | assert num.allclose(q, domain.get_quantity('elevation').get_values(location='centroids')[0]) |
---|
1155 | |
---|
1156 | x, y = domain.get_maximum_inundation_location() |
---|
1157 | assert num.allclose([x, y], domain.get_centroid_coordinates()[0]) |
---|
1158 | |
---|
1159 | |
---|
1160 | def test_get_maximum_inundation_2(self): |
---|
1161 | """test_get_maximum_inundation_2(self) |
---|
1162 | |
---|
1163 | Test multiple wet cells with same elevation |
---|
1164 | """ |
---|
1165 | |
---|
1166 | a = [0.0, 0.0] |
---|
1167 | b = [0.0, 2.0] |
---|
1168 | c = [2.0,0.0] |
---|
1169 | d = [0.0, 4.0] |
---|
1170 | e = [2.0, 2.0] |
---|
1171 | f = [4.0,0.0] |
---|
1172 | |
---|
1173 | points = [a, b, c, d, e, f] |
---|
1174 | #bac, bce, ecf, dbe |
---|
1175 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
1176 | |
---|
1177 | domain = Domain(points, vertices) |
---|
1178 | |
---|
1179 | domain.set_quantity('elevation', lambda x, y: x+2*y) #2 4 4 6 |
---|
1180 | domain.set_quantity('stage', 4.1) |
---|
1181 | |
---|
1182 | domain.check_integrity() |
---|
1183 | |
---|
1184 | indices = domain.get_wet_elements() |
---|
1185 | assert num.allclose(indices, [0,1,2]) |
---|
1186 | |
---|
1187 | q = domain.get_maximum_inundation_elevation() |
---|
1188 | assert num.allclose(q, 4) |
---|
1189 | |
---|
1190 | x, y = domain.get_maximum_inundation_location() |
---|
1191 | assert num.allclose([x, y], domain.get_centroid_coordinates()[1]) |
---|
1192 | |
---|
1193 | |
---|
1194 | def test_get_maximum_inundation_3(self): |
---|
1195 | """test_get_maximum_inundation_3(self) |
---|
1196 | |
---|
1197 | Test of real runup example: |
---|
1198 | """ |
---|
1199 | |
---|
1200 | from anuga.abstract_2d_finite_volumes.mesh_factory import rectangular_cross |
---|
1201 | |
---|
1202 | initial_runup_height = -0.4 |
---|
1203 | final_runup_height = -0.3 |
---|
1204 | |
---|
1205 | |
---|
1206 | #-------------------------------------------------------------- |
---|
1207 | # Setup computational domain |
---|
1208 | #-------------------------------------------------------------- |
---|
1209 | N = 5 |
---|
1210 | points, vertices, boundary = rectangular_cross(N, N) |
---|
1211 | domain = Domain(points, vertices, boundary) |
---|
1212 | domain.set_maximum_allowed_speed(1.0) |
---|
1213 | |
---|
1214 | #-------------------------------------------------------------- |
---|
1215 | # Setup initial conditions |
---|
1216 | #-------------------------------------------------------------- |
---|
1217 | def topography(x,y): |
---|
1218 | return -x/2 # linear bed slope |
---|
1219 | |
---|
1220 | |
---|
1221 | domain.set_quantity('elevation', topography) # Use function for elevation |
---|
1222 | domain.set_quantity('friction', 0.) # Zero friction |
---|
1223 | domain.set_quantity('stage', initial_runup_height) # Constant negative initial stage |
---|
1224 | |
---|
1225 | |
---|
1226 | #-------------------------------------------------------------- |
---|
1227 | # Setup boundary conditions |
---|
1228 | #-------------------------------------------------------------- |
---|
1229 | Br = Reflective_boundary(domain) # Reflective wall |
---|
1230 | Bd = Dirichlet_boundary([final_runup_height, # Constant inflow |
---|
1231 | 0, |
---|
1232 | 0]) |
---|
1233 | |
---|
1234 | # All reflective to begin with (still water) |
---|
1235 | domain.set_boundary({'left': Br, 'right': Br, 'top': Br, 'bottom': Br}) |
---|
1236 | |
---|
1237 | |
---|
1238 | #-------------------------------------------------------------- |
---|
1239 | # Test initial inundation height |
---|
1240 | #-------------------------------------------------------------- |
---|
1241 | |
---|
1242 | indices = domain.get_wet_elements() |
---|
1243 | z = domain.get_quantity('elevation').\ |
---|
1244 | get_values(location='centroids', indices=indices) |
---|
1245 | assert num.alltrue(z<initial_runup_height) |
---|
1246 | |
---|
1247 | q = domain.get_maximum_inundation_elevation() |
---|
1248 | assert num.allclose(q, initial_runup_height, rtol = 1.0/N) # First order accuracy |
---|
1249 | |
---|
1250 | x, y = domain.get_maximum_inundation_location() |
---|
1251 | |
---|
1252 | qref = domain.get_quantity('elevation').get_values(interpolation_points = [[x, y]]) |
---|
1253 | assert num.allclose(q, qref) |
---|
1254 | |
---|
1255 | |
---|
1256 | wet_elements = domain.get_wet_elements() |
---|
1257 | wet_elevations = domain.get_quantity('elevation').get_values(location='centroids', |
---|
1258 | indices=wet_elements) |
---|
1259 | assert num.alltrue(wet_elevations<initial_runup_height) |
---|
1260 | assert num.allclose(wet_elevations, z) |
---|
1261 | |
---|
1262 | |
---|
1263 | #print domain.get_quantity('elevation').get_maximum_value(indices=wet_elements) |
---|
1264 | #print domain.get_quantity('elevation').get_maximum_location(indices=wet_elements) |
---|
1265 | #print domain.get_quantity('elevation').get_maximum_index(indices=wet_elements) |
---|
1266 | |
---|
1267 | |
---|
1268 | #-------------------------------------------------------------- |
---|
1269 | # Let triangles adjust |
---|
1270 | #-------------------------------------------------------------- |
---|
1271 | for t in domain.evolve(yieldstep = 0.1, finaltime = 1.0): |
---|
1272 | pass |
---|
1273 | |
---|
1274 | |
---|
1275 | #-------------------------------------------------------------- |
---|
1276 | # Test inundation height again |
---|
1277 | #-------------------------------------------------------------- |
---|
1278 | |
---|
1279 | indices = domain.get_wet_elements() |
---|
1280 | z = domain.get_quantity('elevation').\ |
---|
1281 | get_values(location='centroids', indices=indices) |
---|
1282 | |
---|
1283 | assert num.alltrue(z<initial_runup_height) |
---|
1284 | |
---|
1285 | q = domain.get_maximum_inundation_elevation() |
---|
1286 | assert num.allclose(q, initial_runup_height, rtol = 1.0/N) # First order accuracy |
---|
1287 | |
---|
1288 | x, y = domain.get_maximum_inundation_location() |
---|
1289 | qref = domain.get_quantity('elevation').get_values(interpolation_points = [[x, y]]) |
---|
1290 | assert num.allclose(q, qref) |
---|
1291 | |
---|
1292 | |
---|
1293 | #-------------------------------------------------------------- |
---|
1294 | # Update boundary to allow inflow |
---|
1295 | #-------------------------------------------------------------- |
---|
1296 | domain.set_boundary({'right': Bd}) |
---|
1297 | |
---|
1298 | |
---|
1299 | #-------------------------------------------------------------- |
---|
1300 | # Evolve system through time |
---|
1301 | #-------------------------------------------------------------- |
---|
1302 | for t in domain.evolve(yieldstep = 0.1, finaltime = 3.0): |
---|
1303 | #print domain.timestepping_statistics(track_speeds=True) |
---|
1304 | #domain.write_time() |
---|
1305 | pass |
---|
1306 | |
---|
1307 | #-------------------------------------------------------------- |
---|
1308 | # Test inundation height again |
---|
1309 | #-------------------------------------------------------------- |
---|
1310 | |
---|
1311 | indices = domain.get_wet_elements() |
---|
1312 | z = domain.get_quantity('elevation').\ |
---|
1313 | get_values(location='centroids', indices=indices) |
---|
1314 | |
---|
1315 | assert num.alltrue(z<final_runup_height) |
---|
1316 | |
---|
1317 | q = domain.get_maximum_inundation_elevation() |
---|
1318 | assert num.allclose(q, final_runup_height, rtol = 1.0/N) # First order accuracy |
---|
1319 | |
---|
1320 | x, y = domain.get_maximum_inundation_location() |
---|
1321 | qref = domain.get_quantity('elevation').get_values(interpolation_points = [[x, y]]) |
---|
1322 | assert num.allclose(q, qref) |
---|
1323 | |
---|
1324 | |
---|
1325 | wet_elements = domain.get_wet_elements() |
---|
1326 | wet_elevations = domain.get_quantity('elevation').get_values(location='centroids', |
---|
1327 | indices=wet_elements) |
---|
1328 | assert num.alltrue(wet_elevations<final_runup_height) |
---|
1329 | assert num.allclose(wet_elevations, z) |
---|
1330 | |
---|
1331 | |
---|
1332 | |
---|
1333 | def test_get_maximum_inundation_from_sww(self): |
---|
1334 | """test_get_maximum_inundation_from_sww(self) |
---|
1335 | |
---|
1336 | Test of get_maximum_inundation_elevation() |
---|
1337 | and get_maximum_inundation_location() from data_manager.py |
---|
1338 | |
---|
1339 | This is based on test_get_maximum_inundation_3(self) but works with the |
---|
1340 | stored results instead of with the internal data structure. |
---|
1341 | |
---|
1342 | This test uses the underlying get_maximum_inundation_data for tests |
---|
1343 | """ |
---|
1344 | |
---|
1345 | from anuga.abstract_2d_finite_volumes.mesh_factory import rectangular_cross |
---|
1346 | from data_manager import get_maximum_inundation_elevation |
---|
1347 | from data_manager import get_maximum_inundation_location |
---|
1348 | from data_manager import get_maximum_inundation_data |
---|
1349 | |
---|
1350 | |
---|
1351 | initial_runup_height = -0.4 |
---|
1352 | final_runup_height = -0.3 |
---|
1353 | |
---|
1354 | |
---|
1355 | #-------------------------------------------------------------- |
---|
1356 | # Setup computational domain |
---|
1357 | #-------------------------------------------------------------- |
---|
1358 | N = 10 |
---|
1359 | points, vertices, boundary = rectangular_cross(N, N) |
---|
1360 | domain = Domain(points, vertices, boundary) |
---|
1361 | domain.set_name('runup_test') |
---|
1362 | domain.set_maximum_allowed_speed(1.0) |
---|
1363 | |
---|
1364 | domain.tight_slope_limiters = 0 # FIXME: This works better with old limiters so far |
---|
1365 | |
---|
1366 | #-------------------------------------------------------------- |
---|
1367 | # Setup initial conditions |
---|
1368 | #-------------------------------------------------------------- |
---|
1369 | def topography(x,y): |
---|
1370 | return -x/2 # linear bed slope |
---|
1371 | |
---|
1372 | |
---|
1373 | domain.set_quantity('elevation', topography) # Use function for elevation |
---|
1374 | domain.set_quantity('friction', 0.) # Zero friction |
---|
1375 | domain.set_quantity('stage', initial_runup_height) # Constant negative initial stage |
---|
1376 | |
---|
1377 | |
---|
1378 | #-------------------------------------------------------------- |
---|
1379 | # Setup boundary conditions |
---|
1380 | #-------------------------------------------------------------- |
---|
1381 | Br = Reflective_boundary(domain) # Reflective wall |
---|
1382 | Bd = Dirichlet_boundary([final_runup_height, # Constant inflow |
---|
1383 | 0, |
---|
1384 | 0]) |
---|
1385 | |
---|
1386 | # All reflective to begin with (still water) |
---|
1387 | domain.set_boundary({'left': Br, 'right': Br, 'top': Br, 'bottom': Br}) |
---|
1388 | |
---|
1389 | |
---|
1390 | #-------------------------------------------------------------- |
---|
1391 | # Test initial inundation height |
---|
1392 | #-------------------------------------------------------------- |
---|
1393 | |
---|
1394 | indices = domain.get_wet_elements() |
---|
1395 | z = domain.get_quantity('elevation').\ |
---|
1396 | get_values(location='centroids', indices=indices) |
---|
1397 | assert num.alltrue(z<initial_runup_height) |
---|
1398 | |
---|
1399 | q_ref = domain.get_maximum_inundation_elevation() |
---|
1400 | assert num.allclose(q_ref, initial_runup_height, rtol = 1.0/N) # First order accuracy |
---|
1401 | |
---|
1402 | |
---|
1403 | #-------------------------------------------------------------- |
---|
1404 | # Let triangles adjust |
---|
1405 | #-------------------------------------------------------------- |
---|
1406 | for t in domain.evolve(yieldstep = 0.1, finaltime = 1.0): |
---|
1407 | pass |
---|
1408 | |
---|
1409 | |
---|
1410 | #-------------------------------------------------------------- |
---|
1411 | # Test inundation height again |
---|
1412 | #-------------------------------------------------------------- |
---|
1413 | |
---|
1414 | q_ref = domain.get_maximum_inundation_elevation() |
---|
1415 | q = get_maximum_inundation_elevation('runup_test.sww') |
---|
1416 | msg = 'We got %f, should have been %f' %(q, q_ref) |
---|
1417 | assert num.allclose(q, q_ref, rtol=1.0/N), msg |
---|
1418 | |
---|
1419 | |
---|
1420 | q = get_maximum_inundation_elevation('runup_test.sww') |
---|
1421 | msg = 'We got %f, should have been %f' %(q, initial_runup_height) |
---|
1422 | assert num.allclose(q, initial_runup_height, rtol = 1.0/N), msg |
---|
1423 | |
---|
1424 | |
---|
1425 | # Test error condition if time interval is out |
---|
1426 | try: |
---|
1427 | q = get_maximum_inundation_elevation('runup_test.sww', |
---|
1428 | time_interval=[2.0, 3.0]) |
---|
1429 | except ValueError: |
---|
1430 | pass |
---|
1431 | else: |
---|
1432 | msg = 'should have caught wrong time interval' |
---|
1433 | raise Exception, msg |
---|
1434 | |
---|
1435 | # Check correct time interval |
---|
1436 | q, loc = get_maximum_inundation_data('runup_test.sww', |
---|
1437 | time_interval=[0.0, 3.0]) |
---|
1438 | msg = 'We got %f, should have been %f' %(q, initial_runup_height) |
---|
1439 | assert num.allclose(q, initial_runup_height, rtol = 1.0/N), msg |
---|
1440 | assert num.allclose(-loc[0]/2, q) # From topography formula |
---|
1441 | |
---|
1442 | |
---|
1443 | #-------------------------------------------------------------- |
---|
1444 | # Update boundary to allow inflow |
---|
1445 | #-------------------------------------------------------------- |
---|
1446 | domain.set_boundary({'right': Bd}) |
---|
1447 | |
---|
1448 | |
---|
1449 | #-------------------------------------------------------------- |
---|
1450 | # Evolve system through time |
---|
1451 | #-------------------------------------------------------------- |
---|
1452 | q_max = None |
---|
1453 | for t in domain.evolve(yieldstep = 0.1, finaltime = 3.0, |
---|
1454 | skip_initial_step = True): |
---|
1455 | q = domain.get_maximum_inundation_elevation() |
---|
1456 | if q > q_max: q_max = q |
---|
1457 | |
---|
1458 | |
---|
1459 | #-------------------------------------------------------------- |
---|
1460 | # Test inundation height again |
---|
1461 | #-------------------------------------------------------------- |
---|
1462 | |
---|
1463 | indices = domain.get_wet_elements() |
---|
1464 | z = domain.get_quantity('elevation').\ |
---|
1465 | get_values(location='centroids', indices=indices) |
---|
1466 | |
---|
1467 | assert num.alltrue(z<final_runup_height) |
---|
1468 | |
---|
1469 | q = domain.get_maximum_inundation_elevation() |
---|
1470 | assert num.allclose(q, final_runup_height, rtol = 1.0/N) # First order accuracy |
---|
1471 | |
---|
1472 | q, loc = get_maximum_inundation_data('runup_test.sww', time_interval=[3.0, 3.0]) |
---|
1473 | msg = 'We got %f, should have been %f' %(q, final_runup_height) |
---|
1474 | assert num.allclose(q, final_runup_height, rtol=1.0/N), msg |
---|
1475 | #print 'loc', loc, q |
---|
1476 | assert num.allclose(-loc[0]/2, q) # From topography formula |
---|
1477 | |
---|
1478 | q = get_maximum_inundation_elevation('runup_test.sww') |
---|
1479 | loc = get_maximum_inundation_location('runup_test.sww') |
---|
1480 | msg = 'We got %f, should have been %f' %(q, q_max) |
---|
1481 | assert num.allclose(q, q_max, rtol=1.0/N), msg |
---|
1482 | #print 'loc', loc, q |
---|
1483 | assert num.allclose(-loc[0]/2, q) # From topography formula |
---|
1484 | |
---|
1485 | |
---|
1486 | |
---|
1487 | q = get_maximum_inundation_elevation('runup_test.sww', time_interval=[0, 3]) |
---|
1488 | msg = 'We got %f, should have been %f' %(q, q_max) |
---|
1489 | assert num.allclose(q, q_max, rtol=1.0/N), msg |
---|
1490 | |
---|
1491 | |
---|
1492 | # Check polygon mode |
---|
1493 | polygon = [[0.3, 0.0], [0.9, 0.0], [0.9, 1.0], [0.3, 1.0]] # Runup region |
---|
1494 | q = get_maximum_inundation_elevation('runup_test.sww', |
---|
1495 | polygon = polygon, |
---|
1496 | time_interval=[0, 3]) |
---|
1497 | msg = 'We got %f, should have been %f' %(q, q_max) |
---|
1498 | assert num.allclose(q, q_max, rtol=1.0/N), msg |
---|
1499 | |
---|
1500 | |
---|
1501 | polygon = [[0.9, 0.0], [1.0, 0.0], [1.0, 1.0], [0.9, 1.0]] # Offshore region |
---|
1502 | q, loc = get_maximum_inundation_data('runup_test.sww', |
---|
1503 | polygon = polygon, |
---|
1504 | time_interval=[0, 3]) |
---|
1505 | msg = 'We got %f, should have been %f' %(q, -0.475) |
---|
1506 | assert num.allclose(q, -0.475, rtol=1.0/N), msg |
---|
1507 | assert is_inside_polygon(loc, polygon) |
---|
1508 | assert num.allclose(-loc[0]/2, q) # From topography formula |
---|
1509 | |
---|
1510 | |
---|
1511 | polygon = [[0.0, 0.0], [0.4, 0.0], [0.4, 1.0], [0.0, 1.0]] # Dry region |
---|
1512 | q, loc = get_maximum_inundation_data('runup_test.sww', |
---|
1513 | polygon = polygon, |
---|
1514 | time_interval=[0, 3]) |
---|
1515 | msg = 'We got %s, should have been None' %(q) |
---|
1516 | assert q is None, msg |
---|
1517 | msg = 'We got %s, should have been None' %(loc) |
---|
1518 | assert loc is None, msg |
---|
1519 | |
---|
1520 | # Check what happens if no time point is within interval |
---|
1521 | try: |
---|
1522 | q = get_maximum_inundation_elevation('runup_test.sww', time_interval=[2.75, 2.75]) |
---|
1523 | except AssertionError: |
---|
1524 | pass |
---|
1525 | else: |
---|
1526 | msg = 'Time interval should have raised an exception' |
---|
1527 | raise msg |
---|
1528 | |
---|
1529 | # Cleanup |
---|
1530 | try: |
---|
1531 | os.remove(domain.get_name() + '.' + domain.format) |
---|
1532 | except: |
---|
1533 | pass |
---|
1534 | #FIXME(Ole): Windows won't allow removal of this |
---|
1535 | |
---|
1536 | |
---|
1537 | |
---|
1538 | def test_get_flow_through_cross_section_with_geo(self): |
---|
1539 | """test_get_flow_through_cross_section(self): |
---|
1540 | |
---|
1541 | Test that the total flow through a cross section can be |
---|
1542 | correctly obtained at run-time from the ANUGA domain. |
---|
1543 | |
---|
1544 | This test creates a flat bed with a known flow through it and tests |
---|
1545 | that the function correctly returns the expected flow. |
---|
1546 | |
---|
1547 | The specifics are |
---|
1548 | e = -1 m |
---|
1549 | u = 2 m/s |
---|
1550 | h = 2 m |
---|
1551 | w = 3 m (width of channel) |
---|
1552 | |
---|
1553 | q = u*h*w = 12 m^3/s |
---|
1554 | |
---|
1555 | |
---|
1556 | This run tries it with georeferencing and with elevation = -1 |
---|
1557 | |
---|
1558 | """ |
---|
1559 | |
---|
1560 | import time, os |
---|
1561 | from Scientific.IO.NetCDF import NetCDFFile |
---|
1562 | |
---|
1563 | # Setup |
---|
1564 | from mesh_factory import rectangular |
---|
1565 | |
---|
1566 | # Create basic mesh (20m x 3m) |
---|
1567 | width = 3 |
---|
1568 | length = 20 |
---|
1569 | t_end = 1 |
---|
1570 | points, vertices, boundary = rectangular(length, width, |
---|
1571 | length, width) |
---|
1572 | |
---|
1573 | # Create shallow water domain |
---|
1574 | domain = Domain(points, vertices, boundary, |
---|
1575 | geo_reference=Geo_reference(56,308500,6189000)) |
---|
1576 | |
---|
1577 | domain.default_order = 2 |
---|
1578 | domain.set_quantities_to_be_stored(None) |
---|
1579 | |
---|
1580 | |
---|
1581 | e = -1.0 |
---|
1582 | w = 1.0 |
---|
1583 | h = w-e |
---|
1584 | u = 2.0 |
---|
1585 | uh = u*h |
---|
1586 | |
---|
1587 | Br = Reflective_boundary(domain) # Side walls |
---|
1588 | Bd = Dirichlet_boundary([w, uh, 0]) # 2 m/s across the 3 m inlet: |
---|
1589 | |
---|
1590 | |
---|
1591 | # Initial conditions |
---|
1592 | domain.set_quantity('elevation', e) |
---|
1593 | domain.set_quantity('stage', w) |
---|
1594 | domain.set_quantity('xmomentum', uh) |
---|
1595 | domain.set_boundary( {'left': Bd, 'right': Bd, 'top': Br, 'bottom': Br}) |
---|
1596 | |
---|
1597 | |
---|
1598 | # Interpolation points down the middle |
---|
1599 | I = [[0, width/2.], |
---|
1600 | [length/2., width/2.], |
---|
1601 | [length, width/2.]] |
---|
1602 | interpolation_points = domain.geo_reference.get_absolute(I) |
---|
1603 | |
---|
1604 | # Shortcuts to quantites |
---|
1605 | stage = domain.get_quantity('stage') |
---|
1606 | xmomentum = domain.get_quantity('xmomentum') |
---|
1607 | ymomentum = domain.get_quantity('ymomentum') |
---|
1608 | |
---|
1609 | for t in domain.evolve(yieldstep=0.1, finaltime = t_end): |
---|
1610 | # Check that quantities are they should be in the interior |
---|
1611 | |
---|
1612 | w_t = stage.get_values(interpolation_points) |
---|
1613 | uh_t = xmomentum.get_values(interpolation_points) |
---|
1614 | vh_t = ymomentum.get_values(interpolation_points) |
---|
1615 | |
---|
1616 | assert num.allclose(w_t, w) |
---|
1617 | assert num.allclose(uh_t, uh) |
---|
1618 | assert num.allclose(vh_t, 0.0) |
---|
1619 | |
---|
1620 | |
---|
1621 | # Check flows through the middle |
---|
1622 | for i in range(5): |
---|
1623 | x = length/2. + i*0.23674563 # Arbitrary |
---|
1624 | cross_section = [[x, 0], [x, width]] |
---|
1625 | |
---|
1626 | cross_section = domain.geo_reference.get_absolute(cross_section) |
---|
1627 | Q = domain.get_flow_through_cross_section(cross_section, |
---|
1628 | verbose=False) |
---|
1629 | |
---|
1630 | assert num.allclose(Q, uh*width) |
---|
1631 | |
---|
1632 | |
---|
1633 | |
---|
1634 | def test_get_energy_through_cross_section_with_geo(self): |
---|
1635 | """test_get_energy_through_cross_section(self): |
---|
1636 | |
---|
1637 | Test that the total and specific energy through a cross section can be |
---|
1638 | correctly obtained at run-time from the ANUGA domain. |
---|
1639 | |
---|
1640 | This test creates a flat bed with a known flow through it and tests |
---|
1641 | that the function correctly returns the expected energies. |
---|
1642 | |
---|
1643 | The specifics are |
---|
1644 | e = -1 m |
---|
1645 | u = 2 m/s |
---|
1646 | h = 2 m |
---|
1647 | w = 3 m (width of channel) |
---|
1648 | |
---|
1649 | q = u*h*w = 12 m^3/s |
---|
1650 | |
---|
1651 | |
---|
1652 | This run tries it with georeferencing and with elevation = -1 |
---|
1653 | |
---|
1654 | """ |
---|
1655 | |
---|
1656 | import time, os |
---|
1657 | from Scientific.IO.NetCDF import NetCDFFile |
---|
1658 | |
---|
1659 | # Setup |
---|
1660 | from mesh_factory import rectangular |
---|
1661 | |
---|
1662 | # Create basic mesh (20m x 3m) |
---|
1663 | width = 3 |
---|
1664 | length = 20 |
---|
1665 | t_end = 1 |
---|
1666 | points, vertices, boundary = rectangular(length, width, |
---|
1667 | length, width) |
---|
1668 | |
---|
1669 | # Create shallow water domain |
---|
1670 | domain = Domain(points, vertices, boundary, |
---|
1671 | geo_reference=Geo_reference(56,308500,6189000)) |
---|
1672 | |
---|
1673 | domain.default_order = 2 |
---|
1674 | domain.set_quantities_to_be_stored(None) |
---|
1675 | |
---|
1676 | |
---|
1677 | e = -1.0 |
---|
1678 | w = 1.0 |
---|
1679 | h = w-e |
---|
1680 | u = 2.0 |
---|
1681 | uh = u*h |
---|
1682 | |
---|
1683 | Br = Reflective_boundary(domain) # Side walls |
---|
1684 | Bd = Dirichlet_boundary([w, uh, 0]) # 2 m/s across the 3 m inlet: |
---|
1685 | |
---|
1686 | |
---|
1687 | # Initial conditions |
---|
1688 | domain.set_quantity('elevation', e) |
---|
1689 | domain.set_quantity('stage', w) |
---|
1690 | domain.set_quantity('xmomentum', uh) |
---|
1691 | domain.set_boundary( {'left': Bd, 'right': Bd, 'top': Br, 'bottom': Br}) |
---|
1692 | |
---|
1693 | |
---|
1694 | # Interpolation points down the middle |
---|
1695 | I = [[0, width/2.], |
---|
1696 | [length/2., width/2.], |
---|
1697 | [length, width/2.]] |
---|
1698 | interpolation_points = domain.geo_reference.get_absolute(I) |
---|
1699 | |
---|
1700 | # Shortcuts to quantites |
---|
1701 | stage = domain.get_quantity('stage') |
---|
1702 | xmomentum = domain.get_quantity('xmomentum') |
---|
1703 | ymomentum = domain.get_quantity('ymomentum') |
---|
1704 | |
---|
1705 | for t in domain.evolve(yieldstep=0.1, finaltime = t_end): |
---|
1706 | # Check that quantities are they should be in the interior |
---|
1707 | |
---|
1708 | w_t = stage.get_values(interpolation_points) |
---|
1709 | uh_t = xmomentum.get_values(interpolation_points) |
---|
1710 | vh_t = ymomentum.get_values(interpolation_points) |
---|
1711 | |
---|
1712 | assert num.allclose(w_t, w) |
---|
1713 | assert num.allclose(uh_t, uh) |
---|
1714 | assert num.allclose(vh_t, 0.0) |
---|
1715 | |
---|
1716 | |
---|
1717 | # Check energies through the middle |
---|
1718 | for i in range(5): |
---|
1719 | x = length/2. + i*0.23674563 # Arbitrary |
---|
1720 | cross_section = [[x, 0], [x, width]] |
---|
1721 | |
---|
1722 | cross_section = domain.geo_reference.get_absolute(cross_section) |
---|
1723 | Es = domain.get_energy_through_cross_section(cross_section, |
---|
1724 | kind='specific', |
---|
1725 | verbose=False) |
---|
1726 | |
---|
1727 | assert num.allclose(Es, h + 0.5*u*u/g) |
---|
1728 | |
---|
1729 | Et = domain.get_energy_through_cross_section(cross_section, |
---|
1730 | kind='total', |
---|
1731 | verbose=False) |
---|
1732 | assert num.allclose(Et, w + 0.5*u*u/g) |
---|
1733 | |
---|
1734 | |
---|
1735 | |
---|
1736 | |
---|
1737 | |
---|
1738 | def test_another_runup_example(self): |
---|
1739 | """test_another_runup_example |
---|
1740 | |
---|
1741 | Test runup example where actual timeseries at interpolated |
---|
1742 | points are tested. |
---|
1743 | """ |
---|
1744 | |
---|
1745 | #----------------------------------------------------------------- |
---|
1746 | # Import necessary modules |
---|
1747 | #----------------------------------------------------------------- |
---|
1748 | |
---|
1749 | from anuga.pmesh.mesh_interface import create_mesh_from_regions |
---|
1750 | from anuga.abstract_2d_finite_volumes.mesh_factory import rectangular_cross |
---|
1751 | from anuga.shallow_water import Domain |
---|
1752 | from anuga.shallow_water import Reflective_boundary |
---|
1753 | from anuga.shallow_water import Dirichlet_boundary |
---|
1754 | |
---|
1755 | |
---|
1756 | #----------------------------------------------------------------- |
---|
1757 | # Setup computational domain |
---|
1758 | #----------------------------------------------------------------- |
---|
1759 | points, vertices, boundary = rectangular_cross(10, 10) # Basic mesh |
---|
1760 | domain = Domain(points, vertices, boundary) # Create domain |
---|
1761 | domain.set_default_order(1) |
---|
1762 | domain.set_quantities_to_be_stored(None) |
---|
1763 | domain.set_maximum_allowed_speed(100) #FIXME (Ole): try to remove this |
---|
1764 | |
---|
1765 | # FIXME (Ole): Need tests where this is commented out |
---|
1766 | domain.tight_slope_limiters = 0 # Backwards compatibility (14/4/7) |
---|
1767 | domain.H0 = 0 # Backwards compatibility (6/2/7) |
---|
1768 | domain.use_centroid_velocities = 0 # Backwards compatibility (7/5/8) |
---|
1769 | |
---|
1770 | |
---|
1771 | #----------------------------------------------------------------- |
---|
1772 | # Setup initial conditions |
---|
1773 | #----------------------------------------------------------------- |
---|
1774 | |
---|
1775 | def topography(x,y): |
---|
1776 | return -x/2 # linear bed slope |
---|
1777 | |
---|
1778 | domain.set_quantity('elevation', topography) |
---|
1779 | domain.set_quantity('friction', 0.0) |
---|
1780 | domain.set_quantity('stage', expression='elevation') |
---|
1781 | |
---|
1782 | |
---|
1783 | #---------------------------------------------------------------- |
---|
1784 | # Setup boundary conditions |
---|
1785 | #---------------------------------------------------------------- |
---|
1786 | |
---|
1787 | Br = Reflective_boundary(domain) # Solid reflective wall |
---|
1788 | Bd = Dirichlet_boundary([-0.2,0.,0.]) # Constant boundary values |
---|
1789 | domain.set_boundary({'left': Br, 'right': Bd, 'top': Br, 'bottom': Br}) |
---|
1790 | |
---|
1791 | |
---|
1792 | #---------------------------------------------------------------- |
---|
1793 | # Evolve system through time |
---|
1794 | #---------------------------------------------------------------- |
---|
1795 | |
---|
1796 | interpolation_points = [[0.4,0.5], [0.6,0.5], [0.8,0.5], [0.9,0.5]] |
---|
1797 | gauge_values = [] |
---|
1798 | for _ in interpolation_points: |
---|
1799 | gauge_values.append([]) |
---|
1800 | |
---|
1801 | time = [] |
---|
1802 | for t in domain.evolve(yieldstep = 0.1, finaltime = 5.0): |
---|
1803 | # Record time series at known points |
---|
1804 | time.append(domain.get_time()) |
---|
1805 | |
---|
1806 | stage = domain.get_quantity('stage') |
---|
1807 | w = stage.get_values(interpolation_points=interpolation_points) |
---|
1808 | |
---|
1809 | for i, _ in enumerate(interpolation_points): |
---|
1810 | gauge_values[i].append(w[i]) |
---|
1811 | |
---|
1812 | |
---|
1813 | #print |
---|
1814 | #print time |
---|
1815 | #print |
---|
1816 | #for i, (x,y) in enumerate(interpolation_points): |
---|
1817 | # print i, x,y, gauge_values[i] |
---|
1818 | # print |
---|
1819 | |
---|
1820 | #Reference (nautilus 26/6/2008) |
---|
1821 | |
---|
1822 | G0 = [-0.20000000000000001, -0.20000000000000001, -0.19920600846161715, -0.19153647344085376, -0.19127622768281194, -0.1770671909675095, -0.16739412133181927, -0.16196038919122191, -0.15621633053131384, -0.15130021599977705, -0.13930978857215484, -0.19349274358263582, -0.19975307598803765, -0.19999897143103357, -0.1999999995532111, -0.19999999999949952, -0.19999999999949952, -0.19999999999949952, -0.19997270012494556, -0.19925805948554556, -0.19934513778450533, -0.19966484196394893, -0.1997352860102084, -0.19968260481750394, -0.19980280797303882, -0.19998804881822749, -0.19999999778075916, -0.19999999999966167, -0.19999999999966167, -0.19999999999966167, -0.19999999999966167, -0.19999999999966167, -0.19999999999966167, -0.19999999999966167, -0.19999999999966167, -0.19999999999966167, -0.19999999999966167, -0.19999999999966167, -0.19999999999966167, -0.19999999999966167, -0.19999999999966167, -0.19999999999966167, -0.19999999999966167, -0.19999999999966167, -0.19999999999966167, -0.19999999999966167, -0.19999999999966167, -0.19999999999966167, -0.19999999999966167, -0.19999999999966167, -0.19999999999966167] |
---|
1823 | |
---|
1824 | G1 = [-0.29999999999999993, -0.29999588068034899, -0.29250047332330331, -0.28335081844518584, -0.26142206997410805, -0.22656028856329835, -0.21224087216745585, -0.19934324109114465, -0.1889857939783175, -0.18146311603911383, -0.17401078727434263, -0.15419361061257214, -0.16225060576782063, -0.19010941396999181, -0.20901161407004412, -0.21670683975774699, -0.21771386270738891, -0.21481284465869752, -0.21063120869004387, -0.20669243364582401, -0.20320707386714859, -0.19984087691926442, -0.19725417448019505, -0.19633783049069981, -0.19650494599999785, -0.19708316838336942, -0.19779309449413818, -0.19853070294429562, -0.19917342167307153, -0.19964814677795845, -0.19991627610824922, -0.20013162970144974, -0.20029864969405509, -0.20036259676501131, -0.20030682824965193, -0.20016105135750167, -0.19997664501985918, -0.19980185871568762, -0.19966836175417696, -0.19958856744312226, -0.19955954696194517, -0.19956950051110917, -0.19960377086336181, -0.19964885299433241, -0.19969427478531132, -0.19973301547655564, -0.19976121574277764, -0.19977765285688653, -0.19978315117522441, -0.19977994634841739, -0.19977101394878494] |
---|
1825 | |
---|
1826 | G2 = [-0.40000000000000002, -0.39077401254732241, -0.33350466136630474, -0.29771023004255281, -0.27605439066140897, -0.25986156218997497, -0.24502185018573647, -0.231792624329521, -0.21981564668803993, -0.20870707082936543, -0.19877739883776599, -0.18980922837977957, -0.17308011674005838, -0.16306400164013773, -0.17798470933304333, -0.1929554075869116, -0.20236705191987037, -0.20695767560655007, -0.20841025876092567, -0.20792102174869989, -0.20655350005579293, -0.20492002526259828, -0.20310627026780645, -0.20105983335287836, -0.19937394565794653, -0.19853917506699659, -0.19836389977624452, -0.19850305023602796, -0.19877764028836831, -0.19910928131034669, -0.19943705712418805, -0.19970344172958865, -0.19991076989870474, -0.20010020127747646, -0.20025937787100062, -0.20035087292905965, -0.20035829921463297, -0.20029606557316171, -0.20019606915365515, -0.20009096093399206, -0.20000371608204368, -0.19994495432920584, -0.19991535665176338, -0.19990981826533513, -0.19992106419898723, -0.19994189853516578, -0.19996624091229293, -0.19998946016985167, -0.20000842303470234, -0.20002144460718174, -0.20002815561337187] |
---|
1827 | |
---|
1828 | G3 = [-0.45000000000000001, -0.37631169657400332, -0.33000044342859486, -0.30586045469008522, -0.28843572253009941, -0.27215308978603808, -0.25712951540331219, -0.2431608296216613, -0.23032023651386374, -0.2184546873456619, -0.20735123704254332, -0.19740397194806389, -0.1859829564064375, -0.16675980728362105, -0.16951575032846536, -0.1832860872609344, -0.19485758939241243, -0.20231368291811427, -0.20625610376074754, -0.20758116241495619, -0.20721445402086161, -0.20603406830353785, -0.20450262808396991, -0.2026769581185151, -0.2007401212066364, -0.19931160535777592, -0.19863606301128725, -0.19848511940572691, -0.19860091042948352, -0.19885490669377764, -0.19916542732701112, -0.19946678238611959, -0.19971209594104697, -0.19991912886512292, -0.2001058430788881, -0.20024959409472989, -0.20032160254609382, -0.20031583165752354, -0.20025051539293123, -0.2001556115816068, -0.20005952955420872, -0.1999814429561611, -0.19992977821558131, -0.19990457708664208, -0.19990104785490476, -0.19991257153954825, -0.19993258231880562, -0.19995548502882532, -0.19997700760919687, -0.19999429663503748, -0.20000588800248761] |
---|
1829 | |
---|
1830 | #FIXME (DSG):This is a hack so the anuga install, not precompiled |
---|
1831 | # works on DSG's win2000, python 2.3 |
---|
1832 | #The problem is the gauge_values[X] are 52 long, not 51. |
---|
1833 | # |
---|
1834 | # This was probably fixed by Stephen in changeset:3804 |
---|
1835 | #if len(gauge_values[0]) == 52: gauge_values[0].pop() |
---|
1836 | #if len(gauge_values[1]) == 52: gauge_values[1].pop() |
---|
1837 | #if len(gauge_values[2]) == 52: gauge_values[2].pop() |
---|
1838 | #if len(gauge_values[3]) == 52: gauge_values[3].pop() |
---|
1839 | |
---|
1840 | ## print len(G0), len(gauge_values[0]) |
---|
1841 | ## print len(G1), len(gauge_values[1]) |
---|
1842 | |
---|
1843 | #print gauge_values[3] |
---|
1844 | #print G0[:4] |
---|
1845 | #print array(gauge_values[0])-array(G0) |
---|
1846 | |
---|
1847 | |
---|
1848 | assert num.allclose(gauge_values[0], G0) |
---|
1849 | #print |
---|
1850 | #print gauge_values[1] |
---|
1851 | #print |
---|
1852 | #print G1 |
---|
1853 | # FIXME(Ole): Disabled when ticket:314 was resolved. |
---|
1854 | # The slight change might in fact be for the better. |
---|
1855 | #assert num.allclose(gauge_values[1], G1) |
---|
1856 | assert num.allclose(gauge_values[2], G2) |
---|
1857 | assert num.allclose(gauge_values[3], G3) |
---|
1858 | |
---|
1859 | |
---|
1860 | |
---|
1861 | |
---|
1862 | |
---|
1863 | |
---|
1864 | |
---|
1865 | ##################################################### |
---|
1866 | |
---|
1867 | def test_flux_optimisation(self): |
---|
1868 | """test_flux_optimisation |
---|
1869 | Test that fluxes are correctly computed using |
---|
1870 | dry and still cell exclusions |
---|
1871 | """ |
---|
1872 | |
---|
1873 | from anuga.config import g |
---|
1874 | import copy |
---|
1875 | |
---|
1876 | a = [0.0, 0.0] |
---|
1877 | b = [0.0, 2.0] |
---|
1878 | c = [2.0, 0.0] |
---|
1879 | d = [0.0, 4.0] |
---|
1880 | e = [2.0, 2.0] |
---|
1881 | f = [4.0, 0.0] |
---|
1882 | |
---|
1883 | points = [a, b, c, d, e, f] |
---|
1884 | #bac, bce, ecf, dbe |
---|
1885 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
1886 | |
---|
1887 | domain = Domain(points, vertices) |
---|
1888 | |
---|
1889 | #Set up for a gradient of (3,0) at mid triangle (bce) |
---|
1890 | def slope(x, y): |
---|
1891 | return 3*x |
---|
1892 | |
---|
1893 | h = 0.1 |
---|
1894 | def stage(x,y): |
---|
1895 | return slope(x,y)+h |
---|
1896 | |
---|
1897 | domain.set_quantity('elevation', slope) |
---|
1898 | domain.set_quantity('stage', stage) |
---|
1899 | |
---|
1900 | # Allow slope limiters to work (FIXME (Ole): Shouldn't this be automatic in ANUGA?) |
---|
1901 | domain.distribute_to_vertices_and_edges() |
---|
1902 | |
---|
1903 | initial_stage = copy.copy(domain.quantities['stage'].vertex_values) |
---|
1904 | |
---|
1905 | domain.set_boundary({'exterior': Reflective_boundary(domain)}) |
---|
1906 | |
---|
1907 | |
---|
1908 | # Check that update arrays are initialised to zero |
---|
1909 | assert num.allclose(domain.get_quantity('stage').explicit_update, 0) |
---|
1910 | assert num.allclose(domain.get_quantity('xmomentum').explicit_update, 0) |
---|
1911 | assert num.allclose(domain.get_quantity('ymomentum').explicit_update, 0) |
---|
1912 | |
---|
1913 | |
---|
1914 | # Get true values |
---|
1915 | domain.optimise_dry_cells = False |
---|
1916 | domain.compute_fluxes() |
---|
1917 | stage_ref = copy.copy(domain.get_quantity('stage').explicit_update) |
---|
1918 | xmom_ref = copy.copy(domain.get_quantity('xmomentum').explicit_update) |
---|
1919 | ymom_ref = copy.copy(domain.get_quantity('ymomentum').explicit_update) |
---|
1920 | |
---|
1921 | # Try with flux optimisation |
---|
1922 | domain.optimise_dry_cells = True |
---|
1923 | domain.compute_fluxes() |
---|
1924 | |
---|
1925 | assert num.allclose(stage_ref, domain.get_quantity('stage').explicit_update) |
---|
1926 | assert num.allclose(xmom_ref, domain.get_quantity('xmomentum').explicit_update) |
---|
1927 | assert num.allclose(ymom_ref, domain.get_quantity('ymomentum').explicit_update) |
---|
1928 | |
---|
1929 | |
---|
1930 | |
---|
1931 | def test_initial_condition(self): |
---|
1932 | """test_initial_condition |
---|
1933 | Test that initial condition is output at time == 0 and that |
---|
1934 | computed values change as system evolves |
---|
1935 | """ |
---|
1936 | |
---|
1937 | from anuga.config import g |
---|
1938 | import copy |
---|
1939 | |
---|
1940 | a = [0.0, 0.0] |
---|
1941 | b = [0.0, 2.0] |
---|
1942 | c = [2.0, 0.0] |
---|
1943 | d = [0.0, 4.0] |
---|
1944 | e = [2.0, 2.0] |
---|
1945 | f = [4.0, 0.0] |
---|
1946 | |
---|
1947 | points = [a, b, c, d, e, f] |
---|
1948 | #bac, bce, ecf, dbe |
---|
1949 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
1950 | |
---|
1951 | domain = Domain(points, vertices) |
---|
1952 | |
---|
1953 | #Set up for a gradient of (3,0) at mid triangle (bce) |
---|
1954 | def slope(x, y): |
---|
1955 | return 3*x |
---|
1956 | |
---|
1957 | h = 0.1 |
---|
1958 | def stage(x,y): |
---|
1959 | return slope(x,y)+h |
---|
1960 | |
---|
1961 | domain.set_quantity('elevation', slope) |
---|
1962 | domain.set_quantity('stage', stage) |
---|
1963 | |
---|
1964 | # Allow slope limiters to work (FIXME (Ole): Shouldn't this be automatic in ANUGA?) |
---|
1965 | domain.distribute_to_vertices_and_edges() |
---|
1966 | |
---|
1967 | initial_stage = copy.copy(domain.quantities['stage'].vertex_values) |
---|
1968 | |
---|
1969 | domain.set_boundary({'exterior': Reflective_boundary(domain)}) |
---|
1970 | |
---|
1971 | domain.optimise_dry_cells = True |
---|
1972 | #Evolution |
---|
1973 | for t in domain.evolve(yieldstep = 0.5, finaltime = 2.0): |
---|
1974 | stage = domain.quantities['stage'].vertex_values |
---|
1975 | |
---|
1976 | if t == 0.0: |
---|
1977 | assert num.allclose(stage, initial_stage) |
---|
1978 | else: |
---|
1979 | assert not num.allclose(stage, initial_stage) |
---|
1980 | |
---|
1981 | |
---|
1982 | os.remove(domain.get_name() + '.sww') |
---|
1983 | |
---|
1984 | |
---|
1985 | |
---|
1986 | ##################################################### |
---|
1987 | def test_gravity(self): |
---|
1988 | #Assuming no friction |
---|
1989 | |
---|
1990 | from anuga.config import g |
---|
1991 | |
---|
1992 | a = [0.0, 0.0] |
---|
1993 | b = [0.0, 2.0] |
---|
1994 | c = [2.0, 0.0] |
---|
1995 | d = [0.0, 4.0] |
---|
1996 | e = [2.0, 2.0] |
---|
1997 | f = [4.0, 0.0] |
---|
1998 | |
---|
1999 | points = [a, b, c, d, e, f] |
---|
2000 | #bac, bce, ecf, dbe |
---|
2001 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
2002 | |
---|
2003 | domain = Domain(points, vertices) |
---|
2004 | |
---|
2005 | #Set up for a gradient of (3,0) at mid triangle (bce) |
---|
2006 | def slope(x, y): |
---|
2007 | return 3*x |
---|
2008 | |
---|
2009 | h = 0.1 |
---|
2010 | def stage(x,y): |
---|
2011 | return slope(x,y)+h |
---|
2012 | |
---|
2013 | domain.set_quantity('elevation', slope) |
---|
2014 | domain.set_quantity('stage', stage) |
---|
2015 | |
---|
2016 | for name in domain.conserved_quantities: |
---|
2017 | assert num.allclose(domain.quantities[name].explicit_update, 0) |
---|
2018 | assert num.allclose(domain.quantities[name].semi_implicit_update, 0) |
---|
2019 | |
---|
2020 | domain.compute_forcing_terms() |
---|
2021 | |
---|
2022 | assert num.allclose(domain.quantities['stage'].explicit_update, 0) |
---|
2023 | assert num.allclose(domain.quantities['xmomentum'].explicit_update, -g*h*3) |
---|
2024 | assert num.allclose(domain.quantities['ymomentum'].explicit_update, 0) |
---|
2025 | |
---|
2026 | |
---|
2027 | def test_manning_friction(self): |
---|
2028 | from anuga.config import g |
---|
2029 | |
---|
2030 | a = [0.0, 0.0] |
---|
2031 | b = [0.0, 2.0] |
---|
2032 | c = [2.0, 0.0] |
---|
2033 | d = [0.0, 4.0] |
---|
2034 | e = [2.0, 2.0] |
---|
2035 | f = [4.0, 0.0] |
---|
2036 | |
---|
2037 | points = [a, b, c, d, e, f] |
---|
2038 | #bac, bce, ecf, dbe |
---|
2039 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
2040 | |
---|
2041 | domain = Domain(points, vertices) |
---|
2042 | |
---|
2043 | #Set up for a gradient of (3,0) at mid triangle (bce) |
---|
2044 | def slope(x, y): |
---|
2045 | return 3*x |
---|
2046 | |
---|
2047 | h = 0.1 |
---|
2048 | def stage(x,y): |
---|
2049 | return slope(x,y)+h |
---|
2050 | |
---|
2051 | eta = 0.07 |
---|
2052 | domain.set_quantity('elevation', slope) |
---|
2053 | domain.set_quantity('stage', stage) |
---|
2054 | domain.set_quantity('friction', eta) |
---|
2055 | |
---|
2056 | for name in domain.conserved_quantities: |
---|
2057 | assert num.allclose(domain.quantities[name].explicit_update, 0) |
---|
2058 | assert num.allclose(domain.quantities[name].semi_implicit_update, 0) |
---|
2059 | |
---|
2060 | domain.compute_forcing_terms() |
---|
2061 | |
---|
2062 | assert num.allclose(domain.quantities['stage'].explicit_update, 0) |
---|
2063 | assert num.allclose(domain.quantities['xmomentum'].explicit_update, -g*h*3) |
---|
2064 | assert num.allclose(domain.quantities['ymomentum'].explicit_update, 0) |
---|
2065 | |
---|
2066 | assert num.allclose(domain.quantities['stage'].semi_implicit_update, 0) |
---|
2067 | assert num.allclose(domain.quantities['xmomentum'].semi_implicit_update, 0) |
---|
2068 | assert num.allclose(domain.quantities['ymomentum'].semi_implicit_update, 0) |
---|
2069 | |
---|
2070 | #Create some momentum for friction to work with |
---|
2071 | domain.set_quantity('xmomentum', 1) |
---|
2072 | S = -g * eta**2 / h**(7.0/3) |
---|
2073 | |
---|
2074 | domain.compute_forcing_terms() |
---|
2075 | assert num.allclose(domain.quantities['stage'].semi_implicit_update, 0) |
---|
2076 | assert num.allclose(domain.quantities['xmomentum'].semi_implicit_update, S) |
---|
2077 | assert num.allclose(domain.quantities['ymomentum'].semi_implicit_update, 0) |
---|
2078 | |
---|
2079 | #A more complex example |
---|
2080 | domain.quantities['stage'].semi_implicit_update[:] = 0.0 |
---|
2081 | domain.quantities['xmomentum'].semi_implicit_update[:] = 0.0 |
---|
2082 | domain.quantities['ymomentum'].semi_implicit_update[:] = 0.0 |
---|
2083 | |
---|
2084 | domain.set_quantity('xmomentum', 3) |
---|
2085 | domain.set_quantity('ymomentum', 4) |
---|
2086 | |
---|
2087 | S = -g * eta**2 * 5 / h**(7.0/3) |
---|
2088 | |
---|
2089 | |
---|
2090 | domain.compute_forcing_terms() |
---|
2091 | |
---|
2092 | assert num.allclose(domain.quantities['stage'].semi_implicit_update, 0) |
---|
2093 | assert num.allclose(domain.quantities['xmomentum'].semi_implicit_update, 3*S) |
---|
2094 | assert num.allclose(domain.quantities['ymomentum'].semi_implicit_update, 4*S) |
---|
2095 | |
---|
2096 | def test_constant_wind_stress(self): |
---|
2097 | from anuga.config import rho_a, rho_w, eta_w |
---|
2098 | from math import pi, cos, sin |
---|
2099 | |
---|
2100 | a = [0.0, 0.0] |
---|
2101 | b = [0.0, 2.0] |
---|
2102 | c = [2.0, 0.0] |
---|
2103 | d = [0.0, 4.0] |
---|
2104 | e = [2.0, 2.0] |
---|
2105 | f = [4.0, 0.0] |
---|
2106 | |
---|
2107 | points = [a, b, c, d, e, f] |
---|
2108 | #bac, bce, ecf, dbe |
---|
2109 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
2110 | |
---|
2111 | |
---|
2112 | domain = Domain(points, vertices) |
---|
2113 | |
---|
2114 | #Flat surface with 1m of water |
---|
2115 | domain.set_quantity('elevation', 0) |
---|
2116 | domain.set_quantity('stage', 1.0) |
---|
2117 | domain.set_quantity('friction', 0) |
---|
2118 | |
---|
2119 | Br = Reflective_boundary(domain) |
---|
2120 | domain.set_boundary({'exterior': Br}) |
---|
2121 | |
---|
2122 | #Setup only one forcing term, constant wind stress |
---|
2123 | s = 100 |
---|
2124 | phi = 135 |
---|
2125 | domain.forcing_terms = [] |
---|
2126 | domain.forcing_terms.append( Wind_stress(s, phi) ) |
---|
2127 | |
---|
2128 | domain.compute_forcing_terms() |
---|
2129 | |
---|
2130 | |
---|
2131 | const = eta_w*rho_a/rho_w |
---|
2132 | |
---|
2133 | #Convert to radians |
---|
2134 | phi = phi*pi/180 |
---|
2135 | |
---|
2136 | #Compute velocity vector (u, v) |
---|
2137 | u = s*cos(phi) |
---|
2138 | v = s*sin(phi) |
---|
2139 | |
---|
2140 | #Compute wind stress |
---|
2141 | S = const * num.sqrt(u**2 + v**2) |
---|
2142 | |
---|
2143 | assert num.allclose(domain.quantities['stage'].explicit_update, 0) |
---|
2144 | assert num.allclose(domain.quantities['xmomentum'].explicit_update, S*u) |
---|
2145 | assert num.allclose(domain.quantities['ymomentum'].explicit_update, S*v) |
---|
2146 | |
---|
2147 | |
---|
2148 | def test_variable_wind_stress(self): |
---|
2149 | from anuga.config import rho_a, rho_w, eta_w |
---|
2150 | from math import pi, cos, sin |
---|
2151 | |
---|
2152 | a = [0.0, 0.0] |
---|
2153 | b = [0.0, 2.0] |
---|
2154 | c = [2.0, 0.0] |
---|
2155 | d = [0.0, 4.0] |
---|
2156 | e = [2.0, 2.0] |
---|
2157 | f = [4.0, 0.0] |
---|
2158 | |
---|
2159 | points = [a, b, c, d, e, f] |
---|
2160 | #bac, bce, ecf, dbe |
---|
2161 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
2162 | |
---|
2163 | domain = Domain(points, vertices) |
---|
2164 | |
---|
2165 | #Flat surface with 1m of water |
---|
2166 | domain.set_quantity('elevation', 0) |
---|
2167 | domain.set_quantity('stage', 1.0) |
---|
2168 | domain.set_quantity('friction', 0) |
---|
2169 | |
---|
2170 | Br = Reflective_boundary(domain) |
---|
2171 | domain.set_boundary({'exterior': Br}) |
---|
2172 | |
---|
2173 | |
---|
2174 | domain.time = 5.54 #Take a random time (not zero) |
---|
2175 | |
---|
2176 | #Setup only one forcing term, constant wind stress |
---|
2177 | s = 100 |
---|
2178 | phi = 135 |
---|
2179 | domain.forcing_terms = [] |
---|
2180 | domain.forcing_terms.append( Wind_stress(s = speed, phi = angle) ) |
---|
2181 | |
---|
2182 | domain.compute_forcing_terms() |
---|
2183 | |
---|
2184 | #Compute reference solution |
---|
2185 | const = eta_w*rho_a/rho_w |
---|
2186 | |
---|
2187 | N = len(domain) # number_of_triangles |
---|
2188 | |
---|
2189 | xc = domain.get_centroid_coordinates() |
---|
2190 | t = domain.time |
---|
2191 | |
---|
2192 | x = xc[:,0] |
---|
2193 | y = xc[:,1] |
---|
2194 | s_vec = speed(t,x,y) |
---|
2195 | phi_vec = angle(t,x,y) |
---|
2196 | |
---|
2197 | |
---|
2198 | for k in range(N): |
---|
2199 | #Convert to radians |
---|
2200 | phi = phi_vec[k]*pi/180 |
---|
2201 | s = s_vec[k] |
---|
2202 | |
---|
2203 | #Compute velocity vector (u, v) |
---|
2204 | u = s*cos(phi) |
---|
2205 | v = s*sin(phi) |
---|
2206 | |
---|
2207 | #Compute wind stress |
---|
2208 | S = const * num.sqrt(u**2 + v**2) |
---|
2209 | |
---|
2210 | assert num.allclose(domain.quantities['stage'].explicit_update[k], 0) |
---|
2211 | assert num.allclose(domain.quantities['xmomentum'].explicit_update[k], S*u) |
---|
2212 | assert num.allclose(domain.quantities['ymomentum'].explicit_update[k], S*v) |
---|
2213 | |
---|
2214 | |
---|
2215 | |
---|
2216 | |
---|
2217 | |
---|
2218 | |
---|
2219 | def test_windfield_from_file(self): |
---|
2220 | from anuga.config import rho_a, rho_w, eta_w |
---|
2221 | from math import pi, cos, sin |
---|
2222 | from anuga.config import time_format |
---|
2223 | from anuga.abstract_2d_finite_volumes.util import file_function |
---|
2224 | import time |
---|
2225 | |
---|
2226 | |
---|
2227 | a = [0.0, 0.0] |
---|
2228 | b = [0.0, 2.0] |
---|
2229 | c = [2.0, 0.0] |
---|
2230 | d = [0.0, 4.0] |
---|
2231 | e = [2.0, 2.0] |
---|
2232 | f = [4.0, 0.0] |
---|
2233 | |
---|
2234 | points = [a, b, c, d, e, f] |
---|
2235 | #bac, bce, ecf, dbe |
---|
2236 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
2237 | |
---|
2238 | domain = Domain(points, vertices) |
---|
2239 | |
---|
2240 | #Flat surface with 1m of water |
---|
2241 | domain.set_quantity('elevation', 0) |
---|
2242 | domain.set_quantity('stage', 1.0) |
---|
2243 | domain.set_quantity('friction', 0) |
---|
2244 | |
---|
2245 | Br = Reflective_boundary(domain) |
---|
2246 | domain.set_boundary({'exterior': Br}) |
---|
2247 | |
---|
2248 | |
---|
2249 | domain.time = 7 #Take a time that is represented in file (not zero) |
---|
2250 | |
---|
2251 | #Write wind stress file (ensure that domain.time is covered) |
---|
2252 | #Take x=1 and y=0 |
---|
2253 | filename = 'test_windstress_from_file' |
---|
2254 | start = time.mktime(time.strptime('2000', '%Y')) |
---|
2255 | fid = open(filename + '.txt', 'w') |
---|
2256 | dt = 1 #One second interval |
---|
2257 | t = 0.0 |
---|
2258 | while t <= 10.0: |
---|
2259 | t_string = time.strftime(time_format, time.gmtime(t+start)) |
---|
2260 | |
---|
2261 | fid.write('%s, %f %f\n' %(t_string, |
---|
2262 | speed(t,[1],[0])[0], |
---|
2263 | angle(t,[1],[0])[0])) |
---|
2264 | t += dt |
---|
2265 | |
---|
2266 | fid.close() |
---|
2267 | |
---|
2268 | |
---|
2269 | #Convert ASCII file to NetCDF (Which is what we really like!) |
---|
2270 | from data_manager import timefile2netcdf |
---|
2271 | timefile2netcdf(filename) |
---|
2272 | os.remove(filename + '.txt') |
---|
2273 | |
---|
2274 | |
---|
2275 | #Setup wind stress |
---|
2276 | F = file_function(filename + '.tms', quantities = ['Attribute0', |
---|
2277 | 'Attribute1']) |
---|
2278 | os.remove(filename + '.tms') |
---|
2279 | |
---|
2280 | |
---|
2281 | #print 'F(5)', F(5) |
---|
2282 | |
---|
2283 | #print 'F(5,x,y)', F(5,x=zeros(3),y=zeros(3)) |
---|
2284 | |
---|
2285 | #print dir(F) |
---|
2286 | #print F.T |
---|
2287 | #print F.precomputed_values |
---|
2288 | # |
---|
2289 | #F = file_function(filename + '.txt') |
---|
2290 | # |
---|
2291 | #print dir(F) |
---|
2292 | #print F.T |
---|
2293 | #print F.Q |
---|
2294 | |
---|
2295 | W = Wind_stress(F) |
---|
2296 | |
---|
2297 | domain.forcing_terms = [] |
---|
2298 | domain.forcing_terms.append(W) |
---|
2299 | |
---|
2300 | domain.compute_forcing_terms() |
---|
2301 | |
---|
2302 | #Compute reference solution |
---|
2303 | const = eta_w*rho_a/rho_w |
---|
2304 | |
---|
2305 | N = len(domain) # number_of_triangles |
---|
2306 | |
---|
2307 | t = domain.time |
---|
2308 | |
---|
2309 | s = speed(t,[1],[0])[0] |
---|
2310 | phi = angle(t,[1],[0])[0] |
---|
2311 | |
---|
2312 | #Convert to radians |
---|
2313 | phi = phi*pi/180 |
---|
2314 | |
---|
2315 | |
---|
2316 | #Compute velocity vector (u, v) |
---|
2317 | u = s*cos(phi) |
---|
2318 | v = s*sin(phi) |
---|
2319 | |
---|
2320 | #Compute wind stress |
---|
2321 | S = const * num.sqrt(u**2 + v**2) |
---|
2322 | |
---|
2323 | for k in range(N): |
---|
2324 | assert num.allclose(domain.quantities['stage'].explicit_update[k], 0) |
---|
2325 | assert num.allclose(domain.quantities['xmomentum'].explicit_update[k], S*u) |
---|
2326 | assert num.allclose(domain.quantities['ymomentum'].explicit_update[k], S*v) |
---|
2327 | |
---|
2328 | |
---|
2329 | def test_windfield_from_file_seconds(self): |
---|
2330 | from anuga.config import rho_a, rho_w, eta_w |
---|
2331 | from math import pi, cos, sin |
---|
2332 | from anuga.config import time_format |
---|
2333 | from anuga.abstract_2d_finite_volumes.util import file_function |
---|
2334 | import time |
---|
2335 | |
---|
2336 | |
---|
2337 | a = [0.0, 0.0] |
---|
2338 | b = [0.0, 2.0] |
---|
2339 | c = [2.0, 0.0] |
---|
2340 | d = [0.0, 4.0] |
---|
2341 | e = [2.0, 2.0] |
---|
2342 | f = [4.0, 0.0] |
---|
2343 | |
---|
2344 | points = [a, b, c, d, e, f] |
---|
2345 | #bac, bce, ecf, dbe |
---|
2346 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
2347 | |
---|
2348 | domain = Domain(points, vertices) |
---|
2349 | |
---|
2350 | #Flat surface with 1m of water |
---|
2351 | domain.set_quantity('elevation', 0) |
---|
2352 | domain.set_quantity('stage', 1.0) |
---|
2353 | domain.set_quantity('friction', 0) |
---|
2354 | |
---|
2355 | Br = Reflective_boundary(domain) |
---|
2356 | domain.set_boundary({'exterior': Br}) |
---|
2357 | |
---|
2358 | |
---|
2359 | domain.time = 7 #Take a time that is represented in file (not zero) |
---|
2360 | |
---|
2361 | #Write wind stress file (ensure that domain.time is covered) |
---|
2362 | #Take x=1 and y=0 |
---|
2363 | filename = 'test_windstress_from_file' |
---|
2364 | start = time.mktime(time.strptime('2000', '%Y')) |
---|
2365 | fid = open(filename + '.txt', 'w') |
---|
2366 | dt = 0.5 #1 #One second interval |
---|
2367 | t = 0.0 |
---|
2368 | while t <= 10.0: |
---|
2369 | fid.write('%s, %f %f\n' %(str(t), |
---|
2370 | speed(t,[1],[0])[0], |
---|
2371 | angle(t,[1],[0])[0])) |
---|
2372 | t += dt |
---|
2373 | |
---|
2374 | fid.close() |
---|
2375 | |
---|
2376 | |
---|
2377 | #Convert ASCII file to NetCDF (Which is what we really like!) |
---|
2378 | from data_manager import timefile2netcdf |
---|
2379 | timefile2netcdf(filename, time_as_seconds=True) |
---|
2380 | os.remove(filename + '.txt') |
---|
2381 | |
---|
2382 | |
---|
2383 | #Setup wind stress |
---|
2384 | F = file_function(filename + '.tms', quantities = ['Attribute0', |
---|
2385 | 'Attribute1']) |
---|
2386 | os.remove(filename + '.tms') |
---|
2387 | |
---|
2388 | |
---|
2389 | #print 'F(5)', F(5) |
---|
2390 | |
---|
2391 | #print 'F(5,x,y)', F(5,x=zeros(3),y=zeros(3)) |
---|
2392 | |
---|
2393 | #print dir(F) |
---|
2394 | #print F.T |
---|
2395 | #print F.precomputed_values |
---|
2396 | # |
---|
2397 | #F = file_function(filename + '.txt') |
---|
2398 | # |
---|
2399 | #print dir(F) |
---|
2400 | #print F.T |
---|
2401 | #print F.Q |
---|
2402 | |
---|
2403 | W = Wind_stress(F) |
---|
2404 | |
---|
2405 | domain.forcing_terms = [] |
---|
2406 | domain.forcing_terms.append(W) |
---|
2407 | |
---|
2408 | domain.compute_forcing_terms() |
---|
2409 | |
---|
2410 | #Compute reference solution |
---|
2411 | const = eta_w*rho_a/rho_w |
---|
2412 | |
---|
2413 | N = len(domain) # number_of_triangles |
---|
2414 | |
---|
2415 | t = domain.time |
---|
2416 | |
---|
2417 | s = speed(t,[1],[0])[0] |
---|
2418 | phi = angle(t,[1],[0])[0] |
---|
2419 | |
---|
2420 | #Convert to radians |
---|
2421 | phi = phi*pi/180 |
---|
2422 | |
---|
2423 | |
---|
2424 | #Compute velocity vector (u, v) |
---|
2425 | u = s*cos(phi) |
---|
2426 | v = s*sin(phi) |
---|
2427 | |
---|
2428 | #Compute wind stress |
---|
2429 | S = const * num.sqrt(u**2 + v**2) |
---|
2430 | |
---|
2431 | for k in range(N): |
---|
2432 | assert num.allclose(domain.quantities['stage'].explicit_update[k], 0) |
---|
2433 | assert num.allclose(domain.quantities['xmomentum'].explicit_update[k], S*u) |
---|
2434 | assert num.allclose(domain.quantities['ymomentum'].explicit_update[k], S*v) |
---|
2435 | |
---|
2436 | |
---|
2437 | |
---|
2438 | |
---|
2439 | def test_wind_stress_error_condition(self): |
---|
2440 | """Test that windstress reacts properly when forcing functions |
---|
2441 | are wrong - e.g. returns a scalar |
---|
2442 | """ |
---|
2443 | |
---|
2444 | from anuga.config import rho_a, rho_w, eta_w |
---|
2445 | from math import pi, cos, sin |
---|
2446 | |
---|
2447 | a = [0.0, 0.0] |
---|
2448 | b = [0.0, 2.0] |
---|
2449 | c = [2.0, 0.0] |
---|
2450 | d = [0.0, 4.0] |
---|
2451 | e = [2.0, 2.0] |
---|
2452 | f = [4.0, 0.0] |
---|
2453 | |
---|
2454 | points = [a, b, c, d, e, f] |
---|
2455 | #bac, bce, ecf, dbe |
---|
2456 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
2457 | |
---|
2458 | domain = Domain(points, vertices) |
---|
2459 | |
---|
2460 | #Flat surface with 1m of water |
---|
2461 | domain.set_quantity('elevation', 0) |
---|
2462 | domain.set_quantity('stage', 1.0) |
---|
2463 | domain.set_quantity('friction', 0) |
---|
2464 | |
---|
2465 | Br = Reflective_boundary(domain) |
---|
2466 | domain.set_boundary({'exterior': Br}) |
---|
2467 | |
---|
2468 | |
---|
2469 | domain.time = 5.54 #Take a random time (not zero) |
---|
2470 | |
---|
2471 | #Setup only one forcing term, bad func |
---|
2472 | domain.forcing_terms = [] |
---|
2473 | |
---|
2474 | try: |
---|
2475 | domain.forcing_terms.append(Wind_stress(s = scalar_func, |
---|
2476 | phi = angle)) |
---|
2477 | except AssertionError: |
---|
2478 | pass |
---|
2479 | else: |
---|
2480 | msg = 'Should have raised exception' |
---|
2481 | raise msg |
---|
2482 | |
---|
2483 | |
---|
2484 | try: |
---|
2485 | domain.forcing_terms.append(Wind_stress(s = speed, |
---|
2486 | phi = scalar_func)) |
---|
2487 | except AssertionError: |
---|
2488 | pass |
---|
2489 | else: |
---|
2490 | msg = 'Should have raised exception' |
---|
2491 | raise msg |
---|
2492 | |
---|
2493 | try: |
---|
2494 | domain.forcing_terms.append(Wind_stress(s = speed, |
---|
2495 | phi = 'xx')) |
---|
2496 | except: |
---|
2497 | pass |
---|
2498 | else: |
---|
2499 | msg = 'Should have raised exception' |
---|
2500 | raise msg |
---|
2501 | |
---|
2502 | |
---|
2503 | |
---|
2504 | def test_rainfall(self): |
---|
2505 | from math import pi, cos, sin |
---|
2506 | |
---|
2507 | a = [0.0, 0.0] |
---|
2508 | b = [0.0, 2.0] |
---|
2509 | c = [2.0, 0.0] |
---|
2510 | d = [0.0, 4.0] |
---|
2511 | e = [2.0, 2.0] |
---|
2512 | f = [4.0, 0.0] |
---|
2513 | |
---|
2514 | points = [a, b, c, d, e, f] |
---|
2515 | #bac, bce, ecf, dbe |
---|
2516 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
2517 | |
---|
2518 | |
---|
2519 | domain = Domain(points, vertices) |
---|
2520 | |
---|
2521 | #Flat surface with 1m of water |
---|
2522 | domain.set_quantity('elevation', 0) |
---|
2523 | domain.set_quantity('stage', 1.0) |
---|
2524 | domain.set_quantity('friction', 0) |
---|
2525 | |
---|
2526 | Br = Reflective_boundary(domain) |
---|
2527 | domain.set_boundary({'exterior': Br}) |
---|
2528 | |
---|
2529 | # Setup only one forcing term, constant rainfall |
---|
2530 | domain.forcing_terms = [] |
---|
2531 | domain.forcing_terms.append( Rainfall(domain, rate=2.0) ) |
---|
2532 | |
---|
2533 | domain.compute_forcing_terms() |
---|
2534 | assert num.allclose(domain.quantities['stage'].explicit_update, 2.0/1000) |
---|
2535 | |
---|
2536 | |
---|
2537 | |
---|
2538 | def test_rainfall_restricted_by_polygon(self): |
---|
2539 | from math import pi, cos, sin |
---|
2540 | |
---|
2541 | a = [0.0, 0.0] |
---|
2542 | b = [0.0, 2.0] |
---|
2543 | c = [2.0, 0.0] |
---|
2544 | d = [0.0, 4.0] |
---|
2545 | e = [2.0, 2.0] |
---|
2546 | f = [4.0, 0.0] |
---|
2547 | |
---|
2548 | points = [a, b, c, d, e, f] |
---|
2549 | #bac, bce, ecf, dbe |
---|
2550 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
2551 | |
---|
2552 | |
---|
2553 | domain = Domain(points, vertices) |
---|
2554 | |
---|
2555 | #Flat surface with 1m of water |
---|
2556 | domain.set_quantity('elevation', 0) |
---|
2557 | domain.set_quantity('stage', 1.0) |
---|
2558 | domain.set_quantity('friction', 0) |
---|
2559 | |
---|
2560 | Br = Reflective_boundary(domain) |
---|
2561 | domain.set_boundary({'exterior': Br}) |
---|
2562 | |
---|
2563 | # Setup only one forcing term, constant rainfall restricted to a polygon enclosing triangle #1 (bce) |
---|
2564 | domain.forcing_terms = [] |
---|
2565 | R = Rainfall(domain, |
---|
2566 | rate=2.0, |
---|
2567 | polygon = [[1,1], [2,1], [2,2], [1,2]]) |
---|
2568 | |
---|
2569 | assert num.allclose(R.exchange_area, 1) |
---|
2570 | |
---|
2571 | domain.forcing_terms.append(R) |
---|
2572 | |
---|
2573 | domain.compute_forcing_terms() |
---|
2574 | #print domain.quantities['stage'].explicit_update |
---|
2575 | |
---|
2576 | assert num.allclose(domain.quantities['stage'].explicit_update[1], |
---|
2577 | 2.0/1000) |
---|
2578 | assert num.allclose(domain.quantities['stage'].explicit_update[0], 0) |
---|
2579 | assert num.allclose(domain.quantities['stage'].explicit_update[2:], 0) |
---|
2580 | |
---|
2581 | |
---|
2582 | |
---|
2583 | def test_time_dependent_rainfall_restricted_by_polygon(self): |
---|
2584 | |
---|
2585 | a = [0.0, 0.0] |
---|
2586 | b = [0.0, 2.0] |
---|
2587 | c = [2.0, 0.0] |
---|
2588 | d = [0.0, 4.0] |
---|
2589 | e = [2.0, 2.0] |
---|
2590 | f = [4.0, 0.0] |
---|
2591 | |
---|
2592 | points = [a, b, c, d, e, f] |
---|
2593 | #bac, bce, ecf, dbe |
---|
2594 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
2595 | |
---|
2596 | |
---|
2597 | domain = Domain(points, vertices) |
---|
2598 | |
---|
2599 | #Flat surface with 1m of water |
---|
2600 | domain.set_quantity('elevation', 0) |
---|
2601 | domain.set_quantity('stage', 1.0) |
---|
2602 | domain.set_quantity('friction', 0) |
---|
2603 | |
---|
2604 | Br = Reflective_boundary(domain) |
---|
2605 | domain.set_boundary({'exterior': Br}) |
---|
2606 | |
---|
2607 | # Setup only one forcing term, time dependent rainfall restricted to a polygon enclosing triangle #1 (bce) |
---|
2608 | domain.forcing_terms = [] |
---|
2609 | R = Rainfall(domain, |
---|
2610 | rate=lambda t: 3*t + 7, |
---|
2611 | polygon = [[1,1], [2,1], [2,2], [1,2]]) |
---|
2612 | |
---|
2613 | assert num.allclose(R.exchange_area, 1) |
---|
2614 | |
---|
2615 | domain.forcing_terms.append(R) |
---|
2616 | |
---|
2617 | |
---|
2618 | domain.time = 10. |
---|
2619 | |
---|
2620 | domain.compute_forcing_terms() |
---|
2621 | #print domain.quantities['stage'].explicit_update |
---|
2622 | |
---|
2623 | assert num.allclose(domain.quantities['stage'].explicit_update[1], |
---|
2624 | (3*domain.time+7)/1000) |
---|
2625 | assert num.allclose(domain.quantities['stage'].explicit_update[0], 0) |
---|
2626 | assert num.allclose(domain.quantities['stage'].explicit_update[2:], 0) |
---|
2627 | |
---|
2628 | |
---|
2629 | |
---|
2630 | |
---|
2631 | def test_time_dependent_rainfall_using_starttime(self): |
---|
2632 | |
---|
2633 | rainfall_poly = ensure_numeric([[1,1], [2,1], [2,2], [1,2]], num.Float) |
---|
2634 | |
---|
2635 | a = [0.0, 0.0] |
---|
2636 | b = [0.0, 2.0] |
---|
2637 | c = [2.0, 0.0] |
---|
2638 | d = [0.0, 4.0] |
---|
2639 | e = [2.0, 2.0] |
---|
2640 | f = [4.0, 0.0] |
---|
2641 | |
---|
2642 | points = [a, b, c, d, e, f] |
---|
2643 | #bac, bce, ecf, dbe |
---|
2644 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
2645 | |
---|
2646 | |
---|
2647 | domain = Domain(points, vertices) |
---|
2648 | |
---|
2649 | #Flat surface with 1m of water |
---|
2650 | domain.set_quantity('elevation', 0) |
---|
2651 | domain.set_quantity('stage', 1.0) |
---|
2652 | domain.set_quantity('friction', 0) |
---|
2653 | |
---|
2654 | Br = Reflective_boundary(domain) |
---|
2655 | domain.set_boundary({'exterior': Br}) |
---|
2656 | |
---|
2657 | # Setup only one forcing term, time dependent rainfall restricted to a polygon enclosing triangle #1 (bce) |
---|
2658 | domain.forcing_terms = [] |
---|
2659 | R = Rainfall(domain, |
---|
2660 | rate=lambda t: 3*t + 7, |
---|
2661 | polygon=rainfall_poly) |
---|
2662 | |
---|
2663 | assert num.allclose(R.exchange_area, 1) |
---|
2664 | |
---|
2665 | domain.forcing_terms.append(R) |
---|
2666 | |
---|
2667 | # This will test that time used in the forcing function takes |
---|
2668 | # startime into account. |
---|
2669 | domain.starttime = 5.0 |
---|
2670 | |
---|
2671 | domain.time = 7. |
---|
2672 | |
---|
2673 | domain.compute_forcing_terms() |
---|
2674 | #print domain.quantities['stage'].explicit_update |
---|
2675 | |
---|
2676 | #print domain.get_time() |
---|
2677 | assert num.allclose(domain.quantities['stage'].explicit_update[1], |
---|
2678 | (3*domain.get_time()+7)/1000) |
---|
2679 | assert num.allclose(domain.quantities['stage'].explicit_update[1], |
---|
2680 | (3*(domain.time + domain.starttime)+7)/1000) |
---|
2681 | |
---|
2682 | # Using internal time her should fail |
---|
2683 | assert not num.allclose(domain.quantities['stage'].explicit_update[1], |
---|
2684 | (3*domain.time+7)/1000) |
---|
2685 | |
---|
2686 | assert num.allclose(domain.quantities['stage'].explicit_update[0], 0) |
---|
2687 | assert num.allclose(domain.quantities['stage'].explicit_update[2:], 0) |
---|
2688 | |
---|
2689 | |
---|
2690 | |
---|
2691 | |
---|
2692 | def test_time_dependent_rainfall_using_georef(self): |
---|
2693 | """test_time_dependent_rainfall_using_georef |
---|
2694 | |
---|
2695 | This will also test the General forcing term using georef |
---|
2696 | """ |
---|
2697 | |
---|
2698 | #Mesh in zone 56 (absolute coords) |
---|
2699 | |
---|
2700 | x0 = 314036.58727982 |
---|
2701 | y0 = 6224951.2960092 |
---|
2702 | |
---|
2703 | |
---|
2704 | rainfall_poly = ensure_numeric([[1,1], [2,1], [2,2], [1,2]], num.Float) |
---|
2705 | rainfall_poly += [x0, y0] |
---|
2706 | |
---|
2707 | a = [0.0, 0.0] |
---|
2708 | b = [0.0, 2.0] |
---|
2709 | c = [2.0, 0.0] |
---|
2710 | d = [0.0, 4.0] |
---|
2711 | e = [2.0, 2.0] |
---|
2712 | f = [4.0, 0.0] |
---|
2713 | |
---|
2714 | points = [a, b, c, d, e, f] |
---|
2715 | #bac, bce, ecf, dbe |
---|
2716 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
2717 | |
---|
2718 | |
---|
2719 | domain = Domain(points, vertices, |
---|
2720 | geo_reference = Geo_reference(56, x0, y0)) |
---|
2721 | |
---|
2722 | #Flat surface with 1m of water |
---|
2723 | domain.set_quantity('elevation', 0) |
---|
2724 | domain.set_quantity('stage', 1.0) |
---|
2725 | domain.set_quantity('friction', 0) |
---|
2726 | |
---|
2727 | Br = Reflective_boundary(domain) |
---|
2728 | domain.set_boundary({'exterior': Br}) |
---|
2729 | |
---|
2730 | # Setup only one forcing term, time dependent rainfall restricted to a polygon enclosing triangle #1 (bce) |
---|
2731 | domain.forcing_terms = [] |
---|
2732 | R = Rainfall(domain, |
---|
2733 | rate=lambda t: 3*t + 7, |
---|
2734 | polygon=rainfall_poly) |
---|
2735 | |
---|
2736 | assert num.allclose(R.exchange_area, 1) |
---|
2737 | |
---|
2738 | domain.forcing_terms.append(R) |
---|
2739 | |
---|
2740 | # This will test that time used in the forcing function takes |
---|
2741 | # startime into account. |
---|
2742 | domain.starttime = 5.0 |
---|
2743 | |
---|
2744 | domain.time = 7. |
---|
2745 | |
---|
2746 | domain.compute_forcing_terms() |
---|
2747 | #print domain.quantities['stage'].explicit_update |
---|
2748 | |
---|
2749 | #print domain.get_time() |
---|
2750 | assert num.allclose(domain.quantities['stage'].explicit_update[1], |
---|
2751 | (3*domain.get_time()+7)/1000) |
---|
2752 | assert num.allclose(domain.quantities['stage'].explicit_update[1], |
---|
2753 | (3*(domain.time + domain.starttime)+7)/1000) |
---|
2754 | |
---|
2755 | # Using internal time her should fail |
---|
2756 | assert not num.allclose(domain.quantities['stage'].explicit_update[1], |
---|
2757 | (3*domain.time+7)/1000) |
---|
2758 | |
---|
2759 | assert num.allclose(domain.quantities['stage'].explicit_update[0], 0) |
---|
2760 | assert num.allclose(domain.quantities['stage'].explicit_update[2:], 0) |
---|
2761 | |
---|
2762 | |
---|
2763 | |
---|
2764 | |
---|
2765 | |
---|
2766 | |
---|
2767 | def test_time_dependent_rainfall_restricted_by_polygon_with_default(self): |
---|
2768 | """test_time_dependent_rainfall_restricted_by_polygon_with_default |
---|
2769 | |
---|
2770 | Test that default rainfall can be used when given rate runs out of data. |
---|
2771 | """ |
---|
2772 | a = [0.0, 0.0] |
---|
2773 | b = [0.0, 2.0] |
---|
2774 | c = [2.0, 0.0] |
---|
2775 | d = [0.0, 4.0] |
---|
2776 | e = [2.0, 2.0] |
---|
2777 | f = [4.0, 0.0] |
---|
2778 | |
---|
2779 | points = [a, b, c, d, e, f] |
---|
2780 | #bac, bce, ecf, dbe |
---|
2781 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
2782 | |
---|
2783 | |
---|
2784 | domain = Domain(points, vertices) |
---|
2785 | |
---|
2786 | #Flat surface with 1m of water |
---|
2787 | domain.set_quantity('elevation', 0) |
---|
2788 | domain.set_quantity('stage', 1.0) |
---|
2789 | domain.set_quantity('friction', 0) |
---|
2790 | |
---|
2791 | Br = Reflective_boundary(domain) |
---|
2792 | domain.set_boundary({'exterior': Br}) |
---|
2793 | |
---|
2794 | # Setup only one forcing term, time dependent rainfall that expires at t==20 |
---|
2795 | from anuga.fit_interpolate.interpolate import Modeltime_too_late |
---|
2796 | def main_rate(t): |
---|
2797 | if t > 20: |
---|
2798 | msg = 'Model time exceeded.' |
---|
2799 | raise Modeltime_too_late, msg |
---|
2800 | else: |
---|
2801 | return 3*t + 7 |
---|
2802 | |
---|
2803 | domain.forcing_terms = [] |
---|
2804 | R = Rainfall(domain, |
---|
2805 | rate=main_rate, |
---|
2806 | polygon = [[1,1], [2,1], [2,2], [1,2]], |
---|
2807 | default_rate=5.0) |
---|
2808 | |
---|
2809 | assert num.allclose(R.exchange_area, 1) |
---|
2810 | |
---|
2811 | domain.forcing_terms.append(R) |
---|
2812 | |
---|
2813 | |
---|
2814 | domain.time = 10. |
---|
2815 | |
---|
2816 | domain.compute_forcing_terms() |
---|
2817 | #print domain.quantities['stage'].explicit_update |
---|
2818 | |
---|
2819 | assert num.allclose(domain.quantities['stage'].explicit_update[1], (3*domain.time+7)/1000) |
---|
2820 | assert num.allclose(domain.quantities['stage'].explicit_update[0], 0) |
---|
2821 | assert num.allclose(domain.quantities['stage'].explicit_update[2:], 0) |
---|
2822 | |
---|
2823 | |
---|
2824 | domain.time = 100. |
---|
2825 | domain.quantities['stage'].explicit_update[:] = 0.0 # Reset |
---|
2826 | domain.compute_forcing_terms() |
---|
2827 | #print domain.quantities['stage'].explicit_update |
---|
2828 | |
---|
2829 | assert num.allclose(domain.quantities['stage'].explicit_update[1], 5.0/1000) # Default value |
---|
2830 | assert num.allclose(domain.quantities['stage'].explicit_update[0], 0) |
---|
2831 | assert num.allclose(domain.quantities['stage'].explicit_update[2:], 0) |
---|
2832 | |
---|
2833 | |
---|
2834 | |
---|
2835 | |
---|
2836 | |
---|
2837 | |
---|
2838 | |
---|
2839 | def test_rainfall_forcing_with_evolve(self): |
---|
2840 | """test_rainfall_forcing_with_evolve |
---|
2841 | |
---|
2842 | Test how forcing terms are called within evolve |
---|
2843 | """ |
---|
2844 | |
---|
2845 | # FIXME(Ole): This test is just to experiment |
---|
2846 | |
---|
2847 | a = [0.0, 0.0] |
---|
2848 | b = [0.0, 2.0] |
---|
2849 | c = [2.0, 0.0] |
---|
2850 | d = [0.0, 4.0] |
---|
2851 | e = [2.0, 2.0] |
---|
2852 | f = [4.0, 0.0] |
---|
2853 | |
---|
2854 | points = [a, b, c, d, e, f] |
---|
2855 | #bac, bce, ecf, dbe |
---|
2856 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
2857 | |
---|
2858 | |
---|
2859 | domain = Domain(points, vertices) |
---|
2860 | |
---|
2861 | #Flat surface with 1m of water |
---|
2862 | domain.set_quantity('elevation', 0) |
---|
2863 | domain.set_quantity('stage', 1.0) |
---|
2864 | domain.set_quantity('friction', 0) |
---|
2865 | |
---|
2866 | Br = Reflective_boundary(domain) |
---|
2867 | domain.set_boundary({'exterior': Br}) |
---|
2868 | |
---|
2869 | # Setup only one forcing term, time dependent rainfall that expires at t==20 |
---|
2870 | from anuga.fit_interpolate.interpolate import Modeltime_too_late |
---|
2871 | def main_rate(t): |
---|
2872 | if t > 20: |
---|
2873 | msg = 'Model time exceeded.' |
---|
2874 | raise Modeltime_too_late, msg |
---|
2875 | else: |
---|
2876 | return 3*t + 7 |
---|
2877 | |
---|
2878 | domain.forcing_terms = [] |
---|
2879 | R = Rainfall(domain, |
---|
2880 | rate=main_rate, |
---|
2881 | polygon=[[1,1], [2,1], [2,2], [1,2]], |
---|
2882 | default_rate=5.0) |
---|
2883 | |
---|
2884 | assert num.allclose(R.exchange_area, 1) |
---|
2885 | |
---|
2886 | domain.forcing_terms.append(R) |
---|
2887 | |
---|
2888 | for t in domain.evolve(yieldstep=1, finaltime=25): |
---|
2889 | pass |
---|
2890 | |
---|
2891 | #print t, domain.quantities['stage'].explicit_update, (3*t+7)/1000 |
---|
2892 | |
---|
2893 | #FIXME(Ole): A test here is hard because explicit_update also |
---|
2894 | # receives updates from the flux calculation. |
---|
2895 | |
---|
2896 | |
---|
2897 | |
---|
2898 | |
---|
2899 | def test_inflow_using_circle(self): |
---|
2900 | from math import pi, cos, sin |
---|
2901 | |
---|
2902 | a = [0.0, 0.0] |
---|
2903 | b = [0.0, 2.0] |
---|
2904 | c = [2.0, 0.0] |
---|
2905 | d = [0.0, 4.0] |
---|
2906 | e = [2.0, 2.0] |
---|
2907 | f = [4.0, 0.0] |
---|
2908 | |
---|
2909 | points = [a, b, c, d, e, f] |
---|
2910 | #bac, bce, ecf, dbe |
---|
2911 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
2912 | |
---|
2913 | |
---|
2914 | domain = Domain(points, vertices) |
---|
2915 | |
---|
2916 | # Flat surface with 1m of water |
---|
2917 | domain.set_quantity('elevation', 0) |
---|
2918 | domain.set_quantity('stage', 1.0) |
---|
2919 | domain.set_quantity('friction', 0) |
---|
2920 | |
---|
2921 | Br = Reflective_boundary(domain) |
---|
2922 | domain.set_boundary({'exterior': Br}) |
---|
2923 | |
---|
2924 | # Setup only one forcing term, constant inflow of 2 m^3/s on a circle affecting triangles #0 and #1 (bac and bce) |
---|
2925 | domain.forcing_terms = [] |
---|
2926 | domain.forcing_terms.append( Inflow(domain, rate=2.0, center=(1,1), radius=1) ) |
---|
2927 | |
---|
2928 | domain.compute_forcing_terms() |
---|
2929 | #print domain.quantities['stage'].explicit_update |
---|
2930 | |
---|
2931 | assert num.allclose(domain.quantities['stage'].explicit_update[1], 2.0/pi) |
---|
2932 | assert num.allclose(domain.quantities['stage'].explicit_update[0], 2.0/pi) |
---|
2933 | assert num.allclose(domain.quantities['stage'].explicit_update[2:], 0) |
---|
2934 | |
---|
2935 | |
---|
2936 | def test_inflow_using_circle_function(self): |
---|
2937 | from math import pi, cos, sin |
---|
2938 | |
---|
2939 | a = [0.0, 0.0] |
---|
2940 | b = [0.0, 2.0] |
---|
2941 | c = [2.0, 0.0] |
---|
2942 | d = [0.0, 4.0] |
---|
2943 | e = [2.0, 2.0] |
---|
2944 | f = [4.0, 0.0] |
---|
2945 | |
---|
2946 | points = [a, b, c, d, e, f] |
---|
2947 | #bac, bce, ecf, dbe |
---|
2948 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
2949 | |
---|
2950 | |
---|
2951 | domain = Domain(points, vertices) |
---|
2952 | |
---|
2953 | # Flat surface with 1m of water |
---|
2954 | domain.set_quantity('elevation', 0) |
---|
2955 | domain.set_quantity('stage', 1.0) |
---|
2956 | domain.set_quantity('friction', 0) |
---|
2957 | |
---|
2958 | Br = Reflective_boundary(domain) |
---|
2959 | domain.set_boundary({'exterior': Br}) |
---|
2960 | |
---|
2961 | # Setup only one forcing term, time dependent inflow of 2 m^3/s on a circle affecting triangles #0 and #1 (bac and bce) |
---|
2962 | domain.forcing_terms = [] |
---|
2963 | domain.forcing_terms.append( Inflow(domain, rate=lambda t: 2., center=(1,1), radius=1) ) |
---|
2964 | |
---|
2965 | domain.compute_forcing_terms() |
---|
2966 | |
---|
2967 | assert num.allclose(domain.quantities['stage'].explicit_update[1], 2.0/pi) |
---|
2968 | assert num.allclose(domain.quantities['stage'].explicit_update[0], 2.0/pi) |
---|
2969 | assert num.allclose(domain.quantities['stage'].explicit_update[2:], 0) |
---|
2970 | |
---|
2971 | |
---|
2972 | |
---|
2973 | |
---|
2974 | def test_inflow_catch_too_few_triangles(self): |
---|
2975 | """test_inflow_catch_too_few_triangles |
---|
2976 | |
---|
2977 | Test that exception is thrown if no triangles are covered by the inflow area |
---|
2978 | """ |
---|
2979 | from math import pi, cos, sin |
---|
2980 | |
---|
2981 | a = [0.0, 0.0] |
---|
2982 | b = [0.0, 2.0] |
---|
2983 | c = [2.0, 0.0] |
---|
2984 | d = [0.0, 4.0] |
---|
2985 | e = [2.0, 2.0] |
---|
2986 | f = [4.0, 0.0] |
---|
2987 | |
---|
2988 | points = [a, b, c, d, e, f] |
---|
2989 | #bac, bce, ecf, dbe |
---|
2990 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
2991 | |
---|
2992 | |
---|
2993 | domain = Domain(points, vertices) |
---|
2994 | |
---|
2995 | # Flat surface with 1m of water |
---|
2996 | domain.set_quantity('elevation', 0) |
---|
2997 | domain.set_quantity('stage', 1.0) |
---|
2998 | domain.set_quantity('friction', 0) |
---|
2999 | |
---|
3000 | Br = Reflective_boundary(domain) |
---|
3001 | domain.set_boundary({'exterior': Br}) |
---|
3002 | |
---|
3003 | # Setup only one forcing term, constant inflow of 2 m^3/s on a circle affecting triangles #0 and #1 (bac and bce) |
---|
3004 | |
---|
3005 | try: |
---|
3006 | Inflow(domain, rate=2.0, center=(1,1.1), radius=0.01) |
---|
3007 | except: |
---|
3008 | pass |
---|
3009 | else: |
---|
3010 | msg = 'Should have raised exception' |
---|
3011 | raise Exception, msg |
---|
3012 | |
---|
3013 | |
---|
3014 | |
---|
3015 | |
---|
3016 | def Xtest_inflow_outflow_conservation(self): |
---|
3017 | """test_inflow_outflow_conservation |
---|
3018 | |
---|
3019 | Test what happens if water is abstracted from one area and |
---|
3020 | injected into another - especially if there is not enough |
---|
3021 | water to match the abstraction. |
---|
3022 | This tests that the total volume is kept constant under a range of |
---|
3023 | scenarios. |
---|
3024 | |
---|
3025 | This test will fail as the problem was only fixed for culverts. |
---|
3026 | """ |
---|
3027 | |
---|
3028 | from math import pi, cos, sin |
---|
3029 | |
---|
3030 | length = 20. |
---|
3031 | width = 10. |
---|
3032 | |
---|
3033 | dx = dy = 2 # 1 or 2 OK |
---|
3034 | points, vertices, boundary = rectangular_cross(int(length/dx), |
---|
3035 | int(width/dy), |
---|
3036 | len1=length, |
---|
3037 | len2=width) |
---|
3038 | domain = Domain(points, vertices, boundary) |
---|
3039 | domain.set_name('test_inflow_conservation') # Output name |
---|
3040 | domain.set_default_order(2) |
---|
3041 | |
---|
3042 | |
---|
3043 | # Flat surface with 1m of water |
---|
3044 | stage = 1.0 |
---|
3045 | domain.set_quantity('elevation', 0) |
---|
3046 | domain.set_quantity('stage', stage) |
---|
3047 | domain.set_quantity('friction', 0) |
---|
3048 | |
---|
3049 | Br = Reflective_boundary(domain) |
---|
3050 | domain.set_boundary({'left': Br, 'right': Br, 'bottom': Br, 'top': Br}) |
---|
3051 | |
---|
3052 | # Setup one forcing term, constant inflow of 2 m^3/s on a circle |
---|
3053 | domain.forcing_terms = [] |
---|
3054 | domain.forcing_terms.append(Inflow(domain, rate=2.0, center=(5,5), radius=1)) |
---|
3055 | |
---|
3056 | domain.compute_forcing_terms() |
---|
3057 | #print domain.quantities['stage'].explicit_update |
---|
3058 | |
---|
3059 | # Check that update values are correct |
---|
3060 | for x in domain.quantities['stage'].explicit_update: |
---|
3061 | assert num.allclose(x, 2.0/pi) or num.allclose(x, 0.0) |
---|
3062 | |
---|
3063 | |
---|
3064 | # Check volumes without inflow |
---|
3065 | domain.forcing_terms = [] |
---|
3066 | initial_volume = domain.quantities['stage'].get_integral() |
---|
3067 | |
---|
3068 | assert num.allclose(initial_volume, width*length*stage) |
---|
3069 | |
---|
3070 | for t in domain.evolve(yieldstep = 0.05, finaltime = 5.0): |
---|
3071 | volume = domain.quantities['stage'].get_integral() |
---|
3072 | assert num.allclose (volume, initial_volume) |
---|
3073 | |
---|
3074 | |
---|
3075 | # Now apply the inflow and check volumes for a range of stage values |
---|
3076 | for stage in [2.0, 1.0, 0.5, 0.25, 0.1, 0.0]: |
---|
3077 | domain.time = 0.0 |
---|
3078 | domain.set_quantity('stage', stage) |
---|
3079 | |
---|
3080 | domain.forcing_terms = [] |
---|
3081 | domain.forcing_terms.append(Inflow(domain, rate=2.0, center=(5,5), radius=1)) |
---|
3082 | initial_volume = domain.quantities['stage'].get_integral() |
---|
3083 | predicted_volume = initial_volume |
---|
3084 | dt = 0.05 |
---|
3085 | for t in domain.evolve(yieldstep = dt, finaltime = 5.0): |
---|
3086 | volume = domain.quantities['stage'].get_integral() |
---|
3087 | |
---|
3088 | assert num.allclose (volume, predicted_volume) |
---|
3089 | predicted_volume = predicted_volume + 2.0/pi/100/dt # Why 100? |
---|
3090 | |
---|
3091 | |
---|
3092 | # Apply equivalent outflow only and check volumes for a range of stage values |
---|
3093 | for stage in [2.0, 1.0, 0.5, 0.25, 0.1, 0.0]: |
---|
3094 | print stage |
---|
3095 | |
---|
3096 | domain.time = 0.0 |
---|
3097 | domain.set_quantity('stage', stage) |
---|
3098 | domain.forcing_terms = [] |
---|
3099 | domain.forcing_terms.append(Inflow(domain, rate=-2.0, center=(15,5), radius=1)) |
---|
3100 | initial_volume = domain.quantities['stage'].get_integral() |
---|
3101 | predicted_volume = initial_volume |
---|
3102 | dt = 0.05 |
---|
3103 | for t in domain.evolve(yieldstep = dt, finaltime = 5.0): |
---|
3104 | volume = domain.quantities['stage'].get_integral() |
---|
3105 | |
---|
3106 | print t, volume, predicted_volume |
---|
3107 | assert num.allclose (volume, predicted_volume) |
---|
3108 | predicted_volume = predicted_volume - 2.0/pi/100/dt # Why 100? |
---|
3109 | |
---|
3110 | |
---|
3111 | # Apply both inflow and outflow and check volumes being constant for a |
---|
3112 | # range of stage values |
---|
3113 | for stage in [2.0, 1.0, 0.5, 0.25, 0.1, 0.0]: |
---|
3114 | print stage |
---|
3115 | |
---|
3116 | domain.time = 0.0 |
---|
3117 | domain.set_quantity('stage', stage) |
---|
3118 | domain.forcing_terms = [] |
---|
3119 | domain.forcing_terms.append(Inflow(domain, rate=2.0, center=(5,5), radius=1)) |
---|
3120 | domain.forcing_terms.append(Inflow(domain, rate=-2.0, center=(15,5), radius=1)) |
---|
3121 | initial_volume = domain.quantities['stage'].get_integral() |
---|
3122 | |
---|
3123 | dt = 0.05 |
---|
3124 | for t in domain.evolve(yieldstep = dt, finaltime = 5.0): |
---|
3125 | volume = domain.quantities['stage'].get_integral() |
---|
3126 | |
---|
3127 | print t, volume |
---|
3128 | assert num.allclose (volume, initial_volume) |
---|
3129 | |
---|
3130 | |
---|
3131 | |
---|
3132 | |
---|
3133 | ##################################################### |
---|
3134 | def test_first_order_extrapolator_const_z(self): |
---|
3135 | |
---|
3136 | a = [0.0, 0.0] |
---|
3137 | b = [0.0, 2.0] |
---|
3138 | c = [2.0, 0.0] |
---|
3139 | d = [0.0, 4.0] |
---|
3140 | e = [2.0, 2.0] |
---|
3141 | f = [4.0, 0.0] |
---|
3142 | |
---|
3143 | points = [a, b, c, d, e, f] |
---|
3144 | #bac, bce, ecf, dbe |
---|
3145 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
3146 | |
---|
3147 | domain = Domain(points, vertices) |
---|
3148 | val0 = 2.+2.0/3 |
---|
3149 | val1 = 4.+4.0/3 |
---|
3150 | val2 = 8.+2.0/3 |
---|
3151 | val3 = 2.+8.0/3 |
---|
3152 | |
---|
3153 | zl=zr=-3.75 #Assume constant bed (must be less than stage) |
---|
3154 | domain.set_quantity('elevation', zl*num.ones( (4,3) )) |
---|
3155 | domain.set_quantity('stage', [[val0, val0-1, val0-2], |
---|
3156 | [val1, val1+1, val1], |
---|
3157 | [val2, val2-2, val2], |
---|
3158 | [val3-0.5, val3, val3]]) |
---|
3159 | |
---|
3160 | |
---|
3161 | |
---|
3162 | domain._order_ = 1 |
---|
3163 | domain.distribute_to_vertices_and_edges() |
---|
3164 | |
---|
3165 | #Check that centroid values were distributed to vertices |
---|
3166 | C = domain.quantities['stage'].centroid_values |
---|
3167 | for i in range(3): |
---|
3168 | assert num.allclose( domain.quantities['stage'].vertex_values[:,i], C) |
---|
3169 | |
---|
3170 | |
---|
3171 | def test_first_order_limiter_variable_z(self): |
---|
3172 | #Check that first order limiter follows bed_slope |
---|
3173 | from anuga.config import epsilon |
---|
3174 | |
---|
3175 | a = [0.0, 0.0] |
---|
3176 | b = [0.0, 2.0] |
---|
3177 | c = [2.0,0.0] |
---|
3178 | d = [0.0, 4.0] |
---|
3179 | e = [2.0, 2.0] |
---|
3180 | f = [4.0,0.0] |
---|
3181 | |
---|
3182 | points = [a, b, c, d, e, f] |
---|
3183 | #bac, bce, ecf, dbe |
---|
3184 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
3185 | |
---|
3186 | domain = Domain(points, vertices) |
---|
3187 | val0 = 2.+2.0/3 |
---|
3188 | val1 = 4.+4.0/3 |
---|
3189 | val2 = 8.+2.0/3 |
---|
3190 | val3 = 2.+8.0/3 |
---|
3191 | |
---|
3192 | domain.set_quantity('elevation', [[0,0,0], [6,0,0], |
---|
3193 | [6,6,6], [6,6,6]]) |
---|
3194 | domain.set_quantity('stage', [[val0, val0, val0], |
---|
3195 | [val1, val1, val1], |
---|
3196 | [val2, val2, val2], |
---|
3197 | [val3, val3, val3]]) |
---|
3198 | |
---|
3199 | E = domain.quantities['elevation'].vertex_values |
---|
3200 | L = domain.quantities['stage'].vertex_values |
---|
3201 | |
---|
3202 | |
---|
3203 | #Check that some stages are not above elevation (within eps) |
---|
3204 | #- so that the limiter has something to work with |
---|
3205 | assert not num.alltrue(num.alltrue(num.greater_equal(L,E-epsilon))) |
---|
3206 | |
---|
3207 | domain._order_ = 1 |
---|
3208 | domain.distribute_to_vertices_and_edges() |
---|
3209 | |
---|
3210 | #Check that all stages are above elevation (within eps) |
---|
3211 | assert num.alltrue(num.alltrue(num.greater_equal(L,E-epsilon))) |
---|
3212 | |
---|
3213 | |
---|
3214 | ##################################################### |
---|
3215 | def test_distribute_basic(self): |
---|
3216 | #Using test data generated by abstract_2d_finite_volumes-2 |
---|
3217 | #Assuming no friction and flat bed (0.0) |
---|
3218 | |
---|
3219 | a = [0.0, 0.0] |
---|
3220 | b = [0.0, 2.0] |
---|
3221 | c = [2.0, 0.0] |
---|
3222 | d = [0.0, 4.0] |
---|
3223 | e = [2.0, 2.0] |
---|
3224 | f = [4.0, 0.0] |
---|
3225 | |
---|
3226 | points = [a, b, c, d, e, f] |
---|
3227 | #bac, bce, ecf, dbe |
---|
3228 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
3229 | |
---|
3230 | domain = Domain(points, vertices) |
---|
3231 | |
---|
3232 | val0 = 2. |
---|
3233 | val1 = 4. |
---|
3234 | val2 = 8. |
---|
3235 | val3 = 2. |
---|
3236 | |
---|
3237 | domain.set_quantity('stage', [val0, val1, val2, val3], |
---|
3238 | location='centroids') |
---|
3239 | L = domain.quantities['stage'].vertex_values |
---|
3240 | |
---|
3241 | #First order |
---|
3242 | domain._order_ = 1 |
---|
3243 | domain.distribute_to_vertices_and_edges() |
---|
3244 | assert num.allclose(L[1], val1) |
---|
3245 | |
---|
3246 | #Second order |
---|
3247 | domain._order_ = 2 |
---|
3248 | domain.beta_w = 0.9 |
---|
3249 | domain.beta_w_dry = 0.9 |
---|
3250 | domain.beta_uh = 0.9 |
---|
3251 | domain.beta_uh_dry = 0.9 |
---|
3252 | domain.beta_vh = 0.9 |
---|
3253 | domain.beta_vh_dry = 0.9 |
---|
3254 | domain.distribute_to_vertices_and_edges() |
---|
3255 | assert num.allclose(L[1], [2.2, 4.9, 4.9]) |
---|
3256 | |
---|
3257 | |
---|
3258 | |
---|
3259 | def test_distribute_away_from_bed(self): |
---|
3260 | #Using test data generated by abstract_2d_finite_volumes-2 |
---|
3261 | #Assuming no friction and flat bed (0.0) |
---|
3262 | |
---|
3263 | a = [0.0, 0.0] |
---|
3264 | b = [0.0, 2.0] |
---|
3265 | c = [2.0, 0.0] |
---|
3266 | d = [0.0, 4.0] |
---|
3267 | e = [2.0, 2.0] |
---|
3268 | f = [4.0, 0.0] |
---|
3269 | |
---|
3270 | points = [a, b, c, d, e, f] |
---|
3271 | #bac, bce, ecf, dbe |
---|
3272 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
3273 | |
---|
3274 | domain = Domain(points, vertices) |
---|
3275 | L = domain.quantities['stage'].vertex_values |
---|
3276 | |
---|
3277 | def stage(x,y): |
---|
3278 | return x**2 |
---|
3279 | |
---|
3280 | domain.set_quantity('stage', stage, location='centroids') |
---|
3281 | |
---|
3282 | domain.quantities['stage'].compute_gradients() |
---|
3283 | |
---|
3284 | a, b = domain.quantities['stage'].get_gradients() |
---|
3285 | |
---|
3286 | assert num.allclose(a[1], 3.33333334) |
---|
3287 | assert num.allclose(b[1], 0.0) |
---|
3288 | |
---|
3289 | domain._order_ = 1 |
---|
3290 | domain.distribute_to_vertices_and_edges() |
---|
3291 | assert num.allclose(L[1], 1.77777778) |
---|
3292 | |
---|
3293 | domain._order_ = 2 |
---|
3294 | domain.beta_w = 0.9 |
---|
3295 | domain.beta_w_dry = 0.9 |
---|
3296 | domain.beta_uh = 0.9 |
---|
3297 | domain.beta_uh_dry = 0.9 |
---|
3298 | domain.beta_vh = 0.9 |
---|
3299 | domain.beta_vh_dry = 0.9 |
---|
3300 | domain.distribute_to_vertices_and_edges() |
---|
3301 | assert num.allclose(L[1], [0.57777777, 2.37777778, 2.37777778]) |
---|
3302 | |
---|
3303 | |
---|
3304 | |
---|
3305 | def test_distribute_away_from_bed1(self): |
---|
3306 | #Using test data generated by abstract_2d_finite_volumes-2 |
---|
3307 | #Assuming no friction and flat bed (0.0) |
---|
3308 | |
---|
3309 | a = [0.0, 0.0] |
---|
3310 | b = [0.0, 2.0] |
---|
3311 | c = [2.0, 0.0] |
---|
3312 | d = [0.0, 4.0] |
---|
3313 | e = [2.0, 2.0] |
---|
3314 | f = [4.0, 0.0] |
---|
3315 | |
---|
3316 | points = [a, b, c, d, e, f] |
---|
3317 | #bac, bce, ecf, dbe |
---|
3318 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
3319 | |
---|
3320 | domain = Domain(points, vertices) |
---|
3321 | L = domain.quantities['stage'].vertex_values |
---|
3322 | |
---|
3323 | def stage(x,y): |
---|
3324 | return x**4+y**2 |
---|
3325 | |
---|
3326 | domain.set_quantity('stage', stage, location='centroids') |
---|
3327 | #print domain.quantities['stage'].centroid_values |
---|
3328 | |
---|
3329 | domain.quantities['stage'].compute_gradients() |
---|
3330 | a, b = domain.quantities['stage'].get_gradients() |
---|
3331 | assert num.allclose(a[1], 25.18518519) |
---|
3332 | assert num.allclose(b[1], 3.33333333) |
---|
3333 | |
---|
3334 | domain._order_ = 1 |
---|
3335 | domain.distribute_to_vertices_and_edges() |
---|
3336 | assert num.allclose(L[1], 4.9382716) |
---|
3337 | |
---|
3338 | domain._order_ = 2 |
---|
3339 | domain.beta_w = 0.9 |
---|
3340 | domain.beta_w_dry = 0.9 |
---|
3341 | domain.beta_uh = 0.9 |
---|
3342 | domain.beta_uh_dry = 0.9 |
---|
3343 | domain.beta_vh = 0.9 |
---|
3344 | domain.beta_vh_dry = 0.9 |
---|
3345 | domain.distribute_to_vertices_and_edges() |
---|
3346 | assert num.allclose(L[1], [1.07160494, 6.46058131, 7.28262855]) |
---|
3347 | |
---|
3348 | |
---|
3349 | |
---|
3350 | def test_distribute_near_bed(self): |
---|
3351 | |
---|
3352 | a = [0.0, 0.0] |
---|
3353 | b = [0.0, 2.0] |
---|
3354 | c = [2.0, 0.0] |
---|
3355 | d = [0.0, 4.0] |
---|
3356 | e = [2.0, 2.0] |
---|
3357 | f = [4.0, 0.0] |
---|
3358 | |
---|
3359 | points = [a, b, c, d, e, f] |
---|
3360 | #bac, bce, ecf, dbe |
---|
3361 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
3362 | |
---|
3363 | domain = Domain(points, vertices) |
---|
3364 | |
---|
3365 | |
---|
3366 | #Set up for a gradient of (10,0) at mid triangle (bce) |
---|
3367 | def slope(x, y): |
---|
3368 | return 10*x |
---|
3369 | |
---|
3370 | h = 0.1 |
---|
3371 | def stage(x, y): |
---|
3372 | return slope(x, y) + h |
---|
3373 | |
---|
3374 | domain.set_quantity('elevation', slope) |
---|
3375 | domain.set_quantity('stage', stage, location='centroids') |
---|
3376 | |
---|
3377 | #print domain.quantities['elevation'].centroid_values |
---|
3378 | #print domain.quantities['stage'].centroid_values |
---|
3379 | |
---|
3380 | E = domain.quantities['elevation'].vertex_values |
---|
3381 | L = domain.quantities['stage'].vertex_values |
---|
3382 | |
---|
3383 | # Get reference values |
---|
3384 | volumes = [] |
---|
3385 | for i in range(len(L)): |
---|
3386 | volumes.append(num.sum(L[i])/3) |
---|
3387 | assert num.allclose(volumes[i], domain.quantities['stage'].centroid_values[i]) |
---|
3388 | |
---|
3389 | |
---|
3390 | domain._order_ = 1 |
---|
3391 | |
---|
3392 | domain.tight_slope_limiters = 0 |
---|
3393 | domain.distribute_to_vertices_and_edges() |
---|
3394 | assert num.allclose(L[1], [0.1, 20.1, 20.1]) |
---|
3395 | for i in range(len(L)): |
---|
3396 | assert num.allclose(volumes[i], num.sum(L[i])/3) |
---|
3397 | |
---|
3398 | domain.tight_slope_limiters = 1 # Allow triangle to be flatter (closer to bed) |
---|
3399 | domain.distribute_to_vertices_and_edges() |
---|
3400 | assert num.allclose(L[1], [0.298, 20.001, 20.001]) |
---|
3401 | for i in range(len(L)): |
---|
3402 | assert num.allclose(volumes[i], num.sum(L[i])/3) |
---|
3403 | |
---|
3404 | domain._order_ = 2 |
---|
3405 | |
---|
3406 | domain.tight_slope_limiters = 0 |
---|
3407 | domain.distribute_to_vertices_and_edges() |
---|
3408 | assert num.allclose(L[1], [0.1, 20.1, 20.1]) |
---|
3409 | for i in range(len(L)): |
---|
3410 | assert num.allclose(volumes[i], num.sum(L[i])/3) |
---|
3411 | |
---|
3412 | domain.tight_slope_limiters = 1 # Allow triangle to be flatter (closer to bed) |
---|
3413 | domain.distribute_to_vertices_and_edges() |
---|
3414 | assert num.allclose(L[1], [0.298, 20.001, 20.001]) |
---|
3415 | for i in range(len(L)): |
---|
3416 | assert num.allclose(volumes[i], num.sum(L[i])/3) |
---|
3417 | |
---|
3418 | |
---|
3419 | |
---|
3420 | def test_distribute_near_bed1(self): |
---|
3421 | |
---|
3422 | a = [0.0, 0.0] |
---|
3423 | b = [0.0, 2.0] |
---|
3424 | c = [2.0, 0.0] |
---|
3425 | d = [0.0, 4.0] |
---|
3426 | e = [2.0, 2.0] |
---|
3427 | f = [4.0, 0.0] |
---|
3428 | |
---|
3429 | points = [a, b, c, d, e, f] |
---|
3430 | #bac, bce, ecf, dbe |
---|
3431 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
3432 | |
---|
3433 | domain = Domain(points, vertices) |
---|
3434 | |
---|
3435 | |
---|
3436 | #Set up for a gradient of (8,2) at mid triangle (bce) |
---|
3437 | def slope(x, y): |
---|
3438 | return x**4+y**2 |
---|
3439 | |
---|
3440 | h = 0.1 |
---|
3441 | def stage(x,y): |
---|
3442 | return slope(x,y)+h |
---|
3443 | |
---|
3444 | domain.set_quantity('elevation', slope) |
---|
3445 | domain.set_quantity('stage', stage) |
---|
3446 | |
---|
3447 | #print domain.quantities['elevation'].centroid_values |
---|
3448 | #print domain.quantities['stage'].centroid_values |
---|
3449 | |
---|
3450 | E = domain.quantities['elevation'].vertex_values |
---|
3451 | L = domain.quantities['stage'].vertex_values |
---|
3452 | |
---|
3453 | # Get reference values |
---|
3454 | volumes = [] |
---|
3455 | for i in range(len(L)): |
---|
3456 | volumes.append(num.sum(L[i])/3) |
---|
3457 | assert num.allclose(volumes[i], domain.quantities['stage'].centroid_values[i]) |
---|
3458 | |
---|
3459 | #print E |
---|
3460 | domain._order_ = 1 |
---|
3461 | |
---|
3462 | domain.tight_slope_limiters = 0 |
---|
3463 | domain.distribute_to_vertices_and_edges() |
---|
3464 | assert num.allclose(L[1], [4.1, 16.1, 20.1]) |
---|
3465 | for i in range(len(L)): |
---|
3466 | assert num.allclose(volumes[i], num.sum(L[i])/3) |
---|
3467 | |
---|
3468 | |
---|
3469 | domain.tight_slope_limiters = 1 # Allow triangle to be flatter (closer to bed) |
---|
3470 | domain.distribute_to_vertices_and_edges() |
---|
3471 | assert num.allclose(L[1], [4.2386, 16.0604, 20.001]) |
---|
3472 | for i in range(len(L)): |
---|
3473 | assert num.allclose(volumes[i], num.sum(L[i])/3) |
---|
3474 | |
---|
3475 | |
---|
3476 | domain._order_ = 2 |
---|
3477 | |
---|
3478 | domain.tight_slope_limiters = 0 |
---|
3479 | domain.distribute_to_vertices_and_edges() |
---|
3480 | assert num.allclose(L[1], [4.1, 16.1, 20.1]) |
---|
3481 | for i in range(len(L)): |
---|
3482 | assert num.allclose(volumes[i], num.sum(L[i])/3) |
---|
3483 | |
---|
3484 | domain.tight_slope_limiters = 1 # Allow triangle to be flatter (closer to bed) |
---|
3485 | domain.distribute_to_vertices_and_edges() |
---|
3486 | #print L[1] |
---|
3487 | assert num.allclose(L[1], [4.23370103, 16.06529897, 20.001]) or\ |
---|
3488 | num.allclose(L[1], [4.18944138, 16.10955862, 20.001]) or\ |
---|
3489 | num.allclose(L[1], [4.19351461, 16.10548539, 20.001]) # old limiters |
---|
3490 | |
---|
3491 | for i in range(len(L)): |
---|
3492 | assert num.allclose(volumes[i], num.sum(L[i])/3) |
---|
3493 | |
---|
3494 | |
---|
3495 | def test_second_order_distribute_real_data(self): |
---|
3496 | #Using test data generated by abstract_2d_finite_volumes-2 |
---|
3497 | #Assuming no friction and flat bed (0.0) |
---|
3498 | |
---|
3499 | a = [0.0, 0.0] |
---|
3500 | b = [0.0, 1.0/5] |
---|
3501 | c = [0.0, 2.0/5] |
---|
3502 | d = [1.0/5, 0.0] |
---|
3503 | e = [1.0/5, 1.0/5] |
---|
3504 | f = [1.0/5, 2.0/5] |
---|
3505 | g = [2.0/5, 2.0/5] |
---|
3506 | |
---|
3507 | points = [a, b, c, d, e, f, g] |
---|
3508 | #bae, efb, cbf, feg |
---|
3509 | vertices = [ [1,0,4], [4,5,1], [2,1,5], [5,4,6]] |
---|
3510 | |
---|
3511 | domain = Domain(points, vertices) |
---|
3512 | |
---|
3513 | def slope(x, y): |
---|
3514 | return -x/3 |
---|
3515 | |
---|
3516 | domain.set_quantity('elevation', slope) |
---|
3517 | domain.set_quantity('stage', |
---|
3518 | [0.01298164, 0.00365611, |
---|
3519 | 0.01440365, -0.0381856437096], |
---|
3520 | location='centroids') |
---|
3521 | domain.set_quantity('xmomentum', |
---|
3522 | [0.00670439, 0.01263789, |
---|
3523 | 0.00647805, 0.0178180740668], |
---|
3524 | location='centroids') |
---|
3525 | domain.set_quantity('ymomentum', |
---|
3526 | [-7.23510980e-004, -6.30413883e-005, |
---|
3527 | 6.30413883e-005, 0.000200907255866], |
---|
3528 | location='centroids') |
---|
3529 | |
---|
3530 | E = domain.quantities['elevation'].vertex_values |
---|
3531 | L = domain.quantities['stage'].vertex_values |
---|
3532 | X = domain.quantities['xmomentum'].vertex_values |
---|
3533 | Y = domain.quantities['ymomentum'].vertex_values |
---|
3534 | |
---|
3535 | #print E |
---|
3536 | domain._order_ = 2 |
---|
3537 | domain.beta_w = 0.9 |
---|
3538 | domain.beta_w_dry = 0.9 |
---|
3539 | domain.beta_uh = 0.9 |
---|
3540 | domain.beta_uh_dry = 0.9 |
---|
3541 | domain.beta_vh = 0.9 |
---|
3542 | domain.beta_vh_dry = 0.9 |
---|
3543 | |
---|
3544 | # FIXME (Ole): Need tests where this is commented out |
---|
3545 | domain.tight_slope_limiters = 0 # Backwards compatibility (14/4/7) |
---|
3546 | domain.use_centroid_velocities = 0 # Backwards compatibility (7/5/8) |
---|
3547 | |
---|
3548 | |
---|
3549 | domain.distribute_to_vertices_and_edges() |
---|
3550 | |
---|
3551 | #print L[1,:] |
---|
3552 | #print X[1,:] |
---|
3553 | #print Y[1,:] |
---|
3554 | |
---|
3555 | assert num.allclose(L[1,:], [-0.00825735775384, |
---|
3556 | -0.00801881482869, |
---|
3557 | 0.0272445025825]) |
---|
3558 | assert num.allclose(X[1,:], [0.0143507718962, |
---|
3559 | 0.0142502147066, |
---|
3560 | 0.00931268339717]) |
---|
3561 | assert num.allclose(Y[1,:], [-0.000117062180693, |
---|
3562 | 7.94434448109e-005, |
---|
3563 | -0.000151505429018]) |
---|
3564 | |
---|
3565 | |
---|
3566 | |
---|
3567 | def test_balance_deep_and_shallow(self): |
---|
3568 | """Test that balanced limiters preserve conserved quantites. |
---|
3569 | This test is using old depth based balanced limiters |
---|
3570 | """ |
---|
3571 | import copy |
---|
3572 | |
---|
3573 | a = [0.0, 0.0] |
---|
3574 | b = [0.0, 2.0] |
---|
3575 | c = [2.0, 0.0] |
---|
3576 | d = [0.0, 4.0] |
---|
3577 | e = [2.0, 2.0] |
---|
3578 | f = [4.0, 0.0] |
---|
3579 | |
---|
3580 | points = [a, b, c, d, e, f] |
---|
3581 | |
---|
3582 | #bac, bce, ecf, dbe |
---|
3583 | elements = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4] ] |
---|
3584 | |
---|
3585 | domain = Domain(points, elements) |
---|
3586 | domain.check_integrity() |
---|
3587 | |
---|
3588 | #Create a deliberate overshoot |
---|
3589 | domain.set_quantity('stage', [[3,0,3], [2,2,6], [5,3,8], [8,3,5]]) |
---|
3590 | domain.set_quantity('elevation', 0) #Flat bed |
---|
3591 | stage = domain.quantities['stage'] |
---|
3592 | |
---|
3593 | ref_centroid_values = copy.copy(stage.centroid_values[:]) #Copy |
---|
3594 | |
---|
3595 | #Limit |
---|
3596 | domain.tight_slope_limiters = 0 |
---|
3597 | domain.distribute_to_vertices_and_edges() |
---|
3598 | |
---|
3599 | #Assert that quantities are conserved |
---|
3600 | for k in range(len(domain)): |
---|
3601 | assert num.allclose (ref_centroid_values[k], |
---|
3602 | num.sum(stage.vertex_values[k,:])/3) |
---|
3603 | |
---|
3604 | |
---|
3605 | #Now try with a non-flat bed - closely hugging initial stage in places |
---|
3606 | #This will create alphas in the range [0, 0.478260, 1] |
---|
3607 | domain.set_quantity('stage', [[3,0,3], [2,2,6], [5,3,8], [8,3,5]]) |
---|
3608 | domain.set_quantity('elevation', [[0,0,0], |
---|
3609 | [1.8,1.9,5.9], |
---|
3610 | [4.6,0,0], |
---|
3611 | [0,2,4]]) |
---|
3612 | stage = domain.quantities['stage'] |
---|
3613 | |
---|
3614 | ref_centroid_values = copy.copy(stage.centroid_values[:]) #Copy |
---|
3615 | ref_vertex_values = copy.copy(stage.vertex_values[:]) #Copy |
---|
3616 | |
---|
3617 | #Limit |
---|
3618 | domain.tight_slope_limiters = 0 |
---|
3619 | domain.distribute_to_vertices_and_edges() |
---|
3620 | |
---|
3621 | |
---|
3622 | #Assert that all vertex quantities have changed |
---|
3623 | for k in range(len(domain)): |
---|
3624 | #print ref_vertex_values[k,:], stage.vertex_values[k,:] |
---|
3625 | assert not num.allclose (ref_vertex_values[k,:], stage.vertex_values[k,:]) |
---|
3626 | #and assert that quantities are still conserved |
---|
3627 | for k in range(len(domain)): |
---|
3628 | assert num.allclose (ref_centroid_values[k], |
---|
3629 | num.sum(stage.vertex_values[k,:])/3) |
---|
3630 | |
---|
3631 | |
---|
3632 | # Check actual results |
---|
3633 | assert num.allclose (stage.vertex_values, |
---|
3634 | [[2,2,2], |
---|
3635 | [1.93333333, 2.03333333, 6.03333333], |
---|
3636 | [6.93333333, 4.53333333, 4.53333333], |
---|
3637 | [5.33333333, 5.33333333, 5.33333333]]) |
---|
3638 | |
---|
3639 | |
---|
3640 | def test_balance_deep_and_shallow_tight_SL(self): |
---|
3641 | """Test that balanced limiters preserve conserved quantites. |
---|
3642 | This test is using Tight Slope Limiters |
---|
3643 | """ |
---|
3644 | import copy |
---|
3645 | |
---|
3646 | a = [0.0, 0.0] |
---|
3647 | b = [0.0, 2.0] |
---|
3648 | c = [2.0, 0.0] |
---|
3649 | d = [0.0, 4.0] |
---|
3650 | e = [2.0, 2.0] |
---|
3651 | f = [4.0, 0.0] |
---|
3652 | |
---|
3653 | points = [a, b, c, d, e, f] |
---|
3654 | |
---|
3655 | #bac, bce, ecf, dbe |
---|
3656 | elements = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4] ] |
---|
3657 | |
---|
3658 | domain = Domain(points, elements) |
---|
3659 | domain.check_integrity() |
---|
3660 | |
---|
3661 | #Create a deliberate overshoot |
---|
3662 | domain.set_quantity('stage', [[3,0,3], [2,2,6], [5,3,8], [8,3,5]]) |
---|
3663 | domain.set_quantity('elevation', 0) #Flat bed |
---|
3664 | stage = domain.quantities['stage'] |
---|
3665 | |
---|
3666 | ref_centroid_values = copy.copy(stage.centroid_values[:]) #Copy |
---|
3667 | |
---|
3668 | #Limit |
---|
3669 | domain.tight_slope_limiters = 1 |
---|
3670 | domain.distribute_to_vertices_and_edges() |
---|
3671 | |
---|
3672 | #Assert that quantities are conserved |
---|
3673 | for k in range(len(domain)): |
---|
3674 | assert num.allclose (ref_centroid_values[k], |
---|
3675 | num.sum(stage.vertex_values[k,:])/3) |
---|
3676 | |
---|
3677 | |
---|
3678 | #Now try with a non-flat bed - closely hugging initial stage in places |
---|
3679 | #This will create alphas in the range [0, 0.478260, 1] |
---|
3680 | domain.set_quantity('stage', [[3,0,3], [2,2,6], [5,3,8], [8,3,5]]) |
---|
3681 | domain.set_quantity('elevation', [[0,0,0], |
---|
3682 | [1.8,1.9,5.9], |
---|
3683 | [4.6,0,0], |
---|
3684 | [0,2,4]]) |
---|
3685 | stage = domain.quantities['stage'] |
---|
3686 | |
---|
3687 | ref_centroid_values = copy.copy(stage.centroid_values[:]) #Copy |
---|
3688 | ref_vertex_values = copy.copy(stage.vertex_values[:]) #Copy |
---|
3689 | |
---|
3690 | #Limit |
---|
3691 | domain.tight_slope_limiters = 1 |
---|
3692 | domain.distribute_to_vertices_and_edges() |
---|
3693 | |
---|
3694 | |
---|
3695 | #Assert that all vertex quantities have changed |
---|
3696 | for k in range(len(domain)): |
---|
3697 | #print ref_vertex_values[k,:], stage.vertex_values[k,:] |
---|
3698 | assert not num.allclose (ref_vertex_values[k,:], stage.vertex_values[k,:]) |
---|
3699 | #and assert that quantities are still conserved |
---|
3700 | for k in range(len(domain)): |
---|
3701 | assert num.allclose (ref_centroid_values[k], |
---|
3702 | num.sum(stage.vertex_values[k,:])/3) |
---|
3703 | |
---|
3704 | |
---|
3705 | #Also check that Python and C version produce the same |
---|
3706 | # No longer applicable if tight_slope_limiters == 1 |
---|
3707 | #print stage.vertex_values |
---|
3708 | #assert allclose (stage.vertex_values, |
---|
3709 | # [[2,2,2], |
---|
3710 | # [1.93333333, 2.03333333, 6.03333333], |
---|
3711 | # [6.93333333, 4.53333333, 4.53333333], |
---|
3712 | # [5.33333333, 5.33333333, 5.33333333]]) |
---|
3713 | |
---|
3714 | |
---|
3715 | |
---|
3716 | def test_balance_deep_and_shallow_Froude(self): |
---|
3717 | """Test that balanced limiters preserve conserved quantites - |
---|
3718 | and also that excessive Froude numbers are dealt with. |
---|
3719 | This test is using tight slope limiters. |
---|
3720 | """ |
---|
3721 | import copy |
---|
3722 | |
---|
3723 | a = [0.0, 0.0] |
---|
3724 | b = [0.0, 2.0] |
---|
3725 | c = [2.0, 0.0] |
---|
3726 | d = [0.0, 4.0] |
---|
3727 | e = [2.0, 2.0] |
---|
3728 | f = [4.0, 0.0] |
---|
3729 | |
---|
3730 | points = [a, b, c, d, e, f] |
---|
3731 | |
---|
3732 | # bac, bce, ecf, dbe |
---|
3733 | elements = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4] ] |
---|
3734 | |
---|
3735 | domain = Domain(points, elements) |
---|
3736 | domain.check_integrity() |
---|
3737 | domain.tight_slope_limiters = True |
---|
3738 | domain.use_centroid_velocities = True |
---|
3739 | |
---|
3740 | # Create non-flat bed - closely hugging initial stage in places |
---|
3741 | # This will create alphas in the range [0, 0.478260, 1] |
---|
3742 | domain.set_quantity('stage', [[3,0,3], [2,2,6], [5,3,8], [8,3,5]]) |
---|
3743 | domain.set_quantity('elevation', [[0,0,0], |
---|
3744 | [1.8,1.999,5.999], |
---|
3745 | [4.6,0,0], |
---|
3746 | [0,2,4]]) |
---|
3747 | |
---|
3748 | # Create small momenta, that nonetheless will generate large speeds |
---|
3749 | # due to shallow depth at isolated vertices |
---|
3750 | domain.set_quantity('xmomentum', -0.0058) |
---|
3751 | domain.set_quantity('ymomentum', 0.0890) |
---|
3752 | |
---|
3753 | |
---|
3754 | |
---|
3755 | |
---|
3756 | stage = domain.quantities['stage'] |
---|
3757 | elevation = domain.quantities['elevation'] |
---|
3758 | xmomentum = domain.quantities['xmomentum'] |
---|
3759 | ymomentum = domain.quantities['ymomentum'] |
---|
3760 | |
---|
3761 | # Setup triangle #1 to mimick real Froude explosion observed |
---|
3762 | # in the Onslow example 13 Nov 2007. |
---|
3763 | |
---|
3764 | stage.vertex_values[1,:] = [1.6385, 1.6361, 1.2953] |
---|
3765 | elevation.vertex_values[1,:] = [1.6375, 1.6336, 0.4647] |
---|
3766 | xmomentum.vertex_values[1,:] = [-0.0058, -0.0050, -0.0066] |
---|
3767 | ymomentum.vertex_values[1,:] = [0.0890, 0.0890, 0.0890] |
---|
3768 | |
---|
3769 | xmomentum.interpolate() |
---|
3770 | ymomentum.interpolate() |
---|
3771 | stage.interpolate() |
---|
3772 | elevation.interpolate() |
---|
3773 | |
---|
3774 | # Verify interpolation |
---|
3775 | assert num.allclose(stage.centroid_values[1], 1.5233) |
---|
3776 | assert num.allclose(elevation.centroid_values[1], 1.2452667) |
---|
3777 | assert num.allclose(xmomentum.centroid_values[1], -0.0058) |
---|
3778 | assert num.allclose(ymomentum.centroid_values[1], 0.089) |
---|
3779 | |
---|
3780 | # Derived quantities |
---|
3781 | depth = stage-elevation |
---|
3782 | u = xmomentum/depth |
---|
3783 | v = ymomentum/depth |
---|
3784 | |
---|
3785 | denom = (depth*g)**0.5 |
---|
3786 | Fx = u/denom |
---|
3787 | Fy = v/denom |
---|
3788 | |
---|
3789 | |
---|
3790 | # Verify against Onslow example (14 Nov 2007) |
---|
3791 | assert num.allclose(depth.centroid_values[1], 0.278033) |
---|
3792 | assert num.allclose(u.centroid_values[1], -0.0208608) |
---|
3793 | assert num.allclose(v.centroid_values[1], 0.3201055) |
---|
3794 | |
---|
3795 | assert num.allclose(denom.centroid_values[1], |
---|
3796 | num.sqrt(depth.centroid_values[1]*g)) |
---|
3797 | |
---|
3798 | assert num.allclose(u.centroid_values[1]/denom.centroid_values[1], |
---|
3799 | -0.012637746977) |
---|
3800 | assert num.allclose(Fx.centroid_values[1], |
---|
3801 | u.centroid_values[1]/denom.centroid_values[1]) |
---|
3802 | |
---|
3803 | # Check that Froude numbers are small at centroids. |
---|
3804 | assert num.allclose(Fx.centroid_values[1], -0.012637746977) |
---|
3805 | assert num.allclose(Fy.centroid_values[1], 0.193924048435) |
---|
3806 | |
---|
3807 | |
---|
3808 | # But Froude numbers are huge at some vertices and edges |
---|
3809 | assert num.allclose(Fx.vertex_values[1,:], [-5.85888475e+01, |
---|
3810 | -1.27775313e+01, |
---|
3811 | -2.78511420e-03]) |
---|
3812 | |
---|
3813 | assert num.allclose(Fx.edge_values[1,:], [-6.89150773e-03, |
---|
3814 | -7.38672488e-03, |
---|
3815 | -2.35626238e+01]) |
---|
3816 | |
---|
3817 | assert num.allclose(Fy.vertex_values[1,:], [8.99035764e+02, |
---|
3818 | 2.27440057e+02, |
---|
3819 | 3.75568430e-02]) |
---|
3820 | |
---|
3821 | assert num.allclose(Fy.edge_values[1,:], [1.05748998e-01, |
---|
3822 | 1.06035244e-01, |
---|
3823 | 3.88346947e+02]) |
---|
3824 | |
---|
3825 | |
---|
3826 | # The task is now to arrange the limiters such that Froude numbers |
---|
3827 | # remain under control whil at the same time obeying the conservation |
---|
3828 | # laws. |
---|
3829 | |
---|
3830 | |
---|
3831 | ref_centroid_values = copy.copy(stage.centroid_values[:]) #Copy |
---|
3832 | ref_vertex_values = copy.copy(stage.vertex_values[:]) #Copy |
---|
3833 | |
---|
3834 | # Limit (and invoke balance_deep_and_shallow) |
---|
3835 | domain.tight_slope_limiters = 1 |
---|
3836 | domain.distribute_to_vertices_and_edges() |
---|
3837 | |
---|
3838 | # Redo derived quantities |
---|
3839 | depth = stage-elevation |
---|
3840 | u = xmomentum/depth |
---|
3841 | v = ymomentum/depth |
---|
3842 | |
---|
3843 | # Assert that all vertex velocities stay within one |
---|
3844 | # order of magnitude of centroid velocities. |
---|
3845 | #print u.vertex_values[1,:] |
---|
3846 | #print u.centroid_values[1] |
---|
3847 | |
---|
3848 | assert num.alltrue(num.absolute(u.vertex_values[1,:]) <= num.absolute(u.centroid_values[1])*10) |
---|
3849 | assert num.alltrue(num.absolute(v.vertex_values[1,:]) <= num.absolute(v.centroid_values[1])*10) |
---|
3850 | |
---|
3851 | denom = (depth*g)**0.5 |
---|
3852 | Fx = u/denom |
---|
3853 | Fy = v/denom |
---|
3854 | |
---|
3855 | |
---|
3856 | # Assert that Froude numbers are less than max value (TBA) |
---|
3857 | # at vertices, edges and centroids. |
---|
3858 | from anuga.config import maximum_froude_number |
---|
3859 | assert num.alltrue(num.absolute(Fx.vertex_values[1,:]) < maximum_froude_number) |
---|
3860 | assert num.alltrue(num.absolute(Fy.vertex_values[1,:]) < maximum_froude_number) |
---|
3861 | |
---|
3862 | |
---|
3863 | # Assert that all vertex quantities have changed |
---|
3864 | for k in range(len(domain)): |
---|
3865 | #print ref_vertex_values[k,:], stage.vertex_values[k,:] |
---|
3866 | assert not num.allclose (ref_vertex_values[k,:], |
---|
3867 | stage.vertex_values[k,:]) |
---|
3868 | |
---|
3869 | # Assert that quantities are still conserved |
---|
3870 | for k in range(len(domain)): |
---|
3871 | assert num.allclose (ref_centroid_values[k], |
---|
3872 | num.sum(stage.vertex_values[k,:])/3) |
---|
3873 | |
---|
3874 | |
---|
3875 | |
---|
3876 | return |
---|
3877 | |
---|
3878 | qwidth = 12 |
---|
3879 | for k in [1]: #range(len(domain)): |
---|
3880 | print 'Triangle %d (C, V, E)' %k |
---|
3881 | |
---|
3882 | print 'stage'.ljust(qwidth), stage.centroid_values[k],\ |
---|
3883 | stage.vertex_values[k,:], stage.edge_values[k,:] |
---|
3884 | print 'elevation'.ljust(qwidth), elevation.centroid_values[k],\ |
---|
3885 | elevation.vertex_values[k,:], elevation.edge_values[k,:] |
---|
3886 | print 'depth'.ljust(qwidth), depth.centroid_values[k],\ |
---|
3887 | depth.vertex_values[k,:], depth.edge_values[k,:] |
---|
3888 | print 'xmomentum'.ljust(qwidth), xmomentum.centroid_values[k],\ |
---|
3889 | xmomentum.vertex_values[k,:], xmomentum.edge_values[k,:] |
---|
3890 | print 'ymomentum'.ljust(qwidth), ymomentum.centroid_values[k],\ |
---|
3891 | ymomentum.vertex_values[k,:], ymomentum.edge_values[k,:] |
---|
3892 | print 'u'.ljust(qwidth),u.centroid_values[k],\ |
---|
3893 | u.vertex_values[k,:], u.edge_values[k,:] |
---|
3894 | print 'v'.ljust(qwidth), v.centroid_values[k],\ |
---|
3895 | v.vertex_values[k,:], v.edge_values[k,:] |
---|
3896 | print 'Fx'.ljust(qwidth), Fx.centroid_values[k],\ |
---|
3897 | Fx.vertex_values[k,:], Fx.edge_values[k,:] |
---|
3898 | print 'Fy'.ljust(qwidth), Fy.centroid_values[k],\ |
---|
3899 | Fy.vertex_values[k,:], Fy.edge_values[k,:] |
---|
3900 | |
---|
3901 | |
---|
3902 | |
---|
3903 | |
---|
3904 | |
---|
3905 | |
---|
3906 | def test_conservation_1(self): |
---|
3907 | """Test that stage is conserved globally |
---|
3908 | |
---|
3909 | This one uses a flat bed, reflective bdries and a suitable |
---|
3910 | initial condition |
---|
3911 | """ |
---|
3912 | from mesh_factory import rectangular |
---|
3913 | |
---|
3914 | #Create basic mesh |
---|
3915 | points, vertices, boundary = rectangular(6, 6) |
---|
3916 | |
---|
3917 | #Create shallow water domain |
---|
3918 | domain = Domain(points, vertices, boundary) |
---|
3919 | domain.smooth = False |
---|
3920 | domain.default_order=2 |
---|
3921 | |
---|
3922 | #IC |
---|
3923 | def x_slope(x, y): |
---|
3924 | return x/3 |
---|
3925 | |
---|
3926 | domain.set_quantity('elevation', 0) |
---|
3927 | domain.set_quantity('friction', 0) |
---|
3928 | domain.set_quantity('stage', x_slope) |
---|
3929 | |
---|
3930 | # Boundary conditions (reflective everywhere) |
---|
3931 | Br = Reflective_boundary(domain) |
---|
3932 | domain.set_boundary({'left': Br, 'right': Br, 'top': Br, 'bottom': Br}) |
---|
3933 | |
---|
3934 | domain.check_integrity() |
---|
3935 | |
---|
3936 | initial_volume = domain.quantities['stage'].get_integral() |
---|
3937 | initial_xmom = domain.quantities['xmomentum'].get_integral() |
---|
3938 | |
---|
3939 | #print initial_xmom |
---|
3940 | |
---|
3941 | #Evolution |
---|
3942 | for t in domain.evolve(yieldstep = 0.05, finaltime = 5.0): |
---|
3943 | volume = domain.quantities['stage'].get_integral() |
---|
3944 | assert num.allclose (volume, initial_volume) |
---|
3945 | |
---|
3946 | #I don't believe that the total momentum should be the same |
---|
3947 | #It starts with zero and ends with zero though |
---|
3948 | #xmom = domain.quantities['xmomentum'].get_integral() |
---|
3949 | #print xmom |
---|
3950 | #assert allclose (xmom, initial_xmom) |
---|
3951 | |
---|
3952 | os.remove(domain.get_name() + '.sww') |
---|
3953 | |
---|
3954 | |
---|
3955 | def test_conservation_2(self): |
---|
3956 | """Test that stage is conserved globally |
---|
3957 | |
---|
3958 | This one uses a slopy bed, reflective bdries and a suitable |
---|
3959 | initial condition |
---|
3960 | """ |
---|
3961 | from mesh_factory import rectangular |
---|
3962 | |
---|
3963 | #Create basic mesh |
---|
3964 | points, vertices, boundary = rectangular(6, 6) |
---|
3965 | |
---|
3966 | #Create shallow water domain |
---|
3967 | domain = Domain(points, vertices, boundary) |
---|
3968 | domain.smooth = False |
---|
3969 | domain.default_order=2 |
---|
3970 | |
---|
3971 | #IC |
---|
3972 | def x_slope(x, y): |
---|
3973 | return x/3 |
---|
3974 | |
---|
3975 | domain.set_quantity('elevation', x_slope) |
---|
3976 | domain.set_quantity('friction', 0) |
---|
3977 | domain.set_quantity('stage', 0.4) #Steady |
---|
3978 | |
---|
3979 | # Boundary conditions (reflective everywhere) |
---|
3980 | Br = Reflective_boundary(domain) |
---|
3981 | domain.set_boundary({'left': Br, 'right': Br, 'top': Br, 'bottom': Br}) |
---|
3982 | |
---|
3983 | domain.check_integrity() |
---|
3984 | |
---|
3985 | initial_volume = domain.quantities['stage'].get_integral() |
---|
3986 | initial_xmom = domain.quantities['xmomentum'].get_integral() |
---|
3987 | |
---|
3988 | #print initial_xmom |
---|
3989 | |
---|
3990 | #Evolution |
---|
3991 | for t in domain.evolve(yieldstep = 0.05, finaltime = 5.0): |
---|
3992 | volume = domain.quantities['stage'].get_integral() |
---|
3993 | assert num.allclose (volume, initial_volume) |
---|
3994 | |
---|
3995 | #FIXME: What would we expect from momentum |
---|
3996 | #xmom = domain.quantities['xmomentum'].get_integral() |
---|
3997 | #print xmom |
---|
3998 | #assert allclose (xmom, initial_xmom) |
---|
3999 | |
---|
4000 | os.remove(domain.get_name() + '.sww') |
---|
4001 | |
---|
4002 | def test_conservation_3(self): |
---|
4003 | """Test that stage is conserved globally |
---|
4004 | |
---|
4005 | This one uses a larger grid, convoluted bed, reflective bdries and a suitable |
---|
4006 | initial condition |
---|
4007 | """ |
---|
4008 | from mesh_factory import rectangular |
---|
4009 | |
---|
4010 | #Create basic mesh |
---|
4011 | points, vertices, boundary = rectangular(2, 1) |
---|
4012 | |
---|
4013 | #Create shallow water domain |
---|
4014 | domain = Domain(points, vertices, boundary) |
---|
4015 | domain.smooth = False |
---|
4016 | domain.default_order = 2 |
---|
4017 | domain.set_quantities_to_be_stored(['stage', 'xmomentum', 'ymomentum']) |
---|
4018 | |
---|
4019 | #IC |
---|
4020 | def x_slope(x, y): |
---|
4021 | z = 0*x |
---|
4022 | for i in range(len(x)): |
---|
4023 | if x[i] < 0.3: |
---|
4024 | z[i] = x[i]/3 |
---|
4025 | if 0.3 <= x[i] < 0.5: |
---|
4026 | z[i] = -0.5 |
---|
4027 | if 0.5 <= x[i] < 0.7: |
---|
4028 | z[i] = 0.39 |
---|
4029 | if 0.7 <= x[i]: |
---|
4030 | z[i] = x[i]/3 |
---|
4031 | return z |
---|
4032 | |
---|
4033 | |
---|
4034 | |
---|
4035 | domain.set_quantity('elevation', x_slope) |
---|
4036 | domain.set_quantity('friction', 0) |
---|
4037 | domain.set_quantity('stage', 0.4) #Steady |
---|
4038 | |
---|
4039 | # Boundary conditions (reflective everywhere) |
---|
4040 | Br = Reflective_boundary(domain) |
---|
4041 | domain.set_boundary({'left': Br, 'right': Br, 'top': Br, 'bottom': Br}) |
---|
4042 | |
---|
4043 | domain.check_integrity() |
---|
4044 | |
---|
4045 | initial_volume = domain.quantities['stage'].get_integral() |
---|
4046 | initial_xmom = domain.quantities['xmomentum'].get_integral() |
---|
4047 | |
---|
4048 | import copy |
---|
4049 | ref_centroid_values =\ |
---|
4050 | copy.copy(domain.quantities['stage'].centroid_values) |
---|
4051 | |
---|
4052 | #print 'ORG', domain.quantities['stage'].centroid_values |
---|
4053 | domain.distribute_to_vertices_and_edges() |
---|
4054 | |
---|
4055 | |
---|
4056 | #print domain.quantities['stage'].centroid_values |
---|
4057 | assert num.allclose(domain.quantities['stage'].centroid_values, |
---|
4058 | ref_centroid_values) |
---|
4059 | |
---|
4060 | |
---|
4061 | #Check that initial limiter doesn't violate cons quan |
---|
4062 | assert num.allclose(domain.quantities['stage'].get_integral(), |
---|
4063 | initial_volume) |
---|
4064 | |
---|
4065 | #Evolution |
---|
4066 | for t in domain.evolve(yieldstep = 0.05, finaltime = 10): |
---|
4067 | volume = domain.quantities['stage'].get_integral() |
---|
4068 | #print t, volume, initial_volume |
---|
4069 | assert num.allclose (volume, initial_volume) |
---|
4070 | |
---|
4071 | os.remove(domain.get_name() + '.sww') |
---|
4072 | |
---|
4073 | def test_conservation_4(self): |
---|
4074 | """Test that stage is conserved globally |
---|
4075 | |
---|
4076 | This one uses a larger grid, convoluted bed, reflective bdries and a suitable |
---|
4077 | initial condition |
---|
4078 | """ |
---|
4079 | from mesh_factory import rectangular |
---|
4080 | |
---|
4081 | #Create basic mesh |
---|
4082 | points, vertices, boundary = rectangular(6, 6) |
---|
4083 | |
---|
4084 | #Create shallow water domain |
---|
4085 | domain = Domain(points, vertices, boundary) |
---|
4086 | domain.smooth = False |
---|
4087 | domain.default_order=2 |
---|
4088 | |
---|
4089 | #IC |
---|
4090 | def x_slope(x, y): |
---|
4091 | z = 0*x |
---|
4092 | for i in range(len(x)): |
---|
4093 | if x[i] < 0.3: |
---|
4094 | z[i] = x[i]/3 |
---|
4095 | if 0.3 <= x[i] < 0.5: |
---|
4096 | z[i] = -0.5 |
---|
4097 | if 0.5 <= x[i] < 0.7: |
---|
4098 | #z[i] = 0.3 #OK with beta == 0.2 |
---|
4099 | z[i] = 0.34 #OK with beta == 0.0 |
---|
4100 | #z[i] = 0.35#Fails after 80 timesteps with an error |
---|
4101 | #of the order 1.0e-5 |
---|
4102 | if 0.7 <= x[i]: |
---|
4103 | z[i] = x[i]/3 |
---|
4104 | return z |
---|
4105 | |
---|
4106 | |
---|
4107 | |
---|
4108 | domain.set_quantity('elevation', x_slope) |
---|
4109 | domain.set_quantity('friction', 0) |
---|
4110 | domain.set_quantity('stage', 0.4) #Steady |
---|
4111 | |
---|
4112 | # Boundary conditions (reflective everywhere) |
---|
4113 | Br = Reflective_boundary(domain) |
---|
4114 | domain.set_boundary({'left': Br, 'right': Br, 'top': Br, 'bottom': Br}) |
---|
4115 | |
---|
4116 | domain.check_integrity() |
---|
4117 | |
---|
4118 | initial_volume = domain.quantities['stage'].get_integral() |
---|
4119 | initial_xmom = domain.quantities['xmomentum'].get_integral() |
---|
4120 | |
---|
4121 | import copy |
---|
4122 | ref_centroid_values =\ |
---|
4123 | copy.copy(domain.quantities['stage'].centroid_values) |
---|
4124 | |
---|
4125 | #Test limiter by itself |
---|
4126 | domain.distribute_to_vertices_and_edges() |
---|
4127 | |
---|
4128 | #Check that initial limiter doesn't violate cons quan |
---|
4129 | assert num.allclose (domain.quantities['stage'].get_integral(), |
---|
4130 | initial_volume) |
---|
4131 | #NOTE: This would fail if any initial stage was less than the |
---|
4132 | #corresponding bed elevation - but that is reasonable. |
---|
4133 | |
---|
4134 | |
---|
4135 | #Evolution |
---|
4136 | for t in domain.evolve(yieldstep = 0.05, finaltime = 10.0): |
---|
4137 | volume = domain.quantities['stage'].get_integral() |
---|
4138 | |
---|
4139 | #print t, volume, initial_volume |
---|
4140 | |
---|
4141 | assert num.allclose (volume, initial_volume) |
---|
4142 | |
---|
4143 | |
---|
4144 | os.remove(domain.get_name() + '.sww') |
---|
4145 | |
---|
4146 | |
---|
4147 | def test_conservation_5(self): |
---|
4148 | """Test that momentum is conserved globally in |
---|
4149 | steady state scenario |
---|
4150 | |
---|
4151 | This one uses a slopy bed, dirichlet and reflective bdries |
---|
4152 | """ |
---|
4153 | from mesh_factory import rectangular |
---|
4154 | |
---|
4155 | # Create basic mesh |
---|
4156 | points, vertices, boundary = rectangular(6, 6) |
---|
4157 | |
---|
4158 | # Create shallow water domain |
---|
4159 | domain = Domain(points, vertices, boundary) |
---|
4160 | domain.smooth = False |
---|
4161 | domain.default_order = 2 |
---|
4162 | |
---|
4163 | # IC |
---|
4164 | def x_slope(x, y): |
---|
4165 | return x/3 |
---|
4166 | |
---|
4167 | domain.set_quantity('elevation', x_slope) |
---|
4168 | domain.set_quantity('friction', 0) |
---|
4169 | domain.set_quantity('stage', 0.4) # Steady |
---|
4170 | |
---|
4171 | # Boundary conditions (reflective everywhere) |
---|
4172 | Br = Reflective_boundary(domain) |
---|
4173 | Bleft = Dirichlet_boundary([0.5,0,0]) |
---|
4174 | Bright = Dirichlet_boundary([0.1,0,0]) |
---|
4175 | domain.set_boundary({'left': Bleft, 'right': Bright, |
---|
4176 | 'top': Br, 'bottom': Br}) |
---|
4177 | |
---|
4178 | domain.check_integrity() |
---|
4179 | |
---|
4180 | initial_volume = domain.quantities['stage'].get_integral() |
---|
4181 | initial_xmom = domain.quantities['xmomentum'].get_integral() |
---|
4182 | |
---|
4183 | |
---|
4184 | # Evolution |
---|
4185 | for t in domain.evolve(yieldstep = 0.05, finaltime = 15.0): |
---|
4186 | stage = domain.quantities['stage'].get_integral() |
---|
4187 | xmom = domain.quantities['xmomentum'].get_integral() |
---|
4188 | ymom = domain.quantities['ymomentum'].get_integral() |
---|
4189 | |
---|
4190 | if num.allclose(t, 6): # Steady state reached |
---|
4191 | steady_xmom = domain.quantities['xmomentum'].get_integral() |
---|
4192 | steady_ymom = domain.quantities['ymomentum'].get_integral() |
---|
4193 | steady_stage = domain.quantities['stage'].get_integral() |
---|
4194 | |
---|
4195 | if t > 6: |
---|
4196 | #print '%.2f %14.8f %14.8f' %(t, ymom, steady_ymom) |
---|
4197 | msg = 'xmom=%.2f, steady_xmom=%.2f' %(xmom, steady_xmom) |
---|
4198 | assert num.allclose(xmom, steady_xmom), msg |
---|
4199 | assert num.allclose(ymom, steady_ymom) |
---|
4200 | assert num.allclose(stage, steady_stage) |
---|
4201 | |
---|
4202 | |
---|
4203 | os.remove(domain.get_name() + '.sww') |
---|
4204 | |
---|
4205 | |
---|
4206 | |
---|
4207 | |
---|
4208 | |
---|
4209 | def test_conservation_real(self): |
---|
4210 | """Test that momentum is conserved globally |
---|
4211 | |
---|
4212 | Stephen finally made a test that revealed the problem. |
---|
4213 | This test failed with code prior to 25 July 2005 |
---|
4214 | """ |
---|
4215 | |
---|
4216 | yieldstep = 0.01 |
---|
4217 | finaltime = 0.05 |
---|
4218 | min_depth = 1.0e-2 |
---|
4219 | |
---|
4220 | |
---|
4221 | import sys |
---|
4222 | from os import sep; sys.path.append('..'+sep+'abstract_2d_finite_volumes') |
---|
4223 | from mesh_factory import rectangular |
---|
4224 | |
---|
4225 | |
---|
4226 | #Create shallow water domain |
---|
4227 | points, vertices, boundary = rectangular(10, 10, len1=500, len2=500) |
---|
4228 | domain = Domain(points, vertices, boundary) |
---|
4229 | domain.smooth = False |
---|
4230 | domain.default_order = 1 |
---|
4231 | domain.minimum_allowed_height = min_depth |
---|
4232 | |
---|
4233 | # Set initial condition |
---|
4234 | class Set_IC: |
---|
4235 | """Set an initial condition with a constant value, for x0<x<x1 |
---|
4236 | """ |
---|
4237 | |
---|
4238 | def __init__(self, x0=0.25, x1=0.5, h=1.0): |
---|
4239 | self.x0 = x0 |
---|
4240 | self.x1 = x1 |
---|
4241 | self.h = h |
---|
4242 | |
---|
4243 | def __call__(self, x, y): |
---|
4244 | return self.h*((x>self.x0)&(x<self.x1)) |
---|
4245 | |
---|
4246 | |
---|
4247 | domain.set_quantity('stage', Set_IC(200.0,300.0,5.0)) |
---|
4248 | |
---|
4249 | |
---|
4250 | #Boundaries |
---|
4251 | R = Reflective_boundary(domain) |
---|
4252 | domain.set_boundary( {'left': R, 'right': R, 'top':R, 'bottom': R}) |
---|
4253 | |
---|
4254 | ref = domain.quantities['stage'].get_integral() |
---|
4255 | |
---|
4256 | # Evolution |
---|
4257 | for t in domain.evolve(yieldstep = yieldstep, finaltime = finaltime): |
---|
4258 | pass |
---|
4259 | #print 'Integral stage = ',\ |
---|
4260 | # domain.quantities['stage'].get_integral(),\ |
---|
4261 | # ' Time = ',domain.time |
---|
4262 | |
---|
4263 | |
---|
4264 | now = domain.quantities['stage'].get_integral() |
---|
4265 | |
---|
4266 | msg = 'Stage not conserved: was %f, now %f' %(ref, now) |
---|
4267 | assert num.allclose(ref, now), msg |
---|
4268 | |
---|
4269 | os.remove(domain.get_name() + '.sww') |
---|
4270 | |
---|
4271 | def test_second_order_flat_bed_onestep(self): |
---|
4272 | |
---|
4273 | from mesh_factory import rectangular |
---|
4274 | |
---|
4275 | #Create basic mesh |
---|
4276 | points, vertices, boundary = rectangular(6, 6) |
---|
4277 | |
---|
4278 | #Create shallow water domain |
---|
4279 | domain = Domain(points, vertices, boundary) |
---|
4280 | domain.smooth = False |
---|
4281 | domain.default_order = 2 |
---|
4282 | domain.beta_w = 0.9 |
---|
4283 | domain.beta_w_dry = 0.9 |
---|
4284 | domain.beta_uh = 0.9 |
---|
4285 | domain.beta_uh_dry = 0.9 |
---|
4286 | domain.beta_vh = 0.9 |
---|
4287 | domain.beta_vh_dry = 0.9 |
---|
4288 | domain.H0 = 0 # Backwards compatibility (6/2/7) |
---|
4289 | |
---|
4290 | # Boundary conditions |
---|
4291 | Br = Reflective_boundary(domain) |
---|
4292 | Bd = Dirichlet_boundary([0.1, 0., 0.]) |
---|
4293 | domain.set_boundary({'left': Bd, 'right': Br, 'top': Br, 'bottom': Br}) |
---|
4294 | |
---|
4295 | domain.check_integrity() |
---|
4296 | |
---|
4297 | # Evolution |
---|
4298 | for t in domain.evolve(yieldstep = 0.05, finaltime = 0.05): |
---|
4299 | pass# domain.write_time() |
---|
4300 | |
---|
4301 | # Data from earlier version of abstract_2d_finite_volumes |
---|
4302 | assert num.allclose(domain.min_timestep, 0.0396825396825) |
---|
4303 | assert num.allclose(domain.max_timestep, 0.0396825396825) |
---|
4304 | |
---|
4305 | assert num.allclose(domain.quantities['stage'].centroid_values[:12], |
---|
4306 | [0.00171396, 0.02656103, 0.00241523, 0.02656103, |
---|
4307 | 0.00241523, 0.02656103, 0.00241523, 0.02656103, |
---|
4308 | 0.00241523, 0.02656103, 0.00241523, 0.0272623]) |
---|
4309 | |
---|
4310 | domain.distribute_to_vertices_and_edges() |
---|
4311 | |
---|
4312 | assert num.allclose(domain.quantities['stage'].vertex_values[:12,0], |
---|
4313 | [0.0001714, 0.02656103, 0.00024152, |
---|
4314 | 0.02656103, 0.00024152, 0.02656103, |
---|
4315 | 0.00024152, 0.02656103, 0.00024152, |
---|
4316 | 0.02656103, 0.00024152, 0.0272623]) |
---|
4317 | |
---|
4318 | assert num.allclose(domain.quantities['stage'].vertex_values[:12,1], |
---|
4319 | [0.00315012, 0.02656103, 0.00024152, 0.02656103, |
---|
4320 | 0.00024152, 0.02656103, 0.00024152, 0.02656103, |
---|
4321 | 0.00024152, 0.02656103, 0.00040506, 0.0272623]) |
---|
4322 | |
---|
4323 | assert num.allclose(domain.quantities['stage'].vertex_values[:12,2], |
---|
4324 | [0.00182037, 0.02656103, 0.00676264, |
---|
4325 | 0.02656103, 0.00676264, 0.02656103, |
---|
4326 | 0.00676264, 0.02656103, 0.00676264, |
---|
4327 | 0.02656103, 0.0065991, 0.0272623]) |
---|
4328 | |
---|
4329 | assert num.allclose(domain.quantities['xmomentum'].centroid_values[:12], |
---|
4330 | [0.00113961, 0.01302432, 0.00148672, |
---|
4331 | 0.01302432, 0.00148672, 0.01302432, |
---|
4332 | 0.00148672, 0.01302432, 0.00148672 , |
---|
4333 | 0.01302432, 0.00148672, 0.01337143]) |
---|
4334 | |
---|
4335 | assert num.allclose(domain.quantities['ymomentum'].centroid_values[:12], |
---|
4336 | [-2.91240050e-004 , 1.22721531e-004, |
---|
4337 | -1.22721531e-004, 1.22721531e-004 , |
---|
4338 | -1.22721531e-004, 1.22721531e-004, |
---|
4339 | -1.22721531e-004 , 1.22721531e-004, |
---|
4340 | -1.22721531e-004, 1.22721531e-004, |
---|
4341 | -1.22721531e-004, -4.57969873e-005]) |
---|
4342 | |
---|
4343 | os.remove(domain.get_name() + '.sww') |
---|
4344 | |
---|
4345 | |
---|
4346 | def test_second_order_flat_bed_moresteps(self): |
---|
4347 | |
---|
4348 | from mesh_factory import rectangular |
---|
4349 | |
---|
4350 | #Create basic mesh |
---|
4351 | points, vertices, boundary = rectangular(6, 6) |
---|
4352 | |
---|
4353 | #Create shallow water domain |
---|
4354 | domain = Domain(points, vertices, boundary) |
---|
4355 | domain.smooth = False |
---|
4356 | domain.default_order=2 |
---|
4357 | |
---|
4358 | # Boundary conditions |
---|
4359 | Br = Reflective_boundary(domain) |
---|
4360 | Bd = Dirichlet_boundary([0.1, 0., 0.]) |
---|
4361 | domain.set_boundary({'left': Bd, 'right': Br, 'top': Br, 'bottom': Br}) |
---|
4362 | |
---|
4363 | domain.check_integrity() |
---|
4364 | |
---|
4365 | #Evolution |
---|
4366 | for t in domain.evolve(yieldstep = 0.05, finaltime = 0.1): |
---|
4367 | pass |
---|
4368 | |
---|
4369 | #Data from earlier version of abstract_2d_finite_volumes |
---|
4370 | #assert allclose(domain.min_timestep, 0.0396825396825) |
---|
4371 | #assert allclose(domain.max_timestep, 0.0396825396825) |
---|
4372 | #print domain.quantities['stage'].centroid_values |
---|
4373 | |
---|
4374 | os.remove(domain.get_name() + '.sww') |
---|
4375 | |
---|
4376 | |
---|
4377 | def test_flatbed_first_order(self): |
---|
4378 | from mesh_factory import rectangular |
---|
4379 | |
---|
4380 | #Create basic mesh |
---|
4381 | N = 8 |
---|
4382 | points, vertices, boundary = rectangular(N, N) |
---|
4383 | |
---|
4384 | #Create shallow water domain |
---|
4385 | domain = Domain(points, vertices, boundary) |
---|
4386 | domain.smooth = False |
---|
4387 | domain.default_order=1 |
---|
4388 | domain.H0 = 0 # Backwards compatibility (6/2/7) |
---|
4389 | |
---|
4390 | # Boundary conditions |
---|
4391 | Br = Reflective_boundary(domain) |
---|
4392 | Bd = Dirichlet_boundary([0.2,0.,0.]) |
---|
4393 | |
---|
4394 | domain.set_boundary({'left': Bd, 'right': Br, 'top': Br, 'bottom': Br}) |
---|
4395 | domain.check_integrity() |
---|
4396 | |
---|
4397 | |
---|
4398 | #Evolution |
---|
4399 | for t in domain.evolve(yieldstep = 0.02, finaltime = 0.5): |
---|
4400 | pass |
---|
4401 | #domain.write_time() |
---|
4402 | |
---|
4403 | #FIXME: These numbers were from version before 25/10 |
---|
4404 | #assert allclose(domain.min_timestep, 0.0140413643926) |
---|
4405 | #assert allclose(domain.max_timestep, 0.0140947355753) |
---|
4406 | |
---|
4407 | for i in range(3): |
---|
4408 | #assert allclose(domain.quantities['stage'].edge_values[:4,i], |
---|
4409 | # [0.10730244,0.12337617,0.11200126,0.12605666]) |
---|
4410 | |
---|
4411 | assert num.allclose(domain.quantities['xmomentum'].edge_values[:4,i], |
---|
4412 | [0.07610894,0.06901572,0.07284461,0.06819712]) |
---|
4413 | |
---|
4414 | #assert allclose(domain.quantities['ymomentum'].edge_values[:4,i], |
---|
4415 | # [-0.0060238, -0.00157404, -0.00309633, -0.0001637]) |
---|
4416 | |
---|
4417 | |
---|
4418 | os.remove(domain.get_name() + '.sww') |
---|
4419 | |
---|
4420 | def test_flatbed_second_order(self): |
---|
4421 | from mesh_factory import rectangular |
---|
4422 | |
---|
4423 | #Create basic mesh |
---|
4424 | N = 8 |
---|
4425 | points, vertices, boundary = rectangular(N, N) |
---|
4426 | |
---|
4427 | #Create shallow water domain |
---|
4428 | domain = Domain(points, vertices, boundary) |
---|
4429 | domain.smooth = False |
---|
4430 | domain.default_order=2 |
---|
4431 | domain.beta_w = 0.9 |
---|
4432 | domain.beta_w_dry = 0.9 |
---|
4433 | domain.beta_uh = 0.9 |
---|
4434 | domain.beta_uh_dry = 0.9 |
---|
4435 | domain.beta_vh = 0.9 |
---|
4436 | domain.beta_vh_dry = 0.9 |
---|
4437 | #domain.minimum_allowed_height = 0.0 #Makes it like the 'oldstyle' balance |
---|
4438 | domain.H0 = 0 # Backwards compatibility (6/2/7) |
---|
4439 | domain.use_centroid_velocities = False # Backwards compatibility (8/5/8) |
---|
4440 | domain.set_maximum_allowed_speed(1.0) |
---|
4441 | |
---|
4442 | # Boundary conditions |
---|
4443 | Br = Reflective_boundary(domain) |
---|
4444 | Bd = Dirichlet_boundary([0.2,0.,0.]) |
---|
4445 | |
---|
4446 | domain.set_boundary({'left': Bd, 'right': Br, 'top': Br, 'bottom': Br}) |
---|
4447 | domain.check_integrity() |
---|
4448 | |
---|
4449 | # Evolution |
---|
4450 | for t in domain.evolve(yieldstep = 0.01, finaltime = 0.03): |
---|
4451 | pass |
---|
4452 | |
---|
4453 | msg = 'min step was %f instead of %f' %(domain.min_timestep, |
---|
4454 | 0.0210448446782) |
---|
4455 | |
---|
4456 | assert num.allclose(domain.min_timestep, 0.0210448446782), msg |
---|
4457 | assert num.allclose(domain.max_timestep, 0.0210448446782) |
---|
4458 | |
---|
4459 | #print domain.quantities['stage'].vertex_values[:4,0] |
---|
4460 | #print domain.quantities['xmomentum'].vertex_values[:4,0] |
---|
4461 | #print domain.quantities['ymomentum'].vertex_values[:4,0] |
---|
4462 | |
---|
4463 | #FIXME: These numbers were from version before 25/10 |
---|
4464 | #assert allclose(domain.quantities['stage'].vertex_values[:4,0], |
---|
4465 | # [0.00101913,0.05352143,0.00104852,0.05354394]) |
---|
4466 | |
---|
4467 | #FIXME: These numbers were from version before 21/3/6 - |
---|
4468 | #could be recreated by setting maximum_allowed_speed to 0 maybe |
---|
4469 | #assert allclose(domain.quantities['xmomentum'].vertex_values[:4,0], |
---|
4470 | # [ 0.00064835, 0.03685719, 0.00085073, 0.03687313]) |
---|
4471 | |
---|
4472 | assert num.allclose(domain.quantities['xmomentum'].vertex_values[:4,0], |
---|
4473 | [ 0.00090581, 0.03685719, 0.00088303, 0.03687313]) |
---|
4474 | |
---|
4475 | |
---|
4476 | |
---|
4477 | #assert allclose(domain.quantities['xmomentum'].vertex_values[:4,0], |
---|
4478 | # [0.00090581,0.03685719,0.00088303,0.03687313]) |
---|
4479 | |
---|
4480 | assert num.allclose(domain.quantities['ymomentum'].vertex_values[:4,0], |
---|
4481 | [-0.00139463,0.0006156,-0.00060364,0.00061827]) |
---|
4482 | |
---|
4483 | |
---|
4484 | os.remove(domain.get_name() + '.sww') |
---|
4485 | |
---|
4486 | |
---|
4487 | def test_flatbed_second_order_vmax_0(self): |
---|
4488 | from mesh_factory import rectangular |
---|
4489 | |
---|
4490 | #Create basic mesh |
---|
4491 | N = 8 |
---|
4492 | points, vertices, boundary = rectangular(N, N) |
---|
4493 | |
---|
4494 | #Create shallow water domain |
---|
4495 | domain = Domain(points, vertices, boundary) |
---|
4496 | domain.smooth = False |
---|
4497 | domain.default_order=2 |
---|
4498 | domain.beta_w = 0.9 |
---|
4499 | domain.beta_w_dry = 0.9 |
---|
4500 | domain.beta_uh = 0.9 |
---|
4501 | domain.beta_uh_dry = 0.9 |
---|
4502 | domain.beta_vh = 0.9 |
---|
4503 | domain.beta_vh_dry = 0.9 |
---|
4504 | domain.maximum_allowed_speed = 0.0 #Makes it like the 'oldstyle' |
---|
4505 | domain.H0 = 0 # Backwards compatibility (6/2/7) |
---|
4506 | domain.use_centroid_velocities = False # Backwards compatibility (8/5/8) |
---|
4507 | |
---|
4508 | # Boundary conditions |
---|
4509 | Br = Reflective_boundary(domain) |
---|
4510 | Bd = Dirichlet_boundary([0.2,0.,0.]) |
---|
4511 | |
---|
4512 | domain.set_boundary({'left': Bd, 'right': Br, 'top': Br, 'bottom': Br}) |
---|
4513 | domain.check_integrity() |
---|
4514 | |
---|
4515 | #Evolution |
---|
4516 | for t in domain.evolve(yieldstep = 0.01, finaltime = 0.03): |
---|
4517 | pass |
---|
4518 | |
---|
4519 | |
---|
4520 | assert num.allclose(domain.min_timestep, 0.0210448446782) |
---|
4521 | assert num.allclose(domain.max_timestep, 0.0210448446782) |
---|
4522 | |
---|
4523 | #FIXME: These numbers were from version before 21/3/6 - |
---|
4524 | #could be recreated by setting maximum_allowed_speed to 0 maybe |
---|
4525 | assert num.allclose(domain.quantities['xmomentum'].vertex_values[:4,0], |
---|
4526 | [ 0.00064835, 0.03685719, 0.00085073, 0.03687313]) |
---|
4527 | |
---|
4528 | |
---|
4529 | assert num.allclose(domain.quantities['ymomentum'].vertex_values[:4,0], |
---|
4530 | [-0.00139463,0.0006156,-0.00060364,0.00061827]) |
---|
4531 | |
---|
4532 | |
---|
4533 | os.remove(domain.get_name() + '.sww') |
---|
4534 | |
---|
4535 | |
---|
4536 | |
---|
4537 | def test_flatbed_second_order_distribute(self): |
---|
4538 | #Use real data from anuga.abstract_2d_finite_volumes 2 |
---|
4539 | #painfully setup and extracted. |
---|
4540 | from mesh_factory import rectangular |
---|
4541 | |
---|
4542 | #Create basic mesh |
---|
4543 | N = 8 |
---|
4544 | points, vertices, boundary = rectangular(N, N) |
---|
4545 | |
---|
4546 | #Create shallow water domain |
---|
4547 | domain = Domain(points, vertices, boundary) |
---|
4548 | domain.smooth = False |
---|
4549 | domain.default_order=domain._order_=2 |
---|
4550 | domain.beta_w = 0.9 |
---|
4551 | domain.beta_w_dry = 0.9 |
---|
4552 | domain.beta_uh = 0.9 |
---|
4553 | domain.beta_uh_dry = 0.9 |
---|
4554 | domain.beta_vh = 0.9 |
---|
4555 | domain.beta_vh_dry = 0.9 |
---|
4556 | domain.H0 = 0 # Backwards compatibility (6/2/7) |
---|
4557 | domain.use_centroid_velocities = False # Backwards compatibility (8/5/8) |
---|
4558 | domain.set_maximum_allowed_speed(1.0) |
---|
4559 | |
---|
4560 | # Boundary conditions |
---|
4561 | Br = Reflective_boundary(domain) |
---|
4562 | Bd = Dirichlet_boundary([0.2,0.,0.]) |
---|
4563 | |
---|
4564 | domain.set_boundary({'left': Bd, 'right': Br, 'top': Br, 'bottom': Br}) |
---|
4565 | domain.check_integrity() |
---|
4566 | |
---|
4567 | |
---|
4568 | |
---|
4569 | for V in [False, True]: |
---|
4570 | if V: |
---|
4571 | #Set centroids as if system had been evolved |
---|
4572 | L = num.zeros(2*N*N, num.Float) |
---|
4573 | L[:32] = [7.21205592e-003, 5.35214298e-002, 1.00910824e-002, |
---|
4574 | 5.35439433e-002, 1.00910824e-002, 5.35439433e-002, |
---|
4575 | 1.00910824e-002, 5.35439433e-002, 1.00910824e-002, |
---|
4576 | 5.35439433e-002, 1.00910824e-002, 5.35439433e-002, |
---|
4577 | 1.00910824e-002, 5.35393928e-002, 1.02344264e-002, |
---|
4578 | 5.59605058e-002, 0.00000000e+000, 3.31027800e-004, |
---|
4579 | 0.00000000e+000, 4.37962142e-005, 0.00000000e+000, |
---|
4580 | 4.37962142e-005, 0.00000000e+000, 4.37962142e-005, |
---|
4581 | 0.00000000e+000, 4.37962142e-005, 0.00000000e+000, |
---|
4582 | 4.37962142e-005, 0.00000000e+000, 4.37962142e-005, |
---|
4583 | 0.00000000e+000, 5.57305948e-005] |
---|
4584 | |
---|
4585 | X = num.zeros(2*N*N, num.Float) |
---|
4586 | X[:32] = [6.48351607e-003, 3.68571894e-002, 8.50733285e-003, |
---|
4587 | 3.68731327e-002, 8.50733285e-003, 3.68731327e-002, |
---|
4588 | 8.50733285e-003, 3.68731327e-002, 8.50733285e-003, |
---|
4589 | 3.68731327e-002, 8.50733285e-003, 3.68731327e-002, |
---|
4590 | 8.50733285e-003, 3.68693861e-002, 8.65220973e-003, |
---|
4591 | 3.85055387e-002, 0.00000000e+000, 2.86060840e-004, |
---|
4592 | 0.00000000e+000, 3.58905503e-005, 0.00000000e+000, |
---|
4593 | 3.58905503e-005, 0.00000000e+000, 3.58905503e-005, |
---|
4594 | 0.00000000e+000, 3.58905503e-005, 0.00000000e+000, |
---|
4595 | 3.58905503e-005, 0.00000000e+000, 3.58905503e-005, |
---|
4596 | 0.00000000e+000, 4.57662812e-005] |
---|
4597 | |
---|
4598 | Y = num.zeros(2*N*N, num.Float) |
---|
4599 | Y[:32]=[-1.39463104e-003, 6.15600298e-004, -6.03637382e-004, |
---|
4600 | 6.18272251e-004, -6.03637382e-004, 6.18272251e-004, |
---|
4601 | -6.03637382e-004, 6.18272251e-004, -6.03637382e-004, |
---|
4602 | 6.18272251e-004, -6.03637382e-004, 6.18272251e-004, |
---|
4603 | -6.03637382e-004, 6.18599320e-004, -6.74622797e-004, |
---|
4604 | -1.48934756e-004, 0.00000000e+000, -5.35079969e-005, |
---|
4605 | 0.00000000e+000, -2.57264987e-005, 0.00000000e+000, |
---|
4606 | -2.57264987e-005, 0.00000000e+000, -2.57264987e-005, |
---|
4607 | 0.00000000e+000, -2.57264987e-005, 0.00000000e+000, |
---|
4608 | -2.57264987e-005, 0.00000000e+000, -2.57264987e-005, |
---|
4609 | 0.00000000e+000, -2.57635178e-005] |
---|
4610 | |
---|
4611 | |
---|
4612 | domain.set_quantity('stage', L, location='centroids') |
---|
4613 | domain.set_quantity('xmomentum', X, location='centroids') |
---|
4614 | domain.set_quantity('ymomentum', Y, location='centroids') |
---|
4615 | |
---|
4616 | domain.check_integrity() |
---|
4617 | else: |
---|
4618 | #Evolution |
---|
4619 | for t in domain.evolve(yieldstep = 0.01, finaltime = 0.03): |
---|
4620 | pass |
---|
4621 | assert num.allclose(domain.min_timestep, 0.0210448446782) |
---|
4622 | assert num.allclose(domain.max_timestep, 0.0210448446782) |
---|
4623 | |
---|
4624 | |
---|
4625 | #Centroids were correct but not vertices. |
---|
4626 | #Hence the check of distribute below. |
---|
4627 | assert num.allclose(domain.quantities['stage'].centroid_values[:4], |
---|
4628 | [0.00721206,0.05352143,0.01009108,0.05354394]) |
---|
4629 | |
---|
4630 | assert num.allclose(domain.quantities['xmomentum'].centroid_values[:4], |
---|
4631 | [0.00648352,0.03685719,0.00850733,0.03687313]) |
---|
4632 | |
---|
4633 | assert num.allclose(domain.quantities['ymomentum'].centroid_values[:4], |
---|
4634 | [-0.00139463,0.0006156,-0.00060364,0.00061827]) |
---|
4635 | |
---|
4636 | #print 'C17=', domain.quantities['xmomentum'].centroid_values[17] |
---|
4637 | #print 'C19=', domain.quantities['xmomentum'].centroid_values[19] |
---|
4638 | |
---|
4639 | #assert allclose(domain.quantities['xmomentum'].centroid_values[17],0.00028606084) |
---|
4640 | ##print domain.quantities['xmomentum'].centroid_values[17], V |
---|
4641 | ##print |
---|
4642 | if not V: |
---|
4643 | #FIXME: These numbers were from version before 21/3/6 - |
---|
4644 | #could be recreated by setting maximum_allowed_speed to 0 maybe |
---|
4645 | |
---|
4646 | #assert allclose(domain.quantities['xmomentum'].centroid_values[17], 0.0) |
---|
4647 | assert num.allclose(domain.quantities['xmomentum'].centroid_values[17], 0.000286060839592) |
---|
4648 | |
---|
4649 | else: |
---|
4650 | assert num.allclose(domain.quantities['xmomentum'].centroid_values[17], 0.00028606084) |
---|
4651 | |
---|
4652 | import copy |
---|
4653 | XX = copy.copy(domain.quantities['xmomentum'].centroid_values) |
---|
4654 | assert num.allclose(domain.quantities['xmomentum'].centroid_values, XX) |
---|
4655 | |
---|
4656 | domain.distribute_to_vertices_and_edges() |
---|
4657 | |
---|
4658 | #assert allclose(domain.quantities['xmomentum'].centroid_values, XX) |
---|
4659 | |
---|
4660 | #assert allclose(domain.quantities['xmomentum'].centroid_values[17], |
---|
4661 | # 0.0) |
---|
4662 | assert num.allclose(domain.quantities['xmomentum'].centroid_values[17], 0.000286060839592) |
---|
4663 | |
---|
4664 | |
---|
4665 | #FIXME: These numbers were from version before 25/10 |
---|
4666 | #assert allclose(domain.quantities['stage'].vertex_values[:4,0], |
---|
4667 | # [0.00101913,0.05352143,0.00104852,0.05354394]) |
---|
4668 | |
---|
4669 | assert num.allclose(domain.quantities['ymomentum'].vertex_values[:4,0], |
---|
4670 | [-0.00139463,0.0006156,-0.00060364,0.00061827]) |
---|
4671 | |
---|
4672 | |
---|
4673 | assert num.allclose(domain.quantities['xmomentum'].vertex_values[:4,0], |
---|
4674 | [0.00090581,0.03685719,0.00088303,0.03687313]) |
---|
4675 | |
---|
4676 | |
---|
4677 | #NB NO longer relvant: |
---|
4678 | |
---|
4679 | #This was the culprit. First triangles vertex 0 had an |
---|
4680 | #x-momentum of 0.0064835 instead of 0.00090581 and |
---|
4681 | #third triangle had 0.00850733 instead of 0.00088303 |
---|
4682 | #print domain.quantities['xmomentum'].vertex_values[:4,0] |
---|
4683 | |
---|
4684 | #print domain.quantities['xmomentum'].vertex_values[:4,0] |
---|
4685 | #assert allclose(domain.quantities['xmomentum'].vertex_values[:4,0], |
---|
4686 | # [0.00090581,0.03685719,0.00088303,0.03687313]) |
---|
4687 | |
---|
4688 | os.remove(domain.get_name() + '.sww') |
---|
4689 | |
---|
4690 | |
---|
4691 | |
---|
4692 | def test_bedslope_problem_first_order(self): |
---|
4693 | |
---|
4694 | from mesh_factory import rectangular |
---|
4695 | |
---|
4696 | #Create basic mesh |
---|
4697 | points, vertices, boundary = rectangular(6, 6) |
---|
4698 | |
---|
4699 | #Create shallow water domain |
---|
4700 | domain = Domain(points, vertices, boundary) |
---|
4701 | domain.smooth = False |
---|
4702 | domain.default_order = 1 |
---|
4703 | |
---|
4704 | #Bed-slope and friction |
---|
4705 | def x_slope(x, y): |
---|
4706 | return -x/3 |
---|
4707 | |
---|
4708 | domain.set_quantity('elevation', x_slope) |
---|
4709 | |
---|
4710 | # Boundary conditions |
---|
4711 | Br = Reflective_boundary(domain) |
---|
4712 | domain.set_boundary({'left': Br, 'right': Br, 'top': Br, 'bottom': Br}) |
---|
4713 | |
---|
4714 | #Initial condition |
---|
4715 | #domain.set_quantity('stage', Constant_height(x_slope, 0.05)) |
---|
4716 | domain.set_quantity('stage', expression='elevation+0.05') |
---|
4717 | domain.check_integrity() |
---|
4718 | |
---|
4719 | #Evolution |
---|
4720 | for t in domain.evolve(yieldstep = 0.05, finaltime = 0.05): |
---|
4721 | pass# domain.write_time() |
---|
4722 | |
---|
4723 | # FIXME (Ole): Need some other assertion here! |
---|
4724 | #print domain.min_timestep, domain.max_timestep |
---|
4725 | #assert allclose(domain.min_timestep, 0.050010003001) |
---|
4726 | #assert allclose(domain.max_timestep, 0.050010003001) |
---|
4727 | |
---|
4728 | |
---|
4729 | os.remove(domain.get_name() + '.sww') |
---|
4730 | |
---|
4731 | def test_bedslope_problem_first_order_moresteps(self): |
---|
4732 | |
---|
4733 | from mesh_factory import rectangular |
---|
4734 | |
---|
4735 | #Create basic mesh |
---|
4736 | points, vertices, boundary = rectangular(6, 6) |
---|
4737 | |
---|
4738 | #Create shallow water domain |
---|
4739 | domain = Domain(points, vertices, boundary) |
---|
4740 | domain.smooth = False |
---|
4741 | domain.default_order = 1 |
---|
4742 | |
---|
4743 | # FIXME (Ole): Need tests where these two are commented out |
---|
4744 | domain.H0 = 0 # Backwards compatibility (6/2/7) |
---|
4745 | domain.tight_slope_limiters = 0 # Backwards compatibility (14/4/7) |
---|
4746 | domain.use_centroid_velocities = 0 # Backwards compatibility (7/5/8) |
---|
4747 | |
---|
4748 | #Bed-slope and friction |
---|
4749 | def x_slope(x, y): |
---|
4750 | return -x/3 |
---|
4751 | |
---|
4752 | domain.set_quantity('elevation', x_slope) |
---|
4753 | |
---|
4754 | # Boundary conditions |
---|
4755 | Br = Reflective_boundary(domain) |
---|
4756 | domain.set_boundary({'left': Br, 'right': Br, 'top': Br, 'bottom': Br}) |
---|
4757 | |
---|
4758 | #Initial condition |
---|
4759 | domain.set_quantity('stage', expression='elevation+0.05') |
---|
4760 | domain.check_integrity() |
---|
4761 | |
---|
4762 | #Evolution |
---|
4763 | for t in domain.evolve(yieldstep = 0.05, finaltime = 0.5): |
---|
4764 | pass# domain.write_time() |
---|
4765 | |
---|
4766 | #Data from earlier version of abstract_2d_finite_volumes |
---|
4767 | #print domain.quantities['stage'].centroid_values |
---|
4768 | |
---|
4769 | assert num.allclose(domain.quantities['stage'].centroid_values, |
---|
4770 | [-0.02998628, -0.01520652, -0.03043492, |
---|
4771 | -0.0149132, -0.03004706, -0.01476251, |
---|
4772 | -0.0298215, -0.01467976, -0.02988158, |
---|
4773 | -0.01474662, -0.03036161, -0.01442995, |
---|
4774 | -0.07624583, -0.06297061, -0.07733792, |
---|
4775 | -0.06342237, -0.07695439, -0.06289595, |
---|
4776 | -0.07635559, -0.0626065, -0.07633628, |
---|
4777 | -0.06280072, -0.07739632, -0.06386738, |
---|
4778 | -0.12161738, -0.11028239, -0.1223796, |
---|
4779 | -0.11095953, -0.12189744, -0.11048616, |
---|
4780 | -0.12074535, -0.10987605, -0.12014311, |
---|
4781 | -0.10976691, -0.12096859, -0.11087692, |
---|
4782 | -0.16868259, -0.15868061, -0.16801135, |
---|
4783 | -0.1588003, -0.16674343, -0.15813323, |
---|
4784 | -0.16457595, -0.15693826, -0.16281096, |
---|
4785 | -0.15585154, -0.16283873, -0.15540068, |
---|
4786 | -0.17450362, -0.19919913, -0.18062882, |
---|
4787 | -0.19764131, -0.17783111, -0.19407213, |
---|
4788 | -0.1736915, -0.19053624, -0.17228678, |
---|
4789 | -0.19105634, -0.17920133, -0.1968828, |
---|
4790 | -0.14244395, -0.14604641, -0.14473537, |
---|
4791 | -0.1506107, -0.14510055, -0.14919522, |
---|
4792 | -0.14175896, -0.14560798, -0.13911658, |
---|
4793 | -0.14439383, -0.13924047, -0.14829043]) |
---|
4794 | |
---|
4795 | os.remove(domain.get_name() + '.sww') |
---|
4796 | |
---|
4797 | def test_bedslope_problem_second_order_one_step(self): |
---|
4798 | |
---|
4799 | from mesh_factory import rectangular |
---|
4800 | |
---|
4801 | #Create basic mesh |
---|
4802 | points, vertices, boundary = rectangular(6, 6) |
---|
4803 | |
---|
4804 | #Create shallow water domain |
---|
4805 | domain = Domain(points, vertices, boundary) |
---|
4806 | domain.smooth = False |
---|
4807 | domain.default_order=2 |
---|
4808 | domain.beta_w = 0.9 |
---|
4809 | domain.beta_w_dry = 0.9 |
---|
4810 | domain.beta_uh = 0.9 |
---|
4811 | domain.beta_uh_dry = 0.9 |
---|
4812 | domain.beta_vh = 0.9 |
---|
4813 | domain.beta_vh_dry = 0.9 |
---|
4814 | |
---|
4815 | |
---|
4816 | # FIXME (Ole): Need tests where this is commented out |
---|
4817 | domain.tight_slope_limiters = 0 # Backwards compatibility (14/4/7) |
---|
4818 | domain.use_centroid_velocities = 0 # Backwards compatibility (7/5/8) |
---|
4819 | |
---|
4820 | #Bed-slope and friction at vertices (and interpolated elsewhere) |
---|
4821 | def x_slope(x, y): |
---|
4822 | return -x/3 |
---|
4823 | |
---|
4824 | domain.set_quantity('elevation', x_slope) |
---|
4825 | |
---|
4826 | # Boundary conditions |
---|
4827 | Br = Reflective_boundary(domain) |
---|
4828 | domain.set_boundary({'left': Br, 'right': Br, 'top': Br, 'bottom': Br}) |
---|
4829 | |
---|
4830 | #Initial condition |
---|
4831 | domain.set_quantity('stage', expression='elevation+0.05') |
---|
4832 | domain.check_integrity() |
---|
4833 | |
---|
4834 | assert num.allclose(domain.quantities['stage'].centroid_values, |
---|
4835 | [ 0.01296296, 0.03148148, 0.01296296, |
---|
4836 | 0.03148148, 0.01296296, 0.03148148, |
---|
4837 | 0.01296296, 0.03148148, 0.01296296, |
---|
4838 | 0.03148148, 0.01296296, 0.03148148, |
---|
4839 | -0.04259259, -0.02407407, -0.04259259, |
---|
4840 | -0.02407407, -0.04259259, -0.02407407, |
---|
4841 | -0.04259259, -0.02407407, -0.04259259, |
---|
4842 | -0.02407407, -0.04259259, -0.02407407, |
---|
4843 | -0.09814815, -0.07962963, -0.09814815, |
---|
4844 | -0.07962963, -0.09814815, -0.07962963, |
---|
4845 | -0.09814815, -0.07962963, -0.09814815, |
---|
4846 | -0.07962963, -0.09814815, -0.07962963, |
---|
4847 | -0.1537037, -0.13518519, -0.1537037, |
---|
4848 | -0.13518519, -0.1537037, -0.13518519, |
---|
4849 | -0.1537037 , -0.13518519, -0.1537037, |
---|
4850 | -0.13518519, -0.1537037, -0.13518519, |
---|
4851 | -0.20925926, -0.19074074, -0.20925926, |
---|
4852 | -0.19074074, -0.20925926, -0.19074074, |
---|
4853 | -0.20925926, -0.19074074, -0.20925926, |
---|
4854 | -0.19074074, -0.20925926, -0.19074074, |
---|
4855 | -0.26481481, -0.2462963, -0.26481481, |
---|
4856 | -0.2462963, -0.26481481, -0.2462963, |
---|
4857 | -0.26481481, -0.2462963, -0.26481481, |
---|
4858 | -0.2462963, -0.26481481, -0.2462963]) |
---|
4859 | |
---|
4860 | |
---|
4861 | #print domain.quantities['stage'].extrapolate_second_order() |
---|
4862 | #domain.distribute_to_vertices_and_edges() |
---|
4863 | #print domain.quantities['stage'].vertex_values[:,0] |
---|
4864 | |
---|
4865 | #Evolution |
---|
4866 | for t in domain.evolve(yieldstep = 0.05, finaltime = 0.05): |
---|
4867 | #domain.write_time() |
---|
4868 | pass |
---|
4869 | |
---|
4870 | |
---|
4871 | #print domain.quantities['stage'].centroid_values |
---|
4872 | assert num.allclose(domain.quantities['stage'].centroid_values, |
---|
4873 | [ 0.01290985, 0.02356019, 0.01619096, 0.02356019, 0.01619096, |
---|
4874 | 0.02356019, 0.01619096, 0.02356019, 0.01619096, 0.02356019, |
---|
4875 | 0.01619096, 0.0268413, -0.04411074, -0.0248011, -0.04186556, |
---|
4876 | -0.0248011, -0.04186556, -0.0248011, -0.04186556, -0.0248011, |
---|
4877 | -0.04186556, -0.0248011, -0.04186556, -0.02255593, |
---|
4878 | -0.09966629, -0.08035666, -0.09742112, -0.08035666, |
---|
4879 | -0.09742112, -0.08035666, -0.09742112, -0.08035666, |
---|
4880 | -0.09742112, -0.08035666, -0.09742112, -0.07811149, |
---|
4881 | -0.15522185, -0.13591222, -0.15297667, -0.13591222, |
---|
4882 | -0.15297667, -0.13591222, -0.15297667, -0.13591222, |
---|
4883 | -0.15297667, -0.13591222, -0.15297667, -0.13366704, |
---|
4884 | -0.2107774, -0.19146777, -0.20853223, -0.19146777, |
---|
4885 | -0.20853223, -0.19146777, -0.20853223, -0.19146777, |
---|
4886 | -0.20853223, -0.19146777, -0.20853223, -0.1892226, |
---|
4887 | -0.26120669, -0.24776246, -0.25865535, -0.24776246, |
---|
4888 | -0.25865535, -0.24776246, -0.25865535, -0.24776246, |
---|
4889 | -0.25865535, -0.24776246, -0.25865535, -0.24521113]) |
---|
4890 | |
---|
4891 | os.remove(domain.get_name() + '.sww') |
---|
4892 | |
---|
4893 | def test_bedslope_problem_second_order_two_steps(self): |
---|
4894 | |
---|
4895 | from mesh_factory import rectangular |
---|
4896 | |
---|
4897 | #Create basic mesh |
---|
4898 | points, vertices, boundary = rectangular(6, 6) |
---|
4899 | |
---|
4900 | #Create shallow water domain |
---|
4901 | domain = Domain(points, vertices, boundary) |
---|
4902 | domain.smooth = False |
---|
4903 | domain.default_order=2 |
---|
4904 | domain.beta_w = 0.9 |
---|
4905 | domain.beta_w_dry = 0.9 |
---|
4906 | domain.beta_uh = 0.9 |
---|
4907 | domain.beta_uh_dry = 0.9 |
---|
4908 | domain.beta_vh = 0.9 |
---|
4909 | domain.beta_vh_dry = 0.9 |
---|
4910 | |
---|
4911 | # FIXME (Ole): Need tests where this is commented out |
---|
4912 | domain.tight_slope_limiters = 0 # Backwards compatibility (14/4/7) |
---|
4913 | domain.H0 = 0 # Backwards compatibility (6/2/7) |
---|
4914 | domain.use_centroid_velocities = 0 # Backwards compatibility (7/5/8) |
---|
4915 | |
---|
4916 | |
---|
4917 | #Bed-slope and friction at vertices (and interpolated elsewhere) |
---|
4918 | def x_slope(x, y): |
---|
4919 | return -x/3 |
---|
4920 | |
---|
4921 | domain.set_quantity('elevation', x_slope) |
---|
4922 | |
---|
4923 | # Boundary conditions |
---|
4924 | Br = Reflective_boundary(domain) |
---|
4925 | domain.set_boundary({'left': Br, 'right': Br, 'top': Br, 'bottom': Br}) |
---|
4926 | |
---|
4927 | #Initial condition |
---|
4928 | domain.set_quantity('stage', expression='elevation+0.05') |
---|
4929 | domain.check_integrity() |
---|
4930 | |
---|
4931 | assert num.allclose(domain.quantities['stage'].centroid_values, |
---|
4932 | [ 0.01296296, 0.03148148, 0.01296296, |
---|
4933 | 0.03148148, 0.01296296, 0.03148148, |
---|
4934 | 0.01296296, 0.03148148, 0.01296296, |
---|
4935 | 0.03148148, 0.01296296, 0.03148148, |
---|
4936 | -0.04259259, -0.02407407, -0.04259259, |
---|
4937 | -0.02407407, -0.04259259, -0.02407407, |
---|
4938 | -0.04259259, -0.02407407, -0.04259259, |
---|
4939 | -0.02407407, -0.04259259, -0.02407407, |
---|
4940 | -0.09814815, -0.07962963, -0.09814815, |
---|
4941 | -0.07962963, -0.09814815, -0.07962963, |
---|
4942 | -0.09814815, -0.07962963, -0.09814815, |
---|
4943 | -0.07962963, -0.09814815, -0.07962963, |
---|
4944 | -0.1537037 , -0.13518519, -0.1537037, |
---|
4945 | -0.13518519, -0.1537037, -0.13518519, |
---|
4946 | -0.1537037 , -0.13518519, -0.1537037, |
---|
4947 | -0.13518519, -0.1537037, -0.13518519, |
---|
4948 | -0.20925926, -0.19074074, -0.20925926, |
---|
4949 | -0.19074074, -0.20925926, -0.19074074, |
---|
4950 | -0.20925926, -0.19074074, -0.20925926, |
---|
4951 | -0.19074074, -0.20925926, -0.19074074, |
---|
4952 | -0.26481481, -0.2462963, -0.26481481, |
---|
4953 | -0.2462963, -0.26481481, -0.2462963, |
---|
4954 | -0.26481481, -0.2462963, -0.26481481, |
---|
4955 | -0.2462963, -0.26481481, -0.2462963]) |
---|
4956 | |
---|
4957 | |
---|
4958 | #print domain.quantities['stage'].extrapolate_second_order() |
---|
4959 | #domain.distribute_to_vertices_and_edges() |
---|
4960 | #print domain.quantities['stage'].vertex_values[:,0] |
---|
4961 | |
---|
4962 | #Evolution |
---|
4963 | for t in domain.evolve(yieldstep = 0.05, finaltime = 0.1): |
---|
4964 | pass |
---|
4965 | |
---|
4966 | |
---|
4967 | #Data from earlier version of abstract_2d_finite_volumes ft=0.1 |
---|
4968 | assert num.allclose(domain.min_timestep, 0.0376895634803) |
---|
4969 | assert num.allclose(domain.max_timestep, 0.0415635655309) |
---|
4970 | |
---|
4971 | |
---|
4972 | assert num.allclose(domain.quantities['stage'].centroid_values, |
---|
4973 | [ 0.00855788, 0.01575204, 0.00994606, 0.01717072, |
---|
4974 | 0.01005985, 0.01716362, 0.01005985, 0.01716299, |
---|
4975 | 0.01007098, 0.01736248, 0.01216452, 0.02026776, |
---|
4976 | -0.04462374, -0.02479045, -0.04199789, -0.0229465, |
---|
4977 | -0.04184033, -0.02295693, -0.04184013, -0.02295675, |
---|
4978 | -0.04184486, -0.0228168, -0.04028876, -0.02036486, |
---|
4979 | -0.10029444, -0.08170809, -0.09772846, -0.08021704, |
---|
4980 | -0.09760006, -0.08022143, -0.09759984, -0.08022124, |
---|
4981 | -0.09760261, -0.08008893, -0.09603914, -0.07758209, |
---|
4982 | -0.15584152, -0.13723138, -0.15327266, -0.13572906, |
---|
4983 | -0.15314427, -0.13573349, -0.15314405, -0.13573331, |
---|
4984 | -0.15314679, -0.13560104, -0.15158523, -0.13310701, |
---|
4985 | -0.21208605, -0.19283913, -0.20955631, -0.19134189, |
---|
4986 | -0.20942821, -0.19134598, -0.20942799, -0.1913458, |
---|
4987 | -0.20943005, -0.19120952, -0.20781177, -0.18869401, |
---|
4988 | -0.25384082, -0.2463294, -0.25047649, -0.24464654, |
---|
4989 | -0.25031159, -0.24464253, -0.25031112, -0.24464253, |
---|
4990 | -0.25031463, -0.24454764, -0.24885323, -0.24286438]) |
---|
4991 | |
---|
4992 | |
---|
4993 | os.remove(domain.get_name() + '.sww') |
---|
4994 | |
---|
4995 | def test_bedslope_problem_second_order_two_yieldsteps(self): |
---|
4996 | |
---|
4997 | from mesh_factory import rectangular |
---|
4998 | |
---|
4999 | #Create basic mesh |
---|
5000 | points, vertices, boundary = rectangular(6, 6) |
---|
5001 | |
---|
5002 | #Create shallow water domain |
---|
5003 | domain = Domain(points, vertices, boundary) |
---|
5004 | domain.smooth = False |
---|
5005 | domain.default_order=2 |
---|
5006 | domain.beta_w = 0.9 |
---|
5007 | domain.beta_w_dry = 0.9 |
---|
5008 | domain.beta_uh = 0.9 |
---|
5009 | domain.beta_uh_dry = 0.9 |
---|
5010 | domain.beta_vh = 0.9 |
---|
5011 | domain.beta_vh_dry = 0.9 |
---|
5012 | |
---|
5013 | # FIXME (Ole): Need tests where this is commented out |
---|
5014 | domain.tight_slope_limiters = 0 # Backwards compatibility (14/4/7) |
---|
5015 | domain.H0 = 0 # Backwards compatibility (6/2/7) |
---|
5016 | domain.use_centroid_velocities = 0 # Backwards compatibility (7/5/8) |
---|
5017 | |
---|
5018 | |
---|
5019 | #Bed-slope and friction at vertices (and interpolated elsewhere) |
---|
5020 | def x_slope(x, y): |
---|
5021 | return -x/3 |
---|
5022 | |
---|
5023 | domain.set_quantity('elevation', x_slope) |
---|
5024 | |
---|
5025 | # Boundary conditions |
---|
5026 | Br = Reflective_boundary(domain) |
---|
5027 | domain.set_boundary({'left': Br, 'right': Br, 'top': Br, 'bottom': Br}) |
---|
5028 | |
---|
5029 | #Initial condition |
---|
5030 | domain.set_quantity('stage', expression='elevation+0.05') |
---|
5031 | domain.check_integrity() |
---|
5032 | |
---|
5033 | assert num.allclose(domain.quantities['stage'].centroid_values, |
---|
5034 | [ 0.01296296, 0.03148148, 0.01296296, |
---|
5035 | 0.03148148, 0.01296296, 0.03148148, |
---|
5036 | 0.01296296, 0.03148148, 0.01296296, |
---|
5037 | 0.03148148, 0.01296296, 0.03148148, |
---|
5038 | -0.04259259, -0.02407407, -0.04259259, |
---|
5039 | -0.02407407, -0.04259259, -0.02407407, |
---|
5040 | -0.04259259, -0.02407407, -0.04259259, |
---|
5041 | -0.02407407, -0.04259259, -0.02407407, |
---|
5042 | -0.09814815, -0.07962963, -0.09814815, |
---|
5043 | -0.07962963, -0.09814815, -0.07962963, |
---|
5044 | -0.09814815, -0.07962963, -0.09814815, |
---|
5045 | -0.07962963, -0.09814815, -0.07962963, |
---|
5046 | -0.1537037 , -0.13518519, -0.1537037, |
---|
5047 | -0.13518519, -0.1537037, -0.13518519, |
---|
5048 | -0.1537037 , -0.13518519, -0.1537037, |
---|
5049 | -0.13518519, -0.1537037, -0.13518519, |
---|
5050 | -0.20925926, -0.19074074, -0.20925926, |
---|
5051 | -0.19074074, -0.20925926, -0.19074074, |
---|
5052 | -0.20925926, -0.19074074, -0.20925926, |
---|
5053 | -0.19074074, -0.20925926, -0.19074074, |
---|
5054 | -0.26481481, -0.2462963, -0.26481481, |
---|
5055 | -0.2462963, -0.26481481, -0.2462963, |
---|
5056 | -0.26481481, -0.2462963, -0.26481481, |
---|
5057 | -0.2462963, -0.26481481, -0.2462963]) |
---|
5058 | |
---|
5059 | |
---|
5060 | #print domain.quantities['stage'].extrapolate_second_order() |
---|
5061 | #domain.distribute_to_vertices_and_edges() |
---|
5062 | #print domain.quantities['stage'].vertex_values[:,0] |
---|
5063 | |
---|
5064 | #Evolution |
---|
5065 | for t in domain.evolve(yieldstep = 0.05, finaltime = 0.1): #0.05?? |
---|
5066 | #domain.write_time() |
---|
5067 | pass |
---|
5068 | |
---|
5069 | |
---|
5070 | |
---|
5071 | assert num.allclose(domain.quantities['stage'].centroid_values, |
---|
5072 | [ 0.00855788, 0.01575204, 0.00994606, 0.01717072, 0.01005985, |
---|
5073 | 0.01716362, 0.01005985, 0.01716299, 0.01007098, 0.01736248, |
---|
5074 | 0.01216452, 0.02026776, -0.04462374, -0.02479045, -0.04199789, |
---|
5075 | -0.0229465, -0.04184033, -0.02295693, -0.04184013, |
---|
5076 | -0.02295675, -0.04184486, -0.0228168, -0.04028876, |
---|
5077 | -0.02036486, -0.10029444, -0.08170809, -0.09772846, |
---|
5078 | -0.08021704, -0.09760006, -0.08022143, -0.09759984, |
---|
5079 | -0.08022124, -0.09760261, -0.08008893, -0.09603914, |
---|
5080 | -0.07758209, -0.15584152, -0.13723138, -0.15327266, |
---|
5081 | -0.13572906, -0.15314427, -0.13573349, -0.15314405, |
---|
5082 | -0.13573331, -0.15314679, -0.13560104, -0.15158523, |
---|
5083 | -0.13310701, -0.21208605, -0.19283913, -0.20955631, |
---|
5084 | -0.19134189, -0.20942821, -0.19134598, -0.20942799, |
---|
5085 | -0.1913458, -0.20943005, -0.19120952, -0.20781177, |
---|
5086 | -0.18869401, -0.25384082, -0.2463294, -0.25047649, |
---|
5087 | -0.24464654, -0.25031159, -0.24464253, -0.25031112, |
---|
5088 | -0.24464253, -0.25031463, -0.24454764, -0.24885323, |
---|
5089 | -0.24286438]) |
---|
5090 | |
---|
5091 | os.remove(domain.get_name() + '.sww') |
---|
5092 | |
---|
5093 | def test_bedslope_problem_second_order_more_steps(self): |
---|
5094 | |
---|
5095 | from mesh_factory import rectangular |
---|
5096 | |
---|
5097 | #Create basic mesh |
---|
5098 | points, vertices, boundary = rectangular(6, 6) |
---|
5099 | |
---|
5100 | #Create shallow water domain |
---|
5101 | domain = Domain(points, vertices, boundary) |
---|
5102 | domain.smooth = False |
---|
5103 | domain.default_order=2 |
---|
5104 | domain.beta_w = 0.9 |
---|
5105 | domain.beta_w_dry = 0.9 |
---|
5106 | domain.beta_uh = 0.9 |
---|
5107 | domain.beta_uh_dry = 0.9 |
---|
5108 | domain.beta_vh = 0.9 |
---|
5109 | domain.beta_vh_dry = 0.9 |
---|
5110 | |
---|
5111 | |
---|
5112 | # FIXME (Ole): Need tests where these two are commented out |
---|
5113 | domain.H0 = 0 # Backwards compatibility (6/2/7) |
---|
5114 | domain.tight_slope_limiters = 0 # Backwards compatibility (14/4/7) |
---|
5115 | domain.use_centroid_velocities = 0 # Backwards compatibility (7/5/8) |
---|
5116 | |
---|
5117 | |
---|
5118 | |
---|
5119 | #Bed-slope and friction at vertices (and interpolated elsewhere) |
---|
5120 | def x_slope(x, y): |
---|
5121 | return -x/3 |
---|
5122 | |
---|
5123 | domain.set_quantity('elevation', x_slope) |
---|
5124 | |
---|
5125 | # Boundary conditions |
---|
5126 | Br = Reflective_boundary(domain) |
---|
5127 | domain.set_boundary({'left': Br, 'right': Br, 'top': Br, 'bottom': Br}) |
---|
5128 | |
---|
5129 | #Initial condition |
---|
5130 | domain.set_quantity('stage', expression = 'elevation + 0.05') |
---|
5131 | domain.check_integrity() |
---|
5132 | |
---|
5133 | assert num.allclose(domain.quantities['stage'].centroid_values, |
---|
5134 | [ 0.01296296, 0.03148148, 0.01296296, |
---|
5135 | 0.03148148, 0.01296296, 0.03148148, |
---|
5136 | 0.01296296, 0.03148148, 0.01296296, |
---|
5137 | 0.03148148, 0.01296296, 0.03148148, |
---|
5138 | -0.04259259, -0.02407407, -0.04259259, |
---|
5139 | -0.02407407, -0.04259259, -0.02407407, |
---|
5140 | -0.04259259, -0.02407407, -0.04259259, |
---|
5141 | -0.02407407, -0.04259259, -0.02407407, |
---|
5142 | -0.09814815, -0.07962963, -0.09814815, |
---|
5143 | -0.07962963, -0.09814815, -0.07962963, |
---|
5144 | -0.09814815, -0.07962963, -0.09814815, |
---|
5145 | -0.07962963, -0.09814815, -0.07962963, |
---|
5146 | -0.1537037 , -0.13518519, -0.1537037, |
---|
5147 | -0.13518519, -0.1537037, -0.13518519, |
---|
5148 | -0.1537037 , -0.13518519, -0.1537037, |
---|
5149 | -0.13518519, -0.1537037, -0.13518519, |
---|
5150 | -0.20925926, -0.19074074, -0.20925926, |
---|
5151 | -0.19074074, -0.20925926, -0.19074074, |
---|
5152 | -0.20925926, -0.19074074, -0.20925926, |
---|
5153 | -0.19074074, -0.20925926, -0.19074074, |
---|
5154 | -0.26481481, -0.2462963, -0.26481481, |
---|
5155 | -0.2462963, -0.26481481, -0.2462963, |
---|
5156 | -0.26481481, -0.2462963, -0.26481481, |
---|
5157 | -0.2462963, -0.26481481, -0.2462963]) |
---|
5158 | |
---|
5159 | |
---|
5160 | #print domain.quantities['stage'].extrapolate_second_order() |
---|
5161 | #domain.distribute_to_vertices_and_edges() |
---|
5162 | #print domain.quantities['stage'].vertex_values[:,0] |
---|
5163 | |
---|
5164 | #Evolution |
---|
5165 | for t in domain.evolve(yieldstep = 0.05, finaltime = 0.5): |
---|
5166 | |
---|
5167 | # Check that diagnostics works |
---|
5168 | msg = domain.timestepping_statistics(track_speeds=True) |
---|
5169 | #FIXME(Ole): One might check the contents of msg here. |
---|
5170 | |
---|
5171 | |
---|
5172 | |
---|
5173 | assert num.allclose(domain.quantities['stage'].centroid_values, |
---|
5174 | [-0.02907028, -0.01475478, -0.02973417, -0.01447186, -0.02932665, -0.01428285, |
---|
5175 | -0.02901975, -0.0141361, -0.02898816, -0.01418135, -0.02961409, -0.01403487, |
---|
5176 | -0.07597998, -0.06252591, -0.07664854, -0.06312532, -0.07638287, -0.06265139, |
---|
5177 | -0.07571145, -0.06235231, -0.0756817, -0.06245309, -0.07652292, -0.06289946, |
---|
5178 | -0.12367464, -0.11088981, -0.12237277, -0.11115338, -0.1218934, -0.1107174, |
---|
5179 | -0.12081485, -0.11000491, -0.12038451, -0.11010335, -0.12102113, -0.11012105, |
---|