[7559] | 1 | #!/usr/bin/env python |
---|
| 2 | |
---|
| 3 | import unittest, os |
---|
| 4 | import os.path |
---|
| 5 | from math import pi, sqrt |
---|
| 6 | import tempfile |
---|
| 7 | |
---|
| 8 | from anuga.config import g, epsilon |
---|
| 9 | from anuga.config import netcdf_mode_r, netcdf_mode_w, netcdf_mode_a |
---|
| 10 | from anuga.utilities.numerical_tools import mean |
---|
| 11 | from anuga.utilities.polygon import is_inside_polygon |
---|
| 12 | from anuga.coordinate_transforms.geo_reference import Geo_reference |
---|
| 13 | from anuga.abstract_2d_finite_volumes.quantity import Quantity |
---|
| 14 | from anuga.geospatial_data.geospatial_data import Geospatial_data |
---|
| 15 | from anuga.abstract_2d_finite_volumes.mesh_factory import rectangular_cross |
---|
| 16 | |
---|
| 17 | from anuga.utilities.system_tools import get_pathname_from_package |
---|
| 18 | from swb_domain import * |
---|
| 19 | |
---|
| 20 | import numpy as num |
---|
| 21 | |
---|
| 22 | # Get gateway to C implementation of flux function for direct testing |
---|
| 23 | from shallow_water_ext import flux_function_central as flux_function |
---|
| 24 | |
---|
| 25 | |
---|
[7562] | 26 | # Variable windfield implemented using functions |
---|
| 27 | def speed(t, x, y): |
---|
| 28 | """Large speeds halfway between center and edges |
---|
[7559] | 29 | |
---|
[7562] | 30 | Low speeds at center and edges |
---|
| 31 | """ |
---|
[7559] | 32 | |
---|
[7562] | 33 | from math import exp, cos, pi |
---|
| 34 | |
---|
| 35 | x = num.array(x) |
---|
| 36 | y = num.array(y) |
---|
| 37 | |
---|
| 38 | N = len(x) |
---|
| 39 | s = 0*x #New array |
---|
| 40 | |
---|
| 41 | for k in range(N): |
---|
| 42 | r = num.sqrt(x[k]**2 + y[k]**2) |
---|
| 43 | factor = exp(-(r-0.15)**2) |
---|
| 44 | s[k] = 4000 * factor * (cos(t*2*pi/150) + 2) |
---|
| 45 | |
---|
| 46 | return s |
---|
| 47 | |
---|
| 48 | def scalar_func(t, x, y): |
---|
| 49 | """Function that returns a scalar. |
---|
| 50 | |
---|
| 51 | Used to test error message when numeric array is expected |
---|
| 52 | """ |
---|
| 53 | |
---|
| 54 | return 17.7 |
---|
| 55 | |
---|
| 56 | def scalar_func_list(t, x, y): |
---|
| 57 | """Function that returns a scalar. |
---|
| 58 | |
---|
| 59 | Used to test error message when numeric array is expected |
---|
| 60 | """ |
---|
| 61 | |
---|
| 62 | return [17.7] |
---|
| 63 | |
---|
| 64 | |
---|
| 65 | def angle(t, x, y): |
---|
| 66 | """Rotating field |
---|
| 67 | """ |
---|
| 68 | from math import atan, pi |
---|
| 69 | |
---|
| 70 | x = num.array(x) |
---|
| 71 | y = num.array(y) |
---|
| 72 | |
---|
| 73 | N = len(x) |
---|
| 74 | a = 0 * x # New array |
---|
| 75 | |
---|
| 76 | for k in range(N): |
---|
| 77 | r = num.sqrt(x[k]**2 + y[k]**2) |
---|
| 78 | |
---|
| 79 | angle = atan(y[k]/x[k]) |
---|
| 80 | |
---|
| 81 | if x[k] < 0: |
---|
| 82 | angle += pi |
---|
| 83 | |
---|
| 84 | # Take normal direction |
---|
| 85 | angle -= pi/2 |
---|
| 86 | |
---|
| 87 | # Ensure positive radians |
---|
| 88 | if angle < 0: |
---|
| 89 | angle += 2*pi |
---|
| 90 | |
---|
| 91 | a[k] = angle/pi*180 |
---|
| 92 | |
---|
| 93 | return a |
---|
| 94 | |
---|
| 95 | |
---|
| 96 | ############################################################################### |
---|
| 97 | |
---|
| 98 | class Test_swb_forcing_terms(unittest.TestCase): |
---|
[7559] | 99 | def setUp(self): |
---|
| 100 | pass |
---|
| 101 | |
---|
| 102 | def tearDown(self): |
---|
| 103 | pass |
---|
| 104 | |
---|
| 105 | def test_gravity(self): |
---|
| 106 | #Assuming no friction |
---|
| 107 | |
---|
| 108 | from anuga.config import g |
---|
| 109 | |
---|
| 110 | a = [0.0, 0.0] |
---|
| 111 | b = [0.0, 2.0] |
---|
| 112 | c = [2.0, 0.0] |
---|
| 113 | d = [0.0, 4.0] |
---|
| 114 | e = [2.0, 2.0] |
---|
| 115 | f = [4.0, 0.0] |
---|
| 116 | |
---|
| 117 | points = [a, b, c, d, e, f] |
---|
| 118 | # bac, bce, ecf, dbe |
---|
| 119 | vertices = [[1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
| 120 | |
---|
| 121 | domain = Domain(points, vertices) |
---|
| 122 | |
---|
| 123 | #Set up for a gradient of (3,0) at mid triangle (bce) |
---|
| 124 | def slope(x, y): |
---|
| 125 | return 3*x |
---|
| 126 | |
---|
| 127 | h = 0.1 |
---|
| 128 | def stage(x, y): |
---|
| 129 | return slope(x, y) + h |
---|
| 130 | |
---|
| 131 | domain.set_quantity('elevation', slope) |
---|
| 132 | domain.set_quantity('stage', stage) |
---|
| 133 | |
---|
| 134 | for name in domain.conserved_quantities: |
---|
| 135 | assert num.allclose(domain.quantities[name].explicit_update, 0) |
---|
| 136 | assert num.allclose(domain.quantities[name].semi_implicit_update, 0) |
---|
| 137 | |
---|
| 138 | domain.compute_forcing_terms() |
---|
| 139 | |
---|
| 140 | assert num.allclose(domain.quantities['stage'].explicit_update, 0) |
---|
| 141 | assert num.allclose(domain.quantities['xmomentum'].explicit_update, |
---|
| 142 | -g*h*3) |
---|
| 143 | assert num.allclose(domain.quantities['ymomentum'].explicit_update, 0) |
---|
| 144 | |
---|
| 145 | def test_manning_friction(self): |
---|
| 146 | from anuga.config import g |
---|
| 147 | |
---|
| 148 | a = [0.0, 0.0] |
---|
| 149 | b = [0.0, 2.0] |
---|
| 150 | c = [2.0, 0.0] |
---|
| 151 | d = [0.0, 4.0] |
---|
| 152 | e = [2.0, 2.0] |
---|
| 153 | f = [4.0, 0.0] |
---|
| 154 | |
---|
| 155 | points = [a, b, c, d, e, f] |
---|
| 156 | # bac, bce, ecf, dbe |
---|
| 157 | vertices = [[1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
| 158 | |
---|
| 159 | domain = Domain(points, vertices) |
---|
| 160 | |
---|
| 161 | #Set up for a gradient of (3,0) at mid triangle (bce) |
---|
| 162 | def slope(x, y): |
---|
| 163 | return 3*x |
---|
| 164 | |
---|
| 165 | h = 0.1 |
---|
| 166 | def stage(x, y): |
---|
| 167 | return slope(x, y) + h |
---|
| 168 | |
---|
| 169 | eta = 0.07 |
---|
| 170 | domain.set_quantity('elevation', slope) |
---|
| 171 | domain.set_quantity('stage', stage) |
---|
| 172 | domain.set_quantity('friction', eta) |
---|
| 173 | |
---|
| 174 | for name in domain.conserved_quantities: |
---|
| 175 | assert num.allclose(domain.quantities[name].explicit_update, 0) |
---|
| 176 | assert num.allclose(domain.quantities[name].semi_implicit_update, 0) |
---|
| 177 | |
---|
| 178 | domain.compute_forcing_terms() |
---|
| 179 | |
---|
| 180 | assert num.allclose(domain.quantities['stage'].explicit_update, 0) |
---|
| 181 | assert num.allclose(domain.quantities['xmomentum'].explicit_update, |
---|
| 182 | -g*h*3) |
---|
| 183 | assert num.allclose(domain.quantities['ymomentum'].explicit_update, 0) |
---|
| 184 | |
---|
| 185 | assert num.allclose(domain.quantities['stage'].semi_implicit_update, 0) |
---|
| 186 | assert num.allclose(domain.quantities['xmomentum'].semi_implicit_update, |
---|
| 187 | 0) |
---|
| 188 | assert num.allclose(domain.quantities['ymomentum'].semi_implicit_update, |
---|
| 189 | 0) |
---|
| 190 | |
---|
| 191 | #Create some momentum for friction to work with |
---|
| 192 | domain.set_quantity('xmomentum', 1) |
---|
| 193 | dz = sqrt(10.0) |
---|
| 194 | S = -g*eta**2 *dz / h**(7.0/3) |
---|
| 195 | |
---|
| 196 | domain.compute_forcing_terms() |
---|
| 197 | assert num.allclose(domain.quantities['stage'].semi_implicit_update, 0) |
---|
| 198 | assert num.allclose(domain.quantities['xmomentum'].semi_implicit_update, |
---|
| 199 | S) |
---|
| 200 | assert num.allclose(domain.quantities['ymomentum'].semi_implicit_update, |
---|
| 201 | 0) |
---|
| 202 | |
---|
| 203 | #A more complex example |
---|
| 204 | domain.quantities['stage'].semi_implicit_update[:] = 0.0 |
---|
| 205 | domain.quantities['xmomentum'].semi_implicit_update[:] = 0.0 |
---|
| 206 | domain.quantities['ymomentum'].semi_implicit_update[:] = 0.0 |
---|
| 207 | |
---|
| 208 | domain.set_quantity('xmomentum', 3) |
---|
| 209 | domain.set_quantity('ymomentum', 4) |
---|
| 210 | |
---|
| 211 | S = -g*eta**2*5*dz / h**(7.0/3) |
---|
| 212 | |
---|
| 213 | domain.compute_forcing_terms() |
---|
| 214 | |
---|
| 215 | assert num.allclose(domain.quantities['stage'].semi_implicit_update, 0) |
---|
| 216 | assert num.allclose(domain.quantities['xmomentum'].semi_implicit_update, |
---|
| 217 | 3*S) |
---|
| 218 | assert num.allclose(domain.quantities['ymomentum'].semi_implicit_update, |
---|
| 219 | 4*S) |
---|
| 220 | |
---|
| 221 | |
---|
| 222 | |
---|
| 223 | def test_manning_friction_old(self): |
---|
| 224 | from anuga.config import g |
---|
| 225 | |
---|
| 226 | a = [0.0, 0.0] |
---|
| 227 | b = [0.0, 2.0] |
---|
| 228 | c = [2.0, 0.0] |
---|
| 229 | d = [0.0, 4.0] |
---|
| 230 | e = [2.0, 2.0] |
---|
| 231 | f = [4.0, 0.0] |
---|
| 232 | |
---|
| 233 | points = [a, b, c, d, e, f] |
---|
| 234 | # bac, bce, ecf, dbe |
---|
| 235 | vertices = [[1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
| 236 | |
---|
| 237 | domain = Domain(points, vertices) |
---|
| 238 | |
---|
| 239 | #Turn old mannings function on |
---|
| 240 | domain.set_new_mannings_function(False) |
---|
| 241 | |
---|
| 242 | #Set up for a gradient of (3,0) at mid triangle (bce) |
---|
| 243 | def slope(x, y): |
---|
| 244 | return 3*x |
---|
| 245 | |
---|
| 246 | h = 0.1 |
---|
| 247 | def stage(x, y): |
---|
| 248 | return slope(x, y) + h |
---|
| 249 | |
---|
| 250 | eta = 0.07 |
---|
| 251 | domain.set_quantity('elevation', slope) |
---|
| 252 | domain.set_quantity('stage', stage) |
---|
| 253 | domain.set_quantity('friction', eta) |
---|
| 254 | |
---|
| 255 | for name in domain.conserved_quantities: |
---|
| 256 | assert num.allclose(domain.quantities[name].explicit_update, 0) |
---|
| 257 | assert num.allclose(domain.quantities[name].semi_implicit_update, 0) |
---|
| 258 | |
---|
| 259 | domain.compute_forcing_terms() |
---|
| 260 | |
---|
| 261 | assert num.allclose(domain.quantities['stage'].explicit_update, 0) |
---|
| 262 | assert num.allclose(domain.quantities['xmomentum'].explicit_update, |
---|
| 263 | -g*h*3) |
---|
| 264 | assert num.allclose(domain.quantities['ymomentum'].explicit_update, 0) |
---|
| 265 | |
---|
| 266 | assert num.allclose(domain.quantities['stage'].semi_implicit_update, 0) |
---|
| 267 | assert num.allclose(domain.quantities['xmomentum'].semi_implicit_update, |
---|
| 268 | 0) |
---|
| 269 | assert num.allclose(domain.quantities['ymomentum'].semi_implicit_update, |
---|
| 270 | 0) |
---|
| 271 | |
---|
| 272 | #Create some momentum for friction to work with |
---|
| 273 | domain.set_quantity('xmomentum', 1) |
---|
| 274 | S = -g*eta**2 / h**(7.0/3) |
---|
| 275 | |
---|
| 276 | domain.compute_forcing_terms() |
---|
| 277 | assert num.allclose(domain.quantities['stage'].semi_implicit_update, 0) |
---|
| 278 | assert num.allclose(domain.quantities['xmomentum'].semi_implicit_update, |
---|
| 279 | S) |
---|
| 280 | assert num.allclose(domain.quantities['ymomentum'].semi_implicit_update, |
---|
| 281 | 0) |
---|
| 282 | |
---|
| 283 | #A more complex example |
---|
| 284 | domain.quantities['stage'].semi_implicit_update[:] = 0.0 |
---|
| 285 | domain.quantities['xmomentum'].semi_implicit_update[:] = 0.0 |
---|
| 286 | domain.quantities['ymomentum'].semi_implicit_update[:] = 0.0 |
---|
| 287 | |
---|
| 288 | domain.set_quantity('xmomentum', 3) |
---|
| 289 | domain.set_quantity('ymomentum', 4) |
---|
| 290 | |
---|
| 291 | S = -g*eta**2*5 / h**(7.0/3) |
---|
| 292 | |
---|
| 293 | domain.compute_forcing_terms() |
---|
| 294 | |
---|
| 295 | assert num.allclose(domain.quantities['stage'].semi_implicit_update, 0) |
---|
| 296 | assert num.allclose(domain.quantities['xmomentum'].semi_implicit_update, |
---|
| 297 | 3*S) |
---|
| 298 | assert num.allclose(domain.quantities['ymomentum'].semi_implicit_update, |
---|
| 299 | 4*S) |
---|
| 300 | |
---|
| 301 | |
---|
| 302 | def test_manning_friction_new(self): |
---|
| 303 | from anuga.config import g |
---|
| 304 | |
---|
| 305 | a = [0.0, 0.0] |
---|
| 306 | b = [0.0, 2.0] |
---|
| 307 | c = [2.0, 0.0] |
---|
| 308 | d = [0.0, 4.0] |
---|
| 309 | e = [2.0, 2.0] |
---|
| 310 | f = [4.0, 0.0] |
---|
| 311 | |
---|
| 312 | points = [a, b, c, d, e, f] |
---|
| 313 | # bac, bce, ecf, dbe |
---|
| 314 | vertices = [[1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
| 315 | |
---|
| 316 | domain = Domain(points, vertices) |
---|
| 317 | |
---|
| 318 | # Use the new function which takes into account the extra |
---|
| 319 | # wetted area due to slope of bed |
---|
| 320 | domain.set_new_mannings_function(True) |
---|
| 321 | |
---|
| 322 | #Set up for a gradient of (3,0) at mid triangle (bce) |
---|
| 323 | def slope(x, y): |
---|
| 324 | return 3*x |
---|
| 325 | |
---|
| 326 | h = 0.1 |
---|
| 327 | def stage(x, y): |
---|
| 328 | return slope(x, y) + h |
---|
| 329 | |
---|
| 330 | eta = 0.07 |
---|
| 331 | domain.set_quantity('elevation', slope) |
---|
| 332 | domain.set_quantity('stage', stage) |
---|
| 333 | domain.set_quantity('friction', eta) |
---|
| 334 | |
---|
| 335 | for name in domain.conserved_quantities: |
---|
| 336 | assert num.allclose(domain.quantities[name].explicit_update, 0) |
---|
| 337 | assert num.allclose(domain.quantities[name].semi_implicit_update, 0) |
---|
| 338 | |
---|
| 339 | domain.compute_forcing_terms() |
---|
| 340 | |
---|
| 341 | assert num.allclose(domain.quantities['stage'].explicit_update, 0) |
---|
| 342 | assert num.allclose(domain.quantities['xmomentum'].explicit_update, |
---|
| 343 | -g*h*3) |
---|
| 344 | assert num.allclose(domain.quantities['ymomentum'].explicit_update, 0) |
---|
| 345 | |
---|
| 346 | assert num.allclose(domain.quantities['stage'].semi_implicit_update, 0) |
---|
| 347 | assert num.allclose(domain.quantities['xmomentum'].semi_implicit_update, |
---|
| 348 | 0) |
---|
| 349 | assert num.allclose(domain.quantities['ymomentum'].semi_implicit_update, |
---|
| 350 | 0) |
---|
| 351 | |
---|
| 352 | #Create some momentum for friction to work with |
---|
| 353 | domain.set_quantity('xmomentum', 1) |
---|
| 354 | S = -g*eta**2 / h**(7.0/3) * sqrt(10) |
---|
| 355 | |
---|
| 356 | domain.compute_forcing_terms() |
---|
| 357 | assert num.allclose(domain.quantities['stage'].semi_implicit_update, 0) |
---|
| 358 | assert num.allclose(domain.quantities['xmomentum'].semi_implicit_update, |
---|
| 359 | S) |
---|
| 360 | assert num.allclose(domain.quantities['ymomentum'].semi_implicit_update, |
---|
| 361 | 0) |
---|
| 362 | |
---|
| 363 | #A more complex example |
---|
| 364 | domain.quantities['stage'].semi_implicit_update[:] = 0.0 |
---|
| 365 | domain.quantities['xmomentum'].semi_implicit_update[:] = 0.0 |
---|
| 366 | domain.quantities['ymomentum'].semi_implicit_update[:] = 0.0 |
---|
| 367 | |
---|
| 368 | domain.set_quantity('xmomentum', 3) |
---|
| 369 | domain.set_quantity('ymomentum', 4) |
---|
| 370 | |
---|
| 371 | S = -g*eta**2*5 / h**(7.0/3) * sqrt(10.0) |
---|
| 372 | |
---|
| 373 | domain.compute_forcing_terms() |
---|
| 374 | |
---|
| 375 | assert num.allclose(domain.quantities['stage'].semi_implicit_update, 0) |
---|
| 376 | assert num.allclose(domain.quantities['xmomentum'].semi_implicit_update, |
---|
| 377 | 3*S) |
---|
| 378 | assert num.allclose(domain.quantities['ymomentum'].semi_implicit_update, |
---|
| 379 | 4*S) |
---|
| 380 | |
---|
| 381 | def test_constant_wind_stress(self): |
---|
| 382 | from anuga.config import rho_a, rho_w, eta_w |
---|
| 383 | from math import pi, cos, sin |
---|
| 384 | |
---|
| 385 | a = [0.0, 0.0] |
---|
| 386 | b = [0.0, 2.0] |
---|
| 387 | c = [2.0, 0.0] |
---|
| 388 | d = [0.0, 4.0] |
---|
| 389 | e = [2.0, 2.0] |
---|
| 390 | f = [4.0, 0.0] |
---|
| 391 | |
---|
| 392 | points = [a, b, c, d, e, f] |
---|
| 393 | # bac, bce, ecf, dbe |
---|
| 394 | vertices = [[1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
| 395 | |
---|
| 396 | domain = Domain(points, vertices) |
---|
| 397 | |
---|
| 398 | #Flat surface with 1m of water |
---|
| 399 | domain.set_quantity('elevation', 0) |
---|
| 400 | domain.set_quantity('stage', 1.0) |
---|
| 401 | domain.set_quantity('friction', 0) |
---|
| 402 | |
---|
| 403 | Br = Reflective_boundary(domain) |
---|
| 404 | domain.set_boundary({'exterior': Br}) |
---|
| 405 | |
---|
| 406 | #Setup only one forcing term, constant wind stress |
---|
| 407 | s = 100 |
---|
| 408 | phi = 135 |
---|
| 409 | domain.forcing_terms = [] |
---|
| 410 | domain.forcing_terms.append(Wind_stress(s, phi)) |
---|
| 411 | |
---|
| 412 | domain.compute_forcing_terms() |
---|
| 413 | |
---|
| 414 | const = eta_w*rho_a / rho_w |
---|
| 415 | |
---|
| 416 | #Convert to radians |
---|
| 417 | phi = phi*pi / 180 |
---|
| 418 | |
---|
| 419 | #Compute velocity vector (u, v) |
---|
| 420 | u = s*cos(phi) |
---|
| 421 | v = s*sin(phi) |
---|
| 422 | |
---|
| 423 | #Compute wind stress |
---|
| 424 | S = const * num.sqrt(u**2 + v**2) |
---|
| 425 | |
---|
| 426 | assert num.allclose(domain.quantities['stage'].explicit_update, 0) |
---|
| 427 | assert num.allclose(domain.quantities['xmomentum'].explicit_update, S*u) |
---|
| 428 | assert num.allclose(domain.quantities['ymomentum'].explicit_update, S*v) |
---|
| 429 | |
---|
| 430 | def test_variable_wind_stress(self): |
---|
| 431 | from anuga.config import rho_a, rho_w, eta_w |
---|
| 432 | from math import pi, cos, sin |
---|
| 433 | |
---|
| 434 | a = [0.0, 0.0] |
---|
| 435 | b = [0.0, 2.0] |
---|
| 436 | c = [2.0, 0.0] |
---|
| 437 | d = [0.0, 4.0] |
---|
| 438 | e = [2.0, 2.0] |
---|
| 439 | f = [4.0, 0.0] |
---|
| 440 | |
---|
| 441 | points = [a, b, c, d, e, f] |
---|
| 442 | # bac, bce, ecf, dbe |
---|
| 443 | vertices = [[1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
| 444 | |
---|
| 445 | domain = Domain(points, vertices) |
---|
| 446 | |
---|
| 447 | #Flat surface with 1m of water |
---|
| 448 | domain.set_quantity('elevation', 0) |
---|
| 449 | domain.set_quantity('stage', 1.0) |
---|
| 450 | domain.set_quantity('friction', 0) |
---|
| 451 | |
---|
| 452 | Br = Reflective_boundary(domain) |
---|
| 453 | domain.set_boundary({'exterior': Br}) |
---|
| 454 | |
---|
| 455 | domain.time = 5.54 # Take a random time (not zero) |
---|
| 456 | |
---|
| 457 | #Setup only one forcing term, constant wind stress |
---|
| 458 | s = 100 |
---|
| 459 | phi = 135 |
---|
| 460 | domain.forcing_terms = [] |
---|
| 461 | domain.forcing_terms.append(Wind_stress(s=speed, phi=angle)) |
---|
| 462 | |
---|
| 463 | domain.compute_forcing_terms() |
---|
| 464 | |
---|
| 465 | #Compute reference solution |
---|
| 466 | const = eta_w*rho_a / rho_w |
---|
| 467 | |
---|
| 468 | N = len(domain) # number_of_triangles |
---|
| 469 | |
---|
| 470 | xc = domain.get_centroid_coordinates() |
---|
| 471 | t = domain.time |
---|
| 472 | |
---|
| 473 | x = xc[:,0] |
---|
| 474 | y = xc[:,1] |
---|
| 475 | s_vec = speed(t,x,y) |
---|
| 476 | phi_vec = angle(t,x,y) |
---|
| 477 | |
---|
| 478 | for k in range(N): |
---|
| 479 | # Convert to radians |
---|
| 480 | phi = phi_vec[k]*pi / 180 |
---|
| 481 | s = s_vec[k] |
---|
| 482 | |
---|
| 483 | # Compute velocity vector (u, v) |
---|
| 484 | u = s*cos(phi) |
---|
| 485 | v = s*sin(phi) |
---|
| 486 | |
---|
| 487 | # Compute wind stress |
---|
| 488 | S = const * num.sqrt(u**2 + v**2) |
---|
| 489 | |
---|
| 490 | assert num.allclose(domain.quantities['stage'].explicit_update[k], |
---|
| 491 | 0) |
---|
| 492 | assert num.allclose(domain.quantities['xmomentum'].\ |
---|
| 493 | explicit_update[k], |
---|
| 494 | S*u) |
---|
| 495 | assert num.allclose(domain.quantities['ymomentum'].\ |
---|
| 496 | explicit_update[k], |
---|
| 497 | S*v) |
---|
| 498 | |
---|
| 499 | def test_windfield_from_file(self): |
---|
| 500 | import time |
---|
| 501 | from anuga.config import rho_a, rho_w, eta_w |
---|
| 502 | from math import pi, cos, sin |
---|
| 503 | from anuga.config import time_format |
---|
| 504 | from anuga.abstract_2d_finite_volumes.util import file_function |
---|
| 505 | |
---|
| 506 | a = [0.0, 0.0] |
---|
| 507 | b = [0.0, 2.0] |
---|
| 508 | c = [2.0, 0.0] |
---|
| 509 | d = [0.0, 4.0] |
---|
| 510 | e = [2.0, 2.0] |
---|
| 511 | f = [4.0, 0.0] |
---|
| 512 | |
---|
| 513 | points = [a, b, c, d, e, f] |
---|
| 514 | # bac, bce, ecf, dbe |
---|
| 515 | vertices = [[1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
| 516 | |
---|
| 517 | domain = Domain(points, vertices) |
---|
| 518 | |
---|
| 519 | # Flat surface with 1m of water |
---|
| 520 | domain.set_quantity('elevation', 0) |
---|
| 521 | domain.set_quantity('stage', 1.0) |
---|
| 522 | domain.set_quantity('friction', 0) |
---|
| 523 | |
---|
| 524 | Br = Reflective_boundary(domain) |
---|
| 525 | domain.set_boundary({'exterior': Br}) |
---|
| 526 | |
---|
| 527 | domain.time = 7 # Take a time that is represented in file (not zero) |
---|
| 528 | |
---|
| 529 | # Write wind stress file (ensure that domain.time is covered) |
---|
| 530 | # Take x=1 and y=0 |
---|
| 531 | filename = 'test_windstress_from_file' |
---|
| 532 | start = time.mktime(time.strptime('2000', '%Y')) |
---|
| 533 | fid = open(filename + '.txt', 'w') |
---|
| 534 | dt = 1 # One second interval |
---|
| 535 | t = 0.0 |
---|
| 536 | while t <= 10.0: |
---|
| 537 | t_string = time.strftime(time_format, time.gmtime(t+start)) |
---|
| 538 | |
---|
| 539 | fid.write('%s, %f %f\n' % |
---|
| 540 | (t_string, speed(t,[1],[0])[0], angle(t,[1],[0])[0])) |
---|
| 541 | t += dt |
---|
| 542 | |
---|
| 543 | fid.close() |
---|
| 544 | |
---|
| 545 | # Convert ASCII file to NetCDF (Which is what we really like!) |
---|
| 546 | from data_manager import timefile2netcdf |
---|
| 547 | |
---|
| 548 | timefile2netcdf(filename) |
---|
| 549 | os.remove(filename + '.txt') |
---|
| 550 | |
---|
| 551 | # Setup wind stress |
---|
| 552 | F = file_function(filename + '.tms', |
---|
| 553 | quantities=['Attribute0', 'Attribute1']) |
---|
| 554 | os.remove(filename + '.tms') |
---|
| 555 | |
---|
| 556 | W = Wind_stress(F) |
---|
| 557 | |
---|
| 558 | domain.forcing_terms = [] |
---|
| 559 | domain.forcing_terms.append(W) |
---|
| 560 | |
---|
| 561 | domain.compute_forcing_terms() |
---|
| 562 | |
---|
| 563 | # Compute reference solution |
---|
| 564 | const = eta_w*rho_a / rho_w |
---|
| 565 | |
---|
| 566 | N = len(domain) # number_of_triangles |
---|
| 567 | |
---|
| 568 | t = domain.time |
---|
| 569 | |
---|
| 570 | s = speed(t, [1], [0])[0] |
---|
| 571 | phi = angle(t, [1], [0])[0] |
---|
| 572 | |
---|
| 573 | # Convert to radians |
---|
| 574 | phi = phi*pi / 180 |
---|
| 575 | |
---|
| 576 | # Compute velocity vector (u, v) |
---|
| 577 | u = s*cos(phi) |
---|
| 578 | v = s*sin(phi) |
---|
| 579 | |
---|
| 580 | # Compute wind stress |
---|
| 581 | S = const * num.sqrt(u**2 + v**2) |
---|
| 582 | |
---|
| 583 | for k in range(N): |
---|
| 584 | assert num.allclose(domain.quantities['stage'].explicit_update[k], |
---|
| 585 | 0) |
---|
| 586 | assert num.allclose(domain.quantities['xmomentum'].\ |
---|
| 587 | explicit_update[k], |
---|
| 588 | S*u) |
---|
| 589 | assert num.allclose(domain.quantities['ymomentum'].\ |
---|
| 590 | explicit_update[k], |
---|
| 591 | S*v) |
---|
| 592 | |
---|
| 593 | def test_windfield_from_file_seconds(self): |
---|
| 594 | import time |
---|
| 595 | from anuga.config import rho_a, rho_w, eta_w |
---|
| 596 | from math import pi, cos, sin |
---|
| 597 | from anuga.config import time_format |
---|
| 598 | from anuga.abstract_2d_finite_volumes.util import file_function |
---|
| 599 | |
---|
| 600 | a = [0.0, 0.0] |
---|
| 601 | b = [0.0, 2.0] |
---|
| 602 | c = [2.0, 0.0] |
---|
| 603 | d = [0.0, 4.0] |
---|
| 604 | e = [2.0, 2.0] |
---|
| 605 | f = [4.0, 0.0] |
---|
| 606 | |
---|
| 607 | points = [a, b, c, d, e, f] |
---|
| 608 | # bac, bce, ecf, dbe |
---|
| 609 | vertices = [[1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
| 610 | |
---|
| 611 | domain = Domain(points, vertices) |
---|
| 612 | |
---|
| 613 | # Flat surface with 1m of water |
---|
| 614 | domain.set_quantity('elevation', 0) |
---|
| 615 | domain.set_quantity('stage', 1.0) |
---|
| 616 | domain.set_quantity('friction', 0) |
---|
| 617 | |
---|
| 618 | Br = Reflective_boundary(domain) |
---|
| 619 | domain.set_boundary({'exterior': Br}) |
---|
| 620 | |
---|
| 621 | domain.time = 7 # Take a time that is represented in file (not zero) |
---|
| 622 | |
---|
| 623 | # Write wind stress file (ensure that domain.time is covered) |
---|
| 624 | # Take x=1 and y=0 |
---|
| 625 | filename = 'test_windstress_from_file' |
---|
| 626 | start = time.mktime(time.strptime('2000', '%Y')) |
---|
| 627 | fid = open(filename + '.txt', 'w') |
---|
| 628 | dt = 0.5 # Half second interval |
---|
| 629 | t = 0.0 |
---|
| 630 | while t <= 10.0: |
---|
| 631 | fid.write('%s, %f %f\n' |
---|
| 632 | % (str(t), speed(t, [1], [0])[0], angle(t, [1], [0])[0])) |
---|
| 633 | t += dt |
---|
| 634 | |
---|
| 635 | fid.close() |
---|
| 636 | |
---|
| 637 | # Convert ASCII file to NetCDF (Which is what we really like!) |
---|
| 638 | from data_manager import timefile2netcdf |
---|
| 639 | |
---|
| 640 | timefile2netcdf(filename, time_as_seconds=True) |
---|
| 641 | os.remove(filename + '.txt') |
---|
| 642 | |
---|
| 643 | # Setup wind stress |
---|
| 644 | F = file_function(filename + '.tms', |
---|
| 645 | quantities=['Attribute0', 'Attribute1']) |
---|
| 646 | os.remove(filename + '.tms') |
---|
| 647 | |
---|
| 648 | W = Wind_stress(F) |
---|
| 649 | |
---|
| 650 | domain.forcing_terms = [] |
---|
| 651 | domain.forcing_terms.append(W) |
---|
| 652 | |
---|
| 653 | domain.compute_forcing_terms() |
---|
| 654 | |
---|
| 655 | # Compute reference solution |
---|
| 656 | const = eta_w*rho_a / rho_w |
---|
| 657 | |
---|
| 658 | N = len(domain) # number_of_triangles |
---|
| 659 | |
---|
| 660 | t = domain.time |
---|
| 661 | |
---|
| 662 | s = speed(t, [1], [0])[0] |
---|
| 663 | phi = angle(t, [1], [0])[0] |
---|
| 664 | |
---|
| 665 | # Convert to radians |
---|
| 666 | phi = phi*pi / 180 |
---|
| 667 | |
---|
| 668 | # Compute velocity vector (u, v) |
---|
| 669 | u = s*cos(phi) |
---|
| 670 | v = s*sin(phi) |
---|
| 671 | |
---|
| 672 | # Compute wind stress |
---|
| 673 | S = const * num.sqrt(u**2 + v**2) |
---|
| 674 | |
---|
| 675 | for k in range(N): |
---|
| 676 | assert num.allclose(domain.quantities['stage'].explicit_update[k], |
---|
| 677 | 0) |
---|
| 678 | assert num.allclose(domain.quantities['xmomentum'].\ |
---|
| 679 | explicit_update[k], |
---|
| 680 | S*u) |
---|
| 681 | assert num.allclose(domain.quantities['ymomentum'].\ |
---|
| 682 | explicit_update[k], |
---|
| 683 | S*v) |
---|
| 684 | |
---|
| 685 | def test_wind_stress_error_condition(self): |
---|
| 686 | """Test that windstress reacts properly when forcing functions |
---|
| 687 | are wrong - e.g. returns a scalar |
---|
| 688 | """ |
---|
| 689 | |
---|
| 690 | from math import pi, cos, sin |
---|
| 691 | from anuga.config import rho_a, rho_w, eta_w |
---|
| 692 | |
---|
| 693 | a = [0.0, 0.0] |
---|
| 694 | b = [0.0, 2.0] |
---|
| 695 | c = [2.0, 0.0] |
---|
| 696 | d = [0.0, 4.0] |
---|
| 697 | e = [2.0, 2.0] |
---|
| 698 | f = [4.0, 0.0] |
---|
| 699 | |
---|
| 700 | points = [a, b, c, d, e, f] |
---|
| 701 | # bac, bce, ecf, dbe |
---|
| 702 | vertices = [[1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
| 703 | |
---|
| 704 | domain = Domain(points, vertices) |
---|
| 705 | |
---|
| 706 | # Flat surface with 1m of water |
---|
| 707 | domain.set_quantity('elevation', 0) |
---|
| 708 | domain.set_quantity('stage', 1.0) |
---|
| 709 | domain.set_quantity('friction', 0) |
---|
| 710 | |
---|
| 711 | Br = Reflective_boundary(domain) |
---|
| 712 | domain.set_boundary({'exterior': Br}) |
---|
| 713 | |
---|
| 714 | domain.time = 5.54 # Take a random time (not zero) |
---|
| 715 | |
---|
| 716 | # Setup only one forcing term, bad func |
---|
| 717 | domain.forcing_terms = [] |
---|
| 718 | |
---|
| 719 | try: |
---|
| 720 | domain.forcing_terms.append(Wind_stress(s=scalar_func_list, |
---|
| 721 | phi=angle)) |
---|
| 722 | except AssertionError: |
---|
| 723 | pass |
---|
| 724 | else: |
---|
| 725 | msg = 'Should have raised exception' |
---|
| 726 | raise Exception, msg |
---|
| 727 | |
---|
| 728 | try: |
---|
| 729 | domain.forcing_terms.append(Wind_stress(s=speed, phi=scalar_func)) |
---|
| 730 | except Exception: |
---|
| 731 | pass |
---|
| 732 | else: |
---|
| 733 | msg = 'Should have raised exception' |
---|
| 734 | raise Exception, msg |
---|
| 735 | |
---|
| 736 | try: |
---|
| 737 | domain.forcing_terms.append(Wind_stress(s=speed, phi='xx')) |
---|
| 738 | except: |
---|
| 739 | pass |
---|
| 740 | else: |
---|
| 741 | msg = 'Should have raised exception' |
---|
| 742 | raise Exception, msg |
---|
| 743 | |
---|
| 744 | def test_rainfall(self): |
---|
| 745 | from math import pi, cos, sin |
---|
| 746 | |
---|
| 747 | a = [0.0, 0.0] |
---|
| 748 | b = [0.0, 2.0] |
---|
| 749 | c = [2.0, 0.0] |
---|
| 750 | d = [0.0, 4.0] |
---|
| 751 | e = [2.0, 2.0] |
---|
| 752 | f = [4.0, 0.0] |
---|
| 753 | |
---|
| 754 | points = [a, b, c, d, e, f] |
---|
| 755 | # bac, bce, ecf, dbe |
---|
| 756 | vertices = [[1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
| 757 | |
---|
| 758 | domain = Domain(points, vertices) |
---|
| 759 | |
---|
| 760 | # Flat surface with 1m of water |
---|
| 761 | domain.set_quantity('elevation', 0) |
---|
| 762 | domain.set_quantity('stage', 1.0) |
---|
| 763 | domain.set_quantity('friction', 0) |
---|
| 764 | |
---|
| 765 | Br = Reflective_boundary(domain) |
---|
| 766 | domain.set_boundary({'exterior': Br}) |
---|
| 767 | |
---|
| 768 | # Setup only one forcing term, constant rainfall |
---|
| 769 | domain.forcing_terms = [] |
---|
| 770 | domain.forcing_terms.append(Rainfall(domain, rate=2.0)) |
---|
| 771 | |
---|
| 772 | domain.compute_forcing_terms() |
---|
| 773 | assert num.allclose(domain.quantities['stage'].explicit_update, |
---|
| 774 | 2.0/1000) |
---|
| 775 | |
---|
| 776 | def test_rainfall_restricted_by_polygon(self): |
---|
| 777 | from math import pi, cos, sin |
---|
| 778 | |
---|
| 779 | a = [0.0, 0.0] |
---|
| 780 | b = [0.0, 2.0] |
---|
| 781 | c = [2.0, 0.0] |
---|
| 782 | d = [0.0, 4.0] |
---|
| 783 | e = [2.0, 2.0] |
---|
| 784 | f = [4.0, 0.0] |
---|
| 785 | |
---|
| 786 | points = [a, b, c, d, e, f] |
---|
| 787 | # bac, bce, ecf, dbe |
---|
| 788 | vertices = [[1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
| 789 | |
---|
| 790 | domain = Domain(points, vertices) |
---|
| 791 | |
---|
| 792 | # Flat surface with 1m of water |
---|
| 793 | domain.set_quantity('elevation', 0) |
---|
| 794 | domain.set_quantity('stage', 1.0) |
---|
| 795 | domain.set_quantity('friction', 0) |
---|
| 796 | |
---|
| 797 | Br = Reflective_boundary(domain) |
---|
| 798 | domain.set_boundary({'exterior': Br}) |
---|
| 799 | |
---|
| 800 | # Setup only one forcing term, constant rainfall |
---|
| 801 | # restricted to a polygon enclosing triangle #1 (bce) |
---|
| 802 | domain.forcing_terms = [] |
---|
| 803 | R = Rainfall(domain, rate=2.0, polygon=[[1,1], [2,1], [2,2], [1,2]]) |
---|
| 804 | |
---|
| 805 | assert num.allclose(R.exchange_area, 2) |
---|
| 806 | |
---|
| 807 | domain.forcing_terms.append(R) |
---|
| 808 | |
---|
| 809 | domain.compute_forcing_terms() |
---|
| 810 | |
---|
| 811 | assert num.allclose(domain.quantities['stage'].explicit_update[1], |
---|
| 812 | 2.0/1000) |
---|
| 813 | assert num.allclose(domain.quantities['stage'].explicit_update[0], 0) |
---|
| 814 | assert num.allclose(domain.quantities['stage'].explicit_update[2:], 0) |
---|
| 815 | |
---|
| 816 | def test_time_dependent_rainfall_restricted_by_polygon(self): |
---|
| 817 | a = [0.0, 0.0] |
---|
| 818 | b = [0.0, 2.0] |
---|
| 819 | c = [2.0, 0.0] |
---|
| 820 | d = [0.0, 4.0] |
---|
| 821 | e = [2.0, 2.0] |
---|
| 822 | f = [4.0, 0.0] |
---|
| 823 | |
---|
| 824 | points = [a, b, c, d, e, f] |
---|
| 825 | # bac, bce, ecf, dbe |
---|
| 826 | vertices = [[1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
| 827 | |
---|
| 828 | domain = Domain(points, vertices) |
---|
| 829 | |
---|
| 830 | # Flat surface with 1m of water |
---|
| 831 | domain.set_quantity('elevation', 0) |
---|
| 832 | domain.set_quantity('stage', 1.0) |
---|
| 833 | domain.set_quantity('friction', 0) |
---|
| 834 | |
---|
| 835 | Br = Reflective_boundary(domain) |
---|
| 836 | domain.set_boundary({'exterior': Br}) |
---|
| 837 | |
---|
| 838 | # Setup only one forcing term, time dependent rainfall |
---|
| 839 | # restricted to a polygon enclosing triangle #1 (bce) |
---|
| 840 | domain.forcing_terms = [] |
---|
| 841 | R = Rainfall(domain, |
---|
| 842 | rate=lambda t: 3*t + 7, |
---|
| 843 | polygon = [[1,1], [2,1], [2,2], [1,2]]) |
---|
| 844 | |
---|
| 845 | assert num.allclose(R.exchange_area, 2) |
---|
| 846 | |
---|
| 847 | domain.forcing_terms.append(R) |
---|
| 848 | |
---|
| 849 | domain.time = 10. |
---|
| 850 | |
---|
| 851 | domain.compute_forcing_terms() |
---|
| 852 | |
---|
| 853 | assert num.allclose(domain.quantities['stage'].explicit_update[1], |
---|
| 854 | (3*domain.time + 7)/1000) |
---|
| 855 | assert num.allclose(domain.quantities['stage'].explicit_update[0], 0) |
---|
| 856 | assert num.allclose(domain.quantities['stage'].explicit_update[2:], 0) |
---|
| 857 | |
---|
| 858 | def test_time_dependent_rainfall_using_starttime(self): |
---|
| 859 | rainfall_poly = ensure_numeric([[1,1], [2,1], [2,2], [1,2]], num.float) |
---|
| 860 | |
---|
| 861 | a = [0.0, 0.0] |
---|
| 862 | b = [0.0, 2.0] |
---|
| 863 | c = [2.0, 0.0] |
---|
| 864 | d = [0.0, 4.0] |
---|
| 865 | e = [2.0, 2.0] |
---|
| 866 | f = [4.0, 0.0] |
---|
| 867 | |
---|
| 868 | points = [a, b, c, d, e, f] |
---|
| 869 | # bac, bce, ecf, dbe |
---|
| 870 | vertices = [[1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
| 871 | |
---|
| 872 | domain = Domain(points, vertices) |
---|
| 873 | |
---|
| 874 | # Flat surface with 1m of water |
---|
| 875 | domain.set_quantity('elevation', 0) |
---|
| 876 | domain.set_quantity('stage', 1.0) |
---|
| 877 | domain.set_quantity('friction', 0) |
---|
| 878 | |
---|
| 879 | Br = Reflective_boundary(domain) |
---|
| 880 | domain.set_boundary({'exterior': Br}) |
---|
| 881 | |
---|
| 882 | # Setup only one forcing term, time dependent rainfall |
---|
| 883 | # restricted to a polygon enclosing triangle #1 (bce) |
---|
| 884 | domain.forcing_terms = [] |
---|
| 885 | R = Rainfall(domain, |
---|
| 886 | rate=lambda t: 3*t + 7, |
---|
| 887 | polygon=rainfall_poly) |
---|
| 888 | |
---|
| 889 | assert num.allclose(R.exchange_area, 2) |
---|
| 890 | |
---|
| 891 | domain.forcing_terms.append(R) |
---|
| 892 | |
---|
| 893 | # This will test that time used in the forcing function takes |
---|
| 894 | # startime into account. |
---|
| 895 | domain.starttime = 5.0 |
---|
| 896 | |
---|
| 897 | domain.time = 7. |
---|
| 898 | |
---|
| 899 | domain.compute_forcing_terms() |
---|
| 900 | |
---|
| 901 | assert num.allclose(domain.quantities['stage'].explicit_update[1], |
---|
| 902 | (3*domain.get_time() + 7)/1000) |
---|
| 903 | assert num.allclose(domain.quantities['stage'].explicit_update[1], |
---|
| 904 | (3*(domain.time + domain.starttime) + 7)/1000) |
---|
| 905 | |
---|
| 906 | # Using internal time her should fail |
---|
| 907 | assert not num.allclose(domain.quantities['stage'].explicit_update[1], |
---|
| 908 | (3*domain.time + 7)/1000) |
---|
| 909 | |
---|
| 910 | assert num.allclose(domain.quantities['stage'].explicit_update[0], 0) |
---|
| 911 | assert num.allclose(domain.quantities['stage'].explicit_update[2:], 0) |
---|
| 912 | |
---|
| 913 | def test_time_dependent_rainfall_using_georef(self): |
---|
| 914 | """test_time_dependent_rainfall_using_georef |
---|
| 915 | |
---|
| 916 | This will also test the General forcing term using georef |
---|
| 917 | """ |
---|
| 918 | |
---|
| 919 | # Mesh in zone 56 (absolute coords) |
---|
| 920 | x0 = 314036.58727982 |
---|
| 921 | y0 = 6224951.2960092 |
---|
| 922 | |
---|
| 923 | rainfall_poly = ensure_numeric([[1,1], [2,1], [2,2], [1,2]], num.float) |
---|
| 924 | rainfall_poly += [x0, y0] |
---|
| 925 | |
---|
| 926 | a = [0.0, 0.0] |
---|
| 927 | b = [0.0, 2.0] |
---|
| 928 | c = [2.0, 0.0] |
---|
| 929 | d = [0.0, 4.0] |
---|
| 930 | e = [2.0, 2.0] |
---|
| 931 | f = [4.0, 0.0] |
---|
| 932 | |
---|
| 933 | points = [a, b, c, d, e, f] |
---|
| 934 | # bac, bce, ecf, dbe |
---|
| 935 | vertices = [[1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
| 936 | |
---|
| 937 | domain = Domain(points, vertices, |
---|
| 938 | geo_reference=Geo_reference(56, x0, y0)) |
---|
| 939 | |
---|
| 940 | # Flat surface with 1m of water |
---|
| 941 | domain.set_quantity('elevation', 0) |
---|
| 942 | domain.set_quantity('stage', 1.0) |
---|
| 943 | domain.set_quantity('friction', 0) |
---|
| 944 | |
---|
| 945 | Br = Reflective_boundary(domain) |
---|
| 946 | domain.set_boundary({'exterior': Br}) |
---|
| 947 | |
---|
| 948 | # Setup only one forcing term, time dependent rainfall |
---|
| 949 | # restricted to a polygon enclosing triangle #1 (bce) |
---|
| 950 | domain.forcing_terms = [] |
---|
| 951 | R = Rainfall(domain, |
---|
| 952 | rate=lambda t: 3*t + 7, |
---|
| 953 | polygon=rainfall_poly) |
---|
| 954 | |
---|
| 955 | assert num.allclose(R.exchange_area, 2) |
---|
| 956 | |
---|
| 957 | domain.forcing_terms.append(R) |
---|
| 958 | |
---|
| 959 | # This will test that time used in the forcing function takes |
---|
| 960 | # startime into account. |
---|
| 961 | domain.starttime = 5.0 |
---|
| 962 | |
---|
| 963 | domain.time = 7. |
---|
| 964 | |
---|
| 965 | domain.compute_forcing_terms() |
---|
| 966 | |
---|
| 967 | assert num.allclose(domain.quantities['stage'].explicit_update[1], |
---|
| 968 | (3*domain.get_time() + 7)/1000) |
---|
| 969 | assert num.allclose(domain.quantities['stage'].explicit_update[1], |
---|
| 970 | (3*(domain.time + domain.starttime) + 7)/1000) |
---|
| 971 | |
---|
| 972 | # Using internal time her should fail |
---|
| 973 | assert not num.allclose(domain.quantities['stage'].explicit_update[1], |
---|
| 974 | (3*domain.time + 7)/1000) |
---|
| 975 | |
---|
| 976 | assert num.allclose(domain.quantities['stage'].explicit_update[0], 0) |
---|
| 977 | assert num.allclose(domain.quantities['stage'].explicit_update[2:], 0) |
---|
| 978 | |
---|
| 979 | def test_time_dependent_rainfall_restricted_by_polygon_with_default(self): |
---|
| 980 | """ |
---|
| 981 | Test that default rainfall can be used when given rate runs out of data. |
---|
| 982 | """ |
---|
| 983 | |
---|
| 984 | a = [0.0, 0.0] |
---|
| 985 | b = [0.0, 2.0] |
---|
| 986 | c = [2.0, 0.0] |
---|
| 987 | d = [0.0, 4.0] |
---|
| 988 | e = [2.0, 2.0] |
---|
| 989 | f = [4.0, 0.0] |
---|
| 990 | |
---|
| 991 | points = [a, b, c, d, e, f] |
---|
| 992 | # bac, bce, ecf, dbe |
---|
| 993 | vertices = [[1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
| 994 | |
---|
| 995 | domain = Domain(points, vertices) |
---|
| 996 | |
---|
| 997 | # Flat surface with 1m of water |
---|
| 998 | domain.set_quantity('elevation', 0) |
---|
| 999 | domain.set_quantity('stage', 1.0) |
---|
| 1000 | domain.set_quantity('friction', 0) |
---|
| 1001 | |
---|
| 1002 | Br = Reflective_boundary(domain) |
---|
| 1003 | domain.set_boundary({'exterior': Br}) |
---|
| 1004 | |
---|
| 1005 | # Setup only one forcing term, time dependent rainfall |
---|
| 1006 | # that expires at t==20 |
---|
| 1007 | from anuga.fit_interpolate.interpolate import Modeltime_too_late |
---|
| 1008 | |
---|
| 1009 | def main_rate(t): |
---|
| 1010 | if t > 20: |
---|
| 1011 | msg = 'Model time exceeded.' |
---|
| 1012 | raise Modeltime_too_late, msg |
---|
| 1013 | else: |
---|
| 1014 | return 3*t + 7 |
---|
| 1015 | |
---|
| 1016 | domain.forcing_terms = [] |
---|
| 1017 | R = Rainfall(domain, |
---|
| 1018 | rate=main_rate, |
---|
| 1019 | polygon = [[1,1], [2,1], [2,2], [1,2]], |
---|
| 1020 | default_rate=5.0) |
---|
| 1021 | |
---|
| 1022 | assert num.allclose(R.exchange_area, 2) |
---|
| 1023 | |
---|
| 1024 | domain.forcing_terms.append(R) |
---|
| 1025 | |
---|
| 1026 | domain.time = 10. |
---|
| 1027 | |
---|
| 1028 | domain.compute_forcing_terms() |
---|
| 1029 | |
---|
| 1030 | assert num.allclose(domain.quantities['stage'].explicit_update[1], |
---|
| 1031 | (3*domain.time+7)/1000) |
---|
| 1032 | assert num.allclose(domain.quantities['stage'].explicit_update[0], 0) |
---|
| 1033 | assert num.allclose(domain.quantities['stage'].explicit_update[2:], 0) |
---|
| 1034 | |
---|
| 1035 | domain.time = 100. |
---|
| 1036 | domain.quantities['stage'].explicit_update[:] = 0.0 # Reset |
---|
| 1037 | domain.compute_forcing_terms() |
---|
| 1038 | |
---|
| 1039 | assert num.allclose(domain.quantities['stage'].explicit_update[1], |
---|
| 1040 | 5.0/1000) # Default value |
---|
| 1041 | assert num.allclose(domain.quantities['stage'].explicit_update[0], 0) |
---|
| 1042 | assert num.allclose(domain.quantities['stage'].explicit_update[2:], 0) |
---|
| 1043 | |
---|
| 1044 | def test_rainfall_forcing_with_evolve(self): |
---|
| 1045 | """test_rainfall_forcing_with_evolve |
---|
| 1046 | |
---|
| 1047 | Test how forcing terms are called within evolve |
---|
| 1048 | """ |
---|
| 1049 | |
---|
| 1050 | # FIXME(Ole): This test is just to experiment |
---|
| 1051 | |
---|
| 1052 | a = [0.0, 0.0] |
---|
| 1053 | b = [0.0, 2.0] |
---|
| 1054 | c = [2.0, 0.0] |
---|
| 1055 | d = [0.0, 4.0] |
---|
| 1056 | e = [2.0, 2.0] |
---|
| 1057 | f = [4.0, 0.0] |
---|
| 1058 | |
---|
| 1059 | points = [a, b, c, d, e, f] |
---|
| 1060 | # bac, bce, ecf, dbe |
---|
| 1061 | vertices = [[1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
| 1062 | |
---|
| 1063 | domain = Domain(points, vertices) |
---|
| 1064 | |
---|
| 1065 | # Flat surface with 1m of water |
---|
| 1066 | domain.set_quantity('elevation', 0) |
---|
| 1067 | domain.set_quantity('stage', 1.0) |
---|
| 1068 | domain.set_quantity('friction', 0) |
---|
| 1069 | |
---|
| 1070 | Br = Reflective_boundary(domain) |
---|
| 1071 | domain.set_boundary({'exterior': Br}) |
---|
| 1072 | |
---|
| 1073 | # Setup only one forcing term, time dependent rainfall |
---|
| 1074 | # that expires at t==20 |
---|
| 1075 | from anuga.fit_interpolate.interpolate import Modeltime_too_late |
---|
| 1076 | |
---|
| 1077 | def main_rate(t): |
---|
| 1078 | if t > 20: |
---|
| 1079 | msg = 'Model time exceeded.' |
---|
| 1080 | raise Modeltime_too_late, msg |
---|
| 1081 | else: |
---|
| 1082 | return 3*t + 7 |
---|
| 1083 | |
---|
| 1084 | domain.forcing_terms = [] |
---|
| 1085 | R = Rainfall(domain, |
---|
| 1086 | rate=main_rate, |
---|
| 1087 | polygon=[[1,1], [2,1], [2,2], [1,2]], |
---|
| 1088 | default_rate=5.0) |
---|
| 1089 | |
---|
| 1090 | assert num.allclose(R.exchange_area, 2) |
---|
| 1091 | |
---|
| 1092 | domain.forcing_terms.append(R) |
---|
| 1093 | |
---|
| 1094 | for t in domain.evolve(yieldstep=1, finaltime=25): |
---|
| 1095 | pass |
---|
| 1096 | #FIXME(Ole): A test here is hard because explicit_update also |
---|
| 1097 | # receives updates from the flux calculation. |
---|
| 1098 | |
---|
| 1099 | |
---|
| 1100 | |
---|
| 1101 | def test_inflow_using_circle(self): |
---|
| 1102 | from math import pi, cos, sin |
---|
| 1103 | |
---|
| 1104 | a = [0.0, 0.0] |
---|
| 1105 | b = [0.0, 2.0] |
---|
| 1106 | c = [2.0, 0.0] |
---|
| 1107 | d = [0.0, 4.0] |
---|
| 1108 | e = [2.0, 2.0] |
---|
| 1109 | f = [4.0, 0.0] |
---|
| 1110 | |
---|
| 1111 | points = [a, b, c, d, e, f] |
---|
| 1112 | # bac, bce, ecf, dbe |
---|
| 1113 | vertices = [[1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
| 1114 | |
---|
| 1115 | domain = Domain(points, vertices) |
---|
| 1116 | |
---|
| 1117 | # Flat surface with 1m of water |
---|
| 1118 | domain.set_quantity('elevation', 0) |
---|
| 1119 | domain.set_quantity('stage', 1.0) |
---|
| 1120 | domain.set_quantity('friction', 0) |
---|
| 1121 | |
---|
| 1122 | Br = Reflective_boundary(domain) |
---|
| 1123 | domain.set_boundary({'exterior': Br}) |
---|
| 1124 | |
---|
| 1125 | # Setup only one forcing term, constant inflow of 2 m^3/s |
---|
| 1126 | # on a circle affecting triangles #0 and #1 (bac and bce) |
---|
| 1127 | domain.forcing_terms = [] |
---|
| 1128 | |
---|
| 1129 | I = Inflow(domain, rate=2.0, center=(1,1), radius=1) |
---|
| 1130 | domain.forcing_terms.append(I) |
---|
| 1131 | domain.compute_forcing_terms() |
---|
| 1132 | |
---|
| 1133 | |
---|
| 1134 | A = I.exchange_area |
---|
| 1135 | assert num.allclose(A, 4) # Two triangles |
---|
| 1136 | |
---|
| 1137 | assert num.allclose(domain.quantities['stage'].explicit_update[1], 2.0/A) |
---|
| 1138 | assert num.allclose(domain.quantities['stage'].explicit_update[0], 2.0/A) |
---|
| 1139 | assert num.allclose(domain.quantities['stage'].explicit_update[2:], 0) |
---|
| 1140 | |
---|
| 1141 | |
---|
| 1142 | def test_inflow_using_circle_function(self): |
---|
| 1143 | from math import pi, cos, sin |
---|
| 1144 | |
---|
| 1145 | a = [0.0, 0.0] |
---|
| 1146 | b = [0.0, 2.0] |
---|
| 1147 | c = [2.0, 0.0] |
---|
| 1148 | d = [0.0, 4.0] |
---|
| 1149 | e = [2.0, 2.0] |
---|
| 1150 | f = [4.0, 0.0] |
---|
| 1151 | |
---|
| 1152 | points = [a, b, c, d, e, f] |
---|
| 1153 | # bac, bce, ecf, dbe |
---|
| 1154 | vertices = [[1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
| 1155 | |
---|
| 1156 | domain = Domain(points, vertices) |
---|
| 1157 | |
---|
| 1158 | # Flat surface with 1m of water |
---|
| 1159 | domain.set_quantity('elevation', 0) |
---|
| 1160 | domain.set_quantity('stage', 1.0) |
---|
| 1161 | domain.set_quantity('friction', 0) |
---|
| 1162 | |
---|
| 1163 | Br = Reflective_boundary(domain) |
---|
| 1164 | domain.set_boundary({'exterior': Br}) |
---|
| 1165 | |
---|
| 1166 | # Setup only one forcing term, time dependent inflow of 2 m^3/s |
---|
| 1167 | # on a circle affecting triangles #0 and #1 (bac and bce) |
---|
| 1168 | domain.forcing_terms = [] |
---|
| 1169 | I = Inflow(domain, rate=lambda t: 2., center=(1,1), radius=1) |
---|
| 1170 | domain.forcing_terms.append(I) |
---|
| 1171 | |
---|
| 1172 | domain.compute_forcing_terms() |
---|
| 1173 | |
---|
| 1174 | A = I.exchange_area |
---|
| 1175 | assert num.allclose(A, 4) # Two triangles |
---|
| 1176 | |
---|
| 1177 | assert num.allclose(domain.quantities['stage'].explicit_update[1], 2.0/A) |
---|
| 1178 | assert num.allclose(domain.quantities['stage'].explicit_update[0], 2.0/A) |
---|
| 1179 | assert num.allclose(domain.quantities['stage'].explicit_update[2:], 0) |
---|
| 1180 | |
---|
| 1181 | |
---|
| 1182 | |
---|
| 1183 | |
---|
| 1184 | def test_inflow_catch_too_few_triangles(self): |
---|
| 1185 | """ |
---|
| 1186 | Test that exception is thrown if no triangles are covered |
---|
| 1187 | by the inflow area |
---|
| 1188 | """ |
---|
| 1189 | |
---|
| 1190 | from math import pi, cos, sin |
---|
| 1191 | |
---|
| 1192 | a = [0.0, 0.0] |
---|
| 1193 | b = [0.0, 2.0] |
---|
| 1194 | c = [2.0, 0.0] |
---|
| 1195 | d = [0.0, 4.0] |
---|
| 1196 | e = [2.0, 2.0] |
---|
| 1197 | f = [4.0, 0.0] |
---|
| 1198 | |
---|
| 1199 | points = [a, b, c, d, e, f] |
---|
| 1200 | # bac, bce, ecf, dbe |
---|
| 1201 | vertices = [[1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
| 1202 | |
---|
| 1203 | domain = Domain(points, vertices) |
---|
| 1204 | |
---|
| 1205 | # Flat surface with 1m of water |
---|
| 1206 | domain.set_quantity('elevation', 0) |
---|
| 1207 | domain.set_quantity('stage', 1.0) |
---|
| 1208 | domain.set_quantity('friction', 0) |
---|
| 1209 | |
---|
| 1210 | Br = Reflective_boundary(domain) |
---|
| 1211 | domain.set_boundary({'exterior': Br}) |
---|
| 1212 | |
---|
| 1213 | # Setup only one forcing term, constant inflow of 2 m^3/s |
---|
| 1214 | # on a circle affecting triangles #0 and #1 (bac and bce) |
---|
| 1215 | try: |
---|
| 1216 | Inflow(domain, rate=2.0, center=(1,1.1), radius=0.01) |
---|
| 1217 | except: |
---|
| 1218 | pass |
---|
| 1219 | else: |
---|
| 1220 | msg = 'Should have raised exception' |
---|
| 1221 | raise Exception, msg |
---|
| 1222 | |
---|
| 1223 | def Xtest_inflow_outflow_conservation(self): |
---|
| 1224 | """ |
---|
| 1225 | Test what happens if water is abstracted from one area and |
---|
| 1226 | injected into another - especially if there is not enough |
---|
| 1227 | water to match the abstraction. |
---|
| 1228 | This tests that the total volume is kept constant under a range of |
---|
| 1229 | scenarios. |
---|
| 1230 | |
---|
| 1231 | This test will fail as the problem was only fixed for culverts. |
---|
| 1232 | """ |
---|
| 1233 | |
---|
| 1234 | from math import pi, cos, sin |
---|
| 1235 | |
---|
| 1236 | length = 20. |
---|
| 1237 | width = 10. |
---|
| 1238 | |
---|
| 1239 | dx = dy = 2 # 1 or 2 OK |
---|
| 1240 | points, vertices, boundary = rectangular_cross(int(length/dx), |
---|
| 1241 | int(width/dy), |
---|
| 1242 | len1=length, |
---|
| 1243 | len2=width) |
---|
| 1244 | domain = Domain(points, vertices, boundary) |
---|
| 1245 | domain.set_name('test_inflow_conservation') # Output name |
---|
| 1246 | domain.set_default_order(2) |
---|
| 1247 | |
---|
| 1248 | # Flat surface with 1m of water |
---|
| 1249 | stage = 1.0 |
---|
| 1250 | domain.set_quantity('elevation', 0) |
---|
| 1251 | domain.set_quantity('stage', stage) |
---|
| 1252 | domain.set_quantity('friction', 0) |
---|
| 1253 | |
---|
| 1254 | Br = Reflective_boundary(domain) |
---|
| 1255 | domain.set_boundary({'left': Br, 'right': Br, 'bottom': Br, 'top': Br}) |
---|
| 1256 | |
---|
| 1257 | # Setup one forcing term, constant inflow of 2 m^3/s on a circle |
---|
| 1258 | domain.forcing_terms = [] |
---|
| 1259 | domain.forcing_terms.append(Inflow(domain, rate=2.0, |
---|
| 1260 | center=(5,5), radius=1)) |
---|
| 1261 | |
---|
| 1262 | domain.compute_forcing_terms() |
---|
| 1263 | |
---|
| 1264 | # Check that update values are correct |
---|
| 1265 | for x in domain.quantities['stage'].explicit_update: |
---|
| 1266 | assert num.allclose(x, 2.0/pi) or num.allclose(x, 0.0) |
---|
| 1267 | |
---|
| 1268 | # Check volumes without inflow |
---|
| 1269 | domain.forcing_terms = [] |
---|
| 1270 | initial_volume = domain.quantities['stage'].get_integral() |
---|
| 1271 | |
---|
| 1272 | assert num.allclose(initial_volume, width*length*stage) |
---|
| 1273 | |
---|
| 1274 | for t in domain.evolve(yieldstep = 0.05, finaltime = 5.0): |
---|
| 1275 | volume = domain.quantities['stage'].get_integral() |
---|
| 1276 | assert num.allclose(volume, initial_volume) |
---|
| 1277 | |
---|
| 1278 | # Now apply the inflow and check volumes for a range of stage values |
---|
| 1279 | for stage in [2.0, 1.0, 0.5, 0.25, 0.1, 0.0]: |
---|
| 1280 | domain.time = 0.0 |
---|
| 1281 | domain.set_quantity('stage', stage) |
---|
| 1282 | domain.forcing_terms = [] |
---|
| 1283 | domain.forcing_terms.append(Inflow(domain, rate=2.0, |
---|
| 1284 | center=(5,5), radius=1)) |
---|
| 1285 | initial_volume = domain.quantities['stage'].get_integral() |
---|
| 1286 | predicted_volume = initial_volume |
---|
| 1287 | dt = 0.05 |
---|
| 1288 | for t in domain.evolve(yieldstep=dt, finaltime=5.0): |
---|
| 1289 | volume = domain.quantities['stage'].get_integral() |
---|
| 1290 | assert num.allclose (volume, predicted_volume) |
---|
| 1291 | predicted_volume = predicted_volume + 2.0/pi/100/dt # Why 100? |
---|
| 1292 | |
---|
| 1293 | # Apply equivalent outflow only and check volumes |
---|
| 1294 | # for a range of stage values |
---|
| 1295 | for stage in [2.0, 1.0, 0.5, 0.25, 0.1, 0.0]: |
---|
| 1296 | print stage |
---|
| 1297 | |
---|
| 1298 | domain.time = 0.0 |
---|
| 1299 | domain.set_quantity('stage', stage) |
---|
| 1300 | domain.forcing_terms = [] |
---|
| 1301 | domain.forcing_terms.append(Inflow(domain, rate=-2.0, |
---|
| 1302 | center=(15,5), radius=1)) |
---|
| 1303 | initial_volume = domain.quantities['stage'].get_integral() |
---|
| 1304 | predicted_volume = initial_volume |
---|
| 1305 | dt = 0.05 |
---|
| 1306 | for t in domain.evolve(yieldstep=dt, finaltime=5.0): |
---|
| 1307 | volume = domain.quantities['stage'].get_integral() |
---|
| 1308 | print t, volume, predicted_volume |
---|
| 1309 | assert num.allclose (volume, predicted_volume) |
---|
| 1310 | predicted_volume = predicted_volume - 2.0/pi/100/dt # Why 100? |
---|
| 1311 | |
---|
| 1312 | # Apply both inflow and outflow and check volumes being constant for a |
---|
| 1313 | # range of stage values |
---|
| 1314 | for stage in [2.0, 1.0, 0.5, 0.25, 0.1, 0.0]: |
---|
| 1315 | print stage |
---|
| 1316 | |
---|
| 1317 | domain.time = 0.0 |
---|
| 1318 | domain.set_quantity('stage', stage) |
---|
| 1319 | domain.forcing_terms = [] |
---|
| 1320 | domain.forcing_terms.append(Inflow(domain, rate=2.0, |
---|
| 1321 | center=(5,5), radius=1)) |
---|
| 1322 | domain.forcing_terms.append(Inflow(domain, rate=-2.0, |
---|
| 1323 | center=(15,5), radius=1)) |
---|
| 1324 | initial_volume = domain.quantities['stage'].get_integral() |
---|
| 1325 | |
---|
| 1326 | dt = 0.05 |
---|
| 1327 | for t in domain.evolve(yieldstep=dt, finaltime=5.0): |
---|
| 1328 | volume = domain.quantities['stage'].get_integral() |
---|
| 1329 | |
---|
| 1330 | print t, volume |
---|
| 1331 | assert num.allclose(volume, initial_volume) |
---|
| 1332 | |
---|
| 1333 | ##################################################### |
---|
| 1334 | |
---|
| 1335 | |
---|
| 1336 | def test_inflow_using_flowline(self): |
---|
| 1337 | """test_inflow_using_flowline |
---|
| 1338 | |
---|
| 1339 | Test the ability of a flowline to match inflow above the flowline by |
---|
| 1340 | creating constant inflow onto a circle at the head of a 20m |
---|
| 1341 | wide by 300m long plane dipping at various slopes with a |
---|
| 1342 | perpendicular flowline and gauge downstream of the inflow and |
---|
| 1343 | a 45 degree flowlines at 200m downstream. |
---|
| 1344 | |
---|
| 1345 | A more substantial version of this test with finer resolution and |
---|
| 1346 | including the depth calculation using Manning's equation is |
---|
| 1347 | available under the validate_all suite in the directory |
---|
| 1348 | anuga_validation/automated_validation_tests/flow_tests. |
---|
| 1349 | """ |
---|
| 1350 | |
---|
| 1351 | |
---|
| 1352 | verbose = False |
---|
| 1353 | |
---|
| 1354 | |
---|
| 1355 | #---------------------------------------------------------------------- |
---|
| 1356 | # Import necessary modules |
---|
| 1357 | #---------------------------------------------------------------------- |
---|
| 1358 | |
---|
| 1359 | from anuga.abstract_2d_finite_volumes.mesh_factory \ |
---|
| 1360 | import rectangular_cross |
---|
| 1361 | from anuga.shallow_water import Domain |
---|
| 1362 | from anuga.shallow_water.shallow_water_domain import Reflective_boundary |
---|
| 1363 | from anuga.shallow_water.shallow_water_domain import Dirichlet_boundary |
---|
[7733] | 1364 | from anuga.shallow_water.forcing import Inflow |
---|
[7559] | 1365 | from anuga.shallow_water.data_manager \ |
---|
| 1366 | import get_flow_through_cross_section |
---|
| 1367 | from anuga.abstract_2d_finite_volumes.util \ |
---|
| 1368 | import sww2csv_gauges, csv2timeseries_graphs |
---|
| 1369 | |
---|
| 1370 | #---------------------------------------------------------------------- |
---|
| 1371 | # Setup computational domain |
---|
| 1372 | #---------------------------------------------------------------------- |
---|
| 1373 | number_of_inflows = 2 # Number of inflows on top of each other |
---|
| 1374 | finaltime = 500 #700.0 # If this is too short, steady state will not be achieved |
---|
| 1375 | |
---|
| 1376 | length = 250. |
---|
| 1377 | width = 20. |
---|
| 1378 | dx = dy = 5 # Resolution: of grid on both axes |
---|
| 1379 | |
---|
| 1380 | points, vertices, boundary = rectangular_cross(int(length/dx), |
---|
| 1381 | int(width/dy), |
---|
| 1382 | len1=length, |
---|
| 1383 | len2=width) |
---|
| 1384 | |
---|
| 1385 | for mannings_n in [0.1, 0.01]: |
---|
| 1386 | # Loop over a range of roughnesses |
---|
| 1387 | |
---|
| 1388 | for slope in [1.0/300, 1.0/100]: |
---|
| 1389 | # Loop over a range of bedslopes representing |
---|
| 1390 | # sub to super critical flows |
---|
| 1391 | |
---|
| 1392 | |
---|
| 1393 | domain = Domain(points, vertices, boundary) |
---|
| 1394 | domain.set_name('inflow_flowline_test') # Output name |
---|
| 1395 | |
---|
| 1396 | #-------------------------------------------------------------- |
---|
| 1397 | # Setup initial conditions |
---|
| 1398 | #-------------------------------------------------------------- |
---|
| 1399 | |
---|
| 1400 | def topography(x, y): |
---|
| 1401 | z = -x * slope |
---|
| 1402 | return z |
---|
| 1403 | |
---|
| 1404 | # Use function for elevation |
---|
| 1405 | domain.set_quantity('elevation', topography) |
---|
| 1406 | # Constant friction of conc surface |
---|
| 1407 | domain.set_quantity('friction', mannings_n) |
---|
| 1408 | # Dry initial condition |
---|
| 1409 | domain.set_quantity('stage', expression='elevation') |
---|
| 1410 | |
---|
| 1411 | #-------------------------------------------------------------- |
---|
| 1412 | # Setup Inflow |
---|
| 1413 | #-------------------------------------------------------------- |
---|
| 1414 | |
---|
| 1415 | # Fixed Flowrate onto Area |
---|
| 1416 | fixed_inflow = Inflow(domain, |
---|
| 1417 | center=(10.0, 10.0), |
---|
| 1418 | radius=5.00, |
---|
| 1419 | rate=10.00) |
---|
| 1420 | |
---|
| 1421 | # Stack this flow |
---|
| 1422 | for i in range(number_of_inflows): |
---|
| 1423 | domain.forcing_terms.append(fixed_inflow) |
---|
| 1424 | |
---|
| 1425 | ref_flow = fixed_inflow.rate*number_of_inflows |
---|
| 1426 | |
---|
| 1427 | # Compute normal depth on plane using Mannings equation |
---|
| 1428 | # v=1/n*(r^2/3)*(s^0.5) or r=(Q*n/(s^0.5*W))^0.6 |
---|
| 1429 | normal_depth=(ref_flow*mannings_n/(slope**0.5*width))**0.6 |
---|
| 1430 | if verbose: |
---|
| 1431 | print |
---|
| 1432 | print 'Slope:', slope, 'Mannings n:', mannings_n |
---|
| 1433 | |
---|
| 1434 | |
---|
| 1435 | #-------------------------------------------------------------- |
---|
| 1436 | # Setup boundary conditions |
---|
| 1437 | #-------------------------------------------------------------- |
---|
| 1438 | |
---|
| 1439 | Br = Reflective_boundary(domain) |
---|
| 1440 | |
---|
| 1441 | # Define downstream boundary based on predicted depth |
---|
| 1442 | def normal_depth_stage_downstream(t): |
---|
| 1443 | return (-slope*length) + normal_depth |
---|
| 1444 | |
---|
| 1445 | Bt = Transmissive_momentum_set_stage_boundary(domain=domain, |
---|
| 1446 | function=normal_depth_stage_downstream) |
---|
| 1447 | |
---|
| 1448 | |
---|
| 1449 | |
---|
| 1450 | |
---|
| 1451 | domain.set_boundary({'left': Br, |
---|
| 1452 | 'right': Bt, |
---|
| 1453 | 'top': Br, |
---|
| 1454 | 'bottom': Br}) |
---|
| 1455 | |
---|
| 1456 | |
---|
| 1457 | |
---|
| 1458 | #-------------------------------------------------------------- |
---|
| 1459 | # Evolve system through time |
---|
| 1460 | #-------------------------------------------------------------- |
---|
| 1461 | |
---|
| 1462 | for t in domain.evolve(yieldstep=100.0, finaltime=finaltime): |
---|
| 1463 | pass |
---|
| 1464 | #if verbose : |
---|
| 1465 | # print domain.timestepping_statistics() |
---|
| 1466 | |
---|
| 1467 | # print domain.volumetric_balance_statistics() |
---|
| 1468 | |
---|
| 1469 | |
---|
| 1470 | #-------------------------------------------------------------- |
---|
| 1471 | # Compute flow thru flowlines ds of inflow |
---|
| 1472 | #-------------------------------------------------------------- |
---|
| 1473 | |
---|
| 1474 | # Square on flowline at 200m |
---|
| 1475 | q = domain.get_flow_through_cross_section([[200.0, 0.0], |
---|
| 1476 | [200.0, 20.0]]) |
---|
| 1477 | if verbose: |
---|
| 1478 | print ('90 degree flowline: ANUGA = %f, Ref = %f' |
---|
| 1479 | % (q, ref_flow)) |
---|
| 1480 | |
---|
| 1481 | msg = ('Predicted flow was %f, should have been %f' |
---|
| 1482 | % (q, ref_flow)) |
---|
| 1483 | assert num.allclose(q, ref_flow, rtol=1.0e-2), msg |
---|
| 1484 | |
---|
| 1485 | |
---|
| 1486 | # 45 degree flowline at 200m |
---|
| 1487 | q = domain.get_flow_through_cross_section([[200.0, 0.0], |
---|
| 1488 | [220.0, 20.0]]) |
---|
| 1489 | if verbose: |
---|
| 1490 | print ('45 degree flowline: ANUGA = %f, Ref = %f' |
---|
| 1491 | % (q, ref_flow)) |
---|
| 1492 | |
---|
| 1493 | msg = ('Predicted flow was %f, should have been %f' |
---|
| 1494 | % (q, ref_flow)) |
---|
| 1495 | assert num.allclose(q, ref_flow, rtol=1.0e-2), msg |
---|
| 1496 | |
---|
| 1497 | os.remove('inflow_flowline_test.sww') |
---|
| 1498 | |
---|
| 1499 | |
---|
| 1500 | def Xtest_inflow_boundary_using_flowline(self): |
---|
| 1501 | """test_inflow_boundary_using_flowline |
---|
| 1502 | Test the ability of a flowline to match inflow above the flowline by |
---|
| 1503 | creating constant inflow into the boundary at the head of a 20m |
---|
| 1504 | wide by 300m long plane dipping at various slopes with a |
---|
| 1505 | perpendicular flowline and gauge downstream of the inflow and |
---|
| 1506 | a 45 degree flowlines at 200m downstream |
---|
| 1507 | |
---|
| 1508 | |
---|
| 1509 | """ |
---|
| 1510 | |
---|
| 1511 | # FIXME (Ole): Work in progress |
---|
| 1512 | |
---|
| 1513 | verbose = False |
---|
| 1514 | |
---|
| 1515 | |
---|
| 1516 | #---------------------------------------------------------------------- |
---|
| 1517 | # Import necessary modules |
---|
| 1518 | #---------------------------------------------------------------------- |
---|
| 1519 | from anuga.abstract_2d_finite_volumes.mesh_factory import rectangular_cross |
---|
| 1520 | from anuga.shallow_water import Domain |
---|
| 1521 | from anuga.shallow_water.shallow_water_domain import Reflective_boundary |
---|
| 1522 | from anuga.shallow_water.shallow_water_domain import Dirichlet_boundary |
---|
[7733] | 1523 | from anuga.shallow_water.forcing import Inflow_boundary |
---|
[7559] | 1524 | from anuga.shallow_water.data_manager import get_flow_through_cross_section |
---|
| 1525 | from anuga.abstract_2d_finite_volumes.util import sww2csv_gauges, csv2timeseries_graphs |
---|
| 1526 | |
---|
| 1527 | |
---|
| 1528 | #---------------------------------------------------------------------- |
---|
| 1529 | # Setup computational domain |
---|
| 1530 | #---------------------------------------------------------------------- |
---|
| 1531 | |
---|
| 1532 | finaltime = 500 #700.0 # If this is too short, steady state will not be achieved |
---|
| 1533 | |
---|
| 1534 | length = 250. |
---|
| 1535 | width = 20. |
---|
| 1536 | dx = dy = 5 # Resolution: of grid on both axes |
---|
| 1537 | |
---|
| 1538 | points, vertices, boundary = rectangular_cross(int(length/dx), int(width/dy), |
---|
| 1539 | len1=length, len2=width) |
---|
| 1540 | |
---|
| 1541 | for mannings_n in [0.1, 0.01]: |
---|
| 1542 | # Loop over a range of roughnesses |
---|
| 1543 | |
---|
| 1544 | for slope in [1.0/300, 1.0/100]: |
---|
| 1545 | # Loop over a range of bedslopes representing sub to super critical flows |
---|
| 1546 | |
---|
| 1547 | |
---|
| 1548 | domain = Domain(points, vertices, boundary) |
---|
| 1549 | domain.set_name('inflow_boundary_flowline_test') |
---|
| 1550 | |
---|
| 1551 | |
---|
| 1552 | #------------------------------------------------------------- |
---|
| 1553 | # Setup initial conditions |
---|
| 1554 | #------------------------------------------------------------- |
---|
| 1555 | |
---|
| 1556 | def topography(x, y): |
---|
| 1557 | z=-x * slope |
---|
| 1558 | return z |
---|
| 1559 | |
---|
| 1560 | domain.set_quantity('elevation', topography) |
---|
| 1561 | domain.set_quantity('friction', mannings_n) |
---|
| 1562 | domain.set_quantity('stage', |
---|
| 1563 | expression='elevation') |
---|
| 1564 | |
---|
| 1565 | |
---|
| 1566 | |
---|
| 1567 | #-------------------------------------------------------------- |
---|
| 1568 | # Setup boundary conditions |
---|
| 1569 | #-------------------------------------------------------------- |
---|
| 1570 | |
---|
| 1571 | |
---|
| 1572 | |
---|
| 1573 | ref_flow = 10.00 |
---|
| 1574 | |
---|
| 1575 | # Compute normal depth on plane using Mannings equation |
---|
| 1576 | # v=1/n*(r^2/3)*(s^0.5) or r=(Q*n/(s^0.5*W))^0.6 |
---|
| 1577 | normal_depth=(ref_flow*mannings_n/(slope**0.5*width))**0.6 |
---|
| 1578 | if verbose: |
---|
| 1579 | print |
---|
| 1580 | print 'Slope:', slope, 'Mannings n:', mannings_n |
---|
| 1581 | |
---|
| 1582 | |
---|
| 1583 | |
---|
| 1584 | Bi = Inflow_boundary(domain, rate=ref_flow) |
---|
| 1585 | |
---|
| 1586 | Br = Reflective_boundary(domain) |
---|
| 1587 | |
---|
| 1588 | # Define downstream boundary based on predicted depth |
---|
| 1589 | def normal_depth_stage_downstream(t): |
---|
| 1590 | return (-slope*length) + normal_depth |
---|
| 1591 | |
---|
| 1592 | Bt = Transmissive_momentum_set_stage_boundary(domain=domain, |
---|
| 1593 | function=normal_depth_stage_downstream) |
---|
| 1594 | |
---|
| 1595 | |
---|
| 1596 | |
---|
| 1597 | |
---|
| 1598 | domain.set_boundary({'left': Bi, |
---|
| 1599 | 'right': Bt, |
---|
| 1600 | 'top': Br, |
---|
| 1601 | 'bottom': Br}) |
---|
| 1602 | |
---|
| 1603 | |
---|
| 1604 | |
---|
| 1605 | #-------------------------------------------------------------- |
---|
| 1606 | # Evolve system through time |
---|
| 1607 | #-------------------------------------------------------------- |
---|
| 1608 | |
---|
| 1609 | |
---|
| 1610 | for t in domain.evolve(yieldstep=100.0, finaltime=finaltime): |
---|
| 1611 | pass |
---|
| 1612 | #if verbose : |
---|
| 1613 | # print domain.timestepping_statistics() |
---|
| 1614 | # print domain.volumetric_balance_statistics() |
---|
| 1615 | |
---|
| 1616 | |
---|
| 1617 | |
---|
| 1618 | #-------------------------------------------------------------- |
---|
| 1619 | # Compute flow thru flowlines ds of inflow |
---|
| 1620 | #-------------------------------------------------------------- |
---|
| 1621 | |
---|
| 1622 | # Square on flowline at 200m |
---|
| 1623 | q=domain.get_flow_through_cross_section([[200.0,0.0],[200.0,20.0]]) |
---|
| 1624 | msg = 'Predicted flow was %f, should have been %f' % (q, ref_flow) |
---|
| 1625 | if verbose: |
---|
| 1626 | print '90 degree flowline: ANUGA = %f, Ref = %f' % (q, ref_flow) |
---|
| 1627 | assert num.allclose(q, ref_flow, rtol=1.0e-2), msg |
---|
| 1628 | |
---|
| 1629 | |
---|
| 1630 | # 45 degree flowline at 200m |
---|
| 1631 | q=domain.get_flow_through_cross_section([[200.0,0.0],[220.0,20.0]]) |
---|
| 1632 | msg = 'Predicted flow was %f, should have been %f' % (q, ref_flow) |
---|
| 1633 | if verbose: |
---|
| 1634 | print '45 degree flowline: ANUGA = %f, Ref = %f' % (q, ref_flow) |
---|
| 1635 | |
---|
| 1636 | assert num.allclose(q, ref_flow, rtol=1.0e-2), msg |
---|
| 1637 | |
---|
| 1638 | |
---|
| 1639 | |
---|
| 1640 | def Xtest_friction_dependent_flow_using_flowline(self): |
---|
| 1641 | """test_friction_dependent_flow_using_flowline |
---|
| 1642 | |
---|
| 1643 | Test the internal flow (using flowline) as a function of |
---|
| 1644 | different values of Mannings n and different slopes. |
---|
| 1645 | |
---|
| 1646 | Flow is applied in the form of boundary conditions with fixed momentum. |
---|
| 1647 | """ |
---|
| 1648 | |
---|
| 1649 | verbose = True |
---|
| 1650 | |
---|
| 1651 | #---------------------------------------------------------------------- |
---|
| 1652 | # Import necessary modules |
---|
| 1653 | #---------------------------------------------------------------------- |
---|
| 1654 | |
---|
| 1655 | from anuga.abstract_2d_finite_volumes.mesh_factory \ |
---|
| 1656 | import rectangular_cross |
---|
| 1657 | from anuga.shallow_water import Domain |
---|
| 1658 | from anuga.shallow_water.shallow_water_domain import Reflective_boundary |
---|
| 1659 | from anuga.shallow_water.shallow_water_domain import Dirichlet_boundary |
---|
[7733] | 1660 | from anuga.shallow_water.forcing import Inflow |
---|
[7559] | 1661 | from anuga.shallow_water.data_manager \ |
---|
| 1662 | import get_flow_through_cross_section |
---|
| 1663 | from anuga.abstract_2d_finite_volumes.util \ |
---|
| 1664 | import sww2csv_gauges, csv2timeseries_graphs |
---|
| 1665 | |
---|
| 1666 | |
---|
| 1667 | #---------------------------------------------------------------------- |
---|
| 1668 | # Setup computational domain |
---|
| 1669 | #---------------------------------------------------------------------- |
---|
| 1670 | |
---|
| 1671 | finaltime = 1000.0 |
---|
| 1672 | |
---|
| 1673 | length = 300. |
---|
| 1674 | width = 20. |
---|
| 1675 | dx = dy = 5 # Resolution: of grid on both axes |
---|
| 1676 | |
---|
| 1677 | # Input parameters |
---|
| 1678 | uh = 1.0 |
---|
| 1679 | vh = 0.0 |
---|
| 1680 | d = 1.0 |
---|
| 1681 | |
---|
| 1682 | ref_flow = uh*d*width # 20 m^3/s in the x direction across entire domain |
---|
| 1683 | |
---|
| 1684 | points, vertices, boundary = rectangular_cross(int(length/dx), |
---|
| 1685 | int(width/dy), |
---|
| 1686 | len1=length, |
---|
| 1687 | len2=width) |
---|
| 1688 | |
---|
| 1689 | for mannings_n in [0.035]: #[0.0, 0.012, 0.035]: |
---|
| 1690 | for slope in [1.0/300]: #[0.0, 1.0/300, 1.0/150]: |
---|
| 1691 | # Loop over a range of bedslopes representing |
---|
| 1692 | # sub to super critical flows |
---|
| 1693 | if verbose: |
---|
| 1694 | print |
---|
| 1695 | print 'Slope:', slope, 'Mannings n:', mannings_n |
---|
| 1696 | domain = Domain(points, vertices, boundary) |
---|
| 1697 | domain.set_name('Inflow_flowline_test') # Output name |
---|
| 1698 | |
---|
| 1699 | #-------------------------------------------------------------- |
---|
| 1700 | # Setup initial conditions |
---|
| 1701 | #-------------------------------------------------------------- |
---|
| 1702 | |
---|
| 1703 | def topography(x, y): |
---|
| 1704 | z = -x * slope |
---|
| 1705 | return z |
---|
| 1706 | |
---|
| 1707 | # Use function for elevation |
---|
| 1708 | domain.set_quantity('elevation', topography) |
---|
| 1709 | # Constant friction |
---|
| 1710 | domain.set_quantity('friction', mannings_n) |
---|
| 1711 | |
---|
| 1712 | #domain.set_quantity('stage', expression='elevation') |
---|
| 1713 | |
---|
| 1714 | # Set initial flow as depth=1m, uh=1.0 m/s, vh = 0.0 |
---|
| 1715 | # making it 20 m^3/s across entire domain |
---|
| 1716 | domain.set_quantity('stage', expression='elevation + %f' % d) |
---|
| 1717 | domain.set_quantity('xmomentum', uh) |
---|
| 1718 | domain.set_quantity('ymomentum', vh) |
---|
| 1719 | |
---|
| 1720 | #-------------------------------------------------------------- |
---|
| 1721 | # Setup boundary conditions |
---|
| 1722 | #-------------------------------------------------------------- |
---|
| 1723 | |
---|
| 1724 | Br = Reflective_boundary(domain) # Solid reflective wall |
---|
| 1725 | |
---|
| 1726 | # Constant flow in and out of domain |
---|
| 1727 | # Depth = 1m, uh=1 m/s, i.e. a flow of 20 m^3/s |
---|
| 1728 | # across boundaries |
---|
| 1729 | Bi = Dirichlet_boundary([d, uh, vh]) |
---|
| 1730 | Bo = Dirichlet_boundary([-length*slope+d, uh, vh]) |
---|
| 1731 | #Bo = Dirichlet_boundary([-100, 0, 0]) |
---|
| 1732 | |
---|
| 1733 | domain.set_boundary({'left': Bi, 'right': Bo, |
---|
| 1734 | 'top': Br, 'bottom': Br}) |
---|
| 1735 | |
---|
| 1736 | #-------------------------------------------------------------- |
---|
| 1737 | # Evolve system through time |
---|
| 1738 | #-------------------------------------------------------------- |
---|
| 1739 | |
---|
| 1740 | for t in domain.evolve(yieldstep=100.0, finaltime=finaltime): |
---|
| 1741 | if verbose : |
---|
| 1742 | print domain.timestepping_statistics() |
---|
| 1743 | print domain.volumetric_balance_statistics() |
---|
| 1744 | |
---|
| 1745 | # 90 degree flowline at 200m |
---|
| 1746 | q = domain.get_flow_through_cross_section([[200.0, 0.0], |
---|
| 1747 | [200.0, 20.0]]) |
---|
| 1748 | msg = ('Predicted flow was %f, should have been %f' |
---|
| 1749 | % (q, ref_flow)) |
---|
| 1750 | if verbose: |
---|
| 1751 | print ('90 degree flowline: ANUGA = %f, Ref = %f' |
---|
| 1752 | % (q, ref_flow)) |
---|
| 1753 | |
---|
| 1754 | # 45 degree flowline at 200m |
---|
| 1755 | q = domain.get_flow_through_cross_section([[200.0, 0.0], |
---|
| 1756 | [220.0, 20.0]]) |
---|
| 1757 | msg = ('Predicted flow was %f, should have been %f' |
---|
| 1758 | % (q, ref_flow)) |
---|
| 1759 | if verbose: |
---|
| 1760 | print ('45 degree flowline: ANUGA = %f, Ref = %f' |
---|
| 1761 | % (q, ref_flow)) |
---|
| 1762 | |
---|
| 1763 | # Stage recorder (gauge) in middle of plane at 200m |
---|
| 1764 | x = 200.0 |
---|
| 1765 | y = 10.00 |
---|
| 1766 | w = domain.get_quantity('stage').\ |
---|
| 1767 | get_values(interpolation_points=[[x, y]])[0] |
---|
| 1768 | z = domain.get_quantity('elevation').\ |
---|
| 1769 | get_values(interpolation_points=[[x, y]])[0] |
---|
| 1770 | domain_depth = w-z |
---|
| 1771 | |
---|
| 1772 | xmom = domain.get_quantity('xmomentum').\ |
---|
| 1773 | get_values(interpolation_points=[[x, y]])[0] |
---|
| 1774 | ymom = domain.get_quantity('ymomentum').\ |
---|
| 1775 | get_values(interpolation_points=[[x, y]])[0] |
---|
| 1776 | if verbose: |
---|
| 1777 | print ('At interpolation point (h, uh, vh): ', |
---|
| 1778 | domain_depth, xmom, ymom) |
---|
| 1779 | print 'uh * d * width = ', xmom*domain_depth*width |
---|
| 1780 | |
---|
| 1781 | if slope > 0.0: |
---|
| 1782 | # Compute normal depth at gauge location using Manning eqn |
---|
| 1783 | # v=1/n*(r^2/3)*(s^0.5) or r=(Q*n/(s^0.5*W))^0.6 |
---|
| 1784 | normal_depth = (ref_flow*mannings_n/(slope**0.5*width))**0.6 |
---|
| 1785 | if verbose: |
---|
| 1786 | print ('Depth: ANUGA = %f, Mannings = %f' |
---|
| 1787 | % (domain_depth, normal_depth)) |
---|
| 1788 | |
---|
| 1789 | os.remove('Inflow_flowline_test.sww') |
---|
| 1790 | |
---|
| 1791 | |
---|
| 1792 | ################################################################################# |
---|
| 1793 | |
---|
| 1794 | if __name__ == "__main__": |
---|
[7562] | 1795 | suite = unittest.makeSuite(Test_swb_forcing_terms, 'test') |
---|
[7559] | 1796 | runner = unittest.TextTestRunner(verbosity=1) |
---|
| 1797 | runner.run(suite) |
---|