1 | #!/usr/bin/env python |
---|
2 | |
---|
3 | import unittest, os |
---|
4 | import os.path |
---|
5 | from math import pi, sqrt |
---|
6 | import tempfile |
---|
7 | |
---|
8 | from anuga.config import g, epsilon |
---|
9 | from anuga.config import netcdf_mode_r, netcdf_mode_w, netcdf_mode_a |
---|
10 | from anuga.utilities.numerical_tools import mean |
---|
11 | from anuga.utilities.polygon import is_inside_polygon |
---|
12 | from anuga.coordinate_transforms.geo_reference import Geo_reference |
---|
13 | from anuga.abstract_2d_finite_volumes.quantity import Quantity |
---|
14 | from anuga.geospatial_data.geospatial_data import Geospatial_data |
---|
15 | from anuga.abstract_2d_finite_volumes.mesh_factory import rectangular_cross |
---|
16 | |
---|
17 | from anuga.utilities.system_tools import get_pathname_from_package |
---|
18 | from swb_domain import * |
---|
19 | |
---|
20 | import numpy as num |
---|
21 | |
---|
22 | # Get gateway to C implementation of flux function for direct testing |
---|
23 | from shallow_water_ext import flux_function_central as flux_function |
---|
24 | |
---|
25 | |
---|
26 | # Variable windfield implemented using functions |
---|
27 | def speed(t, x, y): |
---|
28 | """Large speeds halfway between center and edges |
---|
29 | |
---|
30 | Low speeds at center and edges |
---|
31 | """ |
---|
32 | |
---|
33 | from math import exp, cos, pi |
---|
34 | |
---|
35 | x = num.array(x) |
---|
36 | y = num.array(y) |
---|
37 | |
---|
38 | N = len(x) |
---|
39 | s = 0*x #New array |
---|
40 | |
---|
41 | for k in range(N): |
---|
42 | r = num.sqrt(x[k]**2 + y[k]**2) |
---|
43 | factor = exp(-(r-0.15)**2) |
---|
44 | s[k] = 4000 * factor * (cos(t*2*pi/150) + 2) |
---|
45 | |
---|
46 | return s |
---|
47 | |
---|
48 | def scalar_func(t, x, y): |
---|
49 | """Function that returns a scalar. |
---|
50 | |
---|
51 | Used to test error message when numeric array is expected |
---|
52 | """ |
---|
53 | |
---|
54 | return 17.7 |
---|
55 | |
---|
56 | def scalar_func_list(t, x, y): |
---|
57 | """Function that returns a scalar. |
---|
58 | |
---|
59 | Used to test error message when numeric array is expected |
---|
60 | """ |
---|
61 | |
---|
62 | return [17.7] |
---|
63 | |
---|
64 | |
---|
65 | def angle(t, x, y): |
---|
66 | """Rotating field |
---|
67 | """ |
---|
68 | from math import atan, pi |
---|
69 | |
---|
70 | x = num.array(x) |
---|
71 | y = num.array(y) |
---|
72 | |
---|
73 | N = len(x) |
---|
74 | a = 0 * x # New array |
---|
75 | |
---|
76 | for k in range(N): |
---|
77 | r = num.sqrt(x[k]**2 + y[k]**2) |
---|
78 | |
---|
79 | angle = atan(y[k]/x[k]) |
---|
80 | |
---|
81 | if x[k] < 0: |
---|
82 | angle += pi |
---|
83 | |
---|
84 | # Take normal direction |
---|
85 | angle -= pi/2 |
---|
86 | |
---|
87 | # Ensure positive radians |
---|
88 | if angle < 0: |
---|
89 | angle += 2*pi |
---|
90 | |
---|
91 | a[k] = angle/pi*180 |
---|
92 | |
---|
93 | return a |
---|
94 | |
---|
95 | |
---|
96 | ############################################################################### |
---|
97 | |
---|
98 | class Test_swb_forcing_terms(unittest.TestCase): |
---|
99 | def setUp(self): |
---|
100 | pass |
---|
101 | |
---|
102 | def tearDown(self): |
---|
103 | pass |
---|
104 | |
---|
105 | def test_gravity(self): |
---|
106 | #Assuming no friction |
---|
107 | |
---|
108 | from anuga.config import g |
---|
109 | |
---|
110 | a = [0.0, 0.0] |
---|
111 | b = [0.0, 2.0] |
---|
112 | c = [2.0, 0.0] |
---|
113 | d = [0.0, 4.0] |
---|
114 | e = [2.0, 2.0] |
---|
115 | f = [4.0, 0.0] |
---|
116 | |
---|
117 | points = [a, b, c, d, e, f] |
---|
118 | # bac, bce, ecf, dbe |
---|
119 | vertices = [[1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
120 | |
---|
121 | domain = Domain(points, vertices) |
---|
122 | |
---|
123 | #Set up for a gradient of (3,0) at mid triangle (bce) |
---|
124 | def slope(x, y): |
---|
125 | return 3*x |
---|
126 | |
---|
127 | h = 0.1 |
---|
128 | def stage(x, y): |
---|
129 | return slope(x, y) + h |
---|
130 | |
---|
131 | domain.set_quantity('elevation', slope) |
---|
132 | domain.set_quantity('stage', stage) |
---|
133 | |
---|
134 | for name in domain.conserved_quantities: |
---|
135 | assert num.allclose(domain.quantities[name].explicit_update, 0) |
---|
136 | assert num.allclose(domain.quantities[name].semi_implicit_update, 0) |
---|
137 | |
---|
138 | domain.compute_forcing_terms() |
---|
139 | |
---|
140 | assert num.allclose(domain.quantities['stage'].explicit_update, 0) |
---|
141 | assert num.allclose(domain.quantities['xmomentum'].explicit_update, |
---|
142 | -g*h*3) |
---|
143 | assert num.allclose(domain.quantities['ymomentum'].explicit_update, 0) |
---|
144 | |
---|
145 | def test_manning_friction(self): |
---|
146 | from anuga.config import g |
---|
147 | |
---|
148 | a = [0.0, 0.0] |
---|
149 | b = [0.0, 2.0] |
---|
150 | c = [2.0, 0.0] |
---|
151 | d = [0.0, 4.0] |
---|
152 | e = [2.0, 2.0] |
---|
153 | f = [4.0, 0.0] |
---|
154 | |
---|
155 | points = [a, b, c, d, e, f] |
---|
156 | # bac, bce, ecf, dbe |
---|
157 | vertices = [[1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
158 | |
---|
159 | domain = Domain(points, vertices) |
---|
160 | |
---|
161 | #Set up for a gradient of (3,0) at mid triangle (bce) |
---|
162 | def slope(x, y): |
---|
163 | return 3*x |
---|
164 | |
---|
165 | h = 0.1 |
---|
166 | def stage(x, y): |
---|
167 | return slope(x, y) + h |
---|
168 | |
---|
169 | eta = 0.07 |
---|
170 | domain.set_quantity('elevation', slope) |
---|
171 | domain.set_quantity('stage', stage) |
---|
172 | domain.set_quantity('friction', eta) |
---|
173 | |
---|
174 | for name in domain.conserved_quantities: |
---|
175 | assert num.allclose(domain.quantities[name].explicit_update, 0) |
---|
176 | assert num.allclose(domain.quantities[name].semi_implicit_update, 0) |
---|
177 | |
---|
178 | domain.compute_forcing_terms() |
---|
179 | |
---|
180 | assert num.allclose(domain.quantities['stage'].explicit_update, 0) |
---|
181 | assert num.allclose(domain.quantities['xmomentum'].explicit_update, |
---|
182 | -g*h*3) |
---|
183 | assert num.allclose(domain.quantities['ymomentum'].explicit_update, 0) |
---|
184 | |
---|
185 | assert num.allclose(domain.quantities['stage'].semi_implicit_update, 0) |
---|
186 | assert num.allclose(domain.quantities['xmomentum'].semi_implicit_update, |
---|
187 | 0) |
---|
188 | assert num.allclose(domain.quantities['ymomentum'].semi_implicit_update, |
---|
189 | 0) |
---|
190 | |
---|
191 | #Create some momentum for friction to work with |
---|
192 | domain.set_quantity('xmomentum', 1) |
---|
193 | dz = sqrt(10.0) |
---|
194 | S = -g*eta**2 *dz / h**(7.0/3) |
---|
195 | |
---|
196 | domain.compute_forcing_terms() |
---|
197 | assert num.allclose(domain.quantities['stage'].semi_implicit_update, 0) |
---|
198 | assert num.allclose(domain.quantities['xmomentum'].semi_implicit_update, |
---|
199 | S) |
---|
200 | assert num.allclose(domain.quantities['ymomentum'].semi_implicit_update, |
---|
201 | 0) |
---|
202 | |
---|
203 | #A more complex example |
---|
204 | domain.quantities['stage'].semi_implicit_update[:] = 0.0 |
---|
205 | domain.quantities['xmomentum'].semi_implicit_update[:] = 0.0 |
---|
206 | domain.quantities['ymomentum'].semi_implicit_update[:] = 0.0 |
---|
207 | |
---|
208 | domain.set_quantity('xmomentum', 3) |
---|
209 | domain.set_quantity('ymomentum', 4) |
---|
210 | |
---|
211 | S = -g*eta**2*5*dz / h**(7.0/3) |
---|
212 | |
---|
213 | domain.compute_forcing_terms() |
---|
214 | |
---|
215 | assert num.allclose(domain.quantities['stage'].semi_implicit_update, 0) |
---|
216 | assert num.allclose(domain.quantities['xmomentum'].semi_implicit_update, |
---|
217 | 3*S) |
---|
218 | assert num.allclose(domain.quantities['ymomentum'].semi_implicit_update, |
---|
219 | 4*S) |
---|
220 | |
---|
221 | |
---|
222 | |
---|
223 | def test_manning_friction_old(self): |
---|
224 | from anuga.config import g |
---|
225 | |
---|
226 | a = [0.0, 0.0] |
---|
227 | b = [0.0, 2.0] |
---|
228 | c = [2.0, 0.0] |
---|
229 | d = [0.0, 4.0] |
---|
230 | e = [2.0, 2.0] |
---|
231 | f = [4.0, 0.0] |
---|
232 | |
---|
233 | points = [a, b, c, d, e, f] |
---|
234 | # bac, bce, ecf, dbe |
---|
235 | vertices = [[1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
236 | |
---|
237 | domain = Domain(points, vertices) |
---|
238 | |
---|
239 | #Turn old mannings function on |
---|
240 | domain.set_new_mannings_function(False) |
---|
241 | |
---|
242 | #Set up for a gradient of (3,0) at mid triangle (bce) |
---|
243 | def slope(x, y): |
---|
244 | return 3*x |
---|
245 | |
---|
246 | h = 0.1 |
---|
247 | def stage(x, y): |
---|
248 | return slope(x, y) + h |
---|
249 | |
---|
250 | eta = 0.07 |
---|
251 | domain.set_quantity('elevation', slope) |
---|
252 | domain.set_quantity('stage', stage) |
---|
253 | domain.set_quantity('friction', eta) |
---|
254 | |
---|
255 | for name in domain.conserved_quantities: |
---|
256 | assert num.allclose(domain.quantities[name].explicit_update, 0) |
---|
257 | assert num.allclose(domain.quantities[name].semi_implicit_update, 0) |
---|
258 | |
---|
259 | domain.compute_forcing_terms() |
---|
260 | |
---|
261 | assert num.allclose(domain.quantities['stage'].explicit_update, 0) |
---|
262 | assert num.allclose(domain.quantities['xmomentum'].explicit_update, |
---|
263 | -g*h*3) |
---|
264 | assert num.allclose(domain.quantities['ymomentum'].explicit_update, 0) |
---|
265 | |
---|
266 | assert num.allclose(domain.quantities['stage'].semi_implicit_update, 0) |
---|
267 | assert num.allclose(domain.quantities['xmomentum'].semi_implicit_update, |
---|
268 | 0) |
---|
269 | assert num.allclose(domain.quantities['ymomentum'].semi_implicit_update, |
---|
270 | 0) |
---|
271 | |
---|
272 | #Create some momentum for friction to work with |
---|
273 | domain.set_quantity('xmomentum', 1) |
---|
274 | S = -g*eta**2 / h**(7.0/3) |
---|
275 | |
---|
276 | domain.compute_forcing_terms() |
---|
277 | assert num.allclose(domain.quantities['stage'].semi_implicit_update, 0) |
---|
278 | assert num.allclose(domain.quantities['xmomentum'].semi_implicit_update, |
---|
279 | S) |
---|
280 | assert num.allclose(domain.quantities['ymomentum'].semi_implicit_update, |
---|
281 | 0) |
---|
282 | |
---|
283 | #A more complex example |
---|
284 | domain.quantities['stage'].semi_implicit_update[:] = 0.0 |
---|
285 | domain.quantities['xmomentum'].semi_implicit_update[:] = 0.0 |
---|
286 | domain.quantities['ymomentum'].semi_implicit_update[:] = 0.0 |
---|
287 | |
---|
288 | domain.set_quantity('xmomentum', 3) |
---|
289 | domain.set_quantity('ymomentum', 4) |
---|
290 | |
---|
291 | S = -g*eta**2*5 / h**(7.0/3) |
---|
292 | |
---|
293 | domain.compute_forcing_terms() |
---|
294 | |
---|
295 | assert num.allclose(domain.quantities['stage'].semi_implicit_update, 0) |
---|
296 | assert num.allclose(domain.quantities['xmomentum'].semi_implicit_update, |
---|
297 | 3*S) |
---|
298 | assert num.allclose(domain.quantities['ymomentum'].semi_implicit_update, |
---|
299 | 4*S) |
---|
300 | |
---|
301 | |
---|
302 | def test_manning_friction_new(self): |
---|
303 | from anuga.config import g |
---|
304 | |
---|
305 | a = [0.0, 0.0] |
---|
306 | b = [0.0, 2.0] |
---|
307 | c = [2.0, 0.0] |
---|
308 | d = [0.0, 4.0] |
---|
309 | e = [2.0, 2.0] |
---|
310 | f = [4.0, 0.0] |
---|
311 | |
---|
312 | points = [a, b, c, d, e, f] |
---|
313 | # bac, bce, ecf, dbe |
---|
314 | vertices = [[1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
315 | |
---|
316 | domain = Domain(points, vertices) |
---|
317 | |
---|
318 | # Use the new function which takes into account the extra |
---|
319 | # wetted area due to slope of bed |
---|
320 | domain.set_new_mannings_function(True) |
---|
321 | |
---|
322 | #Set up for a gradient of (3,0) at mid triangle (bce) |
---|
323 | def slope(x, y): |
---|
324 | return 3*x |
---|
325 | |
---|
326 | h = 0.1 |
---|
327 | def stage(x, y): |
---|
328 | return slope(x, y) + h |
---|
329 | |
---|
330 | eta = 0.07 |
---|
331 | domain.set_quantity('elevation', slope) |
---|
332 | domain.set_quantity('stage', stage) |
---|
333 | domain.set_quantity('friction', eta) |
---|
334 | |
---|
335 | for name in domain.conserved_quantities: |
---|
336 | assert num.allclose(domain.quantities[name].explicit_update, 0) |
---|
337 | assert num.allclose(domain.quantities[name].semi_implicit_update, 0) |
---|
338 | |
---|
339 | domain.compute_forcing_terms() |
---|
340 | |
---|
341 | assert num.allclose(domain.quantities['stage'].explicit_update, 0) |
---|
342 | assert num.allclose(domain.quantities['xmomentum'].explicit_update, |
---|
343 | -g*h*3) |
---|
344 | assert num.allclose(domain.quantities['ymomentum'].explicit_update, 0) |
---|
345 | |
---|
346 | assert num.allclose(domain.quantities['stage'].semi_implicit_update, 0) |
---|
347 | assert num.allclose(domain.quantities['xmomentum'].semi_implicit_update, |
---|
348 | 0) |
---|
349 | assert num.allclose(domain.quantities['ymomentum'].semi_implicit_update, |
---|
350 | 0) |
---|
351 | |
---|
352 | #Create some momentum for friction to work with |
---|
353 | domain.set_quantity('xmomentum', 1) |
---|
354 | S = -g*eta**2 / h**(7.0/3) * sqrt(10) |
---|
355 | |
---|
356 | domain.compute_forcing_terms() |
---|
357 | assert num.allclose(domain.quantities['stage'].semi_implicit_update, 0) |
---|
358 | assert num.allclose(domain.quantities['xmomentum'].semi_implicit_update, |
---|
359 | S) |
---|
360 | assert num.allclose(domain.quantities['ymomentum'].semi_implicit_update, |
---|
361 | 0) |
---|
362 | |
---|
363 | #A more complex example |
---|
364 | domain.quantities['stage'].semi_implicit_update[:] = 0.0 |
---|
365 | domain.quantities['xmomentum'].semi_implicit_update[:] = 0.0 |
---|
366 | domain.quantities['ymomentum'].semi_implicit_update[:] = 0.0 |
---|
367 | |
---|
368 | domain.set_quantity('xmomentum', 3) |
---|
369 | domain.set_quantity('ymomentum', 4) |
---|
370 | |
---|
371 | S = -g*eta**2*5 / h**(7.0/3) * sqrt(10.0) |
---|
372 | |
---|
373 | domain.compute_forcing_terms() |
---|
374 | |
---|
375 | assert num.allclose(domain.quantities['stage'].semi_implicit_update, 0) |
---|
376 | assert num.allclose(domain.quantities['xmomentum'].semi_implicit_update, |
---|
377 | 3*S) |
---|
378 | assert num.allclose(domain.quantities['ymomentum'].semi_implicit_update, |
---|
379 | 4*S) |
---|
380 | |
---|
381 | def test_constant_wind_stress(self): |
---|
382 | from anuga.config import rho_a, rho_w, eta_w |
---|
383 | from math import pi, cos, sin |
---|
384 | |
---|
385 | a = [0.0, 0.0] |
---|
386 | b = [0.0, 2.0] |
---|
387 | c = [2.0, 0.0] |
---|
388 | d = [0.0, 4.0] |
---|
389 | e = [2.0, 2.0] |
---|
390 | f = [4.0, 0.0] |
---|
391 | |
---|
392 | points = [a, b, c, d, e, f] |
---|
393 | # bac, bce, ecf, dbe |
---|
394 | vertices = [[1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
395 | |
---|
396 | domain = Domain(points, vertices) |
---|
397 | |
---|
398 | #Flat surface with 1m of water |
---|
399 | domain.set_quantity('elevation', 0) |
---|
400 | domain.set_quantity('stage', 1.0) |
---|
401 | domain.set_quantity('friction', 0) |
---|
402 | |
---|
403 | Br = Reflective_boundary(domain) |
---|
404 | domain.set_boundary({'exterior': Br}) |
---|
405 | |
---|
406 | #Setup only one forcing term, constant wind stress |
---|
407 | s = 100 |
---|
408 | phi = 135 |
---|
409 | domain.forcing_terms = [] |
---|
410 | domain.forcing_terms.append(Wind_stress(s, phi)) |
---|
411 | |
---|
412 | domain.compute_forcing_terms() |
---|
413 | |
---|
414 | const = eta_w*rho_a / rho_w |
---|
415 | |
---|
416 | #Convert to radians |
---|
417 | phi = phi*pi / 180 |
---|
418 | |
---|
419 | #Compute velocity vector (u, v) |
---|
420 | u = s*cos(phi) |
---|
421 | v = s*sin(phi) |
---|
422 | |
---|
423 | #Compute wind stress |
---|
424 | S = const * num.sqrt(u**2 + v**2) |
---|
425 | |
---|
426 | assert num.allclose(domain.quantities['stage'].explicit_update, 0) |
---|
427 | assert num.allclose(domain.quantities['xmomentum'].explicit_update, S*u) |
---|
428 | assert num.allclose(domain.quantities['ymomentum'].explicit_update, S*v) |
---|
429 | |
---|
430 | def test_variable_wind_stress(self): |
---|
431 | from anuga.config import rho_a, rho_w, eta_w |
---|
432 | from math import pi, cos, sin |
---|
433 | |
---|
434 | a = [0.0, 0.0] |
---|
435 | b = [0.0, 2.0] |
---|
436 | c = [2.0, 0.0] |
---|
437 | d = [0.0, 4.0] |
---|
438 | e = [2.0, 2.0] |
---|
439 | f = [4.0, 0.0] |
---|
440 | |
---|
441 | points = [a, b, c, d, e, f] |
---|
442 | # bac, bce, ecf, dbe |
---|
443 | vertices = [[1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
444 | |
---|
445 | domain = Domain(points, vertices) |
---|
446 | |
---|
447 | #Flat surface with 1m of water |
---|
448 | domain.set_quantity('elevation', 0) |
---|
449 | domain.set_quantity('stage', 1.0) |
---|
450 | domain.set_quantity('friction', 0) |
---|
451 | |
---|
452 | Br = Reflective_boundary(domain) |
---|
453 | domain.set_boundary({'exterior': Br}) |
---|
454 | |
---|
455 | domain.time = 5.54 # Take a random time (not zero) |
---|
456 | |
---|
457 | #Setup only one forcing term, constant wind stress |
---|
458 | s = 100 |
---|
459 | phi = 135 |
---|
460 | domain.forcing_terms = [] |
---|
461 | domain.forcing_terms.append(Wind_stress(s=speed, phi=angle)) |
---|
462 | |
---|
463 | domain.compute_forcing_terms() |
---|
464 | |
---|
465 | #Compute reference solution |
---|
466 | const = eta_w*rho_a / rho_w |
---|
467 | |
---|
468 | N = len(domain) # number_of_triangles |
---|
469 | |
---|
470 | xc = domain.get_centroid_coordinates() |
---|
471 | t = domain.time |
---|
472 | |
---|
473 | x = xc[:,0] |
---|
474 | y = xc[:,1] |
---|
475 | s_vec = speed(t,x,y) |
---|
476 | phi_vec = angle(t,x,y) |
---|
477 | |
---|
478 | for k in range(N): |
---|
479 | # Convert to radians |
---|
480 | phi = phi_vec[k]*pi / 180 |
---|
481 | s = s_vec[k] |
---|
482 | |
---|
483 | # Compute velocity vector (u, v) |
---|
484 | u = s*cos(phi) |
---|
485 | v = s*sin(phi) |
---|
486 | |
---|
487 | # Compute wind stress |
---|
488 | S = const * num.sqrt(u**2 + v**2) |
---|
489 | |
---|
490 | assert num.allclose(domain.quantities['stage'].explicit_update[k], |
---|
491 | 0) |
---|
492 | assert num.allclose(domain.quantities['xmomentum'].\ |
---|
493 | explicit_update[k], |
---|
494 | S*u) |
---|
495 | assert num.allclose(domain.quantities['ymomentum'].\ |
---|
496 | explicit_update[k], |
---|
497 | S*v) |
---|
498 | |
---|
499 | def test_windfield_from_file(self): |
---|
500 | import time |
---|
501 | from anuga.config import rho_a, rho_w, eta_w |
---|
502 | from math import pi, cos, sin |
---|
503 | from anuga.config import time_format |
---|
504 | from anuga.abstract_2d_finite_volumes.util import file_function |
---|
505 | |
---|
506 | a = [0.0, 0.0] |
---|
507 | b = [0.0, 2.0] |
---|
508 | c = [2.0, 0.0] |
---|
509 | d = [0.0, 4.0] |
---|
510 | e = [2.0, 2.0] |
---|
511 | f = [4.0, 0.0] |
---|
512 | |
---|
513 | points = [a, b, c, d, e, f] |
---|
514 | # bac, bce, ecf, dbe |
---|
515 | vertices = [[1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
516 | |
---|
517 | domain = Domain(points, vertices) |
---|
518 | |
---|
519 | # Flat surface with 1m of water |
---|
520 | domain.set_quantity('elevation', 0) |
---|
521 | domain.set_quantity('stage', 1.0) |
---|
522 | domain.set_quantity('friction', 0) |
---|
523 | |
---|
524 | Br = Reflective_boundary(domain) |
---|
525 | domain.set_boundary({'exterior': Br}) |
---|
526 | |
---|
527 | domain.time = 7 # Take a time that is represented in file (not zero) |
---|
528 | |
---|
529 | # Write wind stress file (ensure that domain.time is covered) |
---|
530 | # Take x=1 and y=0 |
---|
531 | filename = 'test_windstress_from_file' |
---|
532 | start = time.mktime(time.strptime('2000', '%Y')) |
---|
533 | fid = open(filename + '.txt', 'w') |
---|
534 | dt = 1 # One second interval |
---|
535 | t = 0.0 |
---|
536 | while t <= 10.0: |
---|
537 | t_string = time.strftime(time_format, time.gmtime(t+start)) |
---|
538 | |
---|
539 | fid.write('%s, %f %f\n' % |
---|
540 | (t_string, speed(t,[1],[0])[0], angle(t,[1],[0])[0])) |
---|
541 | t += dt |
---|
542 | |
---|
543 | fid.close() |
---|
544 | |
---|
545 | # Convert ASCII file to NetCDF (Which is what we really like!) |
---|
546 | from data_manager import timefile2netcdf |
---|
547 | |
---|
548 | timefile2netcdf(filename) |
---|
549 | os.remove(filename + '.txt') |
---|
550 | |
---|
551 | # Setup wind stress |
---|
552 | F = file_function(filename + '.tms', |
---|
553 | quantities=['Attribute0', 'Attribute1']) |
---|
554 | os.remove(filename + '.tms') |
---|
555 | |
---|
556 | W = Wind_stress(F) |
---|
557 | |
---|
558 | domain.forcing_terms = [] |
---|
559 | domain.forcing_terms.append(W) |
---|
560 | |
---|
561 | domain.compute_forcing_terms() |
---|
562 | |
---|
563 | # Compute reference solution |
---|
564 | const = eta_w*rho_a / rho_w |
---|
565 | |
---|
566 | N = len(domain) # number_of_triangles |
---|
567 | |
---|
568 | t = domain.time |
---|
569 | |
---|
570 | s = speed(t, [1], [0])[0] |
---|
571 | phi = angle(t, [1], [0])[0] |
---|
572 | |
---|
573 | # Convert to radians |
---|
574 | phi = phi*pi / 180 |
---|
575 | |
---|
576 | # Compute velocity vector (u, v) |
---|
577 | u = s*cos(phi) |
---|
578 | v = s*sin(phi) |
---|
579 | |
---|
580 | # Compute wind stress |
---|
581 | S = const * num.sqrt(u**2 + v**2) |
---|
582 | |
---|
583 | for k in range(N): |
---|
584 | assert num.allclose(domain.quantities['stage'].explicit_update[k], |
---|
585 | 0) |
---|
586 | assert num.allclose(domain.quantities['xmomentum'].\ |
---|
587 | explicit_update[k], |
---|
588 | S*u) |
---|
589 | assert num.allclose(domain.quantities['ymomentum'].\ |
---|
590 | explicit_update[k], |
---|
591 | S*v) |
---|
592 | |
---|
593 | def test_windfield_from_file_seconds(self): |
---|
594 | import time |
---|
595 | from anuga.config import rho_a, rho_w, eta_w |
---|
596 | from math import pi, cos, sin |
---|
597 | from anuga.config import time_format |
---|
598 | from anuga.abstract_2d_finite_volumes.util import file_function |
---|
599 | |
---|
600 | a = [0.0, 0.0] |
---|
601 | b = [0.0, 2.0] |
---|
602 | c = [2.0, 0.0] |
---|
603 | d = [0.0, 4.0] |
---|
604 | e = [2.0, 2.0] |
---|
605 | f = [4.0, 0.0] |
---|
606 | |
---|
607 | points = [a, b, c, d, e, f] |
---|
608 | # bac, bce, ecf, dbe |
---|
609 | vertices = [[1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
610 | |
---|
611 | domain = Domain(points, vertices) |
---|
612 | |
---|
613 | # Flat surface with 1m of water |
---|
614 | domain.set_quantity('elevation', 0) |
---|
615 | domain.set_quantity('stage', 1.0) |
---|
616 | domain.set_quantity('friction', 0) |
---|
617 | |
---|
618 | Br = Reflective_boundary(domain) |
---|
619 | domain.set_boundary({'exterior': Br}) |
---|
620 | |
---|
621 | domain.time = 7 # Take a time that is represented in file (not zero) |
---|
622 | |
---|
623 | # Write wind stress file (ensure that domain.time is covered) |
---|
624 | # Take x=1 and y=0 |
---|
625 | filename = 'test_windstress_from_file' |
---|
626 | start = time.mktime(time.strptime('2000', '%Y')) |
---|
627 | fid = open(filename + '.txt', 'w') |
---|
628 | dt = 0.5 # Half second interval |
---|
629 | t = 0.0 |
---|
630 | while t <= 10.0: |
---|
631 | fid.write('%s, %f %f\n' |
---|
632 | % (str(t), speed(t, [1], [0])[0], angle(t, [1], [0])[0])) |
---|
633 | t += dt |
---|
634 | |
---|
635 | fid.close() |
---|
636 | |
---|
637 | # Convert ASCII file to NetCDF (Which is what we really like!) |
---|
638 | from data_manager import timefile2netcdf |
---|
639 | |
---|
640 | timefile2netcdf(filename, time_as_seconds=True) |
---|
641 | os.remove(filename + '.txt') |
---|
642 | |
---|
643 | # Setup wind stress |
---|
644 | F = file_function(filename + '.tms', |
---|
645 | quantities=['Attribute0', 'Attribute1']) |
---|
646 | os.remove(filename + '.tms') |
---|
647 | |
---|
648 | W = Wind_stress(F) |
---|
649 | |
---|
650 | domain.forcing_terms = [] |
---|
651 | domain.forcing_terms.append(W) |
---|
652 | |
---|
653 | domain.compute_forcing_terms() |
---|
654 | |
---|
655 | # Compute reference solution |
---|
656 | const = eta_w*rho_a / rho_w |
---|
657 | |
---|
658 | N = len(domain) # number_of_triangles |
---|
659 | |
---|
660 | t = domain.time |
---|
661 | |
---|
662 | s = speed(t, [1], [0])[0] |
---|
663 | phi = angle(t, [1], [0])[0] |
---|
664 | |
---|
665 | # Convert to radians |
---|
666 | phi = phi*pi / 180 |
---|
667 | |
---|
668 | # Compute velocity vector (u, v) |
---|
669 | u = s*cos(phi) |
---|
670 | v = s*sin(phi) |
---|
671 | |
---|
672 | # Compute wind stress |
---|
673 | S = const * num.sqrt(u**2 + v**2) |
---|
674 | |
---|
675 | for k in range(N): |
---|
676 | assert num.allclose(domain.quantities['stage'].explicit_update[k], |
---|
677 | 0) |
---|
678 | assert num.allclose(domain.quantities['xmomentum'].\ |
---|
679 | explicit_update[k], |
---|
680 | S*u) |
---|
681 | assert num.allclose(domain.quantities['ymomentum'].\ |
---|
682 | explicit_update[k], |
---|
683 | S*v) |
---|
684 | |
---|
685 | def test_wind_stress_error_condition(self): |
---|
686 | """Test that windstress reacts properly when forcing functions |
---|
687 | are wrong - e.g. returns a scalar |
---|
688 | """ |
---|
689 | |
---|
690 | from math import pi, cos, sin |
---|
691 | from anuga.config import rho_a, rho_w, eta_w |
---|
692 | |
---|
693 | a = [0.0, 0.0] |
---|
694 | b = [0.0, 2.0] |
---|
695 | c = [2.0, 0.0] |
---|
696 | d = [0.0, 4.0] |
---|
697 | e = [2.0, 2.0] |
---|
698 | f = [4.0, 0.0] |
---|
699 | |
---|
700 | points = [a, b, c, d, e, f] |
---|
701 | # bac, bce, ecf, dbe |
---|
702 | vertices = [[1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
703 | |
---|
704 | domain = Domain(points, vertices) |
---|
705 | |
---|
706 | # Flat surface with 1m of water |
---|
707 | domain.set_quantity('elevation', 0) |
---|
708 | domain.set_quantity('stage', 1.0) |
---|
709 | domain.set_quantity('friction', 0) |
---|
710 | |
---|
711 | Br = Reflective_boundary(domain) |
---|
712 | domain.set_boundary({'exterior': Br}) |
---|
713 | |
---|
714 | domain.time = 5.54 # Take a random time (not zero) |
---|
715 | |
---|
716 | # Setup only one forcing term, bad func |
---|
717 | domain.forcing_terms = [] |
---|
718 | |
---|
719 | try: |
---|
720 | domain.forcing_terms.append(Wind_stress(s=scalar_func_list, |
---|
721 | phi=angle)) |
---|
722 | except AssertionError: |
---|
723 | pass |
---|
724 | else: |
---|
725 | msg = 'Should have raised exception' |
---|
726 | raise Exception, msg |
---|
727 | |
---|
728 | try: |
---|
729 | domain.forcing_terms.append(Wind_stress(s=speed, phi=scalar_func)) |
---|
730 | except Exception: |
---|
731 | pass |
---|
732 | else: |
---|
733 | msg = 'Should have raised exception' |
---|
734 | raise Exception, msg |
---|
735 | |
---|
736 | try: |
---|
737 | domain.forcing_terms.append(Wind_stress(s=speed, phi='xx')) |
---|
738 | except: |
---|
739 | pass |
---|
740 | else: |
---|
741 | msg = 'Should have raised exception' |
---|
742 | raise Exception, msg |
---|
743 | |
---|
744 | def test_rainfall(self): |
---|
745 | from math import pi, cos, sin |
---|
746 | |
---|
747 | a = [0.0, 0.0] |
---|
748 | b = [0.0, 2.0] |
---|
749 | c = [2.0, 0.0] |
---|
750 | d = [0.0, 4.0] |
---|
751 | e = [2.0, 2.0] |
---|
752 | f = [4.0, 0.0] |
---|
753 | |
---|
754 | points = [a, b, c, d, e, f] |
---|
755 | # bac, bce, ecf, dbe |
---|
756 | vertices = [[1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
757 | |
---|
758 | domain = Domain(points, vertices) |
---|
759 | |
---|
760 | # Flat surface with 1m of water |
---|
761 | domain.set_quantity('elevation', 0) |
---|
762 | domain.set_quantity('stage', 1.0) |
---|
763 | domain.set_quantity('friction', 0) |
---|
764 | |
---|
765 | Br = Reflective_boundary(domain) |
---|
766 | domain.set_boundary({'exterior': Br}) |
---|
767 | |
---|
768 | # Setup only one forcing term, constant rainfall |
---|
769 | domain.forcing_terms = [] |
---|
770 | domain.forcing_terms.append(Rainfall(domain, rate=2.0)) |
---|
771 | |
---|
772 | domain.compute_forcing_terms() |
---|
773 | assert num.allclose(domain.quantities['stage'].explicit_update, |
---|
774 | 2.0/1000) |
---|
775 | |
---|
776 | def test_rainfall_restricted_by_polygon(self): |
---|
777 | from math import pi, cos, sin |
---|
778 | |
---|
779 | a = [0.0, 0.0] |
---|
780 | b = [0.0, 2.0] |
---|
781 | c = [2.0, 0.0] |
---|
782 | d = [0.0, 4.0] |
---|
783 | e = [2.0, 2.0] |
---|
784 | f = [4.0, 0.0] |
---|
785 | |
---|
786 | points = [a, b, c, d, e, f] |
---|
787 | # bac, bce, ecf, dbe |
---|
788 | vertices = [[1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
789 | |
---|
790 | domain = Domain(points, vertices) |
---|
791 | |
---|
792 | # Flat surface with 1m of water |
---|
793 | domain.set_quantity('elevation', 0) |
---|
794 | domain.set_quantity('stage', 1.0) |
---|
795 | domain.set_quantity('friction', 0) |
---|
796 | |
---|
797 | Br = Reflective_boundary(domain) |
---|
798 | domain.set_boundary({'exterior': Br}) |
---|
799 | |
---|
800 | # Setup only one forcing term, constant rainfall |
---|
801 | # restricted to a polygon enclosing triangle #1 (bce) |
---|
802 | domain.forcing_terms = [] |
---|
803 | R = Rainfall(domain, rate=2.0, polygon=[[1,1], [2,1], [2,2], [1,2]]) |
---|
804 | |
---|
805 | assert num.allclose(R.exchange_area, 2) |
---|
806 | |
---|
807 | domain.forcing_terms.append(R) |
---|
808 | |
---|
809 | domain.compute_forcing_terms() |
---|
810 | |
---|
811 | assert num.allclose(domain.quantities['stage'].explicit_update[1], |
---|
812 | 2.0/1000) |
---|
813 | assert num.allclose(domain.quantities['stage'].explicit_update[0], 0) |
---|
814 | assert num.allclose(domain.quantities['stage'].explicit_update[2:], 0) |
---|
815 | |
---|
816 | def test_time_dependent_rainfall_restricted_by_polygon(self): |
---|
817 | a = [0.0, 0.0] |
---|
818 | b = [0.0, 2.0] |
---|
819 | c = [2.0, 0.0] |
---|
820 | d = [0.0, 4.0] |
---|
821 | e = [2.0, 2.0] |
---|
822 | f = [4.0, 0.0] |
---|
823 | |
---|
824 | points = [a, b, c, d, e, f] |
---|
825 | # bac, bce, ecf, dbe |
---|
826 | vertices = [[1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
827 | |
---|
828 | domain = Domain(points, vertices) |
---|
829 | |
---|
830 | # Flat surface with 1m of water |
---|
831 | domain.set_quantity('elevation', 0) |
---|
832 | domain.set_quantity('stage', 1.0) |
---|
833 | domain.set_quantity('friction', 0) |
---|
834 | |
---|
835 | Br = Reflective_boundary(domain) |
---|
836 | domain.set_boundary({'exterior': Br}) |
---|
837 | |
---|
838 | # Setup only one forcing term, time dependent rainfall |
---|
839 | # restricted to a polygon enclosing triangle #1 (bce) |
---|
840 | domain.forcing_terms = [] |
---|
841 | R = Rainfall(domain, |
---|
842 | rate=lambda t: 3*t + 7, |
---|
843 | polygon = [[1,1], [2,1], [2,2], [1,2]]) |
---|
844 | |
---|
845 | assert num.allclose(R.exchange_area, 2) |
---|
846 | |
---|
847 | domain.forcing_terms.append(R) |
---|
848 | |
---|
849 | domain.time = 10. |
---|
850 | |
---|
851 | domain.compute_forcing_terms() |
---|
852 | |
---|
853 | assert num.allclose(domain.quantities['stage'].explicit_update[1], |
---|
854 | (3*domain.time + 7)/1000) |
---|
855 | assert num.allclose(domain.quantities['stage'].explicit_update[0], 0) |
---|
856 | assert num.allclose(domain.quantities['stage'].explicit_update[2:], 0) |
---|
857 | |
---|
858 | def test_time_dependent_rainfall_using_starttime(self): |
---|
859 | rainfall_poly = ensure_numeric([[1,1], [2,1], [2,2], [1,2]], num.float) |
---|
860 | |
---|
861 | a = [0.0, 0.0] |
---|
862 | b = [0.0, 2.0] |
---|
863 | c = [2.0, 0.0] |
---|
864 | d = [0.0, 4.0] |
---|
865 | e = [2.0, 2.0] |
---|
866 | f = [4.0, 0.0] |
---|
867 | |
---|
868 | points = [a, b, c, d, e, f] |
---|
869 | # bac, bce, ecf, dbe |
---|
870 | vertices = [[1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
871 | |
---|
872 | domain = Domain(points, vertices) |
---|
873 | |
---|
874 | # Flat surface with 1m of water |
---|
875 | domain.set_quantity('elevation', 0) |
---|
876 | domain.set_quantity('stage', 1.0) |
---|
877 | domain.set_quantity('friction', 0) |
---|
878 | |
---|
879 | Br = Reflective_boundary(domain) |
---|
880 | domain.set_boundary({'exterior': Br}) |
---|
881 | |
---|
882 | # Setup only one forcing term, time dependent rainfall |
---|
883 | # restricted to a polygon enclosing triangle #1 (bce) |
---|
884 | domain.forcing_terms = [] |
---|
885 | R = Rainfall(domain, |
---|
886 | rate=lambda t: 3*t + 7, |
---|
887 | polygon=rainfall_poly) |
---|
888 | |
---|
889 | assert num.allclose(R.exchange_area, 2) |
---|
890 | |
---|
891 | domain.forcing_terms.append(R) |
---|
892 | |
---|
893 | # This will test that time used in the forcing function takes |
---|
894 | # startime into account. |
---|
895 | domain.starttime = 5.0 |
---|
896 | |
---|
897 | domain.time = 7. |
---|
898 | |
---|
899 | domain.compute_forcing_terms() |
---|
900 | |
---|
901 | assert num.allclose(domain.quantities['stage'].explicit_update[1], |
---|
902 | (3*domain.get_time() + 7)/1000) |
---|
903 | assert num.allclose(domain.quantities['stage'].explicit_update[1], |
---|
904 | (3*(domain.time + domain.starttime) + 7)/1000) |
---|
905 | |
---|
906 | # Using internal time her should fail |
---|
907 | assert not num.allclose(domain.quantities['stage'].explicit_update[1], |
---|
908 | (3*domain.time + 7)/1000) |
---|
909 | |
---|
910 | assert num.allclose(domain.quantities['stage'].explicit_update[0], 0) |
---|
911 | assert num.allclose(domain.quantities['stage'].explicit_update[2:], 0) |
---|
912 | |
---|
913 | def test_time_dependent_rainfall_using_georef(self): |
---|
914 | """test_time_dependent_rainfall_using_georef |
---|
915 | |
---|
916 | This will also test the General forcing term using georef |
---|
917 | """ |
---|
918 | |
---|
919 | # Mesh in zone 56 (absolute coords) |
---|
920 | x0 = 314036.58727982 |
---|
921 | y0 = 6224951.2960092 |
---|
922 | |
---|
923 | rainfall_poly = ensure_numeric([[1,1], [2,1], [2,2], [1,2]], num.float) |
---|
924 | rainfall_poly += [x0, y0] |
---|
925 | |
---|
926 | a = [0.0, 0.0] |
---|
927 | b = [0.0, 2.0] |
---|
928 | c = [2.0, 0.0] |
---|
929 | d = [0.0, 4.0] |
---|
930 | e = [2.0, 2.0] |
---|
931 | f = [4.0, 0.0] |
---|
932 | |
---|
933 | points = [a, b, c, d, e, f] |
---|
934 | # bac, bce, ecf, dbe |
---|
935 | vertices = [[1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
936 | |
---|
937 | domain = Domain(points, vertices, |
---|
938 | geo_reference=Geo_reference(56, x0, y0)) |
---|
939 | |
---|
940 | # Flat surface with 1m of water |
---|
941 | domain.set_quantity('elevation', 0) |
---|
942 | domain.set_quantity('stage', 1.0) |
---|
943 | domain.set_quantity('friction', 0) |
---|
944 | |
---|
945 | Br = Reflective_boundary(domain) |
---|
946 | domain.set_boundary({'exterior': Br}) |
---|
947 | |
---|
948 | # Setup only one forcing term, time dependent rainfall |
---|
949 | # restricted to a polygon enclosing triangle #1 (bce) |
---|
950 | domain.forcing_terms = [] |
---|
951 | R = Rainfall(domain, |
---|
952 | rate=lambda t: 3*t + 7, |
---|
953 | polygon=rainfall_poly) |
---|
954 | |
---|
955 | assert num.allclose(R.exchange_area, 2) |
---|
956 | |
---|
957 | domain.forcing_terms.append(R) |
---|
958 | |
---|
959 | # This will test that time used in the forcing function takes |
---|
960 | # startime into account. |
---|
961 | domain.starttime = 5.0 |
---|
962 | |
---|
963 | domain.time = 7. |
---|
964 | |
---|
965 | domain.compute_forcing_terms() |
---|
966 | |
---|
967 | assert num.allclose(domain.quantities['stage'].explicit_update[1], |
---|
968 | (3*domain.get_time() + 7)/1000) |
---|
969 | assert num.allclose(domain.quantities['stage'].explicit_update[1], |
---|
970 | (3*(domain.time + domain.starttime) + 7)/1000) |
---|
971 | |
---|
972 | # Using internal time her should fail |
---|
973 | assert not num.allclose(domain.quantities['stage'].explicit_update[1], |
---|
974 | (3*domain.time + 7)/1000) |
---|
975 | |
---|
976 | assert num.allclose(domain.quantities['stage'].explicit_update[0], 0) |
---|
977 | assert num.allclose(domain.quantities['stage'].explicit_update[2:], 0) |
---|
978 | |
---|
979 | def test_time_dependent_rainfall_restricted_by_polygon_with_default(self): |
---|
980 | """ |
---|
981 | Test that default rainfall can be used when given rate runs out of data. |
---|
982 | """ |
---|
983 | |
---|
984 | a = [0.0, 0.0] |
---|
985 | b = [0.0, 2.0] |
---|
986 | c = [2.0, 0.0] |
---|
987 | d = [0.0, 4.0] |
---|
988 | e = [2.0, 2.0] |
---|
989 | f = [4.0, 0.0] |
---|
990 | |
---|
991 | points = [a, b, c, d, e, f] |
---|
992 | # bac, bce, ecf, dbe |
---|
993 | vertices = [[1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
994 | |
---|
995 | domain = Domain(points, vertices) |
---|
996 | |
---|
997 | # Flat surface with 1m of water |
---|
998 | domain.set_quantity('elevation', 0) |
---|
999 | domain.set_quantity('stage', 1.0) |
---|
1000 | domain.set_quantity('friction', 0) |
---|
1001 | |
---|
1002 | Br = Reflective_boundary(domain) |
---|
1003 | domain.set_boundary({'exterior': Br}) |
---|
1004 | |
---|
1005 | # Setup only one forcing term, time dependent rainfall |
---|
1006 | # that expires at t==20 |
---|
1007 | from anuga.fit_interpolate.interpolate import Modeltime_too_late |
---|
1008 | |
---|
1009 | def main_rate(t): |
---|
1010 | if t > 20: |
---|
1011 | msg = 'Model time exceeded.' |
---|
1012 | raise Modeltime_too_late, msg |
---|
1013 | else: |
---|
1014 | return 3*t + 7 |
---|
1015 | |
---|
1016 | domain.forcing_terms = [] |
---|
1017 | R = Rainfall(domain, |
---|
1018 | rate=main_rate, |
---|
1019 | polygon = [[1,1], [2,1], [2,2], [1,2]], |
---|
1020 | default_rate=5.0) |
---|
1021 | |
---|
1022 | assert num.allclose(R.exchange_area, 2) |
---|
1023 | |
---|
1024 | domain.forcing_terms.append(R) |
---|
1025 | |
---|
1026 | domain.time = 10. |
---|
1027 | |
---|
1028 | domain.compute_forcing_terms() |
---|
1029 | |
---|
1030 | assert num.allclose(domain.quantities['stage'].explicit_update[1], |
---|
1031 | (3*domain.time+7)/1000) |
---|
1032 | assert num.allclose(domain.quantities['stage'].explicit_update[0], 0) |
---|
1033 | assert num.allclose(domain.quantities['stage'].explicit_update[2:], 0) |
---|
1034 | |
---|
1035 | domain.time = 100. |
---|
1036 | domain.quantities['stage'].explicit_update[:] = 0.0 # Reset |
---|
1037 | domain.compute_forcing_terms() |
---|
1038 | |
---|
1039 | assert num.allclose(domain.quantities['stage'].explicit_update[1], |
---|
1040 | 5.0/1000) # Default value |
---|
1041 | assert num.allclose(domain.quantities['stage'].explicit_update[0], 0) |
---|
1042 | assert num.allclose(domain.quantities['stage'].explicit_update[2:], 0) |
---|
1043 | |
---|
1044 | def test_rainfall_forcing_with_evolve(self): |
---|
1045 | """test_rainfall_forcing_with_evolve |
---|
1046 | |
---|
1047 | Test how forcing terms are called within evolve |
---|
1048 | """ |
---|
1049 | |
---|
1050 | # FIXME(Ole): This test is just to experiment |
---|
1051 | |
---|
1052 | a = [0.0, 0.0] |
---|
1053 | b = [0.0, 2.0] |
---|
1054 | c = [2.0, 0.0] |
---|
1055 | d = [0.0, 4.0] |
---|
1056 | e = [2.0, 2.0] |
---|
1057 | f = [4.0, 0.0] |
---|
1058 | |
---|
1059 | points = [a, b, c, d, e, f] |
---|
1060 | # bac, bce, ecf, dbe |
---|
1061 | vertices = [[1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
1062 | |
---|
1063 | domain = Domain(points, vertices) |
---|
1064 | |
---|
1065 | # Flat surface with 1m of water |
---|
1066 | domain.set_quantity('elevation', 0) |
---|
1067 | domain.set_quantity('stage', 1.0) |
---|
1068 | domain.set_quantity('friction', 0) |
---|
1069 | |
---|
1070 | Br = Reflective_boundary(domain) |
---|
1071 | domain.set_boundary({'exterior': Br}) |
---|
1072 | |
---|
1073 | # Setup only one forcing term, time dependent rainfall |
---|
1074 | # that expires at t==20 |
---|
1075 | from anuga.fit_interpolate.interpolate import Modeltime_too_late |
---|
1076 | |
---|
1077 | def main_rate(t): |
---|
1078 | if t > 20: |
---|
1079 | msg = 'Model time exceeded.' |
---|
1080 | raise Modeltime_too_late, msg |
---|
1081 | else: |
---|
1082 | return 3*t + 7 |
---|
1083 | |
---|
1084 | domain.forcing_terms = [] |
---|
1085 | R = Rainfall(domain, |
---|
1086 | rate=main_rate, |
---|
1087 | polygon=[[1,1], [2,1], [2,2], [1,2]], |
---|
1088 | default_rate=5.0) |
---|
1089 | |
---|
1090 | assert num.allclose(R.exchange_area, 2) |
---|
1091 | |
---|
1092 | domain.forcing_terms.append(R) |
---|
1093 | |
---|
1094 | for t in domain.evolve(yieldstep=1, finaltime=25): |
---|
1095 | pass |
---|
1096 | #FIXME(Ole): A test here is hard because explicit_update also |
---|
1097 | # receives updates from the flux calculation. |
---|
1098 | |
---|
1099 | |
---|
1100 | |
---|
1101 | def test_inflow_using_circle(self): |
---|
1102 | from math import pi, cos, sin |
---|
1103 | |
---|
1104 | a = [0.0, 0.0] |
---|
1105 | b = [0.0, 2.0] |
---|
1106 | c = [2.0, 0.0] |
---|
1107 | d = [0.0, 4.0] |
---|
1108 | e = [2.0, 2.0] |
---|
1109 | f = [4.0, 0.0] |
---|
1110 | |
---|
1111 | points = [a, b, c, d, e, f] |
---|
1112 | # bac, bce, ecf, dbe |
---|
1113 | vertices = [[1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
1114 | |
---|
1115 | domain = Domain(points, vertices) |
---|
1116 | |
---|
1117 | # Flat surface with 1m of water |
---|
1118 | domain.set_quantity('elevation', 0) |
---|
1119 | domain.set_quantity('stage', 1.0) |
---|
1120 | domain.set_quantity('friction', 0) |
---|
1121 | |
---|
1122 | Br = Reflective_boundary(domain) |
---|
1123 | domain.set_boundary({'exterior': Br}) |
---|
1124 | |
---|
1125 | # Setup only one forcing term, constant inflow of 2 m^3/s |
---|
1126 | # on a circle affecting triangles #0 and #1 (bac and bce) |
---|
1127 | domain.forcing_terms = [] |
---|
1128 | |
---|
1129 | I = Inflow(domain, rate=2.0, center=(1,1), radius=1) |
---|
1130 | domain.forcing_terms.append(I) |
---|
1131 | domain.compute_forcing_terms() |
---|
1132 | |
---|
1133 | |
---|
1134 | A = I.exchange_area |
---|
1135 | assert num.allclose(A, 4) # Two triangles |
---|
1136 | |
---|
1137 | assert num.allclose(domain.quantities['stage'].explicit_update[1], 2.0/A) |
---|
1138 | assert num.allclose(domain.quantities['stage'].explicit_update[0], 2.0/A) |
---|
1139 | assert num.allclose(domain.quantities['stage'].explicit_update[2:], 0) |
---|
1140 | |
---|
1141 | |
---|
1142 | def test_inflow_using_circle_function(self): |
---|
1143 | from math import pi, cos, sin |
---|
1144 | |
---|
1145 | a = [0.0, 0.0] |
---|
1146 | b = [0.0, 2.0] |
---|
1147 | c = [2.0, 0.0] |
---|
1148 | d = [0.0, 4.0] |
---|
1149 | e = [2.0, 2.0] |
---|
1150 | f = [4.0, 0.0] |
---|
1151 | |
---|
1152 | points = [a, b, c, d, e, f] |
---|
1153 | # bac, bce, ecf, dbe |
---|
1154 | vertices = [[1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
1155 | |
---|
1156 | domain = Domain(points, vertices) |
---|
1157 | |
---|
1158 | # Flat surface with 1m of water |
---|
1159 | domain.set_quantity('elevation', 0) |
---|
1160 | domain.set_quantity('stage', 1.0) |
---|
1161 | domain.set_quantity('friction', 0) |
---|
1162 | |
---|
1163 | Br = Reflective_boundary(domain) |
---|
1164 | domain.set_boundary({'exterior': Br}) |
---|
1165 | |
---|
1166 | # Setup only one forcing term, time dependent inflow of 2 m^3/s |
---|
1167 | # on a circle affecting triangles #0 and #1 (bac and bce) |
---|
1168 | domain.forcing_terms = [] |
---|
1169 | I = Inflow(domain, rate=lambda t: 2., center=(1,1), radius=1) |
---|
1170 | domain.forcing_terms.append(I) |
---|
1171 | |
---|
1172 | domain.compute_forcing_terms() |
---|
1173 | |
---|
1174 | A = I.exchange_area |
---|
1175 | assert num.allclose(A, 4) # Two triangles |
---|
1176 | |
---|
1177 | assert num.allclose(domain.quantities['stage'].explicit_update[1], 2.0/A) |
---|
1178 | assert num.allclose(domain.quantities['stage'].explicit_update[0], 2.0/A) |
---|
1179 | assert num.allclose(domain.quantities['stage'].explicit_update[2:], 0) |
---|
1180 | |
---|
1181 | |
---|
1182 | |
---|
1183 | |
---|
1184 | def test_inflow_catch_too_few_triangles(self): |
---|
1185 | """ |
---|
1186 | Test that exception is thrown if no triangles are covered |
---|
1187 | by the inflow area |
---|
1188 | """ |
---|
1189 | |
---|
1190 | from math import pi, cos, sin |
---|
1191 | |
---|
1192 | a = [0.0, 0.0] |
---|
1193 | b = [0.0, 2.0] |
---|
1194 | c = [2.0, 0.0] |
---|
1195 | d = [0.0, 4.0] |
---|
1196 | e = [2.0, 2.0] |
---|
1197 | f = [4.0, 0.0] |
---|
1198 | |
---|
1199 | points = [a, b, c, d, e, f] |
---|
1200 | # bac, bce, ecf, dbe |
---|
1201 | vertices = [[1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
1202 | |
---|
1203 | domain = Domain(points, vertices) |
---|
1204 | |
---|
1205 | # Flat surface with 1m of water |
---|
1206 | domain.set_quantity('elevation', 0) |
---|
1207 | domain.set_quantity('stage', 1.0) |
---|
1208 | domain.set_quantity('friction', 0) |
---|
1209 | |
---|
1210 | Br = Reflective_boundary(domain) |
---|
1211 | domain.set_boundary({'exterior': Br}) |
---|
1212 | |
---|
1213 | # Setup only one forcing term, constant inflow of 2 m^3/s |
---|
1214 | # on a circle affecting triangles #0 and #1 (bac and bce) |
---|
1215 | try: |
---|
1216 | Inflow(domain, rate=2.0, center=(1,1.1), radius=0.01) |
---|
1217 | except: |
---|
1218 | pass |
---|
1219 | else: |
---|
1220 | msg = 'Should have raised exception' |
---|
1221 | raise Exception, msg |
---|
1222 | |
---|
1223 | def Xtest_inflow_outflow_conservation(self): |
---|
1224 | """ |
---|
1225 | Test what happens if water is abstracted from one area and |
---|
1226 | injected into another - especially if there is not enough |
---|
1227 | water to match the abstraction. |
---|
1228 | This tests that the total volume is kept constant under a range of |
---|
1229 | scenarios. |
---|
1230 | |
---|
1231 | This test will fail as the problem was only fixed for culverts. |
---|
1232 | """ |
---|
1233 | |
---|
1234 | from math import pi, cos, sin |
---|
1235 | |
---|
1236 | length = 20. |
---|
1237 | width = 10. |
---|
1238 | |
---|
1239 | dx = dy = 2 # 1 or 2 OK |
---|
1240 | points, vertices, boundary = rectangular_cross(int(length/dx), |
---|
1241 | int(width/dy), |
---|
1242 | len1=length, |
---|
1243 | len2=width) |
---|
1244 | domain = Domain(points, vertices, boundary) |
---|
1245 | domain.set_name('test_inflow_conservation') # Output name |
---|
1246 | domain.set_default_order(2) |
---|
1247 | |
---|
1248 | # Flat surface with 1m of water |
---|
1249 | stage = 1.0 |
---|
1250 | domain.set_quantity('elevation', 0) |
---|
1251 | domain.set_quantity('stage', stage) |
---|
1252 | domain.set_quantity('friction', 0) |
---|
1253 | |
---|
1254 | Br = Reflective_boundary(domain) |
---|
1255 | domain.set_boundary({'left': Br, 'right': Br, 'bottom': Br, 'top': Br}) |
---|
1256 | |
---|
1257 | # Setup one forcing term, constant inflow of 2 m^3/s on a circle |
---|
1258 | domain.forcing_terms = [] |
---|
1259 | domain.forcing_terms.append(Inflow(domain, rate=2.0, |
---|
1260 | center=(5,5), radius=1)) |
---|
1261 | |
---|
1262 | domain.compute_forcing_terms() |
---|
1263 | |
---|
1264 | # Check that update values are correct |
---|
1265 | for x in domain.quantities['stage'].explicit_update: |
---|
1266 | assert num.allclose(x, 2.0/pi) or num.allclose(x, 0.0) |
---|
1267 | |
---|
1268 | # Check volumes without inflow |
---|
1269 | domain.forcing_terms = [] |
---|
1270 | initial_volume = domain.quantities['stage'].get_integral() |
---|
1271 | |
---|
1272 | assert num.allclose(initial_volume, width*length*stage) |
---|
1273 | |
---|
1274 | for t in domain.evolve(yieldstep = 0.05, finaltime = 5.0): |
---|
1275 | volume = domain.quantities['stage'].get_integral() |
---|
1276 | assert num.allclose(volume, initial_volume) |
---|
1277 | |
---|
1278 | # Now apply the inflow and check volumes for a range of stage values |
---|
1279 | for stage in [2.0, 1.0, 0.5, 0.25, 0.1, 0.0]: |
---|
1280 | domain.time = 0.0 |
---|
1281 | domain.set_quantity('stage', stage) |
---|
1282 | domain.forcing_terms = [] |
---|
1283 | domain.forcing_terms.append(Inflow(domain, rate=2.0, |
---|
1284 | center=(5,5), radius=1)) |
---|
1285 | initial_volume = domain.quantities['stage'].get_integral() |
---|
1286 | predicted_volume = initial_volume |
---|
1287 | dt = 0.05 |
---|
1288 | for t in domain.evolve(yieldstep=dt, finaltime=5.0): |
---|
1289 | volume = domain.quantities['stage'].get_integral() |
---|
1290 | assert num.allclose (volume, predicted_volume) |
---|
1291 | predicted_volume = predicted_volume + 2.0/pi/100/dt # Why 100? |
---|
1292 | |
---|
1293 | # Apply equivalent outflow only and check volumes |
---|
1294 | # for a range of stage values |
---|
1295 | for stage in [2.0, 1.0, 0.5, 0.25, 0.1, 0.0]: |
---|
1296 | print stage |
---|
1297 | |
---|
1298 | domain.time = 0.0 |
---|
1299 | domain.set_quantity('stage', stage) |
---|
1300 | domain.forcing_terms = [] |
---|
1301 | domain.forcing_terms.append(Inflow(domain, rate=-2.0, |
---|
1302 | center=(15,5), radius=1)) |
---|
1303 | initial_volume = domain.quantities['stage'].get_integral() |
---|
1304 | predicted_volume = initial_volume |
---|
1305 | dt = 0.05 |
---|
1306 | for t in domain.evolve(yieldstep=dt, finaltime=5.0): |
---|
1307 | volume = domain.quantities['stage'].get_integral() |
---|
1308 | print t, volume, predicted_volume |
---|
1309 | assert num.allclose (volume, predicted_volume) |
---|
1310 | predicted_volume = predicted_volume - 2.0/pi/100/dt # Why 100? |
---|
1311 | |
---|
1312 | # Apply both inflow and outflow and check volumes being constant for a |
---|
1313 | # range of stage values |
---|
1314 | for stage in [2.0, 1.0, 0.5, 0.25, 0.1, 0.0]: |
---|
1315 | print stage |
---|
1316 | |
---|
1317 | domain.time = 0.0 |
---|
1318 | domain.set_quantity('stage', stage) |
---|
1319 | domain.forcing_terms = [] |
---|
1320 | domain.forcing_terms.append(Inflow(domain, rate=2.0, |
---|
1321 | center=(5,5), radius=1)) |
---|
1322 | domain.forcing_terms.append(Inflow(domain, rate=-2.0, |
---|
1323 | center=(15,5), radius=1)) |
---|
1324 | initial_volume = domain.quantities['stage'].get_integral() |
---|
1325 | |
---|
1326 | dt = 0.05 |
---|
1327 | for t in domain.evolve(yieldstep=dt, finaltime=5.0): |
---|
1328 | volume = domain.quantities['stage'].get_integral() |
---|
1329 | |
---|
1330 | print t, volume |
---|
1331 | assert num.allclose(volume, initial_volume) |
---|
1332 | |
---|
1333 | ##################################################### |
---|
1334 | |
---|
1335 | |
---|
1336 | def test_inflow_using_flowline(self): |
---|
1337 | """test_inflow_using_flowline |
---|
1338 | |
---|
1339 | Test the ability of a flowline to match inflow above the flowline by |
---|
1340 | creating constant inflow onto a circle at the head of a 20m |
---|
1341 | wide by 300m long plane dipping at various slopes with a |
---|
1342 | perpendicular flowline and gauge downstream of the inflow and |
---|
1343 | a 45 degree flowlines at 200m downstream. |
---|
1344 | |
---|
1345 | A more substantial version of this test with finer resolution and |
---|
1346 | including the depth calculation using Manning's equation is |
---|
1347 | available under the validate_all suite in the directory |
---|
1348 | anuga_validation/automated_validation_tests/flow_tests. |
---|
1349 | """ |
---|
1350 | |
---|
1351 | |
---|
1352 | verbose = False |
---|
1353 | |
---|
1354 | |
---|
1355 | #---------------------------------------------------------------------- |
---|
1356 | # Import necessary modules |
---|
1357 | #---------------------------------------------------------------------- |
---|
1358 | |
---|
1359 | from anuga.abstract_2d_finite_volumes.mesh_factory \ |
---|
1360 | import rectangular_cross |
---|
1361 | from anuga.shallow_water import Domain |
---|
1362 | from anuga.shallow_water.shallow_water_domain import Reflective_boundary |
---|
1363 | from anuga.shallow_water.shallow_water_domain import Dirichlet_boundary |
---|
1364 | from anuga.shallow_water.shallow_water_domain import Inflow |
---|
1365 | from anuga.shallow_water.data_manager \ |
---|
1366 | import get_flow_through_cross_section |
---|
1367 | from anuga.abstract_2d_finite_volumes.util \ |
---|
1368 | import sww2csv_gauges, csv2timeseries_graphs |
---|
1369 | |
---|
1370 | #---------------------------------------------------------------------- |
---|
1371 | # Setup computational domain |
---|
1372 | #---------------------------------------------------------------------- |
---|
1373 | number_of_inflows = 2 # Number of inflows on top of each other |
---|
1374 | finaltime = 500 #700.0 # If this is too short, steady state will not be achieved |
---|
1375 | |
---|
1376 | length = 250. |
---|
1377 | width = 20. |
---|
1378 | dx = dy = 5 # Resolution: of grid on both axes |
---|
1379 | |
---|
1380 | points, vertices, boundary = rectangular_cross(int(length/dx), |
---|
1381 | int(width/dy), |
---|
1382 | len1=length, |
---|
1383 | len2=width) |
---|
1384 | |
---|
1385 | for mannings_n in [0.1, 0.01]: |
---|
1386 | # Loop over a range of roughnesses |
---|
1387 | |
---|
1388 | for slope in [1.0/300, 1.0/100]: |
---|
1389 | # Loop over a range of bedslopes representing |
---|
1390 | # sub to super critical flows |
---|
1391 | |
---|
1392 | |
---|
1393 | domain = Domain(points, vertices, boundary) |
---|
1394 | domain.set_name('inflow_flowline_test') # Output name |
---|
1395 | |
---|
1396 | #-------------------------------------------------------------- |
---|
1397 | # Setup initial conditions |
---|
1398 | #-------------------------------------------------------------- |
---|
1399 | |
---|
1400 | def topography(x, y): |
---|
1401 | z = -x * slope |
---|
1402 | return z |
---|
1403 | |
---|
1404 | # Use function for elevation |
---|
1405 | domain.set_quantity('elevation', topography) |
---|
1406 | # Constant friction of conc surface |
---|
1407 | domain.set_quantity('friction', mannings_n) |
---|
1408 | # Dry initial condition |
---|
1409 | domain.set_quantity('stage', expression='elevation') |
---|
1410 | |
---|
1411 | #-------------------------------------------------------------- |
---|
1412 | # Setup Inflow |
---|
1413 | #-------------------------------------------------------------- |
---|
1414 | |
---|
1415 | # Fixed Flowrate onto Area |
---|
1416 | fixed_inflow = Inflow(domain, |
---|
1417 | center=(10.0, 10.0), |
---|
1418 | radius=5.00, |
---|
1419 | rate=10.00) |
---|
1420 | |
---|
1421 | # Stack this flow |
---|
1422 | for i in range(number_of_inflows): |
---|
1423 | domain.forcing_terms.append(fixed_inflow) |
---|
1424 | |
---|
1425 | ref_flow = fixed_inflow.rate*number_of_inflows |
---|
1426 | |
---|
1427 | # Compute normal depth on plane using Mannings equation |
---|
1428 | # v=1/n*(r^2/3)*(s^0.5) or r=(Q*n/(s^0.5*W))^0.6 |
---|
1429 | normal_depth=(ref_flow*mannings_n/(slope**0.5*width))**0.6 |
---|
1430 | if verbose: |
---|
1431 | print |
---|
1432 | print 'Slope:', slope, 'Mannings n:', mannings_n |
---|
1433 | |
---|
1434 | |
---|
1435 | #-------------------------------------------------------------- |
---|
1436 | # Setup boundary conditions |
---|
1437 | #-------------------------------------------------------------- |
---|
1438 | |
---|
1439 | Br = Reflective_boundary(domain) |
---|
1440 | |
---|
1441 | # Define downstream boundary based on predicted depth |
---|
1442 | def normal_depth_stage_downstream(t): |
---|
1443 | return (-slope*length) + normal_depth |
---|
1444 | |
---|
1445 | Bt = Transmissive_momentum_set_stage_boundary(domain=domain, |
---|
1446 | function=normal_depth_stage_downstream) |
---|
1447 | |
---|
1448 | |
---|
1449 | |
---|
1450 | |
---|
1451 | domain.set_boundary({'left': Br, |
---|
1452 | 'right': Bt, |
---|
1453 | 'top': Br, |
---|
1454 | 'bottom': Br}) |
---|
1455 | |
---|
1456 | |
---|
1457 | |
---|
1458 | #-------------------------------------------------------------- |
---|
1459 | # Evolve system through time |
---|
1460 | #-------------------------------------------------------------- |
---|
1461 | |
---|
1462 | for t in domain.evolve(yieldstep=100.0, finaltime=finaltime): |
---|
1463 | pass |
---|
1464 | #if verbose : |
---|
1465 | # print domain.timestepping_statistics() |
---|
1466 | |
---|
1467 | # print domain.volumetric_balance_statistics() |
---|
1468 | |
---|
1469 | |
---|
1470 | #-------------------------------------------------------------- |
---|
1471 | # Compute flow thru flowlines ds of inflow |
---|
1472 | #-------------------------------------------------------------- |
---|
1473 | |
---|
1474 | # Square on flowline at 200m |
---|
1475 | q = domain.get_flow_through_cross_section([[200.0, 0.0], |
---|
1476 | [200.0, 20.0]]) |
---|
1477 | if verbose: |
---|
1478 | print ('90 degree flowline: ANUGA = %f, Ref = %f' |
---|
1479 | % (q, ref_flow)) |
---|
1480 | |
---|
1481 | msg = ('Predicted flow was %f, should have been %f' |
---|
1482 | % (q, ref_flow)) |
---|
1483 | assert num.allclose(q, ref_flow, rtol=1.0e-2), msg |
---|
1484 | |
---|
1485 | |
---|
1486 | # 45 degree flowline at 200m |
---|
1487 | q = domain.get_flow_through_cross_section([[200.0, 0.0], |
---|
1488 | [220.0, 20.0]]) |
---|
1489 | if verbose: |
---|
1490 | print ('45 degree flowline: ANUGA = %f, Ref = %f' |
---|
1491 | % (q, ref_flow)) |
---|
1492 | |
---|
1493 | msg = ('Predicted flow was %f, should have been %f' |
---|
1494 | % (q, ref_flow)) |
---|
1495 | assert num.allclose(q, ref_flow, rtol=1.0e-2), msg |
---|
1496 | |
---|
1497 | os.remove('inflow_flowline_test.sww') |
---|
1498 | |
---|
1499 | |
---|
1500 | def Xtest_inflow_boundary_using_flowline(self): |
---|
1501 | """test_inflow_boundary_using_flowline |
---|
1502 | Test the ability of a flowline to match inflow above the flowline by |
---|
1503 | creating constant inflow into the boundary at the head of a 20m |
---|
1504 | wide by 300m long plane dipping at various slopes with a |
---|
1505 | perpendicular flowline and gauge downstream of the inflow and |
---|
1506 | a 45 degree flowlines at 200m downstream |
---|
1507 | |
---|
1508 | |
---|
1509 | """ |
---|
1510 | |
---|
1511 | # FIXME (Ole): Work in progress |
---|
1512 | |
---|
1513 | verbose = False |
---|
1514 | |
---|
1515 | |
---|
1516 | #---------------------------------------------------------------------- |
---|
1517 | # Import necessary modules |
---|
1518 | #---------------------------------------------------------------------- |
---|
1519 | from anuga.abstract_2d_finite_volumes.mesh_factory import rectangular_cross |
---|
1520 | from anuga.shallow_water import Domain |
---|
1521 | from anuga.shallow_water.shallow_water_domain import Reflective_boundary |
---|
1522 | from anuga.shallow_water.shallow_water_domain import Dirichlet_boundary |
---|
1523 | from anuga.shallow_water.shallow_water_domain import Inflow_boundary |
---|
1524 | from anuga.shallow_water.data_manager import get_flow_through_cross_section |
---|
1525 | from anuga.abstract_2d_finite_volumes.util import sww2csv_gauges, csv2timeseries_graphs |
---|
1526 | |
---|
1527 | |
---|
1528 | #---------------------------------------------------------------------- |
---|
1529 | # Setup computational domain |
---|
1530 | #---------------------------------------------------------------------- |
---|
1531 | |
---|
1532 | finaltime = 500 #700.0 # If this is too short, steady state will not be achieved |
---|
1533 | |
---|
1534 | length = 250. |
---|
1535 | width = 20. |
---|
1536 | dx = dy = 5 # Resolution: of grid on both axes |
---|
1537 | |
---|
1538 | points, vertices, boundary = rectangular_cross(int(length/dx), int(width/dy), |
---|
1539 | len1=length, len2=width) |
---|
1540 | |
---|
1541 | for mannings_n in [0.1, 0.01]: |
---|
1542 | # Loop over a range of roughnesses |
---|
1543 | |
---|
1544 | for slope in [1.0/300, 1.0/100]: |
---|
1545 | # Loop over a range of bedslopes representing sub to super critical flows |
---|
1546 | |
---|
1547 | |
---|
1548 | domain = Domain(points, vertices, boundary) |
---|
1549 | domain.set_name('inflow_boundary_flowline_test') |
---|
1550 | |
---|
1551 | |
---|
1552 | #------------------------------------------------------------- |
---|
1553 | # Setup initial conditions |
---|
1554 | #------------------------------------------------------------- |
---|
1555 | |
---|
1556 | def topography(x, y): |
---|
1557 | z=-x * slope |
---|
1558 | return z |
---|
1559 | |
---|
1560 | domain.set_quantity('elevation', topography) |
---|
1561 | domain.set_quantity('friction', mannings_n) |
---|
1562 | domain.set_quantity('stage', |
---|
1563 | expression='elevation') |
---|
1564 | |
---|
1565 | |
---|
1566 | |
---|
1567 | #-------------------------------------------------------------- |
---|
1568 | # Setup boundary conditions |
---|
1569 | #-------------------------------------------------------------- |
---|
1570 | |
---|
1571 | |
---|
1572 | |
---|
1573 | ref_flow = 10.00 |
---|
1574 | |
---|
1575 | # Compute normal depth on plane using Mannings equation |
---|
1576 | # v=1/n*(r^2/3)*(s^0.5) or r=(Q*n/(s^0.5*W))^0.6 |
---|
1577 | normal_depth=(ref_flow*mannings_n/(slope**0.5*width))**0.6 |
---|
1578 | if verbose: |
---|
1579 | print |
---|
1580 | print 'Slope:', slope, 'Mannings n:', mannings_n |
---|
1581 | |
---|
1582 | |
---|
1583 | |
---|
1584 | Bi = Inflow_boundary(domain, rate=ref_flow) |
---|
1585 | |
---|
1586 | Br = Reflective_boundary(domain) |
---|
1587 | |
---|
1588 | # Define downstream boundary based on predicted depth |
---|
1589 | def normal_depth_stage_downstream(t): |
---|
1590 | return (-slope*length) + normal_depth |
---|
1591 | |
---|
1592 | Bt = Transmissive_momentum_set_stage_boundary(domain=domain, |
---|
1593 | function=normal_depth_stage_downstream) |
---|
1594 | |
---|
1595 | |
---|
1596 | |
---|
1597 | |
---|
1598 | domain.set_boundary({'left': Bi, |
---|
1599 | 'right': Bt, |
---|
1600 | 'top': Br, |
---|
1601 | 'bottom': Br}) |
---|
1602 | |
---|
1603 | |
---|
1604 | |
---|
1605 | #-------------------------------------------------------------- |
---|
1606 | # Evolve system through time |
---|
1607 | #-------------------------------------------------------------- |
---|
1608 | |
---|
1609 | |
---|
1610 | for t in domain.evolve(yieldstep=100.0, finaltime=finaltime): |
---|
1611 | pass |
---|
1612 | #if verbose : |
---|
1613 | # print domain.timestepping_statistics() |
---|
1614 | # print domain.volumetric_balance_statistics() |
---|
1615 | |
---|
1616 | |
---|
1617 | |
---|
1618 | #-------------------------------------------------------------- |
---|
1619 | # Compute flow thru flowlines ds of inflow |
---|
1620 | #-------------------------------------------------------------- |
---|
1621 | |
---|
1622 | # Square on flowline at 200m |
---|
1623 | q=domain.get_flow_through_cross_section([[200.0,0.0],[200.0,20.0]]) |
---|
1624 | msg = 'Predicted flow was %f, should have been %f' % (q, ref_flow) |
---|
1625 | if verbose: |
---|
1626 | print '90 degree flowline: ANUGA = %f, Ref = %f' % (q, ref_flow) |
---|
1627 | assert num.allclose(q, ref_flow, rtol=1.0e-2), msg |
---|
1628 | |
---|
1629 | |
---|
1630 | # 45 degree flowline at 200m |
---|
1631 | q=domain.get_flow_through_cross_section([[200.0,0.0],[220.0,20.0]]) |
---|
1632 | msg = 'Predicted flow was %f, should have been %f' % (q, ref_flow) |
---|
1633 | if verbose: |
---|
1634 | print '45 degree flowline: ANUGA = %f, Ref = %f' % (q, ref_flow) |
---|
1635 | |
---|
1636 | assert num.allclose(q, ref_flow, rtol=1.0e-2), msg |
---|
1637 | |
---|
1638 | |
---|
1639 | |
---|
1640 | def Xtest_friction_dependent_flow_using_flowline(self): |
---|
1641 | """test_friction_dependent_flow_using_flowline |
---|
1642 | |
---|
1643 | Test the internal flow (using flowline) as a function of |
---|
1644 | different values of Mannings n and different slopes. |
---|
1645 | |
---|
1646 | Flow is applied in the form of boundary conditions with fixed momentum. |
---|
1647 | """ |
---|
1648 | |
---|
1649 | verbose = True |
---|
1650 | |
---|
1651 | #---------------------------------------------------------------------- |
---|
1652 | # Import necessary modules |
---|
1653 | #---------------------------------------------------------------------- |
---|
1654 | |
---|
1655 | from anuga.abstract_2d_finite_volumes.mesh_factory \ |
---|
1656 | import rectangular_cross |
---|
1657 | from anuga.shallow_water import Domain |
---|
1658 | from anuga.shallow_water.shallow_water_domain import Reflective_boundary |
---|
1659 | from anuga.shallow_water.shallow_water_domain import Dirichlet_boundary |
---|
1660 | from anuga.shallow_water.shallow_water_domain import Inflow |
---|
1661 | from anuga.shallow_water.data_manager \ |
---|
1662 | import get_flow_through_cross_section |
---|
1663 | from anuga.abstract_2d_finite_volumes.util \ |
---|
1664 | import sww2csv_gauges, csv2timeseries_graphs |
---|
1665 | |
---|
1666 | |
---|
1667 | #---------------------------------------------------------------------- |
---|
1668 | # Setup computational domain |
---|
1669 | #---------------------------------------------------------------------- |
---|
1670 | |
---|
1671 | finaltime = 1000.0 |
---|
1672 | |
---|
1673 | length = 300. |
---|
1674 | width = 20. |
---|
1675 | dx = dy = 5 # Resolution: of grid on both axes |
---|
1676 | |
---|
1677 | # Input parameters |
---|
1678 | uh = 1.0 |
---|
1679 | vh = 0.0 |
---|
1680 | d = 1.0 |
---|
1681 | |
---|
1682 | ref_flow = uh*d*width # 20 m^3/s in the x direction across entire domain |
---|
1683 | |
---|
1684 | points, vertices, boundary = rectangular_cross(int(length/dx), |
---|
1685 | int(width/dy), |
---|
1686 | len1=length, |
---|
1687 | len2=width) |
---|
1688 | |
---|
1689 | for mannings_n in [0.035]: #[0.0, 0.012, 0.035]: |
---|
1690 | for slope in [1.0/300]: #[0.0, 1.0/300, 1.0/150]: |
---|
1691 | # Loop over a range of bedslopes representing |
---|
1692 | # sub to super critical flows |
---|
1693 | if verbose: |
---|
1694 | print |
---|
1695 | print 'Slope:', slope, 'Mannings n:', mannings_n |
---|
1696 | domain = Domain(points, vertices, boundary) |
---|
1697 | domain.set_name('Inflow_flowline_test') # Output name |
---|
1698 | |
---|
1699 | #-------------------------------------------------------------- |
---|
1700 | # Setup initial conditions |
---|
1701 | #-------------------------------------------------------------- |
---|
1702 | |
---|
1703 | def topography(x, y): |
---|
1704 | z = -x * slope |
---|
1705 | return z |
---|
1706 | |
---|
1707 | # Use function for elevation |
---|
1708 | domain.set_quantity('elevation', topography) |
---|
1709 | # Constant friction |
---|
1710 | domain.set_quantity('friction', mannings_n) |
---|
1711 | |
---|
1712 | #domain.set_quantity('stage', expression='elevation') |
---|
1713 | |
---|
1714 | # Set initial flow as depth=1m, uh=1.0 m/s, vh = 0.0 |
---|
1715 | # making it 20 m^3/s across entire domain |
---|
1716 | domain.set_quantity('stage', expression='elevation + %f' % d) |
---|
1717 | domain.set_quantity('xmomentum', uh) |
---|
1718 | domain.set_quantity('ymomentum', vh) |
---|
1719 | |
---|
1720 | #-------------------------------------------------------------- |
---|
1721 | # Setup boundary conditions |
---|
1722 | #-------------------------------------------------------------- |
---|
1723 | |
---|
1724 | Br = Reflective_boundary(domain) # Solid reflective wall |
---|
1725 | |
---|
1726 | # Constant flow in and out of domain |
---|
1727 | # Depth = 1m, uh=1 m/s, i.e. a flow of 20 m^3/s |
---|
1728 | # across boundaries |
---|
1729 | Bi = Dirichlet_boundary([d, uh, vh]) |
---|
1730 | Bo = Dirichlet_boundary([-length*slope+d, uh, vh]) |
---|
1731 | #Bo = Dirichlet_boundary([-100, 0, 0]) |
---|
1732 | |
---|
1733 | domain.set_boundary({'left': Bi, 'right': Bo, |
---|
1734 | 'top': Br, 'bottom': Br}) |
---|
1735 | |
---|
1736 | #-------------------------------------------------------------- |
---|
1737 | # Evolve system through time |
---|
1738 | #-------------------------------------------------------------- |
---|
1739 | |
---|
1740 | for t in domain.evolve(yieldstep=100.0, finaltime=finaltime): |
---|
1741 | if verbose : |
---|
1742 | print domain.timestepping_statistics() |
---|
1743 | print domain.volumetric_balance_statistics() |
---|
1744 | |
---|
1745 | # 90 degree flowline at 200m |
---|
1746 | q = domain.get_flow_through_cross_section([[200.0, 0.0], |
---|
1747 | [200.0, 20.0]]) |
---|
1748 | msg = ('Predicted flow was %f, should have been %f' |
---|
1749 | % (q, ref_flow)) |
---|
1750 | if verbose: |
---|
1751 | print ('90 degree flowline: ANUGA = %f, Ref = %f' |
---|
1752 | % (q, ref_flow)) |
---|
1753 | |
---|
1754 | # 45 degree flowline at 200m |
---|
1755 | q = domain.get_flow_through_cross_section([[200.0, 0.0], |
---|
1756 | [220.0, 20.0]]) |
---|
1757 | msg = ('Predicted flow was %f, should have been %f' |
---|
1758 | % (q, ref_flow)) |
---|
1759 | if verbose: |
---|
1760 | print ('45 degree flowline: ANUGA = %f, Ref = %f' |
---|
1761 | % (q, ref_flow)) |
---|
1762 | |
---|
1763 | # Stage recorder (gauge) in middle of plane at 200m |
---|
1764 | x = 200.0 |
---|
1765 | y = 10.00 |
---|
1766 | w = domain.get_quantity('stage').\ |
---|
1767 | get_values(interpolation_points=[[x, y]])[0] |
---|
1768 | z = domain.get_quantity('elevation').\ |
---|
1769 | get_values(interpolation_points=[[x, y]])[0] |
---|
1770 | domain_depth = w-z |
---|
1771 | |
---|
1772 | xmom = domain.get_quantity('xmomentum').\ |
---|
1773 | get_values(interpolation_points=[[x, y]])[0] |
---|
1774 | ymom = domain.get_quantity('ymomentum').\ |
---|
1775 | get_values(interpolation_points=[[x, y]])[0] |
---|
1776 | if verbose: |
---|
1777 | print ('At interpolation point (h, uh, vh): ', |
---|
1778 | domain_depth, xmom, ymom) |
---|
1779 | print 'uh * d * width = ', xmom*domain_depth*width |
---|
1780 | |
---|
1781 | if slope > 0.0: |
---|
1782 | # Compute normal depth at gauge location using Manning eqn |
---|
1783 | # v=1/n*(r^2/3)*(s^0.5) or r=(Q*n/(s^0.5*W))^0.6 |
---|
1784 | normal_depth = (ref_flow*mannings_n/(slope**0.5*width))**0.6 |
---|
1785 | if verbose: |
---|
1786 | print ('Depth: ANUGA = %f, Mannings = %f' |
---|
1787 | % (domain_depth, normal_depth)) |
---|
1788 | |
---|
1789 | os.remove('Inflow_flowline_test.sww') |
---|
1790 | |
---|
1791 | |
---|
1792 | ################################################################################# |
---|
1793 | |
---|
1794 | if __name__ == "__main__": |
---|
1795 | suite = unittest.makeSuite(Test_swb_forcing_terms, 'test') |
---|
1796 | runner = unittest.TextTestRunner(verbosity=1) |
---|
1797 | runner.run(suite) |
---|