#!/usr/bin/env python """Polygon manipulations """ try: from scipy import Float, Int, zeros, ones, array, concatenate, reshape, dot except: #print 'Could not find scipy - using Numeric' from Numeric import Float, Int, zeros, ones, array, concatenate, reshape, dot from math import sqrt from anuga.utilities.numerical_tools import ensure_numeric from anuga.geospatial_data.geospatial_data import ensure_absolute def point_on_line(x, y, x0, y0, x1, y1): """Determine whether a point is on a line segment Input: x, y, x0, x0, x1, y1: where point is given by x, y line is given by (x0, y0) and (x1, y1) """ a = array([x - x0, y - y0]) a_normal = array([a[1], -a[0]]) b = array([x1 - x0, y1 - y0]) if dot(a_normal, b) == 0: #Point is somewhere on the infinite extension of the line len_a = sqrt(sum(a**2)) len_b = sqrt(sum(b**2)) if dot(a, b) >= 0 and len_a <= len_b: return True else: return False else: return False def is_inside_polygon(point, polygon, closed=True, verbose=False): """Determine if one point is inside a polygon See inside_polygon for more details """ indices = inside_polygon(point, polygon, closed, verbose) if indices.shape[0] == 1: return True elif indices.shape[0] == 0: return False else: msg = 'is_inside_polygon must be invoked with one point only' raise msg def inside_polygon(points, polygon, closed=True, verbose=False): """Determine points inside a polygon Functions inside_polygon and outside_polygon have been defined in terms af separate_by_polygon which will put all inside indices in the first part of the indices array and outside indices in the last See separate_points_by_polygon for documentation points and polygon can be a geospatial instance, a list or a numeric array """ if verbose: print 'Checking input to inside_polygon' try: points = ensure_absolute(points) except NameError, e: raise NameError, e except: # FIXME(Ole): This message is wrong. Shouldn't it be "Absolute" # rather than "Numeric"? # (DSG) If this fails it is going to be because the points can't be # converted to a numeric array. So this error message is good. msg = 'Points could not be converted to Numeric array' raise msg try: polygon = ensure_absolute(polygon) except NameError, e: raise NameError, e except: # FIXME(Ole): This message is wrong. Shouldn't it be "Absolute" # rather than "Numeric"? # (DSG) If this fails it is going to be because the points can't be # converted to a numeric array. So this error message is good. msg = 'Polygon %s could not be converted to Numeric array' %(str(polygon)) raise msg if len(points.shape) == 1: # Only one point was passed in. Convert to array of points points = reshape(points, (1,2)) indices, count = separate_points_by_polygon(points, polygon, closed=closed, verbose=verbose) # Return indices of points inside polygon return indices[:count] def is_outside_polygon(point, polygon, closed=True, verbose=False, points_geo_ref=None, polygon_geo_ref=None): """Determine if one point is outside a polygon See outside_polygon for more details """ indices = outside_polygon(point, polygon, closed, verbose) #points_geo_ref, polygon_geo_ref) if indices.shape[0] == 1: return True elif indices.shape[0] == 0: return False else: msg = 'is_outside_polygon must be invoked with one point only' raise msg def outside_polygon(points, polygon, closed = True, verbose = False): """Determine points outside a polygon Functions inside_polygon and outside_polygon have been defined in terms af separate_by_polygon which will put all inside indices in the first part of the indices array and outside indices in the last See separate_points_by_polygon for documentation """ if verbose: print 'Checking input to outside_polygon' try: points = ensure_numeric(points, Float) except NameError, e: raise NameError, e except: msg = 'Points could not be converted to Numeric array' raise msg try: polygon = ensure_numeric(polygon, Float) except NameError, e: raise NameError, e except: msg = 'Polygon could not be converted to Numeric array' raise msg if len(points.shape) == 1: # Only one point was passed in. Convert to array of points points = reshape(points, (1,2)) indices, count = separate_points_by_polygon(points, polygon, closed=closed, verbose=verbose) # Return indices of points outside polygon if count == len(indices): # No points are outside return array([]) else: return indices[count:][::-1] #return reversed def in_and_outside_polygon(points, polygon, closed = True, verbose = False): """Determine points inside and outside a polygon See separate_points_by_polygon for documentation Returns an array of points inside and an array of points outside the polygon """ if verbose: print 'Checking input to outside_polygon' try: points = ensure_numeric(points, Float) except NameError, e: raise NameError, e except: msg = 'Points could not be converted to Numeric array' raise msg try: polygon = ensure_numeric(polygon, Float) except NameError, e: raise NameError, e except: msg = 'Polygon could not be converted to Numeric array' raise msg if len(points.shape) == 1: # Only one point was passed in. Convert to array of points points = reshape(points, (1,2)) indices, count = separate_points_by_polygon(points, polygon, closed=closed, verbose=verbose) # Returns indices of points inside and indices of points outside # the polygon if count == len(indices): # No points are outside return indices[:count],[] else: return indices[:count], indices[count:][::-1] #return reversed def separate_points_by_polygon(points, polygon, closed = True, verbose = False): """Determine whether points are inside or outside a polygon Input: points - Tuple of (x, y) coordinates, or list of tuples polygon - list of vertices of polygon closed - (optional) determine whether points on boundary should be regarded as belonging to the polygon (closed = True) or not (closed = False) Outputs: indices: array of same length as points with indices of points falling inside the polygon listed from the beginning and indices of points falling outside listed from the end. count: count of points falling inside the polygon The indices of points inside are obtained as indices[:count] The indices of points outside are obtained as indices[count:] Examples: U = [[0,0], [1,0], [1,1], [0,1]] #Unit square separate_points_by_polygon( [[0.5, 0.5], [1, -0.5], [0.3, 0.2]], U) will return the indices [0, 2, 1] and count == 2 as only the first and the last point are inside the unit square Remarks: The vertices may be listed clockwise or counterclockwise and the first point may optionally be repeated. Polygons do not need to be convex. Polygons can have holes in them and points inside a hole is regarded as being outside the polygon. Algorithm is based on work by Darel Finley, http://www.alienryderflex.com/polygon/ """ #Input checks try: points = ensure_numeric(points, Float) except NameError, e: raise NameError, e except: msg = 'Points could not be converted to Numeric array' raise msg try: polygon = ensure_numeric(polygon, Float) except NameError, e: raise NameError, e except: msg = 'Polygon could not be converted to Numeric array' raise msg assert len(polygon.shape) == 2,\ 'Polygon array must be a 2d array of vertices' assert polygon.shape[1] == 2,\ 'Polygon array must have two columns' assert len(points.shape) == 2,\ 'Points array must be a 2d array' assert points.shape[1] == 2,\ 'Points array must have two columns' N = polygon.shape[0] #Number of vertices in polygon M = points.shape[0] #Number of points px = polygon[:,0] py = polygon[:,1] #Used for an optimisation when points are far away from polygon minpx = min(px); maxpx = max(px) minpy = min(py); maxpy = max(py) #Begin main loop indices = zeros(M, Int) inside_index = 0 #Keep track of points inside outside_index = M-1 #Keep track of points outside (starting from end) if verbose: print 'Separating %d points' %M for k in range(M): if verbose: if k %((M+10)/10)==0: print 'Doing %d of %d' %(k, M) #for each point x = points[k, 0] y = points[k, 1] inside = False if not x > maxpx or x < minpx or y > maxpy or y < minpy: #Check polygon for i in range(N): j = (i+1)%N #Check for case where point is contained in line segment if point_on_line(x, y, px[i], py[i], px[j], py[j]): if closed: inside = True else: inside = False break else: #Check if truly inside polygon if py[i] < y and py[j] >= y or\ py[j] < y and py[i] >= y: if px[i] + (y-py[i])/(py[j]-py[i])*(px[j]-px[i]) < x: inside = not inside if inside: indices[inside_index] = k inside_index += 1 else: indices[outside_index] = k outside_index -= 1 return indices, inside_index def separate_points_by_polygon_c(points, polygon, closed = True, verbose = False): """Determine whether points are inside or outside a polygon C-wrapper """ if verbose: print 'Checking input to separate_points_by_polygon' #Input checks assert isinstance(closed, bool), 'Keyword argument "closed" must be boolean' assert isinstance(verbose, bool), 'Keyword argument "verbose" must be boolean' try: points = ensure_numeric(points, Float) except NameError, e: raise NameError, e except: msg = 'Points could not be converted to Numeric array' raise msg #if verbose: print 'Checking input to separate_points_by_polygon 2' try: polygon = ensure_numeric(polygon, Float) except NameError, e: raise NameError, e except: msg = 'Polygon could not be converted to Numeric array' raise msg #if verbose: print 'check' assert len(polygon.shape) == 2,\ 'Polygon array must be a 2d array of vertices' assert polygon.shape[1] == 2,\ 'Polygon array must have two columns' assert len(points.shape) == 2,\ 'Points array must be a 2d array' assert points.shape[1] == 2,\ 'Points array must have two columns' N = polygon.shape[0] #Number of vertices in polygon M = points.shape[0] #Number of points from polygon_ext import separate_points_by_polygon if verbose: print 'Allocating array for indices' indices = zeros( M, Int ) #if verbose: print 'Calling C-version of inside poly' count = separate_points_by_polygon(points, polygon, indices, int(closed), int(verbose)) if verbose: print 'Found %d points (out of %d) inside polygon'\ %(count, M) return indices, count def polygon_area(polygon): """ Determin area of arbitrary polygon Reference http://mathworld.wolfram.com/PolygonArea.html """ n = len(polygon) poly_area = 0.0 for i in range(n): pti = polygon[i] if i == n-1: pt1 = polygon[0] else: pt1 = polygon[i+1] xi = pti[0] yi1 = pt1[1] xi1 = pt1[0] yi = pti[1] poly_area += xi*yi1 - xi1*yi return abs(poly_area/2) def plot_polygons(polygons, figname=None, verbose=False): """ Take list of polygons and plot. Inputs: polygons - list of polygons figname - name to save figure to Outputs: - list of min and max of x and y coordinates - plot of polygons """ from pylab import ion, hold, plot, axis, figure, legend, savefig, xlabel, ylabel, title, close assert type(polygons) == list,\ 'input must be a list of polygons' ion() hold(True) minx = 1e10 maxx = 0.0 miny = 1e10 maxy = 0.0 for polygon in polygons: x, y = poly_xy(polygon) if min(x) < minx: minx = min(x) if max(x) > maxx: maxx = max(x) if min(y) < miny: miny = min(y) if max(y) > maxy: maxy = max(y) plot(x,y,'r-') xlabel('x') ylabel('y') if figname is not None: savefig(figname) else: raw_input('Press a key to continue') close('all') vec = [minx,maxx,miny,maxy] return vec def poly_xy(polygon, verbose=False): """ this is used within plot_polygons so need to duplicate the first point so can have closed polygon in plot """ if verbose: print 'Checking input to poly_xy' try: polygon = ensure_numeric(polygon, Float) except NameError, e: raise NameError, e except: msg = 'Polygon %s could not be converted to Numeric array' %(str(polygon)) raise msg x = polygon[:,0] y = polygon[:,1] x = concatenate((x, [polygon[0,0]]), axis = 0) y = concatenate((y, [polygon[0,1]]), axis = 0) return x, y # x = [] # y = [] # n = len(poly) # firstpt = poly[0] # for i in range(n): # thispt = poly[i] # x.append(thispt[0]) # y.append(thispt[1]) # x.append(firstpt[0]) # y.append(firstpt[1]) # return x, y class Polygon_function: """Create callable object f: x,y -> z, where a,y,z are vectors and where f will return different values depending on whether x,y belongs to specified polygons. To instantiate: Polygon_function(polygons) where polygons is a list of tuples of the form [ (P0, v0), (P1, v1), ...] with Pi being lists of vertices defining polygons and vi either constants or functions of x,y to be applied to points with the polygon. The function takes an optional argument, default which is the value (or function) to used for points not belonging to any polygon. For example: Polygon_function(polygons, default = 0.03) If omitted the default value will be 0.0 Note: If two polygons overlap, the one last in the list takes precedence Coordinates specified in the call are assumed to be relative to the origin (georeference) e.g. used by domain. By specifying the optional argument georeference, all points are made relative. FIXME: This should really work with geo_spatial point sets. """ def __init__(self, regions, default = 0.0, geo_reference = None): try: len(regions) except: msg = 'Polygon_function takes a list of pairs (polygon, value). Got %s' %polygons raise msg T = regions[0] try: a = len(T) except: msg = 'Polygon_function takes a list of pairs (polygon, value). Got %s' %polygons raise msg assert a == 2, 'Must have two component each: %s' %T if geo_reference is None: from anuga.coordinate_transforms.geo_reference import Geo_reference geo_reference = Geo_reference() self.default = default #Make points in polygons relative to geo_reference self.regions = [] for polygon, value in regions: P = geo_reference.change_points_geo_ref(polygon) self.regions.append( (P, value) ) def __call__(self, x, y): x = array(x).astype(Float) y = array(y).astype(Float) N = len(x) assert len(y) == N points = concatenate( (reshape(x, (N, 1)), reshape(y, (N, 1))), axis=1 ) if callable(self.default): z = self.default(x,y) else: z = ones(N, Float) * self.default for polygon, value in self.regions: indices = inside_polygon(points, polygon) #FIXME: This needs to be vectorised if callable(value): for i in indices: xx = array([x[i]]) yy = array([y[i]]) z[i] = value(xx, yy)[0] else: for i in indices: z[i] = value return z def read_polygon(filename, split=','): """Read points assumed to form a polygon. There must be exactly two numbers in each line separated by a comma. No header. """ #Get polygon fid = open(filename) lines = fid.readlines() fid.close() polygon = [] for line in lines: fields = line.split(split) polygon.append( [float(fields[0]), float(fields[1])] ) return polygon def populate_polygon(polygon, number_of_points, seed=None, exclude=None): """Populate given polygon with uniformly distributed points. Input: polygon - list of vertices of polygon number_of_points - (optional) number of points seed - seed for random number generator (default=None) exclude - list of polygons (inside main polygon) from where points should be excluded Output: points - list of points inside polygon Examples: populate_polygon( [[0,0], [1,0], [1,1], [0,1]], 5 ) will return five randomly selected points inside the unit square """ from random import uniform, seed as seed_function seed_function(seed) points = [] #Find outer extent of polygon max_x = min_x = polygon[0][0] max_y = min_y = polygon[0][1] for point in polygon[1:]: x = point[0] if x > max_x: max_x = x if x < min_x: min_x = x y = point[1] if y > max_y: max_y = y if y < min_y: min_y = y while len(points) < number_of_points: x = uniform(min_x, max_x) y = uniform(min_y, max_y) append = False if is_inside_polygon([x,y], polygon): append = True #Check exclusions if exclude is not None: for ex_poly in exclude: if is_inside_polygon([x,y], ex_poly): append = False if append is True: points.append([x,y]) return points def point_in_polygon(polygon, delta=1e-8): """Return a point inside a given polygon which will be close to the polygon edge. Input: polygon - list of vertices of polygon delta - the square root of 2 * delta is the maximum distance from the polygon points and the returned point. Output: points - a point inside polygon searches in all diagonals and up and down (not left and right) """ import exceptions class Found(exceptions.Exception): pass point_in = False while not point_in: try: for poly_point in polygon: #[1:]: for x_mult in range (-1,2): for y_mult in range (-1,2): x = poly_point[0] y = poly_point[1] if x == 0: x_delta = x_mult*delta else: x_delta = x+x_mult*x*delta if y == 0: y_delta = y_mult*delta else: y_delta = y+y_mult*y*delta point = [x_delta, y_delta] #print "point",point if is_inside_polygon(point, polygon, closed=False): raise Found except Found: point_in = True else: delta = delta*0.1 return point def number_mesh_triangles(interior_regions, bounding_poly, remainder_res): """Calculate the approximate number of triangles inside the bounding polygon and the other interior regions Polygon areas are converted to square Kms FIXME: Add tests for this function """ from anuga.utilities.polygon import polygon_area # TO DO check if any of the regions fall inside one another print '----------------------------------------------------------------------------' print 'Polygon Max triangle area (m^2) Total area (km^2) Estimated #triangles' print '----------------------------------------------------------------------------' no_triangles = 0.0 area = polygon_area(bounding_poly) for poly, resolution in interior_regions: this_area = polygon_area(poly) this_triangles = this_area/resolution no_triangles += this_triangles area -= this_area print 'Interior ', print ('%.0f' %resolution).ljust(25), print ('%.2f' %(this_area/1000000)).ljust(19), print '%d' %(this_triangles) bound_triangles = area/remainder_res no_triangles += bound_triangles print 'Bounding ', print ('%.0f' %remainder_res).ljust(25), print ('%.2f' %(area/1000000)).ljust(19), print '%d' %(bound_triangles) total_number_of_triangles = no_triangles/0.7 print 'Estimated total number of triangles: %d' %total_number_of_triangles print 'Note: This is generally about 20% less than the final amount' return int(total_number_of_triangles) ############################################## #Initialise module from anuga.utilities.compile import can_use_C_extension if can_use_C_extension('polygon_ext.c'): from polygon_ext import point_on_line separate_points_by_polygon = separate_points_by_polygon_c if __name__ == "__main__": pass