1 | #!/usr/bin/env python |
---|
2 | """Polygon manipulations |
---|
3 | |
---|
4 | """ |
---|
5 | |
---|
6 | |
---|
7 | #try: |
---|
8 | # from scipy import Float, Int, zeros, ones, array, concatenate, reshape, dot |
---|
9 | #except: |
---|
10 | # #print 'Could not find scipy - using Numeric' |
---|
11 | |
---|
12 | from Numeric import Float, Int, zeros, ones, array, concatenate, reshape, dot, allclose |
---|
13 | |
---|
14 | |
---|
15 | from math import sqrt |
---|
16 | from anuga.utilities.numerical_tools import ensure_numeric |
---|
17 | from anuga.geospatial_data.geospatial_data import ensure_absolute |
---|
18 | |
---|
19 | |
---|
20 | def point_on_line(point, line, rtol=0.0, atol=0.0): |
---|
21 | """Determine whether a point is on a line segment |
---|
22 | |
---|
23 | Input: |
---|
24 | point is given by [x, y] |
---|
25 | line is given by [x0, y0], [x1, y1]] or |
---|
26 | the equivalent 2x2 Numeric array with each row corresponding to a point. |
---|
27 | |
---|
28 | Output: |
---|
29 | |
---|
30 | Note: Line can be degenerate and function still works to discern coinciding points from non-coinciding. |
---|
31 | """ |
---|
32 | |
---|
33 | # FIXME(Ole): Perhaps make defaults as in allclose: rtol=1.0e-5, atol=1.0e-8 |
---|
34 | |
---|
35 | point = ensure_numeric(point) |
---|
36 | line = ensure_numeric(line) |
---|
37 | |
---|
38 | res = _point_on_line(point[0], point[1], |
---|
39 | line[0,0], line[0,1], |
---|
40 | line[1,0], line[1,1], |
---|
41 | rtol, atol) |
---|
42 | |
---|
43 | return bool(res) |
---|
44 | |
---|
45 | |
---|
46 | |
---|
47 | |
---|
48 | |
---|
49 | def intersection(line0, line1): |
---|
50 | """Returns intersecting point between two line segments or None |
---|
51 | (if parallel or no intersection is found). |
---|
52 | |
---|
53 | However, if parallel lines coincide partly (i.e. shara a common segment, |
---|
54 | the line segment where lines coincide is returned |
---|
55 | |
---|
56 | |
---|
57 | Inputs: |
---|
58 | line0, line1: Each defined by two end points as in: [[x0, y0], [x1, y1]] |
---|
59 | A line can also be a 2x2 numeric array with each row |
---|
60 | corresponding to a point. |
---|
61 | |
---|
62 | |
---|
63 | Output: |
---|
64 | status, value |
---|
65 | |
---|
66 | where status is interpreted as follows |
---|
67 | |
---|
68 | status == 0: no intersection with value set to None |
---|
69 | status == 1: One intersection point found and returned in value as [x,y] |
---|
70 | status == 2: Coinciding line segment found. Value taks the form [[x0,y0], [x1,y1]] |
---|
71 | status == 3: Lines would coincide but only if extended. Value set to None |
---|
72 | status == 4: Lines are parallel with a fixed distance apart. Value set to None. |
---|
73 | |
---|
74 | """ |
---|
75 | |
---|
76 | # FIXME (Ole): Write this in C |
---|
77 | |
---|
78 | line0 = ensure_numeric(line0, Float) |
---|
79 | line1 = ensure_numeric(line1, Float) |
---|
80 | |
---|
81 | x0 = line0[0,0]; y0 = line0[0,1] |
---|
82 | x1 = line0[1,0]; y1 = line0[1,1] |
---|
83 | |
---|
84 | x2 = line1[0,0]; y2 = line1[0,1] |
---|
85 | x3 = line1[1,0]; y3 = line1[1,1] |
---|
86 | |
---|
87 | denom = (y3-y2)*(x1-x0) - (x3-x2)*(y1-y0) |
---|
88 | u0 = (x3-x2)*(y0-y2) - (y3-y2)*(x0-x2) |
---|
89 | u1 = (x2-x0)*(y1-y0) - (y2-y0)*(x1-x0) |
---|
90 | |
---|
91 | if allclose(denom, 0.0): |
---|
92 | # Lines are parallel - check if they coincide on a shared a segment |
---|
93 | |
---|
94 | if allclose( [u0, u1], 0.0 ): |
---|
95 | # We now know that the lines if continued coincide |
---|
96 | # The remaining check will establish if the finite lines share a segment |
---|
97 | |
---|
98 | line0_starts_on_line1 = line0_ends_on_line1 =\ |
---|
99 | line1_starts_on_line0 = line1_ends_on_line0 = False |
---|
100 | |
---|
101 | if point_on_line([x0, y0], line1): |
---|
102 | line0_starts_on_line1 = True |
---|
103 | |
---|
104 | if point_on_line([x1, y1], line1): |
---|
105 | line0_ends_on_line1 = True |
---|
106 | |
---|
107 | if point_on_line([x2, y2], line0): |
---|
108 | line1_starts_on_line0 = True |
---|
109 | |
---|
110 | if point_on_line([x3, y3], line0): |
---|
111 | line1_ends_on_line0 = True |
---|
112 | |
---|
113 | if not(line0_starts_on_line1 or line0_ends_on_line1\ |
---|
114 | or line1_starts_on_line0 or line1_ends_on_line0): |
---|
115 | # Lines are parallel and would coincide if extended, but not as they are. |
---|
116 | return 3, None |
---|
117 | |
---|
118 | |
---|
119 | # One line fully included in the other. Use direction of included line |
---|
120 | if line0_starts_on_line1 and line0_ends_on_line1: |
---|
121 | # Shared segment is line0 fully included in line1 |
---|
122 | segment = array([[x0, y0], [x1, y1]]) |
---|
123 | |
---|
124 | if line1_starts_on_line0 and line1_ends_on_line0: |
---|
125 | # Shared segment is line1 fully included in line0 |
---|
126 | segment = array([[x2, y2], [x3, y3]]) |
---|
127 | |
---|
128 | |
---|
129 | # Overlap with lines are oriented the same way |
---|
130 | if line0_starts_on_line1 and line1_ends_on_line0: |
---|
131 | # Shared segment from line0 start to line 1 end |
---|
132 | segment = array([[x0, y0], [x3, y3]]) |
---|
133 | |
---|
134 | if line1_starts_on_line0 and line0_ends_on_line1: |
---|
135 | # Shared segment from line1 start to line 0 end |
---|
136 | segment = array([[x2, y2], [x1, y1]]) |
---|
137 | |
---|
138 | |
---|
139 | # Overlap in opposite directions - use direction of line0 |
---|
140 | if line0_starts_on_line1 and line1_starts_on_line0: |
---|
141 | # Shared segment from line0 start to line 1 end |
---|
142 | segment = array([[x0, y0], [x2, y2]]) |
---|
143 | |
---|
144 | if line0_ends_on_line1 and line1_ends_on_line0: |
---|
145 | # Shared segment from line0 start to line 1 end |
---|
146 | segment = array([[x3, y3], [x1, y1]]) |
---|
147 | |
---|
148 | |
---|
149 | return 2, segment |
---|
150 | else: |
---|
151 | # Lines are parallel but they don't coincide |
---|
152 | return 4, None #FIXME (Ole): Add distance here instead of None |
---|
153 | |
---|
154 | else: |
---|
155 | # Lines are not parallel or coinciding |
---|
156 | u0 = u0/denom |
---|
157 | u1 = u1/denom |
---|
158 | |
---|
159 | x = x0 + u0*(x1-x0) |
---|
160 | y = y0 + u0*(y1-y0) |
---|
161 | |
---|
162 | # Sanity check - can be removed to speed up if needed |
---|
163 | assert allclose(x, x2 + u1*(x3-x2)) |
---|
164 | assert allclose(y, y2 + u1*(y3-y2)) |
---|
165 | |
---|
166 | # Check if point found lies within given line segments |
---|
167 | if 0.0 <= u0 <= 1.0 and 0.0 <= u1 <= 1.0: |
---|
168 | # We have intersection |
---|
169 | |
---|
170 | return 1, array([x, y]) |
---|
171 | else: |
---|
172 | # No intersection |
---|
173 | return 0, None |
---|
174 | |
---|
175 | |
---|
176 | def NEW_C_intersection(line0, line1): |
---|
177 | #FIXME(Ole): To write in C |
---|
178 | """Returns intersecting point between two line segments or None |
---|
179 | (if parallel or no intersection is found). |
---|
180 | |
---|
181 | However, if parallel lines coincide partly (i.e. shara a common segment, |
---|
182 | the line segment where lines coincide is returned |
---|
183 | |
---|
184 | |
---|
185 | Inputs: |
---|
186 | line0, line1: Each defined by two end points as in: [[x0, y0], [x1, y1]] |
---|
187 | A line can also be a 2x2 numeric array with each row |
---|
188 | corresponding to a point. |
---|
189 | |
---|
190 | |
---|
191 | Output: |
---|
192 | status, value |
---|
193 | |
---|
194 | where status is interpreted as follows |
---|
195 | |
---|
196 | status == 0: no intersection with value set to None |
---|
197 | status == 1: One intersection point found and returned in value as [x,y] |
---|
198 | status == 2: Coinciding line segment found. Value taks the form [[x0,y0], [x1,y1]] |
---|
199 | status == 3: Lines would coincide but only if extended. Value set to None |
---|
200 | status == 4: Lines are parallel with a fixed distance apart. Value set to None. |
---|
201 | |
---|
202 | """ |
---|
203 | |
---|
204 | |
---|
205 | line0 = ensure_numeric(line0, Float) |
---|
206 | line1 = ensure_numeric(line1, Float) |
---|
207 | |
---|
208 | status, value = _intersection(line0[0,0], line0[0,1], |
---|
209 | line0[1,0], line0[1,1], |
---|
210 | line1[0,0], line1[0,1], |
---|
211 | line1[1,0], line1[1,1]) |
---|
212 | |
---|
213 | return status, value |
---|
214 | |
---|
215 | |
---|
216 | |
---|
217 | |
---|
218 | def is_inside_polygon(point, polygon, closed=True, verbose=False): |
---|
219 | """Determine if one point is inside a polygon |
---|
220 | |
---|
221 | See inside_polygon for more details |
---|
222 | """ |
---|
223 | |
---|
224 | indices = inside_polygon(point, polygon, closed, verbose) |
---|
225 | |
---|
226 | if indices.shape[0] == 1: |
---|
227 | return True |
---|
228 | elif indices.shape[0] == 0: |
---|
229 | return False |
---|
230 | else: |
---|
231 | msg = 'is_inside_polygon must be invoked with one point only' |
---|
232 | raise msg |
---|
233 | |
---|
234 | |
---|
235 | def inside_polygon(points, polygon, closed=True, verbose=False): |
---|
236 | """Determine points inside a polygon |
---|
237 | |
---|
238 | Functions inside_polygon and outside_polygon have been defined in |
---|
239 | terms af separate_by_polygon which will put all inside indices in |
---|
240 | the first part of the indices array and outside indices in the last |
---|
241 | |
---|
242 | See separate_points_by_polygon for documentation |
---|
243 | |
---|
244 | points and polygon can be a geospatial instance, |
---|
245 | a list or a numeric array |
---|
246 | """ |
---|
247 | |
---|
248 | #if verbose: print 'Checking input to inside_polygon' |
---|
249 | |
---|
250 | try: |
---|
251 | points = ensure_absolute(points) |
---|
252 | except NameError, e: |
---|
253 | raise NameError, e |
---|
254 | except: |
---|
255 | # If this fails it is going to be because the points can't be |
---|
256 | # converted to a numeric array. |
---|
257 | msg = 'Points could not be converted to Numeric array' |
---|
258 | raise msg |
---|
259 | |
---|
260 | try: |
---|
261 | polygon = ensure_absolute(polygon) |
---|
262 | except NameError, e: |
---|
263 | raise NameError, e |
---|
264 | except: |
---|
265 | # If this fails it is going to be because the points can't be |
---|
266 | # converted to a numeric array. |
---|
267 | msg = 'Polygon %s could not be converted to Numeric array' %(str(polygon)) |
---|
268 | raise msg |
---|
269 | |
---|
270 | if len(points.shape) == 1: |
---|
271 | # Only one point was passed in. Convert to array of points |
---|
272 | points = reshape(points, (1,2)) |
---|
273 | |
---|
274 | indices, count = separate_points_by_polygon(points, polygon, |
---|
275 | closed=closed, |
---|
276 | verbose=verbose) |
---|
277 | |
---|
278 | # Return indices of points inside polygon |
---|
279 | return indices[:count] |
---|
280 | |
---|
281 | |
---|
282 | |
---|
283 | def is_outside_polygon(point, polygon, closed=True, verbose=False, |
---|
284 | points_geo_ref=None, polygon_geo_ref=None): |
---|
285 | """Determine if one point is outside a polygon |
---|
286 | |
---|
287 | See outside_polygon for more details |
---|
288 | """ |
---|
289 | |
---|
290 | indices = outside_polygon(point, polygon, closed, verbose) |
---|
291 | #points_geo_ref, polygon_geo_ref) |
---|
292 | |
---|
293 | if indices.shape[0] == 1: |
---|
294 | return True |
---|
295 | elif indices.shape[0] == 0: |
---|
296 | return False |
---|
297 | else: |
---|
298 | msg = 'is_outside_polygon must be invoked with one point only' |
---|
299 | raise msg |
---|
300 | |
---|
301 | |
---|
302 | def outside_polygon(points, polygon, closed = True, verbose = False): |
---|
303 | """Determine points outside a polygon |
---|
304 | |
---|
305 | Functions inside_polygon and outside_polygon have been defined in |
---|
306 | terms af separate_by_polygon which will put all inside indices in |
---|
307 | the first part of the indices array and outside indices in the last |
---|
308 | |
---|
309 | See separate_points_by_polygon for documentation |
---|
310 | """ |
---|
311 | |
---|
312 | #if verbose: print 'Checking input to outside_polygon' |
---|
313 | try: |
---|
314 | points = ensure_numeric(points, Float) |
---|
315 | except NameError, e: |
---|
316 | raise NameError, e |
---|
317 | except: |
---|
318 | msg = 'Points could not be converted to Numeric array' |
---|
319 | raise msg |
---|
320 | |
---|
321 | try: |
---|
322 | polygon = ensure_numeric(polygon, Float) |
---|
323 | except NameError, e: |
---|
324 | raise NameError, e |
---|
325 | except: |
---|
326 | msg = 'Polygon could not be converted to Numeric array' |
---|
327 | raise msg |
---|
328 | |
---|
329 | |
---|
330 | if len(points.shape) == 1: |
---|
331 | # Only one point was passed in. Convert to array of points |
---|
332 | points = reshape(points, (1,2)) |
---|
333 | |
---|
334 | indices, count = separate_points_by_polygon(points, polygon, |
---|
335 | closed=closed, |
---|
336 | verbose=verbose) |
---|
337 | |
---|
338 | # Return indices of points outside polygon |
---|
339 | if count == len(indices): |
---|
340 | # No points are outside |
---|
341 | return array([]) |
---|
342 | else: |
---|
343 | return indices[count:][::-1] #return reversed |
---|
344 | |
---|
345 | |
---|
346 | def in_and_outside_polygon(points, polygon, closed = True, verbose = False): |
---|
347 | """Determine points inside and outside a polygon |
---|
348 | |
---|
349 | See separate_points_by_polygon for documentation |
---|
350 | |
---|
351 | Returns an array of points inside and an array of points outside the polygon |
---|
352 | """ |
---|
353 | |
---|
354 | #if verbose: print 'Checking input to outside_polygon' |
---|
355 | try: |
---|
356 | points = ensure_numeric(points, Float) |
---|
357 | except NameError, e: |
---|
358 | raise NameError, e |
---|
359 | except: |
---|
360 | msg = 'Points could not be converted to Numeric array' |
---|
361 | raise msg |
---|
362 | |
---|
363 | try: |
---|
364 | polygon = ensure_numeric(polygon, Float) |
---|
365 | except NameError, e: |
---|
366 | raise NameError, e |
---|
367 | except: |
---|
368 | msg = 'Polygon could not be converted to Numeric array' |
---|
369 | raise msg |
---|
370 | |
---|
371 | if len(points.shape) == 1: |
---|
372 | # Only one point was passed in. Convert to array of points |
---|
373 | points = reshape(points, (1,2)) |
---|
374 | |
---|
375 | |
---|
376 | indices, count = separate_points_by_polygon(points, polygon, |
---|
377 | closed=closed, |
---|
378 | verbose=verbose) |
---|
379 | |
---|
380 | # Returns indices of points inside and indices of points outside |
---|
381 | # the polygon |
---|
382 | |
---|
383 | if count == len(indices): |
---|
384 | # No points are outside |
---|
385 | return indices[:count],[] |
---|
386 | else: |
---|
387 | return indices[:count], indices[count:][::-1] #return reversed |
---|
388 | |
---|
389 | |
---|
390 | def separate_points_by_polygon(points, polygon, |
---|
391 | closed = True, verbose = False): |
---|
392 | """Determine whether points are inside or outside a polygon |
---|
393 | |
---|
394 | Input: |
---|
395 | points - Tuple of (x, y) coordinates, or list of tuples |
---|
396 | polygon - list of vertices of polygon |
---|
397 | closed - (optional) determine whether points on boundary should be |
---|
398 | regarded as belonging to the polygon (closed = True) |
---|
399 | or not (closed = False) |
---|
400 | |
---|
401 | Outputs: |
---|
402 | indices: array of same length as points with indices of points falling |
---|
403 | inside the polygon listed from the beginning and indices of points |
---|
404 | falling outside listed from the end. |
---|
405 | |
---|
406 | count: count of points falling inside the polygon |
---|
407 | |
---|
408 | The indices of points inside are obtained as indices[:count] |
---|
409 | The indices of points outside are obtained as indices[count:] |
---|
410 | |
---|
411 | |
---|
412 | Examples: |
---|
413 | U = [[0,0], [1,0], [1,1], [0,1]] #Unit square |
---|
414 | |
---|
415 | separate_points_by_polygon( [[0.5, 0.5], [1, -0.5], [0.3, 0.2]], U) |
---|
416 | will return the indices [0, 2, 1] and count == 2 as only the first |
---|
417 | and the last point are inside the unit square |
---|
418 | |
---|
419 | Remarks: |
---|
420 | The vertices may be listed clockwise or counterclockwise and |
---|
421 | the first point may optionally be repeated. |
---|
422 | Polygons do not need to be convex. |
---|
423 | Polygons can have holes in them and points inside a hole is |
---|
424 | regarded as being outside the polygon. |
---|
425 | |
---|
426 | Algorithm is based on work by Darel Finley, |
---|
427 | http://www.alienryderflex.com/polygon/ |
---|
428 | |
---|
429 | Uses underlying C-implementation in polygon_ext.c |
---|
430 | """ |
---|
431 | |
---|
432 | |
---|
433 | #if verbose: print 'Checking input to separate_points_by_polygon' |
---|
434 | |
---|
435 | |
---|
436 | #Input checks |
---|
437 | |
---|
438 | assert isinstance(closed, bool), 'Keyword argument "closed" must be boolean' |
---|
439 | assert isinstance(verbose, bool), 'Keyword argument "verbose" must be boolean' |
---|
440 | |
---|
441 | |
---|
442 | try: |
---|
443 | points = ensure_numeric(points, Float) |
---|
444 | except NameError, e: |
---|
445 | raise NameError, e |
---|
446 | except: |
---|
447 | msg = 'Points could not be converted to Numeric array' |
---|
448 | raise msg |
---|
449 | |
---|
450 | #if verbose: print 'Checking input to separate_points_by_polygon 2' |
---|
451 | try: |
---|
452 | polygon = ensure_numeric(polygon, Float) |
---|
453 | except NameError, e: |
---|
454 | raise NameError, e |
---|
455 | except: |
---|
456 | msg = 'Polygon could not be converted to Numeric array' |
---|
457 | raise msg |
---|
458 | |
---|
459 | msg = 'Polygon array must be a 2d array of vertices' |
---|
460 | assert len(polygon.shape) == 2, msg |
---|
461 | |
---|
462 | msg = 'Polygon array must have two columns' |
---|
463 | assert polygon.shape[1] == 2, msg |
---|
464 | |
---|
465 | |
---|
466 | msg = 'Points array must be 1 or 2 dimensional.' |
---|
467 | msg += ' I got %d dimensions' %len(points.shape) |
---|
468 | assert 0 < len(points.shape) < 3, msg |
---|
469 | |
---|
470 | |
---|
471 | if len(points.shape) == 1: |
---|
472 | # Only one point was passed in. |
---|
473 | # Convert to array of points |
---|
474 | points = reshape(points, (1,2)) |
---|
475 | |
---|
476 | |
---|
477 | msg = 'Point array must have two columns (x,y), ' |
---|
478 | msg += 'I got points.shape[1] == %d' %points.shape[0] |
---|
479 | assert points.shape[1] == 2, msg |
---|
480 | |
---|
481 | |
---|
482 | msg = 'Points array must be a 2d array. I got %s' %str(points[:30]) |
---|
483 | assert len(points.shape) == 2, msg |
---|
484 | |
---|
485 | msg = 'Points array must have two columns' |
---|
486 | assert points.shape[1] == 2, msg |
---|
487 | |
---|
488 | |
---|
489 | N = polygon.shape[0] #Number of vertices in polygon |
---|
490 | M = points.shape[0] #Number of points |
---|
491 | |
---|
492 | |
---|
493 | indices = zeros( M, Int ) |
---|
494 | |
---|
495 | count = _separate_points_by_polygon(points, polygon, indices, |
---|
496 | int(closed), int(verbose)) |
---|
497 | |
---|
498 | if verbose: print 'Found %d points (out of %d) inside polygon'\ |
---|
499 | %(count, M) |
---|
500 | return indices, count |
---|
501 | |
---|
502 | |
---|
503 | def polygon_area(polygon): |
---|
504 | """ Determin area of arbitrary polygon |
---|
505 | Reference |
---|
506 | http://mathworld.wolfram.com/PolygonArea.html |
---|
507 | """ |
---|
508 | |
---|
509 | n = len(polygon) |
---|
510 | poly_area = 0.0 |
---|
511 | |
---|
512 | for i in range(n): |
---|
513 | pti = polygon[i] |
---|
514 | if i == n-1: |
---|
515 | pt1 = polygon[0] |
---|
516 | else: |
---|
517 | pt1 = polygon[i+1] |
---|
518 | xi = pti[0] |
---|
519 | yi1 = pt1[1] |
---|
520 | xi1 = pt1[0] |
---|
521 | yi = pti[1] |
---|
522 | poly_area += xi*yi1 - xi1*yi |
---|
523 | |
---|
524 | return abs(poly_area/2) |
---|
525 | |
---|
526 | def plot_polygons(polygons_points, style=None, |
---|
527 | figname=None, label=None, verbose=False): |
---|
528 | |
---|
529 | """ Take list of polygons and plot. |
---|
530 | |
---|
531 | Inputs: |
---|
532 | |
---|
533 | polygons - list of polygons |
---|
534 | |
---|
535 | style - style list corresponding to each polygon |
---|
536 | - for a polygon, use 'line' |
---|
537 | - for points falling outside a polygon, use 'outside' |
---|
538 | |
---|
539 | figname - name to save figure to |
---|
540 | |
---|
541 | label - title for plot |
---|
542 | |
---|
543 | Outputs: |
---|
544 | |
---|
545 | - list of min and max of x and y coordinates |
---|
546 | - plot of polygons |
---|
547 | """ |
---|
548 | |
---|
549 | from pylab import ion, hold, plot, axis, figure, legend, savefig, xlabel, ylabel, title, close, title |
---|
550 | |
---|
551 | assert type(polygons_points) == list,\ |
---|
552 | 'input must be a list of polygons and/or points' |
---|
553 | |
---|
554 | ion() |
---|
555 | hold(True) |
---|
556 | |
---|
557 | minx = 1e10 |
---|
558 | maxx = 0.0 |
---|
559 | miny = 1e10 |
---|
560 | maxy = 0.0 |
---|
561 | |
---|
562 | if label is None: label = '' |
---|
563 | |
---|
564 | n = len(polygons_points) |
---|
565 | colour = [] |
---|
566 | if style is None: |
---|
567 | style_type = 'line' |
---|
568 | style = [] |
---|
569 | for i in range(n): |
---|
570 | style.append(style_type) |
---|
571 | colour.append('b-') |
---|
572 | else: |
---|
573 | for s in style: |
---|
574 | if s == 'line': colour.append('b-') |
---|
575 | if s == 'outside': colour.append('r.') |
---|
576 | if s <> 'line': |
---|
577 | if s <> 'outside': |
---|
578 | colour.append('g.') |
---|
579 | |
---|
580 | for i, item in enumerate(polygons_points): |
---|
581 | x, y = poly_xy(item) |
---|
582 | if min(x) < minx: minx = min(x) |
---|
583 | if max(x) > maxx: maxx = max(x) |
---|
584 | if min(y) < miny: miny = min(y) |
---|
585 | if max(y) > maxy: maxy = max(y) |
---|
586 | plot(x,y,colour[i]) |
---|
587 | xlabel('x') |
---|
588 | ylabel('y') |
---|
589 | title(label) |
---|
590 | |
---|
591 | #raw_input('wait 1') |
---|
592 | #FIXME(Ole): This makes for some strange scalings sometimes. |
---|
593 | #if minx <> 0: |
---|
594 | # axis([minx*0.9,maxx*1.1,miny*0.9,maxy*1.1]) |
---|
595 | #else: |
---|
596 | # if miny == 0: |
---|
597 | # axis([-maxx*.01,maxx*1.1,-maxy*0.01,maxy*1.1]) |
---|
598 | # else: |
---|
599 | # axis([-maxx*.01,maxx*1.1,miny*0.9,maxy*1.1]) |
---|
600 | |
---|
601 | if figname is not None: |
---|
602 | savefig(figname) |
---|
603 | else: |
---|
604 | savefig('test_image') |
---|
605 | |
---|
606 | close('all') |
---|
607 | |
---|
608 | vec = [minx,maxx,miny,maxy] |
---|
609 | |
---|
610 | return vec |
---|
611 | |
---|
612 | def poly_xy(polygon, verbose=False): |
---|
613 | """ this is used within plot_polygons so need to duplicate |
---|
614 | the first point so can have closed polygon in plot |
---|
615 | """ |
---|
616 | |
---|
617 | #if verbose: print 'Checking input to poly_xy' |
---|
618 | |
---|
619 | try: |
---|
620 | polygon = ensure_numeric(polygon, Float) |
---|
621 | except NameError, e: |
---|
622 | raise NameError, e |
---|
623 | except: |
---|
624 | msg = 'Polygon %s could not be converted to Numeric array' %(str(polygon)) |
---|
625 | raise msg |
---|
626 | |
---|
627 | x = polygon[:,0] |
---|
628 | y = polygon[:,1] |
---|
629 | x = concatenate((x, [polygon[0,0]]), axis = 0) |
---|
630 | y = concatenate((y, [polygon[0,1]]), axis = 0) |
---|
631 | |
---|
632 | return x, y |
---|
633 | |
---|
634 | # x = [] |
---|
635 | # y = [] |
---|
636 | # n = len(poly) |
---|
637 | # firstpt = poly[0] |
---|
638 | # for i in range(n): |
---|
639 | # thispt = poly[i] |
---|
640 | # x.append(thispt[0]) |
---|
641 | # y.append(thispt[1]) |
---|
642 | |
---|
643 | # x.append(firstpt[0]) |
---|
644 | # y.append(firstpt[1]) |
---|
645 | |
---|
646 | # return x, y |
---|
647 | |
---|
648 | class Polygon_function: |
---|
649 | """Create callable object f: x,y -> z, where a,y,z are vectors and |
---|
650 | where f will return different values depending on whether x,y belongs |
---|
651 | to specified polygons. |
---|
652 | |
---|
653 | To instantiate: |
---|
654 | |
---|
655 | Polygon_function(polygons) |
---|
656 | |
---|
657 | where polygons is a list of tuples of the form |
---|
658 | |
---|
659 | [ (P0, v0), (P1, v1), ...] |
---|
660 | |
---|
661 | with Pi being lists of vertices defining polygons and vi either |
---|
662 | constants or functions of x,y to be applied to points with the polygon. |
---|
663 | |
---|
664 | The function takes an optional argument, default which is the value |
---|
665 | (or function) to used for points not belonging to any polygon. |
---|
666 | For example: |
---|
667 | |
---|
668 | Polygon_function(polygons, default = 0.03) |
---|
669 | |
---|
670 | If omitted the default value will be 0.0 |
---|
671 | |
---|
672 | Note: If two polygons overlap, the one last in the list takes precedence |
---|
673 | |
---|
674 | Coordinates specified in the call are assumed to be relative to the |
---|
675 | origin (georeference) e.g. used by domain. |
---|
676 | By specifying the optional argument georeference, |
---|
677 | all points are made relative. |
---|
678 | |
---|
679 | FIXME: This should really work with geo_spatial point sets. |
---|
680 | """ |
---|
681 | |
---|
682 | def __init__(self, regions, default=0.0, geo_reference=None): |
---|
683 | |
---|
684 | try: |
---|
685 | len(regions) |
---|
686 | except: |
---|
687 | msg = 'Polygon_function takes a list of pairs (polygon, value).' |
---|
688 | msg += 'Got %s' %polygons |
---|
689 | raise msg |
---|
690 | |
---|
691 | |
---|
692 | T = regions[0] |
---|
693 | try: |
---|
694 | a = len(T) |
---|
695 | except: |
---|
696 | msg = 'Polygon_function takes a list of pairs (polygon, value).' |
---|
697 | msg += 'Got %s' %polygons |
---|
698 | raise msg |
---|
699 | |
---|
700 | assert a == 2, 'Must have two component each: %s' %T |
---|
701 | |
---|
702 | |
---|
703 | if geo_reference is None: |
---|
704 | from anuga.coordinate_transforms.geo_reference import Geo_reference |
---|
705 | geo_reference = Geo_reference() |
---|
706 | |
---|
707 | |
---|
708 | self.default = default |
---|
709 | |
---|
710 | # Make points in polygons relative to geo_reference |
---|
711 | self.regions = [] |
---|
712 | for polygon, value in regions: |
---|
713 | P = geo_reference.change_points_geo_ref(polygon) |
---|
714 | self.regions.append( (P, value) ) |
---|
715 | |
---|
716 | |
---|
717 | |
---|
718 | |
---|
719 | def __call__(self, x, y): |
---|
720 | x = array(x).astype(Float) |
---|
721 | y = array(y).astype(Float) |
---|
722 | |
---|
723 | N = len(x) |
---|
724 | assert len(y) == N |
---|
725 | |
---|
726 | points = concatenate( (reshape(x, (N, 1)), |
---|
727 | reshape(y, (N, 1))), axis=1 ) |
---|
728 | |
---|
729 | if callable(self.default): |
---|
730 | z = self.default(x,y) |
---|
731 | else: |
---|
732 | z = ones(N, Float) * self.default |
---|
733 | |
---|
734 | for polygon, value in self.regions: |
---|
735 | indices = inside_polygon(points, polygon) |
---|
736 | |
---|
737 | # FIXME: This needs to be vectorised |
---|
738 | if callable(value): |
---|
739 | for i in indices: |
---|
740 | xx = array([x[i]]) |
---|
741 | yy = array([y[i]]) |
---|
742 | z[i] = value(xx, yy)[0] |
---|
743 | else: |
---|
744 | for i in indices: |
---|
745 | z[i] = value |
---|
746 | |
---|
747 | return z |
---|
748 | |
---|
749 | |
---|
750 | def read_polygon(filename, split=','): |
---|
751 | """Read points assumed to form a polygon. |
---|
752 | There must be exactly two numbers in each line separated by a comma. |
---|
753 | No header. |
---|
754 | """ |
---|
755 | |
---|
756 | #Get polygon |
---|
757 | fid = open(filename) |
---|
758 | lines = fid.readlines() |
---|
759 | fid.close() |
---|
760 | polygon = [] |
---|
761 | for line in lines: |
---|
762 | fields = line.split(split) |
---|
763 | polygon.append( [float(fields[0]), float(fields[1])] ) |
---|
764 | |
---|
765 | return polygon |
---|
766 | |
---|
767 | |
---|
768 | def write_polygon(polygon, filename=None): |
---|
769 | """Write polygon to csv file. |
---|
770 | There will be exactly two numbers, easting and northing, |
---|
771 | in each line separated by a comma. |
---|
772 | |
---|
773 | No header. |
---|
774 | """ |
---|
775 | |
---|
776 | fid = open(filename, 'w') |
---|
777 | for point in polygon: |
---|
778 | fid.write('%f, %f\n' %point) |
---|
779 | fid.close() |
---|
780 | |
---|
781 | |
---|
782 | def populate_polygon(polygon, number_of_points, seed=None, exclude=None): |
---|
783 | """Populate given polygon with uniformly distributed points. |
---|
784 | |
---|
785 | Input: |
---|
786 | polygon - list of vertices of polygon |
---|
787 | number_of_points - (optional) number of points |
---|
788 | seed - seed for random number generator (default=None) |
---|
789 | exclude - list of polygons (inside main polygon) from where points should be excluded |
---|
790 | |
---|
791 | Output: |
---|
792 | points - list of points inside polygon |
---|
793 | |
---|
794 | Examples: |
---|
795 | populate_polygon( [[0,0], [1,0], [1,1], [0,1]], 5 ) |
---|
796 | will return five randomly selected points inside the unit square |
---|
797 | """ |
---|
798 | |
---|
799 | from random import uniform, seed as seed_function |
---|
800 | |
---|
801 | seed_function(seed) |
---|
802 | |
---|
803 | points = [] |
---|
804 | |
---|
805 | # Find outer extent of polygon |
---|
806 | max_x = min_x = polygon[0][0] |
---|
807 | max_y = min_y = polygon[0][1] |
---|
808 | for point in polygon[1:]: |
---|
809 | x = point[0] |
---|
810 | if x > max_x: max_x = x |
---|
811 | if x < min_x: min_x = x |
---|
812 | y = point[1] |
---|
813 | if y > max_y: max_y = y |
---|
814 | if y < min_y: min_y = y |
---|
815 | |
---|
816 | |
---|
817 | while len(points) < number_of_points: |
---|
818 | x = uniform(min_x, max_x) |
---|
819 | y = uniform(min_y, max_y) |
---|
820 | |
---|
821 | append = False |
---|
822 | if is_inside_polygon([x,y], polygon): |
---|
823 | |
---|
824 | append = True |
---|
825 | |
---|
826 | #Check exclusions |
---|
827 | if exclude is not None: |
---|
828 | for ex_poly in exclude: |
---|
829 | if is_inside_polygon([x,y], ex_poly): |
---|
830 | append = False |
---|
831 | |
---|
832 | |
---|
833 | if append is True: |
---|
834 | points.append([x,y]) |
---|
835 | |
---|
836 | return points |
---|
837 | |
---|
838 | |
---|
839 | def point_in_polygon(polygon, delta=1e-8): |
---|
840 | """Return a point inside a given polygon which will be close to the |
---|
841 | polygon edge. |
---|
842 | |
---|
843 | Input: |
---|
844 | polygon - list of vertices of polygon |
---|
845 | delta - the square root of 2 * delta is the maximum distance from the |
---|
846 | polygon points and the returned point. |
---|
847 | Output: |
---|
848 | points - a point inside polygon |
---|
849 | |
---|
850 | searches in all diagonals and up and down (not left and right) |
---|
851 | """ |
---|
852 | import exceptions |
---|
853 | class Found(exceptions.Exception): pass |
---|
854 | |
---|
855 | point_in = False |
---|
856 | while not point_in: |
---|
857 | try: |
---|
858 | for poly_point in polygon: #[1:]: |
---|
859 | for x_mult in range (-1,2): |
---|
860 | for y_mult in range (-1,2): |
---|
861 | x = poly_point[0] |
---|
862 | y = poly_point[1] |
---|
863 | if x == 0: |
---|
864 | x_delta = x_mult*delta |
---|
865 | else: |
---|
866 | x_delta = x+x_mult*x*delta |
---|
867 | |
---|
868 | if y == 0: |
---|
869 | y_delta = y_mult*delta |
---|
870 | else: |
---|
871 | y_delta = y+y_mult*y*delta |
---|
872 | |
---|
873 | point = [x_delta, y_delta] |
---|
874 | #print "point",point |
---|
875 | if is_inside_polygon(point, polygon, closed=False): |
---|
876 | raise Found |
---|
877 | except Found: |
---|
878 | point_in = True |
---|
879 | else: |
---|
880 | delta = delta*0.1 |
---|
881 | return point |
---|
882 | |
---|
883 | |
---|
884 | def number_mesh_triangles(interior_regions, bounding_poly, remainder_res): |
---|
885 | """Calculate the approximate number of triangles inside the |
---|
886 | bounding polygon and the other interior regions |
---|
887 | |
---|
888 | Polygon areas are converted to square Kms |
---|
889 | |
---|
890 | FIXME: Add tests for this function |
---|
891 | """ |
---|
892 | |
---|
893 | from anuga.utilities.polygon import polygon_area |
---|
894 | |
---|
895 | |
---|
896 | # TO DO check if any of the regions fall inside one another |
---|
897 | |
---|
898 | print '----------------------------------------------------------------------------' |
---|
899 | print 'Polygon Max triangle area (m^2) Total area (km^2) Estimated #triangles' |
---|
900 | print '----------------------------------------------------------------------------' |
---|
901 | |
---|
902 | no_triangles = 0.0 |
---|
903 | area = polygon_area(bounding_poly) |
---|
904 | |
---|
905 | for poly, resolution in interior_regions: |
---|
906 | this_area = polygon_area(poly) |
---|
907 | this_triangles = this_area/resolution |
---|
908 | no_triangles += this_triangles |
---|
909 | area -= this_area |
---|
910 | |
---|
911 | print 'Interior ', |
---|
912 | print ('%.0f' %resolution).ljust(25), |
---|
913 | print ('%.2f' %(this_area/1000000)).ljust(19), |
---|
914 | print '%d' %(this_triangles) |
---|
915 | |
---|
916 | bound_triangles = area/remainder_res |
---|
917 | no_triangles += bound_triangles |
---|
918 | |
---|
919 | print 'Bounding ', |
---|
920 | print ('%.0f' %remainder_res).ljust(25), |
---|
921 | print ('%.2f' %(area/1000000)).ljust(19), |
---|
922 | print '%d' %(bound_triangles) |
---|
923 | |
---|
924 | total_number_of_triangles = no_triangles/0.7 |
---|
925 | |
---|
926 | print 'Estimated total number of triangles: %d' %total_number_of_triangles |
---|
927 | print 'Note: This is generally about 20% less than the final amount' |
---|
928 | |
---|
929 | return int(total_number_of_triangles) |
---|
930 | |
---|
931 | |
---|
932 | def decimate_polygon(polygon, factor=10): |
---|
933 | """Reduce number of points in polygon by the specified |
---|
934 | factor (default=10, hence the name of the function) such that |
---|
935 | the extrema in both axes are preserved. |
---|
936 | |
---|
937 | Return reduced polygon |
---|
938 | """ |
---|
939 | |
---|
940 | # FIXME(Ole): This doesn't work at present, |
---|
941 | # but it isn't critical either |
---|
942 | |
---|
943 | # Find outer extent of polygon |
---|
944 | num_polygon = ensure_numeric(polygon) |
---|
945 | max_x = max(num_polygon[:,0]) |
---|
946 | max_y = max(num_polygon[:,1]) |
---|
947 | min_x = min(num_polygon[:,0]) |
---|
948 | min_y = min(num_polygon[:,1]) |
---|
949 | |
---|
950 | # Keep only some points making sure extrema are kept |
---|
951 | reduced_polygon = [] |
---|
952 | for i, point in enumerate(polygon): |
---|
953 | x = point[0] |
---|
954 | y = point[1] |
---|
955 | if x in [min_x, max_x] and y in [min_y, max_y]: |
---|
956 | # Keep |
---|
957 | reduced_polygon.append(point) |
---|
958 | else: |
---|
959 | if len(reduced_polygon)*factor < i: |
---|
960 | reduced_polygon.append(point) |
---|
961 | |
---|
962 | return reduced_polygon |
---|
963 | |
---|
964 | ############################################## |
---|
965 | #Initialise module |
---|
966 | |
---|
967 | from anuga.utilities.compile import can_use_C_extension |
---|
968 | if can_use_C_extension('polygon_ext.c'): |
---|
969 | # Underlying C implementations can be accessed |
---|
970 | from polygon_ext import _point_on_line |
---|
971 | from polygon_ext import _separate_points_by_polygon |
---|
972 | #from polygon_ext import _intersection |
---|
973 | |
---|
974 | else: |
---|
975 | msg = 'C implementations could not be accessed by %s.\n ' %__file__ |
---|
976 | msg += 'Make sure compile_all.py has been run as described in ' |
---|
977 | msg += 'the ANUGA installation guide.' |
---|
978 | raise Exception, msg |
---|
979 | |
---|
980 | |
---|
981 | if __name__ == "__main__": |
---|
982 | pass |
---|