[485] | 1 | """Proof of concept sparse matrix code |
---|
| 2 | """ |
---|
| 3 | |
---|
| 4 | |
---|
| 5 | class Sparse: |
---|
| 6 | |
---|
| 7 | def __init__(self, *args): |
---|
| 8 | """Create sparse matrix. |
---|
| 9 | There are two construction forms |
---|
| 10 | Usage: |
---|
| 11 | |
---|
| 12 | Sparse(A) #Creates sparse matrix from dense matrix A |
---|
| 13 | Sparse(M, N) #Creates empty MxN sparse matrix |
---|
| 14 | """ |
---|
| 15 | |
---|
[586] | 16 | self.Data = {} |
---|
[485] | 17 | |
---|
| 18 | if len(args) == 1: |
---|
| 19 | from Numeric import array |
---|
| 20 | try: |
---|
| 21 | A = array(args[0]) |
---|
| 22 | except: |
---|
| 23 | raise 'Input must be convertable to a Numeric array' |
---|
| 24 | |
---|
| 25 | assert len(A.shape) == 2, 'Input must be a 2d matrix' |
---|
| 26 | |
---|
| 27 | self.M, self.N = A.shape |
---|
| 28 | for i in range(self.M): |
---|
| 29 | for j in range(self.N): |
---|
| 30 | if A[i, j] != 0.0: |
---|
[586] | 31 | self.Data[i, j] = A[i, j] |
---|
[485] | 32 | |
---|
| 33 | |
---|
| 34 | elif len(args) == 2: |
---|
| 35 | self.M = args[0] |
---|
| 36 | self.N = args[1] |
---|
| 37 | else: |
---|
| 38 | raise 'Invalid construction' |
---|
| 39 | |
---|
| 40 | self.shape = (self.M, self.N) |
---|
| 41 | |
---|
| 42 | |
---|
| 43 | def __repr__(self): |
---|
[586] | 44 | return '%d X %d sparse matrix:\n' %(self.M, self.N) + `self.Data` |
---|
[485] | 45 | |
---|
| 46 | def __len__(self): |
---|
| 47 | """Return number of nonzeros of A |
---|
| 48 | """ |
---|
[586] | 49 | return len(self.Data) |
---|
[485] | 50 | |
---|
| 51 | def nonzeros(self): |
---|
| 52 | """Return number of nonzeros of A |
---|
| 53 | """ |
---|
| 54 | return len(self) |
---|
| 55 | |
---|
| 56 | def __setitem__(self, key, x): |
---|
| 57 | |
---|
| 58 | i,j = key |
---|
| 59 | assert 0 <= i < self.M |
---|
| 60 | assert 0 <= j < self.N |
---|
| 61 | |
---|
| 62 | if x != 0: |
---|
[586] | 63 | self.Data[key] = float(x) |
---|
[485] | 64 | else: |
---|
[586] | 65 | if self.Data.has_key( key ): |
---|
| 66 | del self.Data[key] |
---|
[485] | 67 | |
---|
| 68 | def __getitem__(self, key): |
---|
| 69 | |
---|
| 70 | i,j = key |
---|
| 71 | assert 0 <= i < self.M |
---|
| 72 | assert 0 <= j < self.N |
---|
| 73 | |
---|
[586] | 74 | if self.Data.has_key( key ): |
---|
| 75 | return self.Data[ key ] |
---|
[485] | 76 | else: |
---|
| 77 | return 0.0 |
---|
| 78 | |
---|
| 79 | def copy(self): |
---|
| 80 | #FIXME: Use the copy module instead |
---|
| 81 | new = Sparse(self.M,self.N) |
---|
| 82 | |
---|
[586] | 83 | for key in self.Data.keys(): |
---|
[485] | 84 | i, j = key |
---|
| 85 | |
---|
[586] | 86 | new[i,j] = self.Data[i,j] |
---|
[485] | 87 | |
---|
| 88 | return new |
---|
| 89 | |
---|
| 90 | |
---|
| 91 | def todense(self): |
---|
| 92 | from Numeric import zeros, Float |
---|
| 93 | |
---|
| 94 | D = zeros( (self.M, self.N), Float) |
---|
| 95 | |
---|
| 96 | for i in range(self.M): |
---|
| 97 | for j in range(self.N): |
---|
[586] | 98 | if self.Data.has_key( (i,j) ): |
---|
| 99 | D[i, j] = self.Data[ (i,j) ] |
---|
[485] | 100 | return D |
---|
| 101 | |
---|
| 102 | |
---|
[586] | 103 | |
---|
[485] | 104 | def __mul__(self, other): |
---|
| 105 | """Multiply this matrix onto 'other' which can either be |
---|
| 106 | a Numeric vector, a Numeric matrix or another sparse matrix. |
---|
| 107 | """ |
---|
| 108 | |
---|
| 109 | from Numeric import array, zeros, Float |
---|
| 110 | |
---|
| 111 | try: |
---|
| 112 | B = array(other) |
---|
| 113 | except: |
---|
[1632] | 114 | msg = 'FIXME: Only Numeric types implemented so far' |
---|
| 115 | raise msg |
---|
| 116 | |
---|
[485] | 117 | |
---|
| 118 | #Assume numeric types from now on |
---|
| 119 | |
---|
| 120 | if len(B.shape) == 0: |
---|
| 121 | #Scalar - use __rmul__ method |
---|
| 122 | R = B*self |
---|
| 123 | |
---|
| 124 | elif len(B.shape) == 1: |
---|
| 125 | #Vector |
---|
| 126 | assert B.shape[0] == self.N, 'Mismatching dimensions' |
---|
| 127 | |
---|
| 128 | R = zeros(self.M, Float) #Result |
---|
| 129 | |
---|
| 130 | #Multiply nonzero elements |
---|
[586] | 131 | for key in self.Data.keys(): |
---|
[485] | 132 | i, j = key |
---|
| 133 | |
---|
[586] | 134 | R[i] += self.Data[key]*B[j] |
---|
[485] | 135 | elif len(B.shape) == 2: |
---|
| 136 | |
---|
| 137 | |
---|
| 138 | R = zeros((self.M, B.shape[1]), Float) #Result matrix |
---|
| 139 | |
---|
| 140 | #Multiply nonzero elements |
---|
| 141 | for col in range(R.shape[1]): |
---|
| 142 | #For each column |
---|
| 143 | |
---|
[586] | 144 | for key in self.Data.keys(): |
---|
[485] | 145 | i, j = key |
---|
| 146 | |
---|
[586] | 147 | R[i, col] += self.Data[key]*B[j, col] |
---|
[485] | 148 | |
---|
| 149 | |
---|
| 150 | else: |
---|
| 151 | raise ValueError, 'Dimension too high: d=%d' %len(B.shape) |
---|
| 152 | |
---|
| 153 | return R |
---|
| 154 | |
---|
| 155 | |
---|
| 156 | def __add__(self, other): |
---|
| 157 | """Add this matrix onto 'other' |
---|
| 158 | """ |
---|
| 159 | |
---|
| 160 | from Numeric import array, zeros, Float |
---|
| 161 | |
---|
| 162 | new = other.copy() |
---|
[586] | 163 | for key in self.Data.keys(): |
---|
[485] | 164 | i, j = key |
---|
| 165 | |
---|
[586] | 166 | new[i,j] += self.Data[key] |
---|
[485] | 167 | |
---|
| 168 | return new |
---|
| 169 | |
---|
| 170 | |
---|
| 171 | def __rmul__(self, other): |
---|
| 172 | """Right multiply this matrix with scalar |
---|
| 173 | """ |
---|
| 174 | |
---|
| 175 | from Numeric import array, zeros, Float |
---|
| 176 | |
---|
| 177 | try: |
---|
| 178 | other = float(other) |
---|
| 179 | except: |
---|
| 180 | msg = 'Sparse matrix can only "right-multiply" onto a scalar' |
---|
| 181 | raise TypeError, msg |
---|
| 182 | else: |
---|
| 183 | new = self.copy() |
---|
| 184 | #Multiply nonzero elements |
---|
[586] | 185 | for key in new.Data.keys(): |
---|
[485] | 186 | i, j = key |
---|
| 187 | |
---|
[586] | 188 | new.Data[key] = other*new.Data[key] |
---|
[485] | 189 | |
---|
| 190 | return new |
---|
| 191 | |
---|
| 192 | |
---|
| 193 | def trans_mult(self, other): |
---|
| 194 | """Multiply the transpose of matrix with 'other' which can be |
---|
| 195 | a Numeric vector. |
---|
| 196 | """ |
---|
| 197 | |
---|
| 198 | from Numeric import array, zeros, Float |
---|
| 199 | |
---|
| 200 | try: |
---|
| 201 | B = array(other) |
---|
| 202 | except: |
---|
| 203 | print 'FIXME: Only Numeric types implemented so far' |
---|
| 204 | |
---|
| 205 | |
---|
| 206 | #Assume numeric types from now on |
---|
| 207 | if len(B.shape) == 1: |
---|
| 208 | #Vector |
---|
| 209 | |
---|
| 210 | assert B.shape[0] == self.M, 'Mismatching dimensions' |
---|
| 211 | |
---|
| 212 | R = zeros((self.N,), Float) #Result |
---|
| 213 | |
---|
| 214 | #Multiply nonzero elements |
---|
[586] | 215 | for key in self.Data.keys(): |
---|
[485] | 216 | i, j = key |
---|
| 217 | |
---|
[586] | 218 | R[j] += self.Data[key]*B[i] |
---|
[485] | 219 | |
---|
| 220 | else: |
---|
| 221 | raise 'Can only multiply with 1d array' |
---|
| 222 | |
---|
| 223 | return R |
---|
| 224 | |
---|
[586] | 225 | class Sparse_CSR: |
---|
[485] | 226 | |
---|
[586] | 227 | def __init__(self, A): |
---|
| 228 | """Create sparse matrix in csr format. |
---|
| 229 | |
---|
| 230 | Sparse_CSR(A) #creates csr sparse matrix from sparse matrix |
---|
[1849] | 231 | Matrices are not built using this format, since it's painful to |
---|
| 232 | add values to an existing sparse_CSR instance (hence there are no |
---|
| 233 | objects to do this.) |
---|
[1847] | 234 | |
---|
[1849] | 235 | Rather, build a matrix, and convert it to this format for a speed |
---|
| 236 | increase. |
---|
| 237 | |
---|
[1847] | 238 | data - a 1D array of the data |
---|
| 239 | Colind - The ith item in this 1D array is the column index of the |
---|
| 240 | ith data in the data array |
---|
[1849] | 241 | rowptr - 1D array, with the index representing the row of the matrix. |
---|
| 242 | The item in the row represents the index into colind of the |
---|
| 243 | first data value of this row. |
---|
| 244 | Regard it as a pointer into the colind array, for the ith row. |
---|
| 245 | |
---|
| 246 | |
---|
[586] | 247 | """ |
---|
| 248 | |
---|
| 249 | from Numeric import array, Float, Int |
---|
| 250 | |
---|
| 251 | if isinstance(A,Sparse): |
---|
| 252 | |
---|
| 253 | from Numeric import zeros |
---|
| 254 | keys = A.Data.keys() |
---|
| 255 | keys.sort() |
---|
| 256 | nnz = len(keys) |
---|
| 257 | data = zeros ( (nnz,), Float) |
---|
| 258 | colind = zeros ( (nnz,), Int) |
---|
| 259 | row_ptr = zeros ( (A.M+1,), Int) |
---|
| 260 | current_row = -1 |
---|
| 261 | k = 0 |
---|
| 262 | for key in keys: |
---|
| 263 | ikey0 = int(key[0]) |
---|
| 264 | ikey1 = int(key[1]) |
---|
| 265 | if ikey0 != current_row: |
---|
| 266 | current_row = ikey0 |
---|
| 267 | row_ptr[ikey0] = k |
---|
| 268 | data[k] = A.Data[key] |
---|
| 269 | colind[k] = ikey1 |
---|
| 270 | k += 1 |
---|
| 271 | for row in range(current_row+1, A.M+1): |
---|
| 272 | row_ptr[row] = nnz |
---|
| 273 | #row_ptr[-1] = nnz |
---|
| 274 | |
---|
| 275 | self.data = data |
---|
| 276 | self.colind = colind |
---|
| 277 | self.row_ptr = row_ptr |
---|
| 278 | self.M = A.M |
---|
| 279 | self.N = A.N |
---|
| 280 | else: |
---|
| 281 | raise ValueError, "Sparse_CSR(A) expects A == Sparse Matrix" |
---|
| 282 | |
---|
| 283 | def __repr__(self): |
---|
| 284 | return '%d X %d sparse matrix:\n' %(self.M, self.N) + `self.data` |
---|
| 285 | |
---|
| 286 | def __len__(self): |
---|
| 287 | """Return number of nonzeros of A |
---|
| 288 | """ |
---|
| 289 | return self.row_ptr[-1] |
---|
| 290 | |
---|
| 291 | def nonzeros(self): |
---|
| 292 | """Return number of nonzeros of A |
---|
| 293 | """ |
---|
| 294 | return len(self) |
---|
| 295 | |
---|
| 296 | def todense(self): |
---|
| 297 | from Numeric import zeros, Float |
---|
| 298 | |
---|
| 299 | D = zeros( (self.M, self.N), Float) |
---|
| 300 | |
---|
| 301 | for i in range(self.M): |
---|
| 302 | for ckey in range(self.row_ptr[i],self.row_ptr[i+1]): |
---|
| 303 | j = self.colind[ckey] |
---|
| 304 | D[i, j] = self.data[ckey] |
---|
| 305 | return D |
---|
| 306 | |
---|
| 307 | def __mul__(self, other): |
---|
| 308 | """Multiply this matrix onto 'other' which can either be |
---|
| 309 | a Numeric vector, a Numeric matrix or another sparse matrix. |
---|
| 310 | """ |
---|
| 311 | |
---|
| 312 | from Numeric import array, zeros, Float |
---|
| 313 | |
---|
| 314 | try: |
---|
| 315 | B = array(other) |
---|
| 316 | except: |
---|
| 317 | print 'FIXME: Only Numeric types implemented so far' |
---|
| 318 | |
---|
[594] | 319 | return csr_mv(self,B) |
---|
[587] | 320 | |
---|
[586] | 321 | |
---|
| 322 | |
---|
[594] | 323 | def csr_mv(self, B): |
---|
[605] | 324 | """Python version of sparse (CSR) matrix multiplication |
---|
| 325 | """ |
---|
[586] | 326 | |
---|
[594] | 327 | from Numeric import zeros, Float |
---|
[586] | 328 | |
---|
[587] | 329 | |
---|
[594] | 330 | #Assume numeric types from now on |
---|
| 331 | |
---|
| 332 | if len(B.shape) == 0: |
---|
| 333 | #Scalar - use __rmul__ method |
---|
| 334 | R = B*self |
---|
| 335 | |
---|
| 336 | elif len(B.shape) == 1: |
---|
[587] | 337 | #Vector |
---|
| 338 | assert B.shape[0] == self.N, 'Mismatching dimensions' |
---|
[594] | 339 | |
---|
[587] | 340 | R = zeros(self.M, Float) #Result |
---|
[594] | 341 | |
---|
[587] | 342 | #Multiply nonzero elements |
---|
| 343 | for i in range(self.M): |
---|
| 344 | for ckey in range(self.row_ptr[i],self.row_ptr[i+1]): |
---|
| 345 | j = self.colind[ckey] |
---|
| 346 | R[i] += self.data[ckey]*B[j] |
---|
[594] | 347 | |
---|
| 348 | elif len(B.shape) == 2: |
---|
| 349 | |
---|
| 350 | R = zeros((self.M, B.shape[1]), Float) #Result matrix |
---|
| 351 | |
---|
| 352 | #Multiply nonzero elements |
---|
| 353 | |
---|
| 354 | for col in range(R.shape[1]): |
---|
| 355 | #For each column |
---|
| 356 | for i in range(self.M): |
---|
| 357 | for ckey in range(self.row_ptr[i],self.row_ptr[i+1]): |
---|
| 358 | j = self.colind[ckey] |
---|
| 359 | R[i, col] += self.data[ckey]*B[j,col] |
---|
| 360 | |
---|
[587] | 361 | else: |
---|
| 362 | raise ValueError, 'Dimension too high: d=%d' %len(B.shape) |
---|
[594] | 363 | |
---|
[587] | 364 | return R |
---|
| 365 | |
---|
| 366 | |
---|
[605] | 367 | |
---|
| 368 | #Setup for C extensions |
---|
[3514] | 369 | from anuga.utilities import compile |
---|
[587] | 370 | if compile.can_use_C_extension('sparse_ext.c'): |
---|
[605] | 371 | #Replace python version with c implementation |
---|
| 372 | from sparse_ext import csr_mv |
---|
[587] | 373 | |
---|
[485] | 374 | if __name__ == '__main__': |
---|
| 375 | |
---|
| 376 | from Numeric import allclose, array, Float |
---|
| 377 | |
---|
| 378 | A = Sparse(3,3) |
---|
| 379 | |
---|
| 380 | A[1,1] = 4 |
---|
| 381 | |
---|
| 382 | |
---|
| 383 | print A |
---|
| 384 | print A.todense() |
---|
| 385 | |
---|
| 386 | A[1,1] = 0 |
---|
| 387 | |
---|
| 388 | print A |
---|
| 389 | print A.todense() |
---|
| 390 | |
---|
| 391 | A[1,2] = 0 |
---|
| 392 | |
---|
| 393 | |
---|
| 394 | A[0,0] = 3 |
---|
| 395 | A[1,1] = 2 |
---|
| 396 | A[1,2] = 2 |
---|
| 397 | A[2,2] = 1 |
---|
| 398 | |
---|
| 399 | print A |
---|
| 400 | print A.todense() |
---|
| 401 | |
---|
| 402 | |
---|
| 403 | #Right hand side vector |
---|
| 404 | v = [2,3,4] |
---|
| 405 | |
---|
| 406 | u = A*v |
---|
| 407 | print u |
---|
| 408 | assert allclose(u, [6,14,4]) |
---|
| 409 | |
---|
| 410 | u = A.trans_mult(v) |
---|
| 411 | print u |
---|
| 412 | assert allclose(u, [6,6,10]) |
---|
| 413 | |
---|
| 414 | #Right hand side column |
---|
| 415 | v = array([[2,4],[3,4],[4,4]]) |
---|
| 416 | |
---|
| 417 | u = A*v[:,0] |
---|
| 418 | assert allclose(u, [6,14,4]) |
---|
| 419 | |
---|
| 420 | #u = A*v[:,1] |
---|
| 421 | #print u |
---|
| 422 | print A.shape |
---|
| 423 | |
---|
| 424 | B = 3*A |
---|
| 425 | print B.todense() |
---|
| 426 | |
---|
| 427 | B[1,0] = 2 |
---|
| 428 | |
---|
| 429 | C = A+B |
---|
| 430 | |
---|
| 431 | print C.todense() |
---|
[594] | 432 | |
---|
| 433 | C = Sparse_CSR(C) |
---|
| 434 | |
---|
| 435 | y = C*[6,14,4] |
---|
| 436 | |
---|
| 437 | print y |
---|
| 438 | |
---|
| 439 | y2 = C*[[6,4],[4,28],[4,8]] |
---|
| 440 | |
---|
| 441 | print y2 |
---|