1 | #!/usr/bin/env python |
---|
2 | |
---|
3 | import exceptions |
---|
4 | class TestError(exceptions.Exception): pass |
---|
5 | import unittest |
---|
6 | |
---|
7 | |
---|
8 | from Numeric import dot, allclose, array, transpose, arange, ones, Float |
---|
9 | from utilities.cg_solve import * |
---|
10 | from utilities.cg_solve import _conjugate_gradient |
---|
11 | from utilities.sparse import Sparse, Sparse_CSR |
---|
12 | |
---|
13 | |
---|
14 | class Test_CG_Solve(unittest.TestCase): |
---|
15 | |
---|
16 | def test_sparse_solve(self): |
---|
17 | """Solve Small Sparse Matrix""" |
---|
18 | |
---|
19 | A = [[2.0, -1.0, 0.0, 0.0 ], |
---|
20 | [-1.0, 2.0, -1.0, 0.0], |
---|
21 | [0.0, -1.0, 2.0, -1.0], |
---|
22 | [0.0,0.0, -1.0, 2.0]] |
---|
23 | |
---|
24 | A = Sparse(A) |
---|
25 | |
---|
26 | xe = [0.0, 1.0, 2.0, 3.0] |
---|
27 | b = A*xe |
---|
28 | x = [0.0, 0.0, 0.0, 0.0] |
---|
29 | |
---|
30 | x = conjugate_gradient(A,b,x,iprint=0) |
---|
31 | |
---|
32 | assert allclose(x,xe) |
---|
33 | |
---|
34 | def test_max_iter(self): |
---|
35 | """Test max iteration Small Sparse Matrix""" |
---|
36 | |
---|
37 | A = [[2.0, -1.0, 0.0, 0.0 ], |
---|
38 | [-1.0, 2.0, -1.0, 0.0], |
---|
39 | [0.0, -1.0, 2.0, -1.0], |
---|
40 | [0.0,0.0, -1.0, 2.0]] |
---|
41 | |
---|
42 | A = Sparse(A) |
---|
43 | |
---|
44 | xe = [0.0, 1.0, 2.0, 3.0] |
---|
45 | b = A*xe |
---|
46 | x = [0.0, 0.0, 0.0, 0.0] |
---|
47 | |
---|
48 | try: |
---|
49 | x = conjugate_gradient(A,b,x,iprint=0,imax=2) |
---|
50 | except ConvergenceError: |
---|
51 | pass |
---|
52 | else: |
---|
53 | msg = 'Should have raised exception' |
---|
54 | raise TestError, msg |
---|
55 | |
---|
56 | |
---|
57 | def test_solve_large(self): |
---|
58 | """Standard 1d laplacian """ |
---|
59 | |
---|
60 | n = 50 |
---|
61 | A = Sparse(n,n) |
---|
62 | |
---|
63 | for i in arange(0,n): |
---|
64 | A[i,i] = 1.0 |
---|
65 | if i > 0 : |
---|
66 | A[i,i-1] = -0.5 |
---|
67 | if i < n-1 : |
---|
68 | A[i,i+1] = -0.5 |
---|
69 | |
---|
70 | xe = ones( (n,), Float) |
---|
71 | |
---|
72 | b = A*xe |
---|
73 | x = conjugate_gradient(A,b,b,tol=1.0e-5,iprint=1) |
---|
74 | |
---|
75 | assert allclose(x,xe) |
---|
76 | |
---|
77 | def test_solve_large_2d(self): |
---|
78 | """Standard 2d laplacian""" |
---|
79 | |
---|
80 | n = 20 |
---|
81 | m = 10 |
---|
82 | |
---|
83 | A = Sparse(m*n, m*n) |
---|
84 | |
---|
85 | for i in arange(0,n): |
---|
86 | for j in arange(0,m): |
---|
87 | I = j+m*i |
---|
88 | A[I,I] = 4.0 |
---|
89 | if i > 0 : |
---|
90 | A[I,I-m] = -1.0 |
---|
91 | if i < n-1 : |
---|
92 | A[I,I+m] = -1.0 |
---|
93 | if j > 0 : |
---|
94 | A[I,I-1] = -1.0 |
---|
95 | if j < m-1 : |
---|
96 | A[I,I+1] = -1.0 |
---|
97 | |
---|
98 | xe = ones( (n*m,), Float) |
---|
99 | |
---|
100 | b = A*xe |
---|
101 | x = conjugate_gradient(A,b,b,iprint=0) |
---|
102 | |
---|
103 | assert allclose(x,xe) |
---|
104 | |
---|
105 | def test_solve_large_2d_csr_matrix(self): |
---|
106 | """Standard 2d laplacian with csr format |
---|
107 | """ |
---|
108 | |
---|
109 | n = 100 |
---|
110 | m = 100 |
---|
111 | |
---|
112 | A = Sparse(m*n, m*n) |
---|
113 | |
---|
114 | for i in arange(0,n): |
---|
115 | for j in arange(0,m): |
---|
116 | I = j+m*i |
---|
117 | A[I,I] = 4.0 |
---|
118 | if i > 0 : |
---|
119 | A[I,I-m] = -1.0 |
---|
120 | if i < n-1 : |
---|
121 | A[I,I+m] = -1.0 |
---|
122 | if j > 0 : |
---|
123 | A[I,I-1] = -1.0 |
---|
124 | if j < m-1 : |
---|
125 | A[I,I+1] = -1.0 |
---|
126 | |
---|
127 | xe = ones( (n*m,), Float) |
---|
128 | |
---|
129 | # Convert to csr format |
---|
130 | #print 'start covert' |
---|
131 | A = Sparse_CSR(A) |
---|
132 | #print 'finish covert' |
---|
133 | b = A*xe |
---|
134 | x = conjugate_gradient(A,b,b,iprint=20) |
---|
135 | |
---|
136 | assert allclose(x,xe) |
---|
137 | |
---|
138 | |
---|
139 | def test_solve_large_2d_with_default_guess(self): |
---|
140 | """Standard 2d laplacian using default first guess""" |
---|
141 | |
---|
142 | n = 20 |
---|
143 | m = 10 |
---|
144 | |
---|
145 | A = Sparse(m*n, m*n) |
---|
146 | |
---|
147 | for i in arange(0,n): |
---|
148 | for j in arange(0,m): |
---|
149 | I = j+m*i |
---|
150 | A[I,I] = 4.0 |
---|
151 | if i > 0 : |
---|
152 | A[I,I-m] = -1.0 |
---|
153 | if i < n-1 : |
---|
154 | A[I,I+m] = -1.0 |
---|
155 | if j > 0 : |
---|
156 | A[I,I-1] = -1.0 |
---|
157 | if j < m-1 : |
---|
158 | A[I,I+1] = -1.0 |
---|
159 | |
---|
160 | xe = ones( (n*m,), Float) |
---|
161 | |
---|
162 | b = A*xe |
---|
163 | x = conjugate_gradient(A,b) |
---|
164 | |
---|
165 | assert allclose(x,xe) |
---|
166 | |
---|
167 | |
---|
168 | def test_vector_shape_error(self): |
---|
169 | """Raise VectorShapeError""" |
---|
170 | |
---|
171 | A = [[2.0, -1.0, 0.0, 0.0 ], |
---|
172 | [-1.0, 2.0, -1.0, 0.0], |
---|
173 | [0.0, -1.0, 2.0, -1.0], |
---|
174 | [0.0,0.0, -1.0, 2.0]] |
---|
175 | |
---|
176 | A = Sparse(A) |
---|
177 | |
---|
178 | xe = [[0.0,2.0], [1.0,3.0], [2.0,4.0], [3.0,2.0]] |
---|
179 | |
---|
180 | try: |
---|
181 | x = _conjugate_gradient(A,xe,xe,iprint=0) |
---|
182 | except VectorShapeError: |
---|
183 | pass |
---|
184 | else: |
---|
185 | msg = 'Should have raised exception' |
---|
186 | raise TestError, msg |
---|
187 | |
---|
188 | |
---|
189 | def test_sparse_solve_matrix(self): |
---|
190 | """Solve Small Sparse Matrix""" |
---|
191 | |
---|
192 | A = [[2.0, -1.0, 0.0, 0.0 ], |
---|
193 | [-1.0, 2.0, -1.0, 0.0], |
---|
194 | [0.0, -1.0, 2.0, -1.0], |
---|
195 | [0.0,0.0, -1.0, 2.0]] |
---|
196 | |
---|
197 | A = Sparse(A) |
---|
198 | |
---|
199 | xe = [[0.0, 0.0],[1.0, 1.0],[2.0 ,2.0],[3.0, 3.0]] |
---|
200 | b = A*xe |
---|
201 | x = [[0.0, 0.0],[0.0, 0.0],[0.0 ,0.0],[0.0, 0.0]] |
---|
202 | x = conjugate_gradient(A,b,x,iprint=0) |
---|
203 | |
---|
204 | assert allclose(x,xe) |
---|
205 | |
---|
206 | #------------------------------------------------------------- |
---|
207 | if __name__ == "__main__": |
---|
208 | suite = unittest.makeSuite(Test_CG_Solve,'test') |
---|
209 | #runner = unittest.TextTestRunner(verbosity=2) |
---|
210 | runner = unittest.TextTestRunner(verbosity=1) |
---|
211 | runner.run(suite) |
---|
212 | |
---|