#!/usr/bin/env python import unittest import numpy as num from numpy.random import uniform, seed from math import sqrt, pi from anuga.config import epsilon from numerical_tools import * def test_function(x, y): return x+y class Test_Numerical_Tools(unittest.TestCase): def setUp(self): pass def tearDown(self): pass def test_angle1(self): """Test angles between one vector and the x-axis """ assert num.allclose(angle([1.0, 0.0])/pi*180, 0.0) assert num.allclose(angle([1.0, 1.0])/pi*180, 45.0) assert num.allclose(angle([0.0, 1.0])/pi*180, 90.0) assert num.allclose(angle([-1.0, 1.0])/pi*180, 135.0) assert num.allclose(angle([-1.0, 0.0])/pi*180, 180.0) assert num.allclose(angle([-1.0, -1.0])/pi*180, 225.0) assert num.allclose(angle([0.0, -1.0])/pi*180, 270.0) assert num.allclose(angle([1.0, -1.0])/pi*180, 315.0) def test_angle2(self): """Test angles between two arbitrary vectors """ assert num.allclose(angle([1.0, 0.0], [1.0, 1.0])/pi*180, 315.0) assert num.allclose(angle([1.0, 1.0], [1.0, 0.0])/pi*180, 45.0) assert num.allclose(angle([-1.0, -1.0], [1.0, 1.0])/pi*180, 180) assert num.allclose(angle([-1.0, -1.0], [-1.0, 1.0])/pi*180, 90.0) assert num.allclose(angle([-1.0, 0.0], [1.0, 1.0])/pi*180, 135.0) assert num.allclose(angle([0.0, -1.0], [1.0, 1.0])/pi*180, 225.0) assert num.allclose(angle([1.0, -1.0], [1.0, 1.0])/pi*180, 270.0) assert num.allclose(angle([1.0, 0.0], [0.0, 1.0])/pi*180, 270.0) #From test_get_boundary_polygon_V v_prev = [-0.5, -0.5] vc = [ 0.0, -0.5] assert num.allclose(angle(vc, v_prev)/pi*180, 45.0) vc = [ 0.5, 0.0] assert num.allclose(angle(vc, v_prev)/pi*180, 135.0) vc = [ -0.5, 0.5] assert num.allclose(angle(vc, v_prev)/pi*180, 270.0) def test_anglediff(self): assert num.allclose(anglediff([0.0, 1.], [1.0, 1.0])/pi*180, 45.0) def test_ensure_numeric(self): A = [1,2,3,4] B = ensure_numeric(A) assert isinstance(B, num.ndarray) assert B.dtype.char == 'l' assert B[0] == 1 and B[1] == 2 and B[2] == 3 and B[3] == 4 A = [1,2,3.14,4] B = ensure_numeric(A) assert isinstance(B, num.ndarray) assert B.dtype.char == 'd' assert B[0] == 1 and B[1] == 2 and B[2] == 3.14 and B[3] == 4 A = [1,2,3,4] B = ensure_numeric(A, num.float) assert isinstance(B, num.ndarray) assert B.dtype.char == 'd' assert B[0] == 1.0 and B[1] == 2.0 and B[2] == 3.0 and B[3] == 4.0 A = [1,2,3,4] B = ensure_numeric(A, num.float) assert isinstance(B, num.ndarray) assert B.dtype.char == 'd' assert B[0] == 1.0 and B[1] == 2.0 and B[2] == 3.0 and B[3] == 4.0 A = num.array([1,2,3,4]) B = ensure_numeric(A) assert isinstance(B, num.ndarray) assert B.dtype.char == 'l' assert num.alltrue(A == B) assert A is B #Same object # check default num.array type, which is supposed to be num.int32 A = num.array((1,2,3,4)) assert isinstance(A, num.ndarray) msg = "Expected dtype.char='l', got '%s'" % A.dtype.char assert A.dtype.char == 'l', msg A = num.array([1,2,3,4]) B = ensure_numeric(A, num.float) assert isinstance(B, num.ndarray) assert A.dtype.char == 'l' assert B.dtype.char == 'd' assert num.alltrue(A == B) assert A is not B # Not the same object # Check scalars A = 1 B = ensure_numeric(A, num.float) assert num.alltrue(A == B) B = ensure_numeric(A, num.int) assert num.alltrue(A == B) # # try to simulate getting (x,0) shape # data_points = [[ 413634. ],] # array_data_points = ensure_numeric(data_points) # if not (0,) == array_data_points.shape: # assert len(array_data_points.shape) == 2 # assert array_data_points.shape[1] == 2 # strings input should raise exception self.failUnlessRaises(Exception, ensure_numeric(['abc',])) self.failUnlessRaises(Exception, ensure_numeric(('abc',))) self.failUnlessRaises(Exception, ensure_numeric(num.array(('abc',)))) def NO_test_ensure_numeric_char(self): '''numpy can't handle this''' # Error situation B = ensure_numeric('hello', num.int) assert num.allclose(B, [104, 101, 108, 108, 111]) def test_gradient(self): x0 = 0.0; y0 = 0.0; z0 = 0.0 x1 = 1.0; y1 = 0.0; z1 = -1.0 x2 = 0.0; y2 = 1.0; z2 = 0.0 zx, zy = gradient(x0, y0, x1, y1, x2, y2, z0, z1, z2) assert zx == -1.0 assert zy == 0.0 def test_gradient_more(self): x0 = 2.0/3; y0 = 2.0/3 x1= 8.0/3; y1 = 2.0/3 x2 = 2.0/3; y2 = 8.0/3 q0 = 2.0+2.0/3 q1 = 8.0+2.0/3 q2 = 2.0+8.0/3 #Gradient of fitted pwl surface a, b = gradient(x0, y0, x1, y1, x2, y2, q0, q1, q2) assert abs(a - 3.0) < epsilon assert abs(b - 1.0) < epsilon def test_gradient2(self): """Test two-point gradient """ x0 = 5.0; y0 = 5.0; z0 = 10.0 x1 = 8.0; y1 = 2.0; z1 = 1.0 x2 = 8.0; y2 = 8.0; z2 = 10.0 #Reference zx, zy = gradient(x0, y0, x1, y1, x2, y2, z0, z1, z2) a, b = gradient2(x0, y0, x1, y1, z0, z1) assert zx == a assert zy == b z2_computed = z0 + a*(x2-x0) + b*(y2-y0) assert z2_computed == z2 def test_gradient2_more(self): """Test two-point gradient more """ x0 = 2.0; y0 = 2.0 x1 = 8.0; y1 = 3.0 x2 = 1.0; y2 = 8.0 q0 = 2.0 q1 = 8.0 q2 = q0 #Gradient of fitted pwl surface a_ref, b_ref = gradient(x0, y0, x1, y1, x2, y2, q0, q1, q2) a, b = gradient2(x0, y0, x1, y1, q0, q1) assert a == a_ref assert b == b_ref def test_machine_precision(self): """test_machine_precision(self): Test the function that calculates epsilon. As this varies on different machines, this is only an indication. """ eps = get_machine_precision() assert eps < 1.0e-12, 'Machine precision should be better than 1.0e-12' assert eps > 0.0 assert 1.0+eps/2 == 1.0 def test_histogram(self): """Test histogram with different bin boundaries """ a = [1,1,1,1,1,2,1,3,2,3,1,2,3,4,1] #There are four elements greater than or equal to 3 bins = [3] assert num.allclose(histogram(a, bins), [4]) bins = [ min(a) ] assert num.allclose(histogram(a, bins), [len(a)]) bins = [ max(a)+0.00001 ] assert num.allclose(histogram(a, bins), [0]) bins = [1,2,3,4] assert num.allclose(histogram(a, bins), [8,3,3,1]) bins = [1.1,2,3.1,4] #print histogram(a, bins) assert num.allclose(histogram(a, bins), [0,6,0,1]) bins = [0,1.5,2,3] assert num.allclose(histogram(a, bins), [8,0,3,4]) assert num.allclose(histogram(a, [0,3]), histogram(a, [-0.5,3])) # Check situation with #bins >= #datapoints a = [1.7] bins = [0,1.5,2,3] assert num.allclose(histogram(a, bins), [0,1,0,0]) a = [1.7] bins = [0] assert num.allclose(histogram(a, bins), [1]) a = [-1.7] bins = [0] assert num.allclose(histogram(a, bins), [0]) a = [-1.7] bins = [-1.7] assert num.allclose(histogram(a, bins), [1]) def test_that_C_extension_compiles(self): FN = 'util_ext.c' try: import util_ext except: from compile import compile try: compile(FN) except: raise 'Could not compile %s' %FN else: import util_ext def test_gradient_C_extension(self): from util_ext import gradient as gradient_c x0 = 2.0/3; y0 = 2.0/3 x1= 8.0/3; y1 = 2.0/3 x2 = 2.0/3; y2 = 8.0/3 q0 = 2.0+2.0/3 q1 = 8.0+2.0/3 q2 = 2.0+8.0/3 #Gradient of fitted pwl surface a, b = gradient_c(x0, y0, x1, y1, x2, y2, q0, q1, q2) assert abs(a - 3.0) < epsilon assert abs(b - 1.0) < epsilon def test_gradient_C_extension3(self): from util_ext import gradient as gradient_c seed((17, 53)) x0, x1, x2, y0, y1, y2 = uniform(0.0,3.0,6) q0 = uniform(0.0, 10.0, 4) q1 = uniform(1.0, 3.0, 4) q2 = uniform(7.0, 20.0, 4) for i in range(4): #Gradient of fitted pwl surface a_ref, b_ref = gradient_python(x0, y0, x1, y1, x2, y2, q0[i], q1[i], q2[i]) #print a_ref, b_ref a, b = gradient_c(x0, y0, x1, y1, x2, y2, q0[i], q1[i], q2[i]) #print a, a_ref, b, b_ref assert abs(a - a_ref) < epsilon assert abs(b - b_ref) < epsilon def test_err(self): x = [2,5] # diff at first position = 4, 4^2 = 16 y = [6,7] # diff at secnd position = 2, 2^2 = 4 # 16 + 4 = 20 # If there is x and y, n=2 and relative=False, this will calc; # sqrt(sum_over_x&y((xi - yi)^2)) err__1 = err(x,y,2,False) assert err__1 == sqrt(20) #print "err_", err_ #rmsd_1 = err__1*sqrt(1./len(x)) #print "err__1*sqrt(1./len(x))", err__1*sqrt(1./len(x)) #print "sqrt(10)", sqrt(10) x = [2,7,100] y = [5,10,103] err__2 = err(x,y,2,False) assert err__2 == sqrt(27) #rmsd_2 = err__2*sqrt(1./len(x)) #print "err__2*sqrt(1./len(x))", err__2*sqrt(1./len(x)) x = [2,5,2,7,100] y = [6,7,5,10,103] err_3 = err(x,y,2,False) assert err_3 == sqrt(47) #rmsd_3 = err_3*sqrt(1./len(x)) #print "err__3*sqrt(1./len(x))", err__3*sqrt(1./len(x)) #print "rmsd_3", rmsd_3 #print "sqrt(err_1*err__1+err__2*err__2)/sqrt(5)", \ # sqrt(err__1*err__1+err__2*err__2)/sqrt(5) #print "(rmsd_1 + rmsd_2)/2.", (rmsd_1 + rmsd_2)/2. #print "sqrt((rmsd_1*rmsd_1 + rmsd_2*rmsd_2))/2.", \ #sqrt((rmsd_1*rmsd_1 + rmsd_2*rmsd_2))/2. def test_norm(self): x = norm(ensure_numeric([3,4])) assert x == 5. ################################################################################ # Test the is_num_????() functions. ################################################################################ def test_is_float(self): def t(val, expected): if expected == True: msg = 'should be num.float?' else: msg = 'should not be num.float?' msg = '%s (%s) %s' % (str(val), type(val), msg) assert is_num_float(val) == expected, msg t(1, False) t(1.0, False) t('abc', False) t(None, False) t(num.array(None), False) # can't create array(None, num.int) # t(num.array(None, num.int), False) t(num.array(None, num.float), True) t(num.array(()), True) t(num.array((), num.int), False) t(num.array((), num.float), True) t(num.array((1), num.int), False) t(num.array((1), num.float), True) t(num.array((1,2)), False) t(num.array((1,2), num.int), False) t(num.array((1,2), num.float), True) t(num.array([1,2]), False) t(num.array([1,2], num.int), False) t(num.array([1,2], num.float), True) t(num.array((1.0,2.0)), True) t(num.array((1.0,2.0), num.int), False) t(num.array((1.0,2.0), num.float), True) t(num.array([1.0,2.0]), True) t(num.array([1.0,2.0], num.int), False) t(num.array([1.0,2.0], num.float), True) t(num.array(((1.0,2.0),(3.0,4.0))), True) t(num.array(((1.0,2.0),(3.0,4.0)), num.int), False) t(num.array(((1.0,2.0),(3.0,4.0)), num.float), True) t(num.array([[1.0,2.0],[3.0,4.0]]), True) t(num.array([1.0,2.0], num.int), False) t(num.array([1.0,2.0], num.float), True) t(num.array('abc'), False) t(num.array('abc', num.character), False) # can't create array as int from string # t(num.array('abc', num.int), False) # can't create array as float from string # t(num.array('abc', num.float), True) def test_is_int(self): def t(val, expected): if expected == True: msg = 'should be num.int?' else: msg = 'should not be num.int?' msg = '%s (%s) %s' % (str(val), type(val), msg) assert is_num_int(val) == expected, msg t(1, False) t(1.0, False) t('abc', False) t(None, False) t(num.array(None), False) # can't create array(None, num.int) # t(num.array(None, num.int), True) t(num.array(None, num.float), False) t(num.array((), num.int), True) t(num.array(()), False) t(num.array((), num.float), False) t(num.array((1), num.int), True) t(num.array((1), num.float), False) t(num.array((1,2)), True) t(num.array((1,2), num.int), True) t(num.array((1,2), num.float), False) t(num.array([1,2]), True) t(num.array([1,2], num.int), True) t(num.array([1,2], num.float), False) t(num.array((1.0,2.0)), False) t(num.array((1.0,2.0), num.int), True) t(num.array((1.0,2.0), num.float), False) t(num.array([1.0,2.0]), False) t(num.array([1.0,2.0], num.int), True) t(num.array([1.0,2.0], num.float), False) t(num.array(((1.0,2.0),(3.0,4.0))), False) t(num.array(((1.0,2.0),(3.0,4.0)), num.int), True) t(num.array(((1.0,2.0),(3.0,4.0)), num.float), False) t(num.array([[1.0,2.0],[3.0,4.0]]), False) t(num.array([1.0,2.0], num.int), True) t(num.array([1.0,2.0], num.float), False) t(num.array('abc'), False) t(num.array('abc', num.character), False) # can't create array as int from string # t(num.array('abc', num.int), True) # can't create array as float from string # t(num.array('abc', num.float), False) ## # @brief Test to see if ensure_numeric() behaves as we expect. # @note Under Numeric ensure_numeric() *always* returned a copy (bug). # Under numpy it copies only when it has to. def test_ensure_numeric_copy(self): ##### # Make 'points' a _list_ of coordinates. # Should be changed by ensure_numeric(). ##### points = [[1.,2.], [3.,4.], [5.,6.]] points_id = id(points) points_new = ensure_numeric(points, num.float) points_new_id = id(points_new) msg = 'ensure_numeric() should return a copy of a list' self.failUnless(points_new_id != points_id, msg) # should never change it's input parameter msg = "ensure_numeric() changed it's input parameter" self.failUnless(points_id == id(points), msg) ##### # Make 'points' a _tuple_ of coordinates. # Should be changed by ensure_numeric(). ##### points = ((1.,2.), (3.,4.), (5.,6.)) points_id = id(points) points_new = ensure_numeric(points, num.int) points_new_id = id(points_new) msg = 'ensure_numeric() should return a copy of a list' self.failUnless(points_new_id != points_id, msg) # should never change it's input parameter msg = "ensure_numeric() changed it's input parameter" self.failUnless(points_id == id(points), msg) ##### # Make 'points' a numeric array of float coordinates. # Should NOT be changed by ensure_numeric(). ##### points = num.array([[1.,2.], [3.,4.], [5.,6.]], num.float) points_id = id(points) points_new = ensure_numeric(points, num.float) points_new_id = id(points_new) msg = 'ensure_numeric() should return the original input' self.failUnless(points_new_id == points_id, msg) # should never change it's input parameter msg = "ensure_numeric() changed it's input parameter" self.failUnless(points_id == id(points), msg) ##### # Make 'points' a numeric array of int coordinates. # Should be changed by ensure_numeric(, num.float). ##### points = num.array([[1,2], [3,4], [5,6]], num.int) points_id = id(points) points_new = ensure_numeric(points, num.float) points_new_id = id(points_new) msg = 'ensure_numeric() should return a copy of the input' self.failUnless(points_new_id != points_id, msg) # should never change it's input parameter msg = "ensure_numeric() changed it's input parameter" self.failUnless(points_id == id(points), msg) ##### # Make 'points' a numeric array of int coordinates. # Should NOT be changed by ensure_numeric(, num.int). ##### points = num.array([[1,2], [3,4], [5,6]], num.int) points_id = id(points) points_new = ensure_numeric(points, num.int) points_new_id = id(points_new) msg = 'ensure_numeric() should return the original input' self.failUnless(points_new_id == points_id, msg) # should never change it's input parameter msg = "ensure_numeric() changed it's input parameter" self.failUnless(points_id == id(points), msg) ##### # Make 'points' a numeric array of float32 coordinates. # Should NOT be changed by ensure_numeric(, num.float32). ##### points = num.array([[1.,2.], [3.,4.], [5.,6.]], num.float32) points_id = id(points) points_new = ensure_numeric(points, num.float32) points_new_id = id(points_new) msg = 'ensure_numeric() should return the original input' self.failUnless(points_new_id == points_id, msg) # should never change it's input parameter msg = "ensure_numeric() changed it's input parameter" self.failUnless(points_id == id(points), msg) ##### # Make 'points' a numeric array of float32 coordinates. # Should be changed by ensure_numeric(, num.float64). ##### points = num.array([[1.,2.], [3.,4.], [5.,6.]], num.float32) points_id = id(points) points_new = ensure_numeric(points, num.float64) points_new_id = id(points_new) msg = 'ensure_numeric() should return a copy of the input' self.failUnless(points_new_id != points_id, msg) # should never change it's input parameter msg = "ensure_numeric() changed it's input parameter" self.failUnless(points_id == id(points), msg) ##### # Make 'points' a numeric array of float coordinates. # Should NOT be changed by ensure_numeric(, num.float64). ##### points = num.array([[1.,2.], [3.,4.], [5.,6.]], num.float) points_id = id(points) points_new = ensure_numeric(points, num.float64) points_new_id = id(points_new) msg = 'ensure_numeric() should return the original input' self.failUnless(points_new_id == points_id, msg) #msg = 'ensure_numeric() should return a copy of the input' #self.failUnless(points_new_id != points_id, msg) # should never change it's input parameter msg = "ensure_numeric() changed it's input parameter" self.failUnless(points_id == id(points), msg) ################################################################################ if __name__ == "__main__": suite = unittest.makeSuite(Test_Numerical_Tools,'test') runner = unittest.TextTestRunner() runner.run(suite)