1 | """parallel-meshes - |
---|
2 | 2D triangular domains for parallel finite-volume computations of |
---|
3 | the advection equation, with extra structures to define the |
---|
4 | sending and receiving communications define in dictionaries |
---|
5 | full_send_dict and ghost_recv_dict |
---|
6 | |
---|
7 | |
---|
8 | Ole Nielsen, Stephen Roberts, Duncan Gray, Christopher Zoppou |
---|
9 | Geoscience Australia, 2005 |
---|
10 | |
---|
11 | Modified by Linda Stals, March 2006, to include ghost boundaries |
---|
12 | |
---|
13 | """ |
---|
14 | |
---|
15 | |
---|
16 | import sys |
---|
17 | #from Numeric import array, zeros, Float, Int, ones, sum |
---|
18 | |
---|
19 | import numpy as num |
---|
20 | import pypar |
---|
21 | |
---|
22 | from anuga.config import epsilon |
---|
23 | |
---|
24 | |
---|
25 | |
---|
26 | |
---|
27 | |
---|
28 | def parallel_rectangle(m_g, n_g, len1_g=1.0, len2_g=1.0, origin_g = (0.0, 0.0)): |
---|
29 | |
---|
30 | |
---|
31 | """Setup a rectangular grid of triangles |
---|
32 | with m+1 by n+1 grid points |
---|
33 | and side lengths len1, len2. If side lengths are omitted |
---|
34 | the mesh defaults to the unit square, divided between all the |
---|
35 | processors |
---|
36 | |
---|
37 | len1: x direction (left to right) |
---|
38 | len2: y direction (bottom to top) |
---|
39 | |
---|
40 | """ |
---|
41 | |
---|
42 | processor = pypar.rank() |
---|
43 | numproc = pypar.size() |
---|
44 | |
---|
45 | print 'numproc',numproc |
---|
46 | print 'processor ',processor |
---|
47 | |
---|
48 | m_low, m_high = pypar.balance(m_g, numproc, processor) |
---|
49 | |
---|
50 | n = n_g |
---|
51 | m_low = m_low-1 |
---|
52 | m_high = m_high+1 |
---|
53 | |
---|
54 | print 'm_low, m_high', m_low, m_high |
---|
55 | m = m_high - m_low |
---|
56 | |
---|
57 | delta1 = float(len1_g)/m_g |
---|
58 | delta2 = float(len2_g)/n_g |
---|
59 | |
---|
60 | len1 = len1_g*float(m)/float(m_g) |
---|
61 | len2 = len2_g |
---|
62 | origin = ( origin_g[0]+float(m_low)/float(m_g)*len1_g, origin_g[1] ) |
---|
63 | |
---|
64 | #Calculate number of points |
---|
65 | Np = (m+1)*(n+1) |
---|
66 | |
---|
67 | class VIndex: |
---|
68 | |
---|
69 | def __init__(self, n,m): |
---|
70 | self.n = n |
---|
71 | self.m = m |
---|
72 | |
---|
73 | def __call__(self, i,j): |
---|
74 | return j+i*(self.n+1) |
---|
75 | |
---|
76 | class EIndex: |
---|
77 | |
---|
78 | def __init__(self, n,m): |
---|
79 | self.n = n |
---|
80 | self.m = m |
---|
81 | |
---|
82 | def __call__(self, i,j): |
---|
83 | return 2*(j+i*self.n) |
---|
84 | |
---|
85 | |
---|
86 | I = VIndex(n,m) |
---|
87 | E = EIndex(n,m) |
---|
88 | |
---|
89 | points = num.zeros( (Np,2), num.float) |
---|
90 | |
---|
91 | for i in range(m+1): |
---|
92 | for j in range(n+1): |
---|
93 | |
---|
94 | points[I(i,j),:] = [i*delta1 + origin[0], j*delta2 + origin[1]] |
---|
95 | |
---|
96 | #Construct 2 triangles per rectangular element and assign tags to boundary |
---|
97 | #Calculate number of triangles |
---|
98 | Nt = 2*m*n |
---|
99 | |
---|
100 | |
---|
101 | elements = num.zeros( (Nt,3), num.int) |
---|
102 | boundary = {} |
---|
103 | Idgl = [] |
---|
104 | Idfl = [] |
---|
105 | Idgr = [] |
---|
106 | Idfr = [] |
---|
107 | |
---|
108 | full_send_dict = {} |
---|
109 | ghost_recv_dict = {} |
---|
110 | nt = -1 |
---|
111 | for i in range(m): |
---|
112 | for j in range(n): |
---|
113 | |
---|
114 | i1 = I(i,j+1) |
---|
115 | i2 = I(i,j) |
---|
116 | i3 = I(i+1,j+1) |
---|
117 | i4 = I(i+1,j) |
---|
118 | |
---|
119 | #Lower Element |
---|
120 | nt = E(i,j) |
---|
121 | if i == 0: |
---|
122 | Idgl.append(nt) |
---|
123 | |
---|
124 | if i == 1: |
---|
125 | Idfl.append(nt) |
---|
126 | |
---|
127 | if i == m-2: |
---|
128 | Idfr.append(nt) |
---|
129 | |
---|
130 | if i == m-1: |
---|
131 | Idgr.append(nt) |
---|
132 | |
---|
133 | if i == m-1: |
---|
134 | if processor == numproc-1: |
---|
135 | boundary[nt, 2] = 'right' |
---|
136 | else: |
---|
137 | boundary[nt, 2] = 'ghost' |
---|
138 | |
---|
139 | if j == 0: |
---|
140 | boundary[nt, 1] = 'bottom' |
---|
141 | elements[nt,:] = [i4,i3,i2] |
---|
142 | |
---|
143 | #Upper Element |
---|
144 | nt = E(i,j)+1 |
---|
145 | if i == 0: |
---|
146 | Idgl.append(nt) |
---|
147 | |
---|
148 | if i == 1: |
---|
149 | Idfl.append(nt) |
---|
150 | |
---|
151 | if i == m-2: |
---|
152 | Idfr.append(nt) |
---|
153 | |
---|
154 | if i == m-1: |
---|
155 | Idgr.append(nt) |
---|
156 | |
---|
157 | if i == 0: |
---|
158 | if processor == 0: |
---|
159 | boundary[nt, 2] = 'left' |
---|
160 | else: |
---|
161 | boundary[nt, 2] = 'ghost' |
---|
162 | if j == n-1: |
---|
163 | boundary[nt, 1] = 'top' |
---|
164 | elements[nt,:] = [i1,i2,i3] |
---|
165 | |
---|
166 | if numproc==1: |
---|
167 | Idfl.extend(Idfr) |
---|
168 | Idgr.extend(Idgl) |
---|
169 | |
---|
170 | print Idfl |
---|
171 | print Idgr |
---|
172 | |
---|
173 | Idfl = num.array(Idfl,num.int) |
---|
174 | Idgr = num.array(Idgr,num.int) |
---|
175 | |
---|
176 | print Idfl |
---|
177 | print Idgr |
---|
178 | |
---|
179 | full_send_dict[processor] = [Idfl, Idfl] |
---|
180 | ghost_recv_dict[processor] = [Idgr, Idgr] |
---|
181 | |
---|
182 | print full_send_dict[processor] |
---|
183 | print ghost_recv_dict[processor] |
---|
184 | elif numproc == 2: |
---|
185 | Idfl.extend(Idfr) |
---|
186 | Idgr.extend(Idgl) |
---|
187 | Idfl = num.array(Idfl,num.int) |
---|
188 | Idgr = num.array(Idgr,num.int) |
---|
189 | full_send_dict[(processor-1)%numproc] = [Idfl, Idfl] |
---|
190 | ghost_recv_dict[(processor-1)%numproc] = [Idgr, Idgr] |
---|
191 | else: |
---|
192 | Idfl = num.array(Idfl,num.int) |
---|
193 | Idgl = num.array(Idgl,num.int) |
---|
194 | |
---|
195 | Idfr = num.array(Idfr,num.int) |
---|
196 | Idgr = num.array(Idgr,num.int) |
---|
197 | |
---|
198 | full_send_dict[(processor-1)%numproc] = [Idfl, Idfl] |
---|
199 | ghost_recv_dict[(processor-1)%numproc] = [Idgl, Idgl] |
---|
200 | full_send_dict[(processor+1)%numproc] = [Idfr, Idfr] |
---|
201 | ghost_recv_dict[(processor+1)%numproc] = [Idgr, Idgr] |
---|
202 | |
---|
203 | |
---|
204 | |
---|
205 | print full_send_dict |
---|
206 | print ghost_recv_dict |
---|
207 | |
---|
208 | return points, elements, boundary, full_send_dict, ghost_recv_dict |
---|
209 | |
---|
210 | |
---|
211 | |
---|
212 | def rectangular_periodic(m, n, len1=1.0, len2=1.0, origin = (0.0, 0.0)): |
---|
213 | |
---|
214 | |
---|
215 | """Setup a rectangular grid of triangles |
---|
216 | with m+1 by n+1 grid points |
---|
217 | and side lengths len1, len2. If side lengths are omitted |
---|
218 | the mesh defaults to the unit square. |
---|
219 | |
---|
220 | len1: x direction (left to right) |
---|
221 | len2: y direction (bottom to top) |
---|
222 | |
---|
223 | Return to lists: points and elements suitable for creating a Mesh or |
---|
224 | FVMesh object, e.g. Mesh(points, elements) |
---|
225 | """ |
---|
226 | |
---|
227 | delta1 = float(len1)/m |
---|
228 | delta2 = float(len2)/n |
---|
229 | |
---|
230 | #Calculate number of points |
---|
231 | Np = (m+1)*(n+1) |
---|
232 | |
---|
233 | class VIndex: |
---|
234 | |
---|
235 | def __init__(self, n,m): |
---|
236 | self.n = n |
---|
237 | self.m = m |
---|
238 | |
---|
239 | def __call__(self, i,j): |
---|
240 | return j+i*(self.n+1) |
---|
241 | |
---|
242 | class EIndex: |
---|
243 | |
---|
244 | def __init__(self, n,m): |
---|
245 | self.n = n |
---|
246 | self.m = m |
---|
247 | |
---|
248 | def __call__(self, i,j): |
---|
249 | return 2*(j+i*self.n) |
---|
250 | |
---|
251 | |
---|
252 | I = VIndex(n,m) |
---|
253 | E = EIndex(n,m) |
---|
254 | |
---|
255 | points = num.zeros( (Np,2), num.float) |
---|
256 | |
---|
257 | for i in range(m+1): |
---|
258 | for j in range(n+1): |
---|
259 | |
---|
260 | points[I(i,j),:] = [i*delta1 + origin[0], j*delta2 + origin[1]] |
---|
261 | |
---|
262 | #Construct 2 triangles per rectangular element and assign tags to boundary |
---|
263 | #Calculate number of triangles |
---|
264 | Nt = 2*m*n |
---|
265 | |
---|
266 | |
---|
267 | elements = num.zeros( (Nt,3), num.int) |
---|
268 | boundary = {} |
---|
269 | ghosts = {} |
---|
270 | nt = -1 |
---|
271 | for i in range(m): |
---|
272 | for j in range(n): |
---|
273 | |
---|
274 | i1 = I(i,j+1) |
---|
275 | i2 = I(i,j) |
---|
276 | i3 = I(i+1,j+1) |
---|
277 | i4 = I(i+1,j) |
---|
278 | |
---|
279 | #Lower Element |
---|
280 | nt = E(i,j) |
---|
281 | if i == m-1: |
---|
282 | ghosts[nt] = E(1,j) |
---|
283 | if i == 0: |
---|
284 | ghosts[nt] = E(m-2,j) |
---|
285 | |
---|
286 | if j == n-1: |
---|
287 | ghosts[nt] = E(i,1) |
---|
288 | |
---|
289 | if j == 0: |
---|
290 | ghosts[nt] = E(i,n-2) |
---|
291 | |
---|
292 | if i == m-1: |
---|
293 | if processor == numproc-1: |
---|
294 | boundary[nt, 2] = 'right' |
---|
295 | else: |
---|
296 | boundary[nt, 2] = 'ghost' |
---|
297 | if j == 0: |
---|
298 | boundary[nt, 1] = 'bottom' |
---|
299 | elements[nt,:] = [i4,i3,i2] |
---|
300 | |
---|
301 | #Upper Element |
---|
302 | nt = E(i,j)+1 |
---|
303 | if i == m-1: |
---|
304 | ghosts[nt] = E(1,j)+1 |
---|
305 | if i == 0: |
---|
306 | ghosts[nt] = E(m-2,j)+1 |
---|
307 | |
---|
308 | if j == n-1: |
---|
309 | ghosts[nt] = E(i,1)+1 |
---|
310 | |
---|
311 | if j == 0: |
---|
312 | ghosts[nt] = E(i,n-2)+1 |
---|
313 | |
---|
314 | if i == 0: |
---|
315 | if processor == 0: |
---|
316 | boundary[nt, 2] = 'left' |
---|
317 | else: |
---|
318 | boundary[nt, 2] = 'ghost' |
---|
319 | if j == n-1: |
---|
320 | boundary[nt, 1] = 'top' |
---|
321 | elements[nt,:] = [i1,i2,i3] |
---|
322 | |
---|
323 | #bottom left |
---|
324 | nt = E(0,0) |
---|
325 | nf = E(m-2,n-2) |
---|
326 | ghosts[nt] = nf |
---|
327 | ghosts[nt+1] = nf+1 |
---|
328 | |
---|
329 | #bottom right |
---|
330 | nt = E(m-1,0) |
---|
331 | nf = E(1,n-2) |
---|
332 | ghosts[nt] = nf |
---|
333 | ghosts[nt+1] = nf+1 |
---|
334 | |
---|
335 | #top left |
---|
336 | nt = E(0,n-1) |
---|
337 | nf = E(m-2,1) |
---|
338 | ghosts[nt] = nf |
---|
339 | ghosts[nt+1] = nf+1 |
---|
340 | |
---|
341 | #top right |
---|
342 | nt = E(m-1,n-1) |
---|
343 | nf = E(1,1) |
---|
344 | ghosts[nt] = nf |
---|
345 | ghosts[nt+1] = nf+1 |
---|
346 | |
---|
347 | return points, elements, boundary, ghosts |
---|
348 | |
---|
349 | def rectangular_periodic_lr(m, n, len1=1.0, len2=1.0, origin = (0.0, 0.0)): |
---|
350 | |
---|
351 | |
---|
352 | """Setup a rectangular grid of triangles |
---|
353 | with m+1 by n+1 grid points |
---|
354 | and side lengths len1, len2. If side lengths are omitted |
---|
355 | the mesh defaults to the unit square. |
---|
356 | |
---|
357 | len1: x direction (left to right) |
---|
358 | len2: y direction (bottom to top) |
---|
359 | |
---|
360 | Return to lists: points and elements suitable for creating a Mesh or |
---|
361 | Domain object, e.g. Mesh(points, elements) |
---|
362 | """ |
---|
363 | |
---|
364 | delta1 = float(len1)/m |
---|
365 | delta2 = float(len2)/n |
---|
366 | |
---|
367 | #Calculate number of points |
---|
368 | Np = (m+1)*(n+1) |
---|
369 | |
---|
370 | class VIndex: |
---|
371 | |
---|
372 | def __init__(self, n,m): |
---|
373 | self.n = n |
---|
374 | self.m = m |
---|
375 | |
---|
376 | def __call__(self, i,j): |
---|
377 | return j+i*(self.n+1) |
---|
378 | |
---|
379 | class EIndex: |
---|
380 | |
---|
381 | def __init__(self, n,m): |
---|
382 | self.n = n |
---|
383 | self.m = m |
---|
384 | |
---|
385 | def __call__(self, i,j): |
---|
386 | return 2*(j+i*self.n) |
---|
387 | |
---|
388 | |
---|
389 | I = VIndex(n,m) |
---|
390 | E = EIndex(n,m) |
---|
391 | |
---|
392 | points = num.zeros( (Np,2), num.float) |
---|
393 | |
---|
394 | for i in range(m+1): |
---|
395 | for j in range(n+1): |
---|
396 | |
---|
397 | points[I(i,j),:] = [i*delta1 + origin[0], j*delta2 + origin[1]] |
---|
398 | |
---|
399 | #Construct 2 triangles per rectangular element and assign tags to boundary |
---|
400 | #Calculate number of triangles |
---|
401 | Nt = 2*m*n |
---|
402 | |
---|
403 | |
---|
404 | elements = num.zeros( (Nt,3), num.int) |
---|
405 | boundary = {} |
---|
406 | ghosts = {} |
---|
407 | nt = -1 |
---|
408 | for i in range(m): |
---|
409 | for j in range(n): |
---|
410 | |
---|
411 | i1 = I(i,j+1) |
---|
412 | i2 = I(i,j) |
---|
413 | i3 = I(i+1,j+1) |
---|
414 | i4 = I(i+1,j) |
---|
415 | |
---|
416 | #Lower Element |
---|
417 | nt = E(i,j) |
---|
418 | if i == m-1: |
---|
419 | ghosts[nt] = E(1,j) |
---|
420 | if i == 0: |
---|
421 | ghosts[nt] = E(m-2,j) |
---|
422 | |
---|
423 | if i == m-1: |
---|
424 | if processor == numproc-1: |
---|
425 | boundary[nt, 2] = 'right' |
---|
426 | else: |
---|
427 | boundary[nt, 2] = 'ghost' |
---|
428 | if j == 0: |
---|
429 | boundary[nt, 1] = 'bottom' |
---|
430 | elements[nt,:] = [i4,i3,i2] |
---|
431 | |
---|
432 | #Upper Element |
---|
433 | nt = E(i,j)+1 |
---|
434 | if i == m-1: |
---|
435 | ghosts[nt] = E(1,j)+1 |
---|
436 | if i == 0: |
---|
437 | ghosts[nt] = E(m-2,j)+1 |
---|
438 | |
---|
439 | if i == 0: |
---|
440 | if processor == 0: |
---|
441 | boundary[nt, 2] = 'left' |
---|
442 | else: |
---|
443 | boundary[nt, 2] = 'ghost' |
---|
444 | if j == n-1: |
---|
445 | boundary[nt, 1] = 'top' |
---|
446 | elements[nt,:] = [i1,i2,i3] |
---|
447 | |
---|
448 | |
---|
449 | return points, elements, boundary, ghosts |
---|