1 | """Class Parallel_Shallow_Water_Domain - |
---|
2 | 2D triangular domains for finite-volume computations of |
---|
3 | the shallow water equation, with extra structures to allow |
---|
4 | communication between other Parallel_Domains and itself |
---|
5 | |
---|
6 | This module contains a specialisation of class Domain |
---|
7 | from module shallow_water.py |
---|
8 | |
---|
9 | Ole Nielsen, Stephen Roberts, Duncan Gray, Christopher Zoppou |
---|
10 | Geoscience Australia, 2004-2005 |
---|
11 | |
---|
12 | """ |
---|
13 | |
---|
14 | import logging, logging.config |
---|
15 | logger = logging.getLogger('parallel') |
---|
16 | logger.setLevel(logging.WARNING) |
---|
17 | |
---|
18 | try: |
---|
19 | logging.config.fileConfig('log.ini') |
---|
20 | except: |
---|
21 | pass |
---|
22 | |
---|
23 | |
---|
24 | from anuga.shallow_water.shallow_water_domain import * |
---|
25 | from Numeric import zeros, Float, Int, ones, allclose, array |
---|
26 | |
---|
27 | import pypar |
---|
28 | |
---|
29 | |
---|
30 | class Parallel_Domain(Domain): |
---|
31 | |
---|
32 | def __init__(self, coordinates, vertices, |
---|
33 | boundary=None, |
---|
34 | full_send_dict=None, |
---|
35 | ghost_recv_dict=None, |
---|
36 | number_of_full_nodes=None, |
---|
37 | number_of_full_triangles=None): |
---|
38 | |
---|
39 | Domain.__init__(self, |
---|
40 | coordinates, |
---|
41 | vertices, |
---|
42 | boundary, |
---|
43 | full_send_dict=full_send_dict, |
---|
44 | ghost_recv_dict=ghost_recv_dict, |
---|
45 | processor=pypar.rank(), |
---|
46 | numproc=pypar.size(), |
---|
47 | number_of_full_nodes=number_of_full_nodes, |
---|
48 | number_of_full_triangles=number_of_full_triangles) |
---|
49 | |
---|
50 | N = len(self) # number_of_triangles |
---|
51 | |
---|
52 | # self.processor = pypar.rank() |
---|
53 | # self.numproc = pypar.size() |
---|
54 | # |
---|
55 | # # Setup Communication Buffers |
---|
56 | # self.nsys = 3 |
---|
57 | # for key in full_send_dict: |
---|
58 | # buffer_shape = full_send_dict[key][0].shape[0] |
---|
59 | # full_send_dict[key].append(zeros( (buffer_shape,self.nsys) ,Float)) |
---|
60 | # |
---|
61 | # |
---|
62 | # for key in ghost_recv_dict: |
---|
63 | # buffer_shape = ghost_recv_dict[key][0].shape[0] |
---|
64 | # ghost_recv_dict[key].append(zeros( (buffer_shape,self.nsys) ,Float)) |
---|
65 | # |
---|
66 | # self.full_send_dict = full_send_dict |
---|
67 | self.ghost_recv_dict = ghost_recv_dict |
---|
68 | |
---|
69 | # Buffers for synchronisation of timesteps |
---|
70 | self.local_timestep = zeros(1, Float) |
---|
71 | self.global_timestep = zeros(1, Float) |
---|
72 | |
---|
73 | self.local_timesteps = zeros(self.numproc, Float) |
---|
74 | |
---|
75 | |
---|
76 | self.communication_time = 0.0 |
---|
77 | self.communication_reduce_time = 0.0 |
---|
78 | self.communication_broadcast_time = 0.0 |
---|
79 | |
---|
80 | |
---|
81 | |
---|
82 | |
---|
83 | def set_name(self, name): |
---|
84 | """Assign name based on processor number |
---|
85 | """ |
---|
86 | |
---|
87 | if name.endswith('.sww'): |
---|
88 | name = name[:-4] |
---|
89 | |
---|
90 | # Call parents method with processor number attached. |
---|
91 | Domain.set_name(self, name + '_P%d_%d' %(self.processor, self.numproc)) |
---|
92 | |
---|
93 | |
---|
94 | def check_integrity(self): |
---|
95 | Domain.check_integrity(self) |
---|
96 | |
---|
97 | msg = 'Will need to check global and local numbering' |
---|
98 | assert self.conserved_quantities[0] == 'stage', msg |
---|
99 | assert self.conserved_quantities[1] == 'xmomentum', msg |
---|
100 | assert self.conserved_quantities[2] == 'ymomentum', msg |
---|
101 | |
---|
102 | |
---|
103 | def update_timestep_1(self, yieldstep, finaltime): |
---|
104 | """Calculate local timestep using broadcasts |
---|
105 | """ |
---|
106 | |
---|
107 | #LINDA: |
---|
108 | # Moved below so timestep is found before doing update |
---|
109 | |
---|
110 | #Domain.update_timestep(self, yieldstep, finaltime) |
---|
111 | |
---|
112 | import time |
---|
113 | |
---|
114 | |
---|
115 | t0 = time.time() |
---|
116 | |
---|
117 | #Broadcast local timestep from every processor to every other |
---|
118 | for pid in range(self.numproc): |
---|
119 | #print 'P%d calling broadcast from %d' %(self.processor, pid) |
---|
120 | self.local_timestep[0] = self.timestep |
---|
121 | pypar.broadcast(self.local_timestep, pid, bypass=True) |
---|
122 | self.local_timesteps[pid] = self.local_timestep[0] |
---|
123 | |
---|
124 | self.timestep = min(self.local_timesteps) |
---|
125 | |
---|
126 | pypar.barrier() |
---|
127 | self.communication_broadcast_time += time.time()-t0 |
---|
128 | |
---|
129 | # LINDA: |
---|
130 | # Moved timestep to here |
---|
131 | |
---|
132 | Domain.update_timestep(self, yieldstep, finaltime) |
---|
133 | |
---|
134 | |
---|
135 | def update_timestep(self, yieldstep, finaltime): |
---|
136 | """Calculate local timestep |
---|
137 | """ |
---|
138 | |
---|
139 | # LINDA: Moved below so timestep is updated before |
---|
140 | # calculating statistic |
---|
141 | |
---|
142 | #Compute minimal timestep on local process |
---|
143 | #Domain.update_timestep(self, yieldstep, finaltime) |
---|
144 | |
---|
145 | pypar.barrier() |
---|
146 | |
---|
147 | import time |
---|
148 | #Compute minimal timestep across all processes |
---|
149 | self.local_timestep[0] = self.timestep |
---|
150 | use_reduce_broadcast = True |
---|
151 | if use_reduce_broadcast: |
---|
152 | t0 = time.time() |
---|
153 | pypar.reduce(self.local_timestep, pypar.MIN, 0, |
---|
154 | buffer=self.global_timestep, |
---|
155 | bypass=True) |
---|
156 | |
---|
157 | else: |
---|
158 | #Alternative: Try using straight send and receives |
---|
159 | t0 = time.time() |
---|
160 | self.global_timestep[0] = self.timestep |
---|
161 | |
---|
162 | if self.processor == 0: |
---|
163 | for i in range(1, self.numproc): |
---|
164 | pypar.receive(i, |
---|
165 | buffer=self.local_timestep, |
---|
166 | bypass=True) |
---|
167 | |
---|
168 | if self.local_timestep[0] < self.global_timestep[0]: |
---|
169 | self.global_timestep[0] = self.local_timestep[0] |
---|
170 | else: |
---|
171 | pypar.send(self.local_timestep, 0, |
---|
172 | use_buffer=True, bypass=True) |
---|
173 | |
---|
174 | |
---|
175 | self.communication_reduce_time += time.time()-t0 |
---|
176 | |
---|
177 | |
---|
178 | #Broadcast minimal timestep to all |
---|
179 | t0 = time.time() |
---|
180 | pypar.broadcast(self.global_timestep, 0, |
---|
181 | bypass=True) |
---|
182 | |
---|
183 | self.communication_broadcast_time += time.time()-t0 |
---|
184 | |
---|
185 | |
---|
186 | self.timestep = self.global_timestep[0] |
---|
187 | |
---|
188 | # LINDA: |
---|
189 | # update local stats now |
---|
190 | |
---|
191 | #Compute minimal timestep on local process |
---|
192 | Domain.update_timestep(self, yieldstep, finaltime) |
---|
193 | |
---|
194 | # FIXME (Ole) We should update the variable min_timestep for use |
---|
195 | # with write_time (or redo write_time) |
---|
196 | |
---|
197 | #update_timestep = update_timestep_1 |
---|
198 | |
---|
199 | def update_ghosts(self): |
---|
200 | |
---|
201 | # We must send the information from the full cells and |
---|
202 | # receive the information for the ghost cells |
---|
203 | # We have a dictionary of lists with ghosts expecting updates from |
---|
204 | # the separate processors |
---|
205 | |
---|
206 | |
---|
207 | from Numeric import take,put |
---|
208 | import time |
---|
209 | t0 = time.time() |
---|
210 | |
---|
211 | # update of non-local ghost cells |
---|
212 | for iproc in range(self.numproc): |
---|
213 | if iproc == self.processor: |
---|
214 | #Send data from iproc processor to other processors |
---|
215 | for send_proc in self.full_send_dict: |
---|
216 | if send_proc != iproc: |
---|
217 | |
---|
218 | Idf = self.full_send_dict[send_proc][0] |
---|
219 | Xout = self.full_send_dict[send_proc][2] |
---|
220 | |
---|
221 | for i, q in enumerate(self.conserved_quantities): |
---|
222 | #print 'Send',i,q |
---|
223 | Q_cv = self.quantities[q].centroid_values |
---|
224 | Xout[:,i] = take(Q_cv, Idf) |
---|
225 | |
---|
226 | pypar.send(Xout, send_proc, |
---|
227 | use_buffer=True, bypass = True) |
---|
228 | |
---|
229 | |
---|
230 | else: |
---|
231 | #Receive data from the iproc processor |
---|
232 | if self.ghost_recv_dict.has_key(iproc): |
---|
233 | |
---|
234 | Idg = self.ghost_recv_dict[iproc][0] |
---|
235 | X = self.ghost_recv_dict[iproc][2] |
---|
236 | |
---|
237 | X = pypar.receive(iproc, buffer=X, bypass = True) |
---|
238 | |
---|
239 | for i, q in enumerate(self.conserved_quantities): |
---|
240 | #print 'Receive',i,q |
---|
241 | Q_cv = self.quantities[q].centroid_values |
---|
242 | put(Q_cv, Idg, X[:,i]) |
---|
243 | |
---|
244 | #local update of ghost cells |
---|
245 | iproc = self.processor |
---|
246 | if self.full_send_dict.has_key(iproc): |
---|
247 | |
---|
248 | # LINDA: |
---|
249 | # now store full as local id, global id, value |
---|
250 | Idf = self.full_send_dict[iproc][0] |
---|
251 | |
---|
252 | # LINDA: |
---|
253 | # now store ghost as local id, global id, value |
---|
254 | Idg = self.ghost_recv_dict[iproc][0] |
---|
255 | |
---|
256 | for i, q in enumerate(self.conserved_quantities): |
---|
257 | #print 'LOCAL SEND RECEIVE',i,q |
---|
258 | Q_cv = self.quantities[q].centroid_values |
---|
259 | put(Q_cv, Idg, take(Q_cv, Idf)) |
---|
260 | |
---|
261 | self.communication_time += time.time()-t0 |
---|
262 | |
---|
263 | ''' |
---|
264 | This was removed due to not beening required to be redefined in parallel_shallow_water |
---|
265 | the original "write_time" is good... however might need some small edits to work properly |
---|
266 | with parallel- Nick and Ole April 2007 |
---|
267 | def write_time(self): |
---|
268 | if self.min_timestep == self.max_timestep: |
---|
269 | print 'Processor %d/%d, Time = %.4f, delta t = %.8f, steps=%d (%d)'\ |
---|
270 | %(self.processor, self.numproc, |
---|
271 | self.time, self.min_timestep, self.number_of_steps, |
---|
272 | self.number_of_first_order_steps) |
---|
273 | elif self.min_timestep > self.max_timestep: |
---|
274 | print 'Processor %d/%d, Time = %.4f, steps=%d (%d)'\ |
---|
275 | %(self.processor, self.numproc, |
---|
276 | self.time, self.number_of_steps, |
---|
277 | self.number_of_first_order_steps) |
---|
278 | else: |
---|
279 | print 'Processor %d/%d, Time = %.4f, delta t in [%.8f, %.8f], steps=%d (%d)'\ |
---|
280 | %(self.processor, self.numproc, |
---|
281 | self.time, self.min_timestep, |
---|
282 | self.max_timestep, self.number_of_steps, |
---|
283 | self.number_of_first_order_steps) |
---|
284 | ''' |
---|
285 | |
---|
286 | # commented out on the 7/11/06 |
---|
287 | # def evolve(self, yieldstep=None, finaltime=None, |
---|
288 | # skip_initial_step=False): |
---|
289 | # """Specialisation of basic evolve method from parent class |
---|
290 | # """ |
---|
291 | |
---|
292 | #Initialise real time viz if requested |
---|
293 | # if self.time == 0.0: |
---|
294 | # pass |
---|
295 | |
---|
296 | #Call basic machinery from parent class |
---|
297 | # for t in Domain.evolve(self, yieldstep, finaltime, skip_initial_step): |
---|
298 | |
---|
299 | #Pass control on to outer loop for more specific actions |
---|
300 | # yield(t) |
---|