1 | """Class Geospatial_data - Manipulation of locations on the planet and |
---|
2 | associated attributes. |
---|
3 | |
---|
4 | """ |
---|
5 | from sys import maxint |
---|
6 | from os import access, F_OK, R_OK,remove |
---|
7 | from types import DictType |
---|
8 | from warnings import warn |
---|
9 | from string import lower |
---|
10 | import numpy |
---|
11 | import numpy.random |
---|
12 | #from Array import tolist |
---|
13 | from copy import deepcopy |
---|
14 | |
---|
15 | |
---|
16 | from Scientific.IO.NetCDF import NetCDFFile |
---|
17 | from anuga.coordinate_transforms.lat_long_UTM_conversion import UTMtoLL |
---|
18 | from anuga.utilities.numerical_tools import ensure_numeric |
---|
19 | from anuga.coordinate_transforms.geo_reference import Geo_reference, \ |
---|
20 | TitleError, DEFAULT_ZONE, ensure_geo_reference, write_NetCDF_georeference |
---|
21 | from anuga.coordinate_transforms.redfearn import convert_from_latlon_to_utm |
---|
22 | from anuga.utilities.anuga_exceptions import ANUGAError |
---|
23 | from anuga.config import points_file_block_line_size as MAX_READ_LINES |
---|
24 | #from anuga.fit_interpolate.benchmark_least_squares import mem_usage |
---|
25 | |
---|
26 | |
---|
27 | DEFAULT_ATTRIBUTE = 'elevation' |
---|
28 | |
---|
29 | class Geospatial_data: |
---|
30 | |
---|
31 | def __init__(self, |
---|
32 | data_points=None, # this can also be a points file name |
---|
33 | attributes=None, |
---|
34 | geo_reference=None, |
---|
35 | default_attribute_name=None, |
---|
36 | file_name=None, |
---|
37 | latitudes=None, |
---|
38 | longitudes=None, |
---|
39 | points_are_lats_longs=False, |
---|
40 | max_read_lines=None, |
---|
41 | load_file_now=True, |
---|
42 | verbose=False): |
---|
43 | |
---|
44 | |
---|
45 | """ |
---|
46 | Create instance from data points and associated attributes |
---|
47 | |
---|
48 | data_points: x,y coordinates in meters. Type must be either a |
---|
49 | sequence of 2-tuples or an Mx2 Numeric array of floats. A file name |
---|
50 | with extension .txt, .cvs or .pts can also be passed in here. |
---|
51 | |
---|
52 | attributes: Associated values for each data point. The type |
---|
53 | must be either a list or an array of length M or a dictionary |
---|
54 | of lists (or arrays) of length M. In the latter case the keys |
---|
55 | in the dictionary represent the attribute names, in the former |
---|
56 | the attribute will get the default name "elevation". |
---|
57 | |
---|
58 | geo_reference: Object representing the origin of the data |
---|
59 | points. It contains UTM zone, easting and northing and data |
---|
60 | points are assumed to be relative to this origin. |
---|
61 | If geo_reference is None, the default geo ref object is used. |
---|
62 | |
---|
63 | default_attribute_name: Name of default attribute to be used with |
---|
64 | get_attribute_values. The idea is that the dataset can be |
---|
65 | equipped with information about which attribute to return. |
---|
66 | If None, the default is the "first" |
---|
67 | |
---|
68 | latitudes, longitudes: Vectors of latitudes and longitudes, |
---|
69 | used to specify location instead of points. |
---|
70 | |
---|
71 | points_are_lats_longs: Set this as true if the points are actually |
---|
72 | lats and longs, not UTM |
---|
73 | |
---|
74 | max_read_lines: The number of rows read into memory when using |
---|
75 | blocking to read a file. |
---|
76 | |
---|
77 | load_file_now: If true the file is automatically loaded |
---|
78 | into the geospatial instance. Used when blocking. |
---|
79 | |
---|
80 | file_name: Name of input netCDF file or .txt file. netCDF file must |
---|
81 | have dimensions "points" etc. |
---|
82 | .txt file is a comma seperated file with x, y and attribute |
---|
83 | data. |
---|
84 | |
---|
85 | The first line has the titles of the columns. The first two |
---|
86 | column titles are checked to see if they start with lat or |
---|
87 | long (not case sensitive). If so the data is assumed to be |
---|
88 | latitude and longitude, in decimal format and converted to |
---|
89 | UTM. Otherwise the first two columns are assumed to be the x |
---|
90 | and y, and the title names acually used are ignored. |
---|
91 | |
---|
92 | |
---|
93 | The format for a .txt file is: |
---|
94 | 1st line: [column names] |
---|
95 | other lines: x y [attributes] |
---|
96 | |
---|
97 | for example: |
---|
98 | x, y, elevation, friction |
---|
99 | 0.6, 0.7, 4.9, 0.3 |
---|
100 | 1.9, 2.8, 5, 0.3 |
---|
101 | 2.7, 2.4, 5.2, 0.3 |
---|
102 | |
---|
103 | The first two columns have to be x, y or lat, long |
---|
104 | coordinates. |
---|
105 | |
---|
106 | |
---|
107 | The format for a Points dictionary is: |
---|
108 | |
---|
109 | ['pointlist'] a 2 column array describing points. 1st column x, |
---|
110 | 2nd column y. |
---|
111 | ['attributelist'], a dictionary of 1D arrays, representing |
---|
112 | attribute values at the point. The dictionary key is the attribute |
---|
113 | header. |
---|
114 | ['geo_reference'] a Geo_refernece object. Use if the point |
---|
115 | information is relative. This is optional. |
---|
116 | eg |
---|
117 | dic['pointlist'] = [[1.0,2.0],[3.0,5.0]] |
---|
118 | dic['attributelist']['elevation'] = [[7.0,5.0] |
---|
119 | |
---|
120 | verbose: |
---|
121 | |
---|
122 | |
---|
123 | """ |
---|
124 | |
---|
125 | if isinstance(data_points, basestring): |
---|
126 | # assume data point is really a file name |
---|
127 | file_name = data_points |
---|
128 | |
---|
129 | self.set_verbose(verbose) |
---|
130 | self.geo_reference=None #create the attribute |
---|
131 | self.file_name = file_name |
---|
132 | |
---|
133 | if max_read_lines is None: |
---|
134 | self.max_read_lines = MAX_READ_LINES |
---|
135 | else: |
---|
136 | self.max_read_lines = max_read_lines |
---|
137 | |
---|
138 | if file_name is None: |
---|
139 | if latitudes is not None or longitudes is not None or \ |
---|
140 | points_are_lats_longs: |
---|
141 | data_points, geo_reference = \ |
---|
142 | _set_using_lat_long(latitudes=latitudes, |
---|
143 | longitudes=longitudes, |
---|
144 | geo_reference=geo_reference, |
---|
145 | data_points=data_points, |
---|
146 | points_are_lats_longs=points_are_lats_longs) |
---|
147 | self.check_data_points(data_points) |
---|
148 | self.set_attributes(attributes) |
---|
149 | self.set_geo_reference(geo_reference) |
---|
150 | self.set_default_attribute_name(default_attribute_name) |
---|
151 | |
---|
152 | elif load_file_now is True: |
---|
153 | # watch for case where file name and points, |
---|
154 | # attributes etc are provided!! |
---|
155 | # if file name then all provided info will be removed! |
---|
156 | |
---|
157 | if verbose is True: |
---|
158 | if file_name is not None: |
---|
159 | print 'Loading Geospatial data from file: %s' %file_name |
---|
160 | |
---|
161 | self.import_points_file(file_name, verbose=verbose) |
---|
162 | |
---|
163 | self.check_data_points(self.data_points) |
---|
164 | self.set_attributes(self.attributes) |
---|
165 | self.set_geo_reference(self.geo_reference) |
---|
166 | self.set_default_attribute_name(default_attribute_name) |
---|
167 | |
---|
168 | if verbose is True: |
---|
169 | if file_name is not None: |
---|
170 | print 'Geospatial data created from file: %s' %file_name |
---|
171 | if load_file_now is False: |
---|
172 | print 'Data will be loaded blockwise on demand' |
---|
173 | |
---|
174 | if file_name.endswith('csv') or file_name.endswith('txt'): |
---|
175 | pass |
---|
176 | # This message was misleading. |
---|
177 | # FIXME (Ole): Are we blocking here or not? |
---|
178 | #print 'ASCII formats are not that great for ' |
---|
179 | #print 'blockwise reading. Consider storing this' |
---|
180 | #print 'data as a pts NetCDF format' |
---|
181 | |
---|
182 | def __len__(self): |
---|
183 | return len(self.data_points) |
---|
184 | |
---|
185 | def __repr__(self): |
---|
186 | return str(self.get_data_points(absolute=True)) |
---|
187 | |
---|
188 | |
---|
189 | def check_data_points(self, data_points): |
---|
190 | """Checks data points |
---|
191 | """ |
---|
192 | |
---|
193 | if data_points is None: |
---|
194 | self.data_points = None |
---|
195 | msg = 'There is no data or file provided!' |
---|
196 | raise ValueError, msg |
---|
197 | |
---|
198 | else: |
---|
199 | self.data_points = ensure_numeric(data_points) |
---|
200 | #print "self.data_points.shape",self.data_points.shape |
---|
201 | if not (0,) == self.data_points.shape: |
---|
202 | assert len(self.data_points.shape) == 2 |
---|
203 | assert self.data_points.shape[1] == 2 |
---|
204 | |
---|
205 | def set_attributes(self, attributes): |
---|
206 | """Check and assign attributes dictionary |
---|
207 | """ |
---|
208 | |
---|
209 | if attributes is None: |
---|
210 | self.attributes = None |
---|
211 | return |
---|
212 | |
---|
213 | if not isinstance(attributes, DictType): |
---|
214 | #Convert single attribute into dictionary |
---|
215 | attributes = {DEFAULT_ATTRIBUTE: attributes} |
---|
216 | |
---|
217 | #Check input attributes |
---|
218 | for key in attributes.keys(): |
---|
219 | try: |
---|
220 | attributes[key] = ensure_numeric(attributes[key]) |
---|
221 | except: |
---|
222 | msg = 'Attribute %s could not be converted' %key |
---|
223 | msg += 'to a numeric vector' |
---|
224 | raise msg |
---|
225 | |
---|
226 | self.attributes = attributes |
---|
227 | |
---|
228 | #def set_geo_reference(self, geo_reference): |
---|
229 | # # FIXME (Ole): Backwards compatibility - deprecate |
---|
230 | # self.setgeo_reference(geo_reference) |
---|
231 | |
---|
232 | def set_geo_reference(self, geo_reference): |
---|
233 | """Set the georeference of geospatial data. |
---|
234 | |
---|
235 | It can also be used to change the georeference and will ensure that |
---|
236 | the absolute coordinate values are unchanged. |
---|
237 | """ |
---|
238 | from anuga.coordinate_transforms.geo_reference import Geo_reference |
---|
239 | |
---|
240 | if geo_reference is None: |
---|
241 | # Use default - points are in absolute coordinates |
---|
242 | geo_reference = Geo_reference() |
---|
243 | |
---|
244 | # Allow for tuple (zone, xllcorner, yllcorner) |
---|
245 | geo_reference = ensure_geo_reference(geo_reference) |
---|
246 | |
---|
247 | if not isinstance(geo_reference, Geo_reference): |
---|
248 | # FIXME (Ole): This exception will be raised even |
---|
249 | # if geo_reference is None. Is that the intent Duncan? |
---|
250 | msg = 'Argument geo_reference must be a valid Geo_reference \n' |
---|
251 | msg += 'object or None.' |
---|
252 | raise msg |
---|
253 | |
---|
254 | # If a geo_reference already exists, change the point data according to |
---|
255 | # the new geo reference |
---|
256 | if self.geo_reference is not None: |
---|
257 | self.data_points = self.get_data_points(geo_reference=geo_reference) |
---|
258 | |
---|
259 | self.geo_reference = geo_reference |
---|
260 | |
---|
261 | |
---|
262 | def set_default_attribute_name(self, default_attribute_name): |
---|
263 | self.default_attribute_name = default_attribute_name |
---|
264 | |
---|
265 | def set_verbose(self, verbose=False): |
---|
266 | if verbose in [False, True]: |
---|
267 | self.verbose = verbose |
---|
268 | else: |
---|
269 | msg = 'Illegal value: %s' %str(verbose) |
---|
270 | raise Exception, msg |
---|
271 | |
---|
272 | def clip(self, polygon, closed=True, verbose=False): |
---|
273 | """Clip geospatial data by a polygon |
---|
274 | |
---|
275 | Input |
---|
276 | polygon - Either a list of points, an Nx2 array or |
---|
277 | a Geospatial data object. |
---|
278 | closed - (optional) determine whether points on boundary should be |
---|
279 | regarded as belonging to the polygon (closed = True) |
---|
280 | or not (closed = False). Default is True. |
---|
281 | |
---|
282 | Output |
---|
283 | New geospatial data object representing points inside |
---|
284 | specified polygon. |
---|
285 | |
---|
286 | |
---|
287 | Note - this method is non-destructive and leaves the data in 'self' |
---|
288 | unchanged |
---|
289 | """ |
---|
290 | |
---|
291 | from anuga.utilities.polygon import inside_polygon |
---|
292 | |
---|
293 | if isinstance(polygon, Geospatial_data): |
---|
294 | # Polygon is an object - extract points |
---|
295 | polygon = polygon.get_data_points() |
---|
296 | |
---|
297 | points = self.get_data_points() |
---|
298 | # if verbose: print '%s points:%s' %(verbose,points) |
---|
299 | inside_indices = inside_polygon(points, polygon, closed, verbose) |
---|
300 | |
---|
301 | clipped_G = self.get_sample(inside_indices) |
---|
302 | |
---|
303 | # clipped_points = take(points, inside_indices) |
---|
304 | |
---|
305 | # Clip all attributes |
---|
306 | # attributes = self.get_all_attributes() |
---|
307 | |
---|
308 | # clipped_attributes = {} |
---|
309 | # if attributes is not None: |
---|
310 | # for key, att in attributes.items(): |
---|
311 | # clipped_attributes[key] = take(att, inside_indices) |
---|
312 | |
---|
313 | # return Geospatial_data(clipped_points, clipped_attributes) |
---|
314 | return clipped_G |
---|
315 | |
---|
316 | |
---|
317 | def clip_outside(self, polygon, closed=True,verbose=False): |
---|
318 | """Clip geospatial date by a polygon, keeping data OUTSIDE of polygon |
---|
319 | |
---|
320 | Input |
---|
321 | polygon - Either a list of points, an Nx2 array or |
---|
322 | a Geospatial data object. |
---|
323 | closed - (optional) determine whether points on boundary should be |
---|
324 | regarded as belonging to the polygon (closed = True) |
---|
325 | or not (closed = False). Default is True. |
---|
326 | |
---|
327 | Output |
---|
328 | Geospatial data object representing point OUTSIDE specified polygon |
---|
329 | |
---|
330 | """ |
---|
331 | |
---|
332 | from anuga.utilities.polygon import outside_polygon |
---|
333 | |
---|
334 | if isinstance(polygon, Geospatial_data): |
---|
335 | # Polygon is an object - extract points |
---|
336 | polygon = polygon.get_data_points() |
---|
337 | |
---|
338 | points = self.get_data_points() |
---|
339 | outside_indices = outside_polygon(points, polygon, closed,verbose) |
---|
340 | |
---|
341 | clipped_G = self.get_sample(outside_indices) |
---|
342 | |
---|
343 | # clipped_points = take(points, outside_indices) |
---|
344 | |
---|
345 | # Clip all attributes |
---|
346 | # attributes = self.get_all_attributes() |
---|
347 | |
---|
348 | # clipped_attributes = {} |
---|
349 | # if attributes is not None: |
---|
350 | # for key, att in attributes.items(): |
---|
351 | # clipped_attributes[key] = take(att, outside_indices) |
---|
352 | |
---|
353 | # return Geospatial_data(clipped_points, clipped_attributes) |
---|
354 | return clipped_G |
---|
355 | |
---|
356 | |
---|
357 | def get_geo_reference(self): |
---|
358 | return self.geo_reference |
---|
359 | |
---|
360 | def get_data_points(self, absolute=True, geo_reference=None, |
---|
361 | as_lat_long=False, isSouthHemisphere=True): |
---|
362 | """Get coordinates for all data points as an Nx2 array |
---|
363 | |
---|
364 | If absolute is False returned coordinates are relative to the |
---|
365 | internal georeference's xll and yll corners, otherwise |
---|
366 | absolute UTM coordinates are returned. |
---|
367 | |
---|
368 | If a geo_reference is passed the points are returned relative |
---|
369 | to that geo_reference. |
---|
370 | |
---|
371 | isSH (isSouthHemisphere) is only used when getting data |
---|
372 | points "as_lat_long" is True and if FALSE will return lats and |
---|
373 | longs valid for the Northern Hemisphere. |
---|
374 | |
---|
375 | Default: absolute is True. |
---|
376 | """ |
---|
377 | if as_lat_long is True: |
---|
378 | msg = "Points need a zone to be converted into lats and longs" |
---|
379 | assert self.geo_reference is not None, msg |
---|
380 | zone = self.geo_reference.get_zone() |
---|
381 | assert self.geo_reference.get_zone() is not DEFAULT_ZONE, msg |
---|
382 | lats_longs = [] |
---|
383 | for point in self.get_data_points(True): |
---|
384 | |
---|
385 | # UTMtoLL(northing, easting, zone, |
---|
386 | lat_calced, long_calced = UTMtoLL(point[1],point[0], |
---|
387 | zone, isSouthHemisphere) |
---|
388 | lats_longs.append((lat_calced, long_calced)) # to hash |
---|
389 | return lats_longs |
---|
390 | |
---|
391 | if absolute is True and geo_reference is None: |
---|
392 | return self.geo_reference.get_absolute(self.data_points) |
---|
393 | elif geo_reference is not None: |
---|
394 | return geo_reference.change_points_geo_ref(self.data_points, |
---|
395 | self.geo_reference) |
---|
396 | else: |
---|
397 | # If absolute is False |
---|
398 | return self.data_points |
---|
399 | |
---|
400 | |
---|
401 | def get_attributes(self, attribute_name=None): |
---|
402 | """Return values for one named attribute. |
---|
403 | |
---|
404 | If attribute_name is None, default_attribute_name is used |
---|
405 | """ |
---|
406 | |
---|
407 | if attribute_name is None: |
---|
408 | if self.default_attribute_name is not None: |
---|
409 | attribute_name = self.default_attribute_name |
---|
410 | else: |
---|
411 | attribute_name = self.attributes.keys()[0] |
---|
412 | # above line takes the first one from keys |
---|
413 | |
---|
414 | if self.verbose is True: |
---|
415 | print 'Using attribute %s' %attribute_name |
---|
416 | print 'Available attributes: %s' %(self.attributes.keys()) |
---|
417 | |
---|
418 | msg = 'Attribute name %s does not exist in data set' %attribute_name |
---|
419 | assert self.attributes.has_key(attribute_name), msg |
---|
420 | |
---|
421 | return self.attributes[attribute_name] |
---|
422 | |
---|
423 | def get_all_attributes(self): |
---|
424 | """ |
---|
425 | Return values for all attributes. |
---|
426 | The return value is either None or a dictionary (possibly empty). |
---|
427 | """ |
---|
428 | |
---|
429 | return self.attributes |
---|
430 | |
---|
431 | def __add__(self, other): |
---|
432 | """ |
---|
433 | Returns the addition of 2 geospatical objects, |
---|
434 | objects are concatencated to the end of each other |
---|
435 | |
---|
436 | NOTE: doesn't add if objects contain different |
---|
437 | attributes |
---|
438 | |
---|
439 | Always return absolute points! |
---|
440 | This alse means, that if you add None to the object, |
---|
441 | it will be turned into absolute coordinates |
---|
442 | |
---|
443 | other can be None in which case nothing is added to self. |
---|
444 | """ |
---|
445 | |
---|
446 | |
---|
447 | # find objects zone and checks if the same |
---|
448 | geo_ref1 = self.get_geo_reference() |
---|
449 | zone1 = geo_ref1.get_zone() |
---|
450 | |
---|
451 | |
---|
452 | if other is not None: |
---|
453 | |
---|
454 | geo_ref2 = other.get_geo_reference() |
---|
455 | zone2 = geo_ref2.get_zone() |
---|
456 | |
---|
457 | geo_ref1.reconcile_zones(geo_ref2) |
---|
458 | |
---|
459 | |
---|
460 | new_points = numpy.concatenate((self.get_data_points(absolute=True), |
---|
461 | other.get_data_points(absolute=True)), |
---|
462 | axis = 0) |
---|
463 | |
---|
464 | |
---|
465 | |
---|
466 | # Concatenate attributes if any |
---|
467 | if self.attributes is None: |
---|
468 | if other.attributes is not None: |
---|
469 | msg = 'Geospatial data must have the same \n' |
---|
470 | msg += 'attributes to allow addition.' |
---|
471 | raise Exception, msg |
---|
472 | |
---|
473 | new_attributes = None |
---|
474 | else: |
---|
475 | new_attributes = {} |
---|
476 | for x in self.attributes.keys(): |
---|
477 | if other.attributes.has_key(x): |
---|
478 | |
---|
479 | attrib1 = self.attributes[x] |
---|
480 | attrib2 = other.attributes[x] |
---|
481 | new_attributes[x] = numpy.concatenate((attrib1, attrib2)) |
---|
482 | |
---|
483 | else: |
---|
484 | msg = 'Geospatial data must have the same \n' |
---|
485 | msg += 'attributes to allow addition.' |
---|
486 | raise Exception, msg |
---|
487 | |
---|
488 | |
---|
489 | else: |
---|
490 | #other is None: |
---|
491 | |
---|
492 | new_points = self.get_data_points(absolute=True) |
---|
493 | new_attributes = self.attributes |
---|
494 | |
---|
495 | |
---|
496 | |
---|
497 | # Instantiate new data object and return absolute coordinates |
---|
498 | new_geo_ref = Geo_reference(geo_ref1.get_zone(), 0.0, 0.0) |
---|
499 | return Geospatial_data(new_points, |
---|
500 | new_attributes, |
---|
501 | new_geo_ref) |
---|
502 | |
---|
503 | |
---|
504 | def __radd__(self, other): |
---|
505 | """Handle cases like None + Geospatial_data(...) |
---|
506 | """ |
---|
507 | |
---|
508 | return self + other |
---|
509 | |
---|
510 | |
---|
511 | |
---|
512 | ### |
---|
513 | # IMPORT/EXPORT POINTS FILES |
---|
514 | ### |
---|
515 | |
---|
516 | def import_points_file(self, file_name, delimiter=None, verbose=False): |
---|
517 | """ load an .txt, .csv or .pts file |
---|
518 | Note: will throw an IOError/SyntaxError if it can't load the file. |
---|
519 | Catch these! |
---|
520 | |
---|
521 | Post condition: self.attributes dictionary has been set |
---|
522 | """ |
---|
523 | |
---|
524 | if access(file_name, F_OK) == 0 : |
---|
525 | msg = 'File %s does not exist or is not accessible' %file_name |
---|
526 | raise IOError, msg |
---|
527 | |
---|
528 | attributes = {} |
---|
529 | if file_name[-4:]== ".pts": |
---|
530 | try: |
---|
531 | data_points, attributes, geo_reference =\ |
---|
532 | _read_pts_file(file_name, verbose) |
---|
533 | except IOError, e: |
---|
534 | msg = 'Could not open file %s ' %file_name |
---|
535 | raise IOError, msg |
---|
536 | |
---|
537 | elif file_name[-4:]== ".txt" or file_name[-4:]== ".csv": |
---|
538 | try: |
---|
539 | data_points, attributes, geo_reference =\ |
---|
540 | _read_csv_file(file_name, verbose) |
---|
541 | except IOError, e: |
---|
542 | # This should only be if a file is not found |
---|
543 | msg = 'Could not open file %s. ' %file_name |
---|
544 | msg += 'Check the file location.' |
---|
545 | raise IOError, msg |
---|
546 | except SyntaxError, e: |
---|
547 | # This should only be if there is a format error |
---|
548 | msg = 'Could not open file %s. \n' %file_name |
---|
549 | msg += Error_message['IOError'] |
---|
550 | #print "msg", msg |
---|
551 | raise SyntaxError, msg |
---|
552 | else: |
---|
553 | msg = 'Extension %s is unknown' %file_name[-4:] |
---|
554 | raise IOError, msg |
---|
555 | # print'in import data_points', data_points |
---|
556 | # print'in import attributes', attributes |
---|
557 | # print'in import data_points', geo_reference |
---|
558 | self.data_points = data_points |
---|
559 | self.attributes = attributes |
---|
560 | self.geo_reference = geo_reference |
---|
561 | |
---|
562 | # return all_data |
---|
563 | |
---|
564 | def export_points_file(self, file_name, absolute=True, |
---|
565 | as_lat_long=False, isSouthHemisphere=True): |
---|
566 | |
---|
567 | """ |
---|
568 | write a points file, file_name, as a text (.csv) or binary (.pts) file |
---|
569 | file_name is the file name, including the extension |
---|
570 | The point_dict is defined at the top of this file. |
---|
571 | |
---|
572 | If absolute is True data the xll and yll are added to the points value |
---|
573 | and the xll and yll of the geo_reference are set to 0. |
---|
574 | |
---|
575 | If absolute is False data points at returned as relative to the xll |
---|
576 | and yll and geo_reference remains uneffected |
---|
577 | |
---|
578 | isSouthHemisphere: is only used when getting data |
---|
579 | points "as_lat_long" is True and if FALSE will return lats and |
---|
580 | longs valid for the Northern Hemisphere. |
---|
581 | |
---|
582 | """ |
---|
583 | |
---|
584 | if (file_name[-4:] == ".pts"): |
---|
585 | if absolute is True: |
---|
586 | geo_ref = deepcopy(self.geo_reference) |
---|
587 | geo_ref.xllcorner = 0 |
---|
588 | geo_ref.yllcorner = 0 |
---|
589 | _write_pts_file(file_name, |
---|
590 | self.get_data_points(absolute), |
---|
591 | self.get_all_attributes(), |
---|
592 | geo_ref) |
---|
593 | else: |
---|
594 | _write_pts_file(file_name, |
---|
595 | self.get_data_points(absolute), |
---|
596 | self.get_all_attributes(), |
---|
597 | self.get_geo_reference()) |
---|
598 | |
---|
599 | elif file_name[-4:] == ".txt" or file_name[-4:] == ".csv": |
---|
600 | msg = "ERROR: trying to write a .txt file with relative data." |
---|
601 | assert absolute, msg |
---|
602 | _write_csv_file(file_name, |
---|
603 | self.get_data_points(absolute=True, |
---|
604 | as_lat_long=as_lat_long, |
---|
605 | isSouthHemisphere=isSouthHemisphere), |
---|
606 | self.get_all_attributes(), |
---|
607 | as_lat_long=as_lat_long) |
---|
608 | |
---|
609 | elif file_name[-4:] == ".urs" : |
---|
610 | msg = "ERROR: Can not write a .urs file as a relative file." |
---|
611 | assert absolute, msg |
---|
612 | _write_urs_file(file_name, |
---|
613 | self.get_data_points(as_lat_long=True, |
---|
614 | isSouthHemisphere=isSouthHemisphere)) |
---|
615 | |
---|
616 | else: |
---|
617 | msg = 'Unknown file type %s ' %file_name |
---|
618 | raise IOError, msg |
---|
619 | |
---|
620 | def get_sample(self, indices): |
---|
621 | """ Returns a object which is a subset of the original |
---|
622 | and the data points and attributes in this new object refer to |
---|
623 | the indices provided |
---|
624 | |
---|
625 | Input |
---|
626 | indices- a list of integers that represent the new object |
---|
627 | Output |
---|
628 | New geospatial data object representing points specified by |
---|
629 | the indices |
---|
630 | """ |
---|
631 | #FIXME: add the geo_reference to this |
---|
632 | # print 'hello from get_sample' |
---|
633 | points = self.get_data_points() |
---|
634 | sampled_points = take(points, indices) |
---|
635 | |
---|
636 | attributes = self.get_all_attributes() |
---|
637 | |
---|
638 | sampled_attributes = {} |
---|
639 | if attributes is not None: |
---|
640 | for key, att in attributes.items(): |
---|
641 | sampled_attributes[key] = numpy.take(att, indices) |
---|
642 | |
---|
643 | # print 'goodbye from get_sample' |
---|
644 | |
---|
645 | return Geospatial_data(sampled_points, sampled_attributes) |
---|
646 | |
---|
647 | |
---|
648 | def split(self, factor=0.5,seed_num=None, verbose=False): |
---|
649 | """Returns two |
---|
650 | geospatial_data object, first is the size of the 'factor' |
---|
651 | smaller the original and the second is the remainder. The two |
---|
652 | new object are disjoin set of each other. |
---|
653 | |
---|
654 | Points of the two new object have selected RANDOMLY. |
---|
655 | |
---|
656 | This method create two lists of indices which are passed into |
---|
657 | get_sample. The lists are created using random numbers, and |
---|
658 | they are unique sets eg. total_list(1,2,3,4,5,6,7,8,9) |
---|
659 | random_list(1,3,6,7,9) and remainder_list(0,2,4,5,8) |
---|
660 | |
---|
661 | Input - the factor which to split the object, if 0.1 then 10% of the |
---|
662 | together object will be returned |
---|
663 | |
---|
664 | Output - two geospatial_data objects that are disjoint sets of the |
---|
665 | original |
---|
666 | """ |
---|
667 | |
---|
668 | i=0 |
---|
669 | self_size = len(self) |
---|
670 | random_list = [] |
---|
671 | remainder_list = [] |
---|
672 | new_size = round(factor*self_size) |
---|
673 | |
---|
674 | # Find unique random numbers |
---|
675 | if verbose: print "make unique random number list and get indices" |
---|
676 | |
---|
677 | total=numpy.array(range(self_size)) |
---|
678 | total_list = total.tolist() |
---|
679 | if verbose: print "total list len",len(total_list) |
---|
680 | |
---|
681 | # There will be repeated random numbers however will not be a |
---|
682 | # problem as they are being 'pop'ed out of array so if there |
---|
683 | # are two numbers the same they will pop different indicies, |
---|
684 | # still basically random |
---|
685 | ## create list of non-unquie random numbers |
---|
686 | if verbose: print "create random numbers list %s long" %new_size |
---|
687 | |
---|
688 | # Set seed if provided, mainly important for unit test! |
---|
689 | # plus recalcule seed when no seed provided. |
---|
690 | if seed_num != None: |
---|
691 | numpy.random.seed(seed_num,seed_num) |
---|
692 | else: |
---|
693 | numpy.random.seed() |
---|
694 | if verbose: print "seed:", numpy.random.get_seed() |
---|
695 | |
---|
696 | #print 'size',self_size, new_size |
---|
697 | random_num = numpy.randint(0,self_size-1,(int(new_size),)) |
---|
698 | #print 'random num',random_num |
---|
699 | random_num = random_num.tolist() |
---|
700 | |
---|
701 | #need to sort and reverse so the pop() works correctly |
---|
702 | random_num.sort() |
---|
703 | random_num.reverse() |
---|
704 | |
---|
705 | if verbose: print "make random number list and get indices" |
---|
706 | j=0 |
---|
707 | k=1 |
---|
708 | remainder_list = total_list[:] |
---|
709 | # pops array index (random_num) from remainder_list |
---|
710 | # (which starts as the |
---|
711 | # total_list and appends to random_list |
---|
712 | random_num_len = len(random_num) |
---|
713 | for i in random_num: |
---|
714 | random_list.append(remainder_list.pop(i)) |
---|
715 | j+=1 |
---|
716 | #prints progress |
---|
717 | if verbose and round(random_num_len/10*k)==j: |
---|
718 | print '(%s/%s)' %(j, random_num_len) |
---|
719 | k+=1 |
---|
720 | |
---|
721 | # FIXME: move to tests, it might take a long time |
---|
722 | # then create an array of random lenght between 500 and 1000, |
---|
723 | # and use a random factor between 0 and 1 |
---|
724 | # setup for assertion |
---|
725 | test_total = random_list[:] |
---|
726 | test_total.extend(remainder_list) |
---|
727 | test_total.sort() |
---|
728 | msg = 'The two random lists made from the original list when added '\ |
---|
729 | 'together DO NOT equal the original list' |
---|
730 | assert (total_list==test_total),msg |
---|
731 | |
---|
732 | # Get new samples |
---|
733 | if verbose: print "get values of indices for random list" |
---|
734 | G1 = self.get_sample(random_list) |
---|
735 | if verbose: print "get values of indices for opposite of random list" |
---|
736 | G2 = self.get_sample(remainder_list) |
---|
737 | |
---|
738 | return G1, G2 |
---|
739 | |
---|
740 | def __iter__(self): |
---|
741 | """Read in the header, number_of_points and save the |
---|
742 | file pointer position |
---|
743 | """ |
---|
744 | from Scientific.IO.NetCDF import NetCDFFile |
---|
745 | #print "Starting to block" |
---|
746 | #FIXME - what to do if the file isn't there |
---|
747 | |
---|
748 | # FIXME (Ole): Shouldn't this go into the constructor? |
---|
749 | # This method acts like the constructor when blcoking. |
---|
750 | # ... and shouldn't it be called block_size? |
---|
751 | # |
---|
752 | if self.max_read_lines is None: |
---|
753 | self.max_read_lines = MAX_READ_LINES |
---|
754 | if self.file_name[-4:] == ".pts": |
---|
755 | |
---|
756 | # See if the file is there. Throw a QUIET IO error if it isn't |
---|
757 | fd = open(self.file_name,'r') |
---|
758 | fd.close() |
---|
759 | |
---|
760 | # Throws prints to screen if file not present |
---|
761 | self.fid = NetCDFFile(self.file_name, 'r') |
---|
762 | |
---|
763 | self.blocking_georef, self.blocking_keys, self.number_of_points =\ |
---|
764 | _read_pts_file_header(self.fid, |
---|
765 | self.verbose) |
---|
766 | self.start_row = 0 |
---|
767 | self.last_row = self.number_of_points |
---|
768 | self.show_verbose = 0 |
---|
769 | self.verbose_block_size = (self.last_row + 10)/10 |
---|
770 | self.block_number = 0 |
---|
771 | self.number_of_blocks = self.number_of_points/self.max_read_lines |
---|
772 | # This computes the number of full blocks. The last block may be |
---|
773 | # smaller and won't be ircluded in this estimate. |
---|
774 | |
---|
775 | if self.verbose is True: |
---|
776 | print 'Reading %d points (in ~%d blocks) from file %s. '\ |
---|
777 | %(self.number_of_points, |
---|
778 | self.number_of_blocks, |
---|
779 | self.file_name), |
---|
780 | print 'Each block consists of %d data points'\ |
---|
781 | %self.max_read_lines |
---|
782 | |
---|
783 | else: |
---|
784 | # Assume the file is a csv file |
---|
785 | file_pointer = open(self.file_name) |
---|
786 | self.header, self.file_pointer = \ |
---|
787 | _read_csv_file_header(file_pointer) |
---|
788 | self.blocking_georef = None # Used for reconciling zones |
---|
789 | |
---|
790 | return self |
---|
791 | |
---|
792 | |
---|
793 | def next(self): |
---|
794 | """ read a block, instanciate a new geospatial and return it""" |
---|
795 | |
---|
796 | if self.file_name[-4:] == ".pts": |
---|
797 | if self.start_row == self.last_row: |
---|
798 | # Read the end of the file last iteration |
---|
799 | # Remove blocking attributes |
---|
800 | self.fid.close() |
---|
801 | del self.max_read_lines |
---|
802 | del self.blocking_georef |
---|
803 | del self.last_row |
---|
804 | del self.start_row |
---|
805 | del self.blocking_keys |
---|
806 | del self.fid |
---|
807 | raise StopIteration |
---|
808 | fin_row = self.start_row + self.max_read_lines |
---|
809 | if fin_row > self.last_row: |
---|
810 | fin_row = self.last_row |
---|
811 | |
---|
812 | |
---|
813 | |
---|
814 | if self.verbose is True: |
---|
815 | if self.show_verbose >= self.start_row and \ |
---|
816 | self.show_verbose < fin_row: |
---|
817 | |
---|
818 | |
---|
819 | #print 'Doing %d of %d' %(self.start_row, self.last_row+10) |
---|
820 | |
---|
821 | print 'Reading block %d (points %d to %d) out of %d'\ |
---|
822 | %(self.block_number, |
---|
823 | self.start_row, |
---|
824 | fin_row, |
---|
825 | self.number_of_blocks) |
---|
826 | |
---|
827 | |
---|
828 | self.show_verbose += max(self.max_read_lines, |
---|
829 | self.verbose_block_size) |
---|
830 | |
---|
831 | |
---|
832 | # Read next block |
---|
833 | pointlist, att_dict, = \ |
---|
834 | _read_pts_file_blocking(self.fid, |
---|
835 | self.start_row, |
---|
836 | fin_row, |
---|
837 | self.blocking_keys) |
---|
838 | |
---|
839 | geo = Geospatial_data(pointlist, att_dict, self.blocking_georef) |
---|
840 | self.start_row = fin_row |
---|
841 | |
---|
842 | self.block_number += 1 |
---|
843 | |
---|
844 | else: |
---|
845 | # Assume the file is a csv file |
---|
846 | try: |
---|
847 | #print "self.max_read_lines", self.max_read_lines |
---|
848 | pointlist, att_dict, geo_ref, self.file_pointer = \ |
---|
849 | _read_csv_file_blocking( self.file_pointer, |
---|
850 | self.header[:], |
---|
851 | max_read_lines=self.max_read_lines, |
---|
852 | verbose=self.verbose) |
---|
853 | |
---|
854 | # Check that the zones haven't changed. |
---|
855 | if geo_ref is not None: |
---|
856 | geo_ref.reconcile_zones(self.blocking_georef) |
---|
857 | self.blocking_georef = geo_ref |
---|
858 | elif self.blocking_georef is not None: |
---|
859 | |
---|
860 | msg = 'Geo reference given, then not given.' |
---|
861 | msg += ' This should not happen.' |
---|
862 | raise ValueError, msg |
---|
863 | geo = Geospatial_data(pointlist, att_dict, geo_ref) |
---|
864 | except StopIteration: |
---|
865 | self.file_pointer.close() |
---|
866 | del self.header |
---|
867 | del self.file_pointer |
---|
868 | raise StopIteration |
---|
869 | except ANUGAError: |
---|
870 | self.file_pointer.close() |
---|
871 | del self.header |
---|
872 | del self.file_pointer |
---|
873 | raise |
---|
874 | except SyntaxError: |
---|
875 | self.file_pointer.close() |
---|
876 | del self.header |
---|
877 | del self.file_pointer |
---|
878 | # This should only be if there is a format error |
---|
879 | msg = 'Could not open file %s. \n' %self.file_name |
---|
880 | msg += Error_message['IOError'] |
---|
881 | raise SyntaxError, msg |
---|
882 | return geo |
---|
883 | |
---|
884 | |
---|
885 | ##################### Error messages ########### |
---|
886 | Error_message = {} |
---|
887 | Em = Error_message |
---|
888 | Em['IOError'] = "NOTE: The format for a comma separated .txt/.csv file is:\n" |
---|
889 | Em['IOError'] += " 1st line: [column names]\n" |
---|
890 | Em['IOError'] += " other lines: [x value], [y value], [attributes]\n" |
---|
891 | Em['IOError'] += "\n" |
---|
892 | Em['IOError'] += " for example:\n" |
---|
893 | Em['IOError'] += " x, y, elevation, friction\n" |
---|
894 | Em['IOError'] += " 0.6, 0.7, 4.9, 0.3\n" |
---|
895 | Em['IOError'] += " 1.9, 2.8, 5, 0.3\n" |
---|
896 | Em['IOError'] += " 2.7, 2.4, 5.2, 0.3\n" |
---|
897 | Em['IOError'] += "\n" |
---|
898 | Em['IOError'] += "The first two columns are assumed to be x, y coordinates.\n" |
---|
899 | Em['IOError'] += "The attribute values must be numeric.\n" |
---|
900 | |
---|
901 | def _set_using_lat_long(latitudes, |
---|
902 | longitudes, |
---|
903 | geo_reference, |
---|
904 | data_points, |
---|
905 | points_are_lats_longs): |
---|
906 | """ |
---|
907 | if the points has lat long info, assume it is in (lat, long) order. |
---|
908 | """ |
---|
909 | |
---|
910 | if geo_reference is not None: |
---|
911 | msg = """A georeference is specified yet latitude and longitude |
---|
912 | are also specified!""" |
---|
913 | raise ValueError, msg |
---|
914 | |
---|
915 | if data_points is not None and not points_are_lats_longs: |
---|
916 | msg = """Data points are specified yet latitude and |
---|
917 | longitude are also specified.""" |
---|
918 | raise ValueError, msg |
---|
919 | |
---|
920 | if points_are_lats_longs: |
---|
921 | if data_points is None: |
---|
922 | msg = """Data points are not specified.""" |
---|
923 | raise ValueError, msg |
---|
924 | lats_longs = ensure_numeric(data_points) |
---|
925 | latitudes = numpy.ravel(lats_longs[:,0:1]) |
---|
926 | longitudes = numpy.ravel(lats_longs[:,1:]) |
---|
927 | |
---|
928 | if latitudes is None and longitudes is None: |
---|
929 | msg = """Latitudes and Longitudes are not specified.""" |
---|
930 | raise ValueError, msg |
---|
931 | |
---|
932 | if latitudes is None: |
---|
933 | msg = """Longitudes are specified yet latitudes aren't.""" |
---|
934 | raise ValueError, msg |
---|
935 | |
---|
936 | if longitudes is None: |
---|
937 | msg = """Latitudes are specified yet longitudes aren't.""" |
---|
938 | raise ValueError, msg |
---|
939 | |
---|
940 | data_points, zone = convert_from_latlon_to_utm(latitudes=latitudes, |
---|
941 | longitudes=longitudes) |
---|
942 | return data_points, Geo_reference(zone=zone) |
---|
943 | |
---|
944 | |
---|
945 | def _read_pts_file(file_name, verbose=False): |
---|
946 | """Read .pts NetCDF file |
---|
947 | |
---|
948 | Return a dic of array of points, and dic of array of attribute |
---|
949 | eg |
---|
950 | dic['points'] = [[1.0,2.0],[3.0,5.0]] |
---|
951 | dic['attributelist']['elevation'] = [[7.0,5.0] |
---|
952 | """ |
---|
953 | |
---|
954 | from Scientific.IO.NetCDF import NetCDFFile |
---|
955 | |
---|
956 | if verbose: print 'Reading ', file_name |
---|
957 | |
---|
958 | |
---|
959 | # See if the file is there. Throw a QUIET IO error if it isn't |
---|
960 | fd = open(file_name,'r') |
---|
961 | fd.close() |
---|
962 | |
---|
963 | # Throws prints to screen if file not present |
---|
964 | fid = NetCDFFile(file_name, 'r') |
---|
965 | |
---|
966 | pointlist = numpy.array(fid.variables['points']) |
---|
967 | keys = fid.variables.keys() |
---|
968 | if verbose: print 'Got %d variables: %s' %(len(keys), keys) |
---|
969 | try: |
---|
970 | keys.remove('points') |
---|
971 | except IOError, e: |
---|
972 | fid.close() |
---|
973 | msg = 'Expected keyword "points" but could not find it' |
---|
974 | raise IOError, msg |
---|
975 | |
---|
976 | attributes = {} |
---|
977 | for key in keys: |
---|
978 | if verbose: print "reading attribute '%s'" %key |
---|
979 | |
---|
980 | attributes[key] = numpy.array(fid.variables[key]) |
---|
981 | |
---|
982 | |
---|
983 | try: |
---|
984 | geo_reference = Geo_reference(NetCDFObject=fid) |
---|
985 | except AttributeError, e: |
---|
986 | geo_reference = None |
---|
987 | |
---|
988 | fid.close() |
---|
989 | |
---|
990 | return pointlist, attributes, geo_reference |
---|
991 | |
---|
992 | |
---|
993 | def _read_csv_file(file_name, verbose=False): |
---|
994 | """Read .csv file |
---|
995 | |
---|
996 | Return a dic of array of points, and dic of array of attribute |
---|
997 | eg |
---|
998 | dic['points'] = [[1.0,2.0],[3.0,5.0]] |
---|
999 | dic['attributelist']['elevation'] = [[7.0,5.0] |
---|
1000 | """ |
---|
1001 | |
---|
1002 | file_pointer = open(file_name) |
---|
1003 | header, file_pointer = _read_csv_file_header(file_pointer) |
---|
1004 | try: |
---|
1005 | pointlist, att_dict, geo_ref, file_pointer = \ |
---|
1006 | _read_csv_file_blocking( \ |
---|
1007 | file_pointer, |
---|
1008 | header, |
---|
1009 | max_read_lines=1e30) #If the file is bigger that this, block.. # FIXME (Ole) What's up here? |
---|
1010 | |
---|
1011 | except ANUGAError: |
---|
1012 | file_pointer.close() |
---|
1013 | raise |
---|
1014 | file_pointer.close() |
---|
1015 | return pointlist, att_dict, geo_ref |
---|
1016 | |
---|
1017 | CSV_DELIMITER = ',' |
---|
1018 | def _read_csv_file_header(file_pointer, |
---|
1019 | delimiter=CSV_DELIMITER, |
---|
1020 | verbose=False): |
---|
1021 | |
---|
1022 | """Read the header of a .csv file |
---|
1023 | Return a list of the header names |
---|
1024 | """ |
---|
1025 | line = file_pointer.readline() |
---|
1026 | header = clean_line(line, delimiter) |
---|
1027 | return header, file_pointer |
---|
1028 | |
---|
1029 | def _read_csv_file_blocking(file_pointer, header, |
---|
1030 | delimiter=CSV_DELIMITER, |
---|
1031 | max_read_lines=MAX_READ_LINES, |
---|
1032 | verbose=False): |
---|
1033 | |
---|
1034 | |
---|
1035 | """ |
---|
1036 | Read the body of a .csv file. |
---|
1037 | header: The list header of the csv file, with the x and y labels. |
---|
1038 | """ |
---|
1039 | points = [] |
---|
1040 | pointattributes = [] |
---|
1041 | att_dict = {} |
---|
1042 | |
---|
1043 | # This is to remove the x and y headers. |
---|
1044 | header = header[:] |
---|
1045 | try: |
---|
1046 | x_header = header.pop(0) |
---|
1047 | y_header = header.pop(0) |
---|
1048 | except IndexError: |
---|
1049 | # if there are not two columns this will occur. |
---|
1050 | # eg if it is a space seperated file |
---|
1051 | raise SyntaxError |
---|
1052 | |
---|
1053 | read_lines = 0 |
---|
1054 | while read_lines<max_read_lines: |
---|
1055 | line = file_pointer.readline() |
---|
1056 | #print "line",line |
---|
1057 | numbers = clean_line(line,delimiter) |
---|
1058 | if len(numbers) <= 1: |
---|
1059 | break |
---|
1060 | if line[0] == '#': |
---|
1061 | continue |
---|
1062 | read_lines += 1 |
---|
1063 | try: |
---|
1064 | x = float(numbers[0]) |
---|
1065 | y = float(numbers[1]) |
---|
1066 | points.append([x,y]) |
---|
1067 | numbers.pop(0) |
---|
1068 | numbers.pop(0) |
---|
1069 | if len(header) != len(numbers): |
---|
1070 | file_pointer.close() |
---|
1071 | msg = "File load error. \ |
---|
1072 | There might be a problem with the file header" |
---|
1073 | raise SyntaxError, msg |
---|
1074 | for i,num in enumerate(numbers): |
---|
1075 | num.strip() |
---|
1076 | if num != '\n' and num != '': |
---|
1077 | #attributes.append(float(num)) |
---|
1078 | att_dict.setdefault(header[i],[]).append(float(num)) |
---|
1079 | #except IOError: |
---|
1080 | except ValueError: |
---|
1081 | raise SyntaxError |
---|
1082 | if points == []: |
---|
1083 | raise StopIteration |
---|
1084 | |
---|
1085 | |
---|
1086 | pointlist = numpy.array(points).astype(numpy.float) |
---|
1087 | for key in att_dict.keys(): |
---|
1088 | att_dict[key] = numpy.array(att_dict[key]).astype(numpy.float) |
---|
1089 | |
---|
1090 | # Do stuff here so the info is in lat's and longs |
---|
1091 | geo_ref = None |
---|
1092 | x_header = lower(x_header[:3]) |
---|
1093 | y_header = lower(y_header[:3]) |
---|
1094 | if (x_header == 'lon' or x_header == 'lat') and \ |
---|
1095 | (y_header == 'lon' or y_header == 'lat'): |
---|
1096 | if x_header == 'lon': |
---|
1097 | longitudes = numpy.ravel(pointlist[:,0:1]) |
---|
1098 | latitudes = numpy.ravel(pointlist[:,1:]) |
---|
1099 | else: |
---|
1100 | latitudes = numpy.ravel(pointlist[:,0:1]) |
---|
1101 | longitudes = numpy.ravel(pointlist[:,1:]) |
---|
1102 | |
---|
1103 | pointlist, geo_ref = _set_using_lat_long(latitudes, |
---|
1104 | longitudes, |
---|
1105 | geo_reference=None, |
---|
1106 | data_points=None, |
---|
1107 | points_are_lats_longs=False) |
---|
1108 | return pointlist, att_dict, geo_ref, file_pointer |
---|
1109 | |
---|
1110 | def _read_pts_file_header(fid, verbose=False): |
---|
1111 | |
---|
1112 | """Read the geo_reference and number_of_points from a .pts file |
---|
1113 | """ |
---|
1114 | |
---|
1115 | keys = fid.variables.keys() |
---|
1116 | try: |
---|
1117 | keys.remove('points') |
---|
1118 | except IOError, e: |
---|
1119 | fid.close() |
---|
1120 | msg = 'Expected keyword "points" but could not find it' |
---|
1121 | raise IOError, msg |
---|
1122 | if verbose: print 'Got %d variables: %s' %(len(keys), keys) |
---|
1123 | |
---|
1124 | try: |
---|
1125 | geo_reference = Geo_reference(NetCDFObject=fid) |
---|
1126 | except AttributeError, e: |
---|
1127 | geo_reference = None |
---|
1128 | |
---|
1129 | return geo_reference, keys, fid.dimensions['number_of_points'] |
---|
1130 | |
---|
1131 | def _read_pts_file_blocking(fid, start_row, fin_row, keys): |
---|
1132 | #verbose=False): |
---|
1133 | |
---|
1134 | |
---|
1135 | """ |
---|
1136 | Read the body of a .csv file. |
---|
1137 | header: The list header of the csv file, with the x and y labels. |
---|
1138 | """ |
---|
1139 | |
---|
1140 | pointlist = numpy.array(fid.variables['points'][start_row:fin_row]) |
---|
1141 | |
---|
1142 | attributes = {} |
---|
1143 | for key in keys: |
---|
1144 | attributes[key] = numpy.array(fid.variables[key][start_row:fin_row]) |
---|
1145 | |
---|
1146 | return pointlist, attributes |
---|
1147 | |
---|
1148 | def _write_pts_file(file_name, |
---|
1149 | write_data_points, |
---|
1150 | write_attributes=None, |
---|
1151 | write_geo_reference=None): |
---|
1152 | """ |
---|
1153 | Write .pts NetCDF file |
---|
1154 | |
---|
1155 | NOTE: Below might not be valid ask Duncan : NB 5/2006 |
---|
1156 | |
---|
1157 | WARNING: This function mangles the point_atts data structure |
---|
1158 | #F??ME: (DSG)This format has issues. |
---|
1159 | # There can't be an attribute called points |
---|
1160 | # consider format change |
---|
1161 | # method changed by NB not sure if above statement is correct |
---|
1162 | |
---|
1163 | should create new test for this |
---|
1164 | legal_keys = ['pointlist', 'attributelist', 'geo_reference'] |
---|
1165 | for key in point_atts.keys(): |
---|
1166 | msg = 'Key %s is illegal. Valid keys are %s' %(key, legal_keys) |
---|
1167 | assert key in legal_keys, msg |
---|
1168 | """ |
---|
1169 | from Scientific.IO.NetCDF import NetCDFFile |
---|
1170 | # NetCDF file definition |
---|
1171 | outfile = NetCDFFile(file_name, 'w') |
---|
1172 | |
---|
1173 | # Create new file |
---|
1174 | outfile.institution = 'Geoscience Australia' |
---|
1175 | outfile.description = 'NetCDF format for compact and portable storage ' +\ |
---|
1176 | 'of spatial point data' |
---|
1177 | |
---|
1178 | # Dimension definitions |
---|
1179 | shape = write_data_points.shape[0] |
---|
1180 | outfile.createDimension('number_of_points', shape) |
---|
1181 | outfile.createDimension('number_of_dimensions', 2) #This is 2d data |
---|
1182 | |
---|
1183 | # Variable definition |
---|
1184 | outfile.createVariable('points', numpy.float, ('number_of_points', |
---|
1185 | 'number_of_dimensions')) |
---|
1186 | |
---|
1187 | #create variables |
---|
1188 | outfile.variables['points'][:] = write_data_points #.astype(Float32) |
---|
1189 | |
---|
1190 | if write_attributes is not None: |
---|
1191 | for key in write_attributes.keys(): |
---|
1192 | outfile.createVariable(key, numpy.float, ('number_of_points',)) |
---|
1193 | outfile.variables[key][:] = write_attributes[key] #.astype(Float32) |
---|
1194 | |
---|
1195 | if write_geo_reference is not None: |
---|
1196 | write_NetCDF_georeference(write_geo_reference, outfile) |
---|
1197 | |
---|
1198 | outfile.close() |
---|
1199 | |
---|
1200 | def _write_csv_file(file_name, |
---|
1201 | write_data_points, |
---|
1202 | write_attributes=None, |
---|
1203 | as_lat_long=False, |
---|
1204 | delimiter=','): |
---|
1205 | """ |
---|
1206 | export a file, file_name, with the csv format |
---|
1207 | |
---|
1208 | """ |
---|
1209 | points = write_data_points |
---|
1210 | pointattributes = write_attributes |
---|
1211 | |
---|
1212 | fd = open(file_name,'w') |
---|
1213 | if as_lat_long: |
---|
1214 | titlelist = "latitude" + delimiter + "longitude" + delimiter |
---|
1215 | else: |
---|
1216 | titlelist = "x" + delimiter + "y" + delimiter |
---|
1217 | if pointattributes is not None: |
---|
1218 | for title in pointattributes.keys(): |
---|
1219 | titlelist = titlelist + title + delimiter |
---|
1220 | titlelist = titlelist[0:-len(delimiter)] # remove the last delimiter |
---|
1221 | fd.write(titlelist+"\n") |
---|
1222 | |
---|
1223 | # <x/lat> <y/long> [attributes] |
---|
1224 | for i, vert in enumerate( points): |
---|
1225 | |
---|
1226 | |
---|
1227 | if pointattributes is not None: |
---|
1228 | attlist = "," |
---|
1229 | for att in pointattributes.keys(): |
---|
1230 | attlist = attlist + str(pointattributes[att][i])+ delimiter |
---|
1231 | attlist = attlist[0:-len(delimiter)] # remove the last delimiter |
---|
1232 | attlist.strip() |
---|
1233 | else: |
---|
1234 | attlist = '' |
---|
1235 | |
---|
1236 | fd.write(str(vert[0]) + delimiter + |
---|
1237 | str(vert[1]) + attlist + "\n") |
---|
1238 | |
---|
1239 | fd.close() |
---|
1240 | |
---|
1241 | def _write_urs_file(file_name, |
---|
1242 | points, |
---|
1243 | delimiter=' '): |
---|
1244 | """ |
---|
1245 | export a file, file_name, with the urs format |
---|
1246 | the data points are in lats and longs |
---|
1247 | |
---|
1248 | """ |
---|
1249 | fd = open(file_name,'w') |
---|
1250 | fd.write(str(len(points))+"\n") |
---|
1251 | # <lat> <long> <id#> |
---|
1252 | for i, vert in enumerate( points): |
---|
1253 | fd.write(str(round(vert[0],7)) + delimiter + \ |
---|
1254 | str(round(vert[1],7)) + delimiter +str(i)+ "\n") |
---|
1255 | fd.close() |
---|
1256 | |
---|
1257 | def _point_atts2array(point_atts): |
---|
1258 | point_atts['pointlist'] = numpy.array(point_atts['pointlist']).astype(numpy.float) |
---|
1259 | |
---|
1260 | for key in point_atts['attributelist'].keys(): |
---|
1261 | point_atts['attributelist'][key]=\ |
---|
1262 | numpy.array(point_atts['attributelist'][key]).astype(numpy.float) |
---|
1263 | return point_atts |
---|
1264 | |
---|
1265 | |
---|
1266 | |
---|
1267 | |
---|
1268 | def geospatial_data2points_dictionary(geospatial_data): |
---|
1269 | """Convert geospatial data to points_dictionary |
---|
1270 | """ |
---|
1271 | |
---|
1272 | points_dictionary = {} |
---|
1273 | points_dictionary['pointlist'] = geospatial_data.data_points |
---|
1274 | |
---|
1275 | points_dictionary['attributelist'] = {} |
---|
1276 | |
---|
1277 | for attribute_name in geospatial_data.attributes.keys(): |
---|
1278 | val = geospatial_data.attributes[attribute_name] |
---|
1279 | points_dictionary['attributelist'][attribute_name] = val |
---|
1280 | |
---|
1281 | points_dictionary['geo_reference'] = geospatial_data.geo_reference |
---|
1282 | |
---|
1283 | return points_dictionary |
---|
1284 | |
---|
1285 | |
---|
1286 | def points_dictionary2geospatial_data(points_dictionary): |
---|
1287 | """Convert points_dictionary to geospatial data object |
---|
1288 | """ |
---|
1289 | |
---|
1290 | msg = 'Points dictionary must have key pointlist' |
---|
1291 | assert points_dictionary.has_key('pointlist'), msg |
---|
1292 | |
---|
1293 | msg = 'Points dictionary must have key attributelist' |
---|
1294 | assert points_dictionary.has_key('attributelist'), msg |
---|
1295 | |
---|
1296 | if points_dictionary.has_key('geo_reference'): |
---|
1297 | geo = points_dictionary['geo_reference'] |
---|
1298 | else: |
---|
1299 | geo = None |
---|
1300 | |
---|
1301 | return Geospatial_data(points_dictionary['pointlist'], |
---|
1302 | points_dictionary['attributelist'], |
---|
1303 | geo_reference = geo) |
---|
1304 | |
---|
1305 | def clean_line(line,delimiter): |
---|
1306 | """Remove whitespace |
---|
1307 | """ |
---|
1308 | #print ">%s" %line |
---|
1309 | line = line.strip() |
---|
1310 | #print "stripped>%s" %line |
---|
1311 | numbers = line.split(delimiter) |
---|
1312 | i = len(numbers) - 1 |
---|
1313 | while i >= 0: |
---|
1314 | if numbers[i] == '': |
---|
1315 | numbers.pop(i) |
---|
1316 | else: |
---|
1317 | numbers[i] = numbers[i].strip() |
---|
1318 | |
---|
1319 | i += -1 |
---|
1320 | #for num in numbers: |
---|
1321 | # print "num>%s<" %num |
---|
1322 | return numbers |
---|
1323 | |
---|
1324 | def ensure_absolute(points, geo_reference=None): |
---|
1325 | """Ensure that points are in absolute coordinates. |
---|
1326 | |
---|
1327 | This function inputs several formats and |
---|
1328 | outputs one format. - a numeric array of absolute points. |
---|
1329 | |
---|
1330 | Input formats are; |
---|
1331 | points: List or numeric array of coordinate pairs [xi, eta] of |
---|
1332 | points or geospatial object or points file name |
---|
1333 | |
---|
1334 | mesh_origin: A geo_reference object or 3-tuples consisting of |
---|
1335 | UTM zone, easting and northing. |
---|
1336 | If specified vertex coordinates are assumed to be |
---|
1337 | relative to their respective origins. |
---|
1338 | """ |
---|
1339 | |
---|
1340 | # Input check |
---|
1341 | if isinstance(points, basestring): |
---|
1342 | #It's a string - assume it is a point file |
---|
1343 | points = Geospatial_data(file_name=points) |
---|
1344 | |
---|
1345 | if isinstance(points, Geospatial_data): |
---|
1346 | points = points.get_data_points(absolute=True) |
---|
1347 | msg = 'Use a Geospatial_data object or a mesh origin. Not both.' |
---|
1348 | assert geo_reference == None, msg |
---|
1349 | else: |
---|
1350 | points = ensure_numeric(points, numpy.float) |
---|
1351 | |
---|
1352 | # Sort of geo_reference and convert points |
---|
1353 | if geo_reference is None: |
---|
1354 | geo = None #Geo_reference() |
---|
1355 | else: |
---|
1356 | if isinstance(geo_reference, Geo_reference): |
---|
1357 | geo = geo_reference |
---|
1358 | else: |
---|
1359 | geo = Geo_reference(geo_reference[0], |
---|
1360 | geo_reference[1], |
---|
1361 | geo_reference[2]) |
---|
1362 | points = geo.get_absolute(points) |
---|
1363 | |
---|
1364 | # Return |
---|
1365 | return points |
---|
1366 | |
---|
1367 | |
---|
1368 | def ensure_geospatial(points, geo_reference=None): |
---|
1369 | """ |
---|
1370 | This function inputs several formats and |
---|
1371 | outputs one format. - a geospatial_data instance. |
---|
1372 | |
---|
1373 | Inputed formats are; |
---|
1374 | points: List or numeric array of coordinate pairs [xi, eta] of |
---|
1375 | points or geospatial object |
---|
1376 | |
---|
1377 | mesh_origin: A geo_reference object or 3-tuples consisting of |
---|
1378 | UTM zone, easting and northing. |
---|
1379 | If specified vertex coordinates are assumed to be |
---|
1380 | relative to their respective origins. |
---|
1381 | """ |
---|
1382 | |
---|
1383 | # Input check |
---|
1384 | if isinstance(points, Geospatial_data): |
---|
1385 | msg = "Use a Geospatial_data object or a mesh origin. Not both." |
---|
1386 | assert geo_reference is None, msg |
---|
1387 | return points |
---|
1388 | else: |
---|
1389 | # List or numeric array of absolute points |
---|
1390 | points = ensure_numeric(points, numpy.float) |
---|
1391 | |
---|
1392 | # Sort out geo reference |
---|
1393 | if geo_reference is None: |
---|
1394 | geo = None |
---|
1395 | else: |
---|
1396 | if isinstance(geo_reference, Geo_reference): |
---|
1397 | geo = geo_reference |
---|
1398 | else: |
---|
1399 | geo = Geo_reference(geo_reference[0], |
---|
1400 | geo_reference[1], |
---|
1401 | geo_reference[2]) |
---|
1402 | |
---|
1403 | # Create Geospatial_data object with appropriate geo reference and return |
---|
1404 | points = Geospatial_data(data_points=points, geo_reference=geo) |
---|
1405 | return points |
---|
1406 | |
---|
1407 | |
---|
1408 | |
---|
1409 | def find_optimal_smoothing_parameter(data_file, |
---|
1410 | alpha_list=None, |
---|
1411 | mesh_file=None, |
---|
1412 | boundary_poly=None, |
---|
1413 | mesh_resolution=100000, |
---|
1414 | north_boundary=None, |
---|
1415 | south_boundary=None, |
---|
1416 | east_boundary=None, |
---|
1417 | west_boundary=None, |
---|
1418 | plot_name='all_alphas', |
---|
1419 | split_factor=0.1, |
---|
1420 | seed_num=None, |
---|
1421 | cache=False, |
---|
1422 | verbose=False |
---|
1423 | ): |
---|
1424 | |
---|
1425 | """ |
---|
1426 | Removes a small random sample of points from 'data_file'. Then creates |
---|
1427 | models with different alpha values from 'alpha_list' and cross validates |
---|
1428 | the predicted value to the previously removed point data. Returns the |
---|
1429 | alpha value which has the smallest covariance. |
---|
1430 | |
---|
1431 | data_file: must not contain points outside the boundaries defined |
---|
1432 | and it either a pts, txt or csv file. |
---|
1433 | |
---|
1434 | alpha_list: the alpha values to test in a single list |
---|
1435 | |
---|
1436 | mesh_file: name of the created mesh file or if passed in will read it. |
---|
1437 | NOTE, if there is a mesh file mesh_resolution, |
---|
1438 | north_boundary, south... etc will be ignored. |
---|
1439 | |
---|
1440 | mesh_resolution: the maximum area size for a triangle |
---|
1441 | |
---|
1442 | north_boundary... west_boundary: the value of the boundary |
---|
1443 | |
---|
1444 | plot_name: the name for the plot contain the results |
---|
1445 | |
---|
1446 | seed_num: the seed to the random number generator |
---|
1447 | |
---|
1448 | USAGE: |
---|
1449 | value, alpha = find_optimal_smoothing_parameter(data_file=fileName, |
---|
1450 | alpha_list=[0.0001, 0.01, 1], |
---|
1451 | mesh_file=None, |
---|
1452 | mesh_resolution=3, |
---|
1453 | north_boundary=5, |
---|
1454 | south_boundary=-5, |
---|
1455 | east_boundary=5, |
---|
1456 | west_boundary=-5, |
---|
1457 | plot_name='all_alphas', |
---|
1458 | seed_num=100000, |
---|
1459 | verbose=False) |
---|
1460 | |
---|
1461 | OUTPUT: returns the minumum normalised covalance calculate AND the |
---|
1462 | alpha that created it. PLUS writes a plot of the results |
---|
1463 | |
---|
1464 | NOTE: code will not work if the data_file extent is greater than the |
---|
1465 | boundary_polygon or any of the boundaries, eg north_boundary...west_boundary |
---|
1466 | |
---|
1467 | """ |
---|
1468 | |
---|
1469 | from anuga.shallow_water import Domain |
---|
1470 | from anuga.geospatial_data.geospatial_data import Geospatial_data |
---|
1471 | from anuga.pmesh.mesh_interface import create_mesh_from_regions |
---|
1472 | |
---|
1473 | from anuga.utilities.numerical_tools import cov |
---|
1474 | ## from numpy.oldnumeric import array, resize,shape,Float,zeros,take,argsort,argmin |
---|
1475 | from anuga.utilities.polygon import is_inside_polygon |
---|
1476 | from anuga.fit_interpolate.benchmark_least_squares import mem_usage |
---|
1477 | |
---|
1478 | |
---|
1479 | attribute_smoothed='elevation' |
---|
1480 | |
---|
1481 | if mesh_file is None: |
---|
1482 | if verbose: print "building mesh" |
---|
1483 | mesh_file='temp.msh' |
---|
1484 | |
---|
1485 | if north_boundary is None or south_boundary is None or \ |
---|
1486 | east_boundary is None or west_boundary is None: |
---|
1487 | no_boundary=True |
---|
1488 | else: |
---|
1489 | no_boundary=False |
---|
1490 | |
---|
1491 | if no_boundary is True: |
---|
1492 | msg= 'All boundaries must be defined' |
---|
1493 | raise msg |
---|
1494 | |
---|
1495 | poly_topo = [[east_boundary,south_boundary], |
---|
1496 | [east_boundary,north_boundary], |
---|
1497 | [west_boundary,north_boundary], |
---|
1498 | [west_boundary,south_boundary]] |
---|
1499 | |
---|
1500 | create_mesh_from_regions(poly_topo, |
---|
1501 | boundary_tags={'back': [2], |
---|
1502 | 'side': [1,3], |
---|
1503 | 'ocean': [0]}, |
---|
1504 | maximum_triangle_area=mesh_resolution, |
---|
1505 | filename=mesh_file, |
---|
1506 | use_cache=cache, |
---|
1507 | verbose=verbose) |
---|
1508 | |
---|
1509 | else: # if mesh file provided |
---|
1510 | #test mesh file exists? |
---|
1511 | if verbose: "reading from file: %s" %mesh_file |
---|
1512 | if access(mesh_file,F_OK) == 0: |
---|
1513 | msg="file %s doesn't exist!" %mesh_file |
---|
1514 | raise IOError, msg |
---|
1515 | |
---|
1516 | #split topo data |
---|
1517 | if verbose: print 'Reading elevation file: %s' %data_file |
---|
1518 | G = Geospatial_data(file_name = data_file) |
---|
1519 | if verbose: print 'Start split' |
---|
1520 | G_small, G_other = G.split(split_factor,seed_num, verbose=verbose) |
---|
1521 | if verbose: print 'Finish split' |
---|
1522 | points=G_small.get_data_points() |
---|
1523 | |
---|
1524 | if verbose: print "Number of points in sample to compare: ", len(points) |
---|
1525 | |
---|
1526 | if alpha_list==None: |
---|
1527 | alphas = [0.001,0.01,100] |
---|
1528 | #alphas = [0.000001, 0.00001, 0.0001, 0.001, 0.01,\ |
---|
1529 | # 0.1, 1.0, 10.0, 100.0,1000.0,10000.0] |
---|
1530 | |
---|
1531 | else: |
---|
1532 | alphas=alpha_list |
---|
1533 | |
---|
1534 | #creates array with columns 1 and 2 are x, y. column 3 is elevation |
---|
1535 | #4 onwards is the elevation_predicted using the alpha, which will |
---|
1536 | #be compared later against the real removed data |
---|
1537 | data=numpy.array([],typecode=numpy.float) |
---|
1538 | |
---|
1539 | data=numpy.resize(data,(len(points),3+len(alphas))) |
---|
1540 | |
---|
1541 | #gets relative point from sample |
---|
1542 | data[:,0]=points[:,0] |
---|
1543 | data[:,1]=points[:,1] |
---|
1544 | elevation_sample=G_small.get_attributes(attribute_name=attribute_smoothed) |
---|
1545 | data[:,2]=elevation_sample |
---|
1546 | |
---|
1547 | normal_cov=numpy.array(numpy.zeros([len(alphas),2]),typecode=numpy.float) |
---|
1548 | |
---|
1549 | if verbose: print 'Setup computational domains with different alphas' |
---|
1550 | |
---|
1551 | #print 'memory usage before domains',mem_usage() |
---|
1552 | |
---|
1553 | for i,alpha in enumerate(alphas): |
---|
1554 | #add G_other data to domains with different alphas |
---|
1555 | if verbose:print '\n Calculating domain and mesh for Alpha = ',alpha,'\n' |
---|
1556 | domain = Domain(mesh_file, use_cache=cache, verbose=verbose) |
---|
1557 | if verbose:print domain.statistics() |
---|
1558 | domain.set_quantity(attribute_smoothed, |
---|
1559 | geospatial_data = G_other, |
---|
1560 | use_cache = cache, |
---|
1561 | verbose = verbose, |
---|
1562 | alpha = alpha) |
---|
1563 | |
---|
1564 | |
---|
1565 | # Convert points to geospatial data for use with get_values below |
---|
1566 | points_geo = Geospatial_data(points, domain.geo_reference) |
---|
1567 | |
---|
1568 | #returns the predicted elevation of the points that were "split" out |
---|
1569 | #of the original data set for one particular alpha |
---|
1570 | if verbose: print 'Get predicted elevation for location to be compared' |
---|
1571 | elevation_predicted=domain.quantities[attribute_smoothed].\ |
---|
1572 | get_values(interpolation_points=points_geo) |
---|
1573 | |
---|
1574 | #add predicted elevation to array that starts with x, y, z... |
---|
1575 | data[:,i+3]=elevation_predicted |
---|
1576 | |
---|
1577 | sample_cov= cov(elevation_sample) |
---|
1578 | #print elevation_predicted |
---|
1579 | ele_cov= cov(elevation_sample-elevation_predicted) |
---|
1580 | normal_cov[i,:]= [alpha,ele_cov/sample_cov] |
---|
1581 | #print 'memory usage during compare',mem_usage() |
---|
1582 | |
---|
1583 | if verbose: print'Covariance for alpha ',normal_cov[i][0],'= ',normal_cov[i][1] |
---|
1584 | if verbose: print'-------------------------------------------- \n' |
---|
1585 | |
---|
1586 | normal_cov0=normal_cov[:,0] |
---|
1587 | normal_cov_new=numpy.take(normal_cov,numpy.argsort(normal_cov0)) |
---|
1588 | |
---|
1589 | if plot_name is not None: |
---|
1590 | from pylab import savefig,semilogx,loglog |
---|
1591 | semilogx(normal_cov_new[:,0],normal_cov_new[:,1]) |
---|
1592 | loglog(normal_cov_new[:,0],normal_cov_new[:,1]) |
---|
1593 | savefig(plot_name,dpi=300) |
---|
1594 | if mesh_file == 'temp.msh': |
---|
1595 | remove(mesh_file) |
---|
1596 | |
---|
1597 | if verbose: |
---|
1598 | print 'Final results:' |
---|
1599 | for i,alpha in enumerate(alphas): |
---|
1600 | print'covariance for alpha %s = %s ' %(normal_cov[i][0],normal_cov[i][1]) |
---|
1601 | print '\n Optimal alpha is: %s ' % normal_cov_new[(numpy.argmin(normal_cov_new,axis=0))[1],0] |
---|
1602 | |
---|
1603 | # covariance and optimal alpha |
---|
1604 | return min(normal_cov_new[:,1]) , normal_cov_new[(numpy.argmin(normal_cov_new,axis=0))[1],0] |
---|
1605 | |
---|
1606 | def old_find_optimal_smoothing_parameter(data_file, |
---|
1607 | alpha_list=None, |
---|
1608 | mesh_file=None, |
---|
1609 | boundary_poly=None, |
---|
1610 | mesh_resolution=100000, |
---|
1611 | north_boundary=None, |
---|
1612 | south_boundary=None, |
---|
1613 | east_boundary=None, |
---|
1614 | west_boundary=None, |
---|
1615 | plot_name='all_alphas', |
---|
1616 | split_factor=0.1, |
---|
1617 | seed_num=None, |
---|
1618 | cache=False, |
---|
1619 | verbose=False |
---|
1620 | ): |
---|
1621 | |
---|
1622 | """ |
---|
1623 | data_file: must not contain points outside the boundaries defined |
---|
1624 | and it either a pts, txt or csv file. |
---|
1625 | |
---|
1626 | alpha_list: the alpha values to test in a single list |
---|
1627 | |
---|
1628 | mesh_file: name of the created mesh file or if passed in will read it. |
---|
1629 | NOTE, if there is a mesh file mesh_resolution, |
---|
1630 | north_boundary, south... etc will be ignored. |
---|
1631 | |
---|
1632 | mesh_resolution: the maximum area size for a triangle |
---|
1633 | |
---|
1634 | north_boundary... west_boundary: the value of the boundary |
---|
1635 | |
---|
1636 | plot_name: the name for the plot contain the results |
---|
1637 | |
---|
1638 | seed_num: the seed to the random number generator |
---|
1639 | |
---|
1640 | USAGE: |
---|
1641 | value, alpha = find_optimal_smoothing_parameter(data_file=fileName, |
---|
1642 | alpha_list=[0.0001, 0.01, 1], |
---|
1643 | mesh_file=None, |
---|
1644 | mesh_resolution=3, |
---|
1645 | north_boundary=5, |
---|
1646 | south_boundary=-5, |
---|
1647 | east_boundary=5, |
---|
1648 | west_boundary=-5, |
---|
1649 | plot_name='all_alphas', |
---|
1650 | seed_num=100000, |
---|
1651 | verbose=False) |
---|
1652 | |
---|
1653 | OUTPUT: returns the minumum normalised covalance calculate AND the |
---|
1654 | alpha that created it. PLUS writes a plot of the results |
---|
1655 | |
---|
1656 | NOTE: code will not work if the data_file extend is greater than the |
---|
1657 | boundary_polygon or the north_boundary...west_boundary |
---|
1658 | |
---|
1659 | """ |
---|
1660 | |
---|
1661 | from anuga.shallow_water import Domain |
---|
1662 | from anuga.geospatial_data.geospatial_data import Geospatial_data |
---|
1663 | from anuga.pmesh.mesh_interface import create_mesh_from_regions |
---|
1664 | |
---|
1665 | from anuga.utilities.numerical_tools import cov |
---|
1666 | ## from numpy.oldnumeric import array, resize,shape,Float,zeros,take,argsort,argmin |
---|
1667 | from anuga.utilities.polygon import is_inside_polygon |
---|
1668 | from anuga.fit_interpolate.benchmark_least_squares import mem_usage |
---|
1669 | |
---|
1670 | |
---|
1671 | attribute_smoothed='elevation' |
---|
1672 | |
---|
1673 | if mesh_file is None: |
---|
1674 | mesh_file='temp.msh' |
---|
1675 | |
---|
1676 | if north_boundary is None or south_boundary is None or \ |
---|
1677 | east_boundary is None or west_boundary is None: |
---|
1678 | no_boundary=True |
---|
1679 | else: |
---|
1680 | no_boundary=False |
---|
1681 | |
---|
1682 | if no_boundary is True: |
---|
1683 | msg= 'All boundaries must be defined' |
---|
1684 | raise msg |
---|
1685 | |
---|
1686 | poly_topo = [[east_boundary,south_boundary], |
---|
1687 | [east_boundary,north_boundary], |
---|
1688 | [west_boundary,north_boundary], |
---|
1689 | [west_boundary,south_boundary]] |
---|
1690 | |
---|
1691 | create_mesh_from_regions(poly_topo, |
---|
1692 | boundary_tags={'back': [2], |
---|
1693 | 'side': [1,3], |
---|
1694 | 'ocean': [0]}, |
---|
1695 | maximum_triangle_area=mesh_resolution, |
---|
1696 | filename=mesh_file, |
---|
1697 | use_cache=cache, |
---|
1698 | verbose=verbose) |
---|
1699 | |
---|
1700 | else: # if mesh file provided |
---|
1701 | #test mesh file exists? |
---|
1702 | if access(mesh_file,F_OK) == 0: |
---|
1703 | msg="file %s doesn't exist!" %mesh_file |
---|
1704 | raise IOError, msg |
---|
1705 | |
---|
1706 | #split topo data |
---|
1707 | G = Geospatial_data(file_name = data_file) |
---|
1708 | if verbose: print 'start split' |
---|
1709 | G_small, G_other = G.split(split_factor,seed_num, verbose=verbose) |
---|
1710 | if verbose: print 'finish split' |
---|
1711 | points=G_small.get_data_points() |
---|
1712 | |
---|
1713 | #FIXME: Remove points outside boundary polygon |
---|
1714 | # print 'new point',len(points) |
---|
1715 | # |
---|
1716 | # new_points=[] |
---|
1717 | # new_points=array([],typecode=Float) |
---|
1718 | # new_points=resize(new_points,(len(points),2)) |
---|
1719 | # print "BOUNDARY", boundary_poly |
---|
1720 | # for i,point in enumerate(points): |
---|
1721 | # if is_inside_polygon(point,boundary_poly, verbose=True): |
---|
1722 | # new_points[i] = point |
---|
1723 | # print"WOW",i,new_points[i] |
---|
1724 | # points = new_points |
---|
1725 | |
---|
1726 | |
---|
1727 | if verbose: print "Number of points in sample to compare: ", len(points) |
---|
1728 | |
---|
1729 | if alpha_list==None: |
---|
1730 | alphas = [0.001,0.01,100] |
---|
1731 | #alphas = [0.000001, 0.00001, 0.0001, 0.001, 0.01,\ |
---|
1732 | # 0.1, 1.0, 10.0, 100.0,1000.0,10000.0] |
---|
1733 | |
---|
1734 | else: |
---|
1735 | alphas=alpha_list |
---|
1736 | domains = {} |
---|
1737 | |
---|
1738 | if verbose: print 'Setup computational domains with different alphas' |
---|
1739 | |
---|
1740 | print 'memory usage before domains',mem_usage() |
---|
1741 | |
---|
1742 | for alpha in alphas: |
---|
1743 | #add G_other data to domains with different alphas |
---|
1744 | if verbose:print '\n Calculating domain and mesh for Alpha = ',alpha,'\n' |
---|
1745 | domain = Domain(mesh_file, use_cache=cache, verbose=verbose) |
---|
1746 | if verbose:print domain.statistics() |
---|
1747 | domain.set_quantity(attribute_smoothed, |
---|
1748 | geospatial_data = G_other, |
---|
1749 | use_cache = cache, |
---|
1750 | verbose = verbose, |
---|
1751 | alpha = alpha) |
---|
1752 | domains[alpha]=domain |
---|
1753 | |
---|
1754 | print 'memory usage after domains',mem_usage() |
---|
1755 | |
---|
1756 | #creates array with columns 1 and 2 are x, y. column 3 is elevation |
---|
1757 | #4 onwards is the elevation_predicted using the alpha, which will |
---|
1758 | #be compared later against the real removed data |
---|
1759 | data=numpy.array([],typecode=numpy.float) |
---|
1760 | |
---|
1761 | data=numpy.resize(data,(len(points),3+len(alphas))) |
---|
1762 | |
---|
1763 | #gets relative point from sample |
---|
1764 | data[:,0]=points[:,0] |
---|
1765 | data[:,1]=points[:,1] |
---|
1766 | elevation_sample=G_small.get_attributes(attribute_name=attribute_smoothed) |
---|
1767 | data[:,2]=elevation_sample |
---|
1768 | |
---|
1769 | normal_cov=numpy.array(numpy.zeros([len(alphas),2]),typecode=numpy.float) |
---|
1770 | |
---|
1771 | if verbose: print 'Determine difference between predicted results and actual data' |
---|
1772 | for i,alpha in enumerate(domains): |
---|
1773 | if verbose: print'Alpha =',alpha |
---|
1774 | |
---|
1775 | points_geo=domains[alpha].geo_reference.change_points_geo_ref(points) |
---|
1776 | #returns the predicted elevation of the points that were "split" out |
---|
1777 | #of the original data set for one particular alpha |
---|
1778 | elevation_predicted=domains[alpha].quantities[attribute_smoothed].\ |
---|
1779 | get_values(interpolation_points=points_geo) |
---|
1780 | |
---|
1781 | #add predicted elevation to array that starts with x, y, z... |
---|
1782 | data[:,i+3]=elevation_predicted |
---|
1783 | |
---|
1784 | sample_cov= cov(elevation_sample) |
---|
1785 | #print elevation_predicted |
---|
1786 | ele_cov= cov(elevation_sample-elevation_predicted) |
---|
1787 | normal_cov[i,:]= [alpha,ele_cov/sample_cov] |
---|
1788 | print 'memory usage during compare',mem_usage() |
---|
1789 | |
---|
1790 | |
---|
1791 | if verbose: print'cov',normal_cov[i][0],'= ',normal_cov[i][1] |
---|
1792 | |
---|
1793 | normal_cov0=normal_cov[:,0] |
---|
1794 | normal_cov_new=numpy.take(normal_cov,numpy.argsort(normal_cov0)) |
---|
1795 | |
---|
1796 | if plot_name is not None: |
---|
1797 | from pylab import savefig,semilogx,loglog |
---|
1798 | semilogx(normal_cov_new[:,0],normal_cov_new[:,1]) |
---|
1799 | loglog(normal_cov_new[:,0],normal_cov_new[:,1]) |
---|
1800 | savefig(plot_name,dpi=300) |
---|
1801 | if mesh_file == 'temp.msh': |
---|
1802 | remove(mesh_file) |
---|
1803 | |
---|
1804 | return min(normal_cov_new[:,1]) , normal_cov_new[(numpy.argmin(normal_cov_new,axis=0))[1],0] |
---|
1805 | |
---|
1806 | |
---|
1807 | if __name__ == "__main__": |
---|
1808 | pass |
---|
1809 | |
---|