1 | """Example of shallow water wave equation analytical solution |
---|
2 | consists of a symmetrical converging frictionless channel. |
---|
3 | |
---|
4 | Specific methods pertaining to the 2D shallow water equation |
---|
5 | are imported from shallow_water |
---|
6 | for use with the generic finite volume framework |
---|
7 | |
---|
8 | Copyright 2005 |
---|
9 | Christopher Zoppou, Stephen Roberts |
---|
10 | ANU |
---|
11 | |
---|
12 | Specific methods pertaining to the 2D shallow water equation |
---|
13 | are imported from shallow_water |
---|
14 | for use with the generic finite volume framework |
---|
15 | |
---|
16 | Conserved quantities are h, uh and vh stored as elements 0, 1 and 2 in the |
---|
17 | numerical vector named conserved_quantities. |
---|
18 | """ |
---|
19 | |
---|
20 | #--------------- |
---|
21 | # Module imports |
---|
22 | import sys |
---|
23 | from os import sep |
---|
24 | sys.path.append('..'+sep+'pyvolution') |
---|
25 | |
---|
26 | from shallow_water import Transmissive_boundary, Reflective_boundary, \ |
---|
27 | Dirichlet_boundary |
---|
28 | from shallow_water import Constant_height, Domain |
---|
29 | from pmesh2domain import pmesh_to_domain_instance |
---|
30 | |
---|
31 | #------- |
---|
32 | # Domain |
---|
33 | filename = 'converging_channel_30846.tsh' |
---|
34 | print 'Creating domain from', filename |
---|
35 | domain = pmesh_to_domain_instance(filename, Domain) |
---|
36 | print 'Number of triangles = ', len(domain) |
---|
37 | |
---|
38 | #---------------- |
---|
39 | # Order of scheme |
---|
40 | domain.default_order = 2 |
---|
41 | domain.smooth = True |
---|
42 | |
---|
43 | #------------------------------------- |
---|
44 | # Provide file name for storing output |
---|
45 | domain.store = True #Store for visualisation purposes |
---|
46 | domain.format = 'sww' #Native netcdf visualisation format |
---|
47 | domain.set_name('contracting_channel_second-order') |
---|
48 | |
---|
49 | #---------------------------------------------------------- |
---|
50 | # Decide which quantities are to be stored at each timestep |
---|
51 | domain.quantities_to_be_stored = ['stage', 'xmomentum', 'ymomentum'] |
---|
52 | |
---|
53 | #------------------------------------------ |
---|
54 | # Reduction operation for get_vertex_values |
---|
55 | #from anuga.pyvolution.util import mean |
---|
56 | #domain.reduction = mean |
---|
57 | |
---|
58 | #------------------------ |
---|
59 | # Set boundary Conditions |
---|
60 | tags = {} |
---|
61 | tags['upstream'] = Dirichlet_boundary([0.2, 1.2, 0.0]) |
---|
62 | tags['reflective'] = Reflective_boundary(domain) |
---|
63 | tags['transmissive'] = Transmissive_boundary(domain) |
---|
64 | domain.set_boundary(tags) |
---|
65 | |
---|
66 | #---------------------- |
---|
67 | # Set initial condition |
---|
68 | domain.set_quantity('elevation', 0.0) |
---|
69 | domain.set_quantity('stage', 0.2) |
---|
70 | |
---|
71 | #---------- |
---|
72 | # Evolution |
---|
73 | import time |
---|
74 | t0 = time.time() |
---|
75 | for t in domain.evolve(yieldstep = 0.1, finaltime = .2): |
---|
76 | domain.write_time() |
---|
77 | |
---|
78 | print 'That took %.2f seconds' %(time.time()-t0) |
---|
79 | |
---|
80 | |
---|