[7640] | 1 | """Compare selected timeseries from model outputs |
---|
| 2 | |
---|
| 3 | Usage: |
---|
| 4 | python compare_model_timeseries.py swwfile1 swwfile2 |
---|
| 5 | |
---|
| 6 | Return 0 if timeseries are 'close enough', otherwise return non zero error code |
---|
| 7 | |
---|
| 8 | Typically swwfile1 would be model output from unit test and swwfile2 would |
---|
| 9 | be a reference model. |
---|
| 10 | """ |
---|
| 11 | |
---|
[7642] | 12 | from anuga.abstract_2d_finite_volumes.util import file_function |
---|
[7645] | 13 | from anuga.utilities.numerical_tools import cov, get_machine_precision |
---|
| 14 | |
---|
| 15 | |
---|
| 16 | import pylab |
---|
[7640] | 17 | import numpy as num |
---|
[7642] | 18 | import sys, os |
---|
[7640] | 19 | |
---|
| 20 | # Model specific data |
---|
| 21 | gauges = {'g10a': [422233.4, 874380.2], |
---|
| 22 | 'g10b': [422107.9, 873556.8], |
---|
| 23 | 'g10c': [421966.8, 872890.3], |
---|
| 24 | 'g10d': [421606.1, 872106.2], |
---|
| 25 | 'g11a': [422628.2, 873933.2], |
---|
| 26 | 'g11b': [422716.2, 873420.6], |
---|
| 27 | 'g11c': [422689.1, 872859.8], |
---|
| 28 | 'g11d': [422408.7, 871940.3], |
---|
| 29 | 'g11e': [421751.7, 871097.8], |
---|
| 30 | 'north': [422572.4, 873992.6], |
---|
| 31 | 'south': [422004.4, 872014.4]} |
---|
| 32 | |
---|
| 33 | |
---|
| 34 | #--------------------------------------- |
---|
| 35 | |
---|
| 36 | def usage(): |
---|
| 37 | print 'Usage:' |
---|
| 38 | print 'python compare_model_timeseries.py swwfile1 swwfile2' |
---|
| 39 | |
---|
| 40 | |
---|
| 41 | |
---|
| 42 | def get_timeseries(sww_filename, gauges): |
---|
| 43 | """Generate time series for sww file based on gauges |
---|
| 44 | """ |
---|
| 45 | |
---|
| 46 | gauge_locations = gauges.values() |
---|
| 47 | gauge_names = gauges.keys() |
---|
[7642] | 48 | |
---|
[7645] | 49 | tempfile = 'xyz1234tempfile.sww' # Has to end with sww |
---|
| 50 | |
---|
| 51 | os.system('cp %s %s' % (sww_filename, tempfile)) |
---|
| 52 | f = file_function(tempfile, |
---|
[7640] | 53 | quantities='stage', |
---|
| 54 | interpolation_points=gauge_locations, |
---|
| 55 | use_cache=True, |
---|
| 56 | verbose=True) |
---|
| 57 | |
---|
| 58 | timevector = f.get_time() |
---|
| 59 | |
---|
| 60 | timeseries = {} |
---|
| 61 | for k, name in enumerate(gauge_names): |
---|
| 62 | model = timeseries[name] = [] |
---|
| 63 | |
---|
| 64 | for t in timevector: |
---|
| 65 | model.append(f(t, point_id=k)[0]) |
---|
| 66 | |
---|
| 67 | |
---|
[7645] | 68 | return num.array(timevector), timeseries |
---|
[7640] | 69 | |
---|
| 70 | |
---|
[7645] | 71 | |
---|
| 72 | def compare_timeseries(timevector, |
---|
| 73 | timeseries1, |
---|
| 74 | timeseries2, |
---|
| 75 | name='', |
---|
| 76 | legend = ('Time series 1', 'Time series 2')): |
---|
| 77 | """Compare and plot two timeseries |
---|
| 78 | """ |
---|
[7640] | 79 | |
---|
| 80 | |
---|
[7645] | 81 | timeseries1 = num.array(timeseries1) |
---|
| 82 | timeseries2 = num.array(timeseries2) |
---|
| 83 | N = timevector.shape[0] |
---|
| 84 | assert timeseries1.shape[0] == N |
---|
| 85 | assert timeseries2.shape[0] == N |
---|
| 86 | |
---|
| 87 | eps = 1.0e-3 |
---|
| 88 | |
---|
| 89 | # Covariance measure |
---|
| 90 | #res = cov(timeseries1, timeseries2) |
---|
| 91 | #msg = 'Covariance between timeseries was too large: %e' % res |
---|
| 92 | #assert res < 0.01, msg |
---|
| 93 | |
---|
| 94 | # Difference measures |
---|
| 95 | print timeseries1 |
---|
| 96 | print timeseries1-timeseries2 |
---|
| 97 | |
---|
| 98 | |
---|
| 99 | # Maximum norm |
---|
| 100 | nominator = max(abs(timeseries1-timeseries2)) |
---|
| 101 | denominator = max(abs(timeseries1)) |
---|
| 102 | print nominator, denominator, N |
---|
| 103 | if denominator > 0: |
---|
| 104 | # Relative measure |
---|
| 105 | res = nominator/denominator |
---|
| 106 | else: |
---|
| 107 | # Absolute measure |
---|
| 108 | res = nominator/N |
---|
| 109 | |
---|
| 110 | msg = '%s: Difference between timeseries was too large: %e' % (name, res) |
---|
| 111 | #assert res < eps, msg |
---|
| 112 | |
---|
| 113 | |
---|
| 114 | nominator = sum(abs(timeseries1-timeseries2)) |
---|
| 115 | denominator = sum(abs(timeseries1)) |
---|
| 116 | print nominator, denominator, N |
---|
| 117 | if denominator > 0: |
---|
| 118 | # Relative measure |
---|
| 119 | res = nominator/denominator |
---|
| 120 | else: |
---|
| 121 | # Absolute measure |
---|
| 122 | res = nominator/N |
---|
| 123 | |
---|
| 124 | msg = '%s: Difference between timeseries was too large: %e' % (name, res) |
---|
| 125 | #assert res < eps, msg |
---|
| 126 | |
---|
| 127 | # Extrema |
---|
| 128 | #res = max(model) |
---|
| 129 | #report_difference('Maximum', res, expected_maximum[name], rtol, atol) |
---|
| 130 | |
---|
| 131 | |
---|
| 132 | |
---|
| 133 | # Generate plots |
---|
| 134 | pylab.ion() # No plotting on screen |
---|
| 135 | pylab.hold(False) |
---|
| 136 | |
---|
| 137 | pylab.plot(timevector, timeseries1, 'r-', |
---|
| 138 | timevector, timeseries2, 'k-') |
---|
| 139 | |
---|
| 140 | pylab.title('Gauge %s' % name) |
---|
| 141 | pylab.xlabel('time(s)') |
---|
| 142 | pylab.ylabel('stage (m)') |
---|
| 143 | pylab.legend(legend, shadow=True, loc='upper left') |
---|
| 144 | pylab.savefig(name, dpi = 300) |
---|
| 145 | |
---|
| 146 | # Error vector |
---|
| 147 | pylab.ion() # No plotting on screen |
---|
| 148 | pylab.hold(False) |
---|
| 149 | pylab.plot(timevector, timeseries1-timeseries2, 'b-') |
---|
| 150 | pylab.title('Gauge %s (difference)' % name) |
---|
| 151 | pylab.xlabel('time(s)') |
---|
| 152 | pylab.ylabel('stage difference (m)') |
---|
| 153 | pylab.savefig(name + '_diff', dpi = 300) |
---|
| 154 | |
---|
| 155 | |
---|
| 156 | |
---|
| 157 | def compare_all_timeseries(swwfile1, swwfile2): |
---|
| 158 | |
---|
[7640] | 159 | timevector1, timeseries1 = get_timeseries(swwfile1, gauges) |
---|
| 160 | timevector2, timeseries2 = get_timeseries(swwfile2, gauges) |
---|
| 161 | |
---|
[7641] | 162 | msg = 'Time vectors were different in models %s and %s' %\ |
---|
[7640] | 163 | (swwfile1, swwfile2) |
---|
| 164 | assert num.allclose(timevector1, timevector2), msg |
---|
[7645] | 165 | timevector = timevector1 |
---|
| 166 | |
---|
| 167 | # Check that both timeseries exist for all gauges |
---|
| 168 | for name in timeseries2: |
---|
| 169 | assert name in timeseries1 |
---|
| 170 | |
---|
| 171 | for name in timeseries1: |
---|
| 172 | assert name in timeseries2 |
---|
| 173 | |
---|
| 174 | # Compare all timeseries data individually |
---|
| 175 | for name in timeseries1: |
---|
| 176 | compare_timeseries(timevector, |
---|
| 177 | timeseries1[name], |
---|
| 178 | timeseries2[name], |
---|
| 179 | name=name) |
---|
| 180 | |
---|
| 181 | |
---|
| 182 | |
---|
| 183 | |
---|
| 184 | |
---|
[7642] | 185 | print 'OK' |
---|
[7640] | 186 | |
---|
[7645] | 187 | |
---|
[7640] | 188 | |
---|
| 189 | if __name__ == '__main__': |
---|
| 190 | |
---|
| 191 | if len(sys.argv) != 3: |
---|
| 192 | usage() |
---|
| 193 | import sys; sys.exit(-1) |
---|
[7642] | 194 | |
---|
[7645] | 195 | #res = compare_all_timeseries(sys.argv[1], sys.argv[2]) |
---|
[7640] | 196 | try: |
---|
[7645] | 197 | res = compare_all_timeseries(sys.argv[1], sys.argv[2]) |
---|
[7641] | 198 | except: |
---|
[7640] | 199 | sys.exit(-1) |
---|
| 200 | else: |
---|
| 201 | sys.exit(0) |
---|