"""Simple water flow example using ANUGA Water driven up a linear slope and time varying boundary, similar to a beach environment """ #------------------------------------------------------------------------------ # Import necessary modules #------------------------------------------------------------------------------ import sys from anuga.abstract_2d_finite_volumes.mesh_factory import rectangular_cross from anuga.shallow_water import Domain from anuga.shallow_water import Reflective_boundary from anuga.shallow_water import Dirichlet_boundary from anuga.shallow_water import Time_boundary from anuga.shallow_water import Transmissive_boundary from anuga.shallow_water import Transmissive_Momentum_Set_Stage_boundary from anuga.geospatial_data.geospatial_data import * from math import cos #------------------------------------------------------------------------------ # Setup computational domain #------------------------------------------------------------------------------ dx = 10. dy = dx L = 100000. W = 3000. # structured mesh #points, vertices, boundary = rectangular_cross(int(L/dx), int(W/dy), # L, W, (0.0, -W/2)) # Basic mesh #points, vertices, boundary = rectangular_cross(666, 3, 100000, 3000, (0.0, -0.0)) # Basic mesh #points, vertices, boundary = rectangular_cross(530, 10, 5300, 100, (-5000.0, -50.0)) # Basic mesh #points, vertices, boundary = rectangular_cross(1000, 100, 20, 3) # Basic mesh #domain = Domain(points, vertices, boundary) # unstructured mesh poly_domain = [[0,-W],[0,W],[L,W],[L,-W]] meshname = 'test.msh' from anuga.pmesh.mesh_interface import create_mesh_from_regions # Create mesh create_mesh_from_regions(poly_domain, boundary_tags={'left': [0], 'top': [1], 'right': [2], 'bottom': [3]}, maximum_triangle_area = 100000, filename=meshname) # Create domain domain = Domain(meshname, use_cache=True, verbose = True) domain.set_name('myexample2') domain.set_default_order(2) # Use second order spatial scheme domain.set_datadir('.') # Use current directory for output #------------------------------------------------------------------------------ # Setup initial conditions #------------------------------------------------------------------------------ #domain.set_quantity('elevation', topography) # Use function for elevation domain.set_quantity('elevation', -100) domain.set_quantity('friction', 0.00) domain.set_quantity('stage', 0.0) #----------------------------------------------------------------------------- # Setup boundary conditions #------------------------------------------------------------------------------ from math import sin, pi, exp Br = Reflective_boundary(domain) # Solid reflective wall Bt = Transmissive_boundary(domain) # Continue all values on boundary Bd = Dirichlet_boundary([1,0.,0.]) # Constant boundary values amplitude = 1 Bw = Time_boundary(domain=domain, # Time dependent boundary ## Sine wave f=lambda t: [(-amplitude*sin((1./300.)*t*2*pi)), 0.0, 0.0]) ## Sawtooth? # f=lambda t: [(-8.0*(sin((1./180.)*t*2*pi))+(1./2.)*sin((2./180.)*t*2*pi)+(1./3.)*sin((3./180.)*t*2*pi)), 0.0, 0.0]) ## Sharp rise, linear fall # f=lambda t: [(5.0*(-((t-0.)/300.)*(t<300.)-cos((t-300.)*2.*pi*(1./240.))*(t>=300. and t<420.)+(1.-(t-420.)/300.)*(t>=420. and t <720.))), 0.0, 0.0]) # f=lambda t: [amplitude*(1.-2.*(pi*(1./720.)*(t-720.))**2)/exp((pi*(1./720.)*(t-720.))**2) , 0.0, 0.0]) # f=lambda t: [(-8.0*sin((1./720.)*t*2*pi))*((t<720.)-0.5*(t<360.)), 0.0, 0.0]) # Associate boundary tags with boundary objects domain.set_boundary({'left': Bw, 'right': Bt, 'top': Br, 'bottom': Br}) #------------------------------------------------------------------------------ # Evolve system through time #------------------------------------------------------------------------------ for t in domain.evolve(yieldstep = 20.0, finaltime = 40*60.): domain.write_time()