# source:anuga_validation/convergence_study/wave.py@5300

Last change on this file since 5300 was 5300, checked in by steve, 15 years ago

Working version of wave.py and dam_break.py

File size: 4.9 KB
Line
1"""Simple water flow example using ANUGA
2
3Will Powers example of a simple sinusoidal wave which showed diffusive effects of
4thefirst order and standard second order method. Problem resolved if "rk2" timestepping
5and higher beta = 2 limiter used. Also new edge limiter with rk2 resolves problem
6"""
7
8#------------------------------------------------------------------------------
9# Import necessary modules
10#------------------------------------------------------------------------------
11
12import sys
13from anuga.abstract_2d_finite_volumes.mesh_factory import rectangular_cross
14from anuga.shallow_water import Domain
15from anuga.shallow_water import Reflective_boundary
16from anuga.shallow_water import Dirichlet_boundary
17from anuga.shallow_water import Time_boundary
18from anuga.shallow_water import Transmissive_boundary
19from anuga.shallow_water import Transmissive_Momentum_Set_Stage_boundary
20from anuga.shallow_water.data_manager import start_screen_catcher, copy_code_files
21
22from math import cos
23from Numeric import zeros, Float
24from time import localtime, strftime, gmtime
25from os import sep
26
27
28
29#-------------------------------------------------------------------------------
30# Copy scripts to time stamped output directory and capture screen
31# output to file
32#-------------------------------------------------------------------------------
33time = strftime('%Y%m%d_%H%M%S',localtime())
34
35output_dir = 'wave_'+time
36output_file = 'wave'
37
38copy_code_files(output_dir,__file__)
39#start_screen_catcher(output_dir+sep)
40
41#------------------------------------------------------------------------------
42# Setup domain
43#------------------------------------------------------------------------------
44dx = 1000.
45dy = dx
46L = 100000.
47W = 10*dx
48
49# structured mesh
50points, vertices, boundary = rectangular_cross(int(L/dx), int(W/dy), L, W, (0.0, -W/2))
51
52domain = Domain(points, vertices, boundary)
53
54domain.set_name(output_file)
55domain.set_datadir(output_dir)
56
57#------------------------------------------------------------------------------
58# Setup Algorithm
59#------------------------------------------------------------------------------
60domain.set_timestepping_method('rk2')
61domain.set_default_order(2)
62
63print domain.get_timestepping_method()
64
65domain.use_edge_limiter = True
66domain.tight_slope_limiters = False
67domain.use_centroid_velocities = False
68
69domain.CFL = 1.0
70
71domain.beta_w      = 1.0
72domain.beta_w_dry  = 0.0
73domain.beta_uh     = 1.0
74domain.beta_uh_dry = 0.0
75domain.beta_vh     = 1.0
76domain.beta_vh_dry = 0.0
77domain.beta_h    = 0.0
78
79interactive_visualisation = True
80
81
82#------------------------------------------------------------------------------
83# Setup initial conditions
84#------------------------------------------------------------------------------
85domain.set_quantity('elevation',-100.0)
86domain.set_quantity('friction', 0.00)
87domain.set_quantity('stage', 0.0)
88
89#-----------------------------------------------------------------------------
90# Setup boundary conditions
91#------------------------------------------------------------------------------
92from math import sin, pi, exp
93Br = Reflective_boundary(domain)      # Solid reflective wall
94Bt = Transmissive_boundary(domain)    # Continue all values on boundary
95Bd = Dirichlet_boundary([1,0.,0.]) # Constant boundary values
96amplitude = 1
97Bw = Time_boundary(domain=domain,     # Time dependent boundary
98## Sine wave
99                  f=lambda t: [(-amplitude*sin((1./300.)*t*2*pi)), 0.0, 0.0])
100## Sawtooth?
101#                   f=lambda t: [(-8.0*(sin((1./180.)*t*2*pi))+(1./2.)*sin((2./180.)*t*2*pi)+(1./3.)*sin((3./180.)*t*2*pi)), 0.0, 0.0])
102## Sharp rise, linear fall
103#                   f=lambda t: [(5.0*(-((t-0.)/300.)*(t<300.)-cos((t-300.)*2.*pi*(1./240.))*(t>=300. and t<420.)+(1.-(t-420.)/300.)*(t>=420. and t <720.))), 0.0, 0.0])
104#                   f=lambda t: [amplitude*(1.-2.*(pi*(1./720.)*(t-720.))**2)/exp((pi*(1./720.)*(t-720.))**2) , 0.0, 0.0])
105#                   f=lambda t: [(-8.0*sin((1./720.)*t*2*pi))*((t<720.)-0.5*(t<360.)), 0.0, 0.0])
106
107# Associate boundary tags with boundary objects
108domain.set_boundary({'left': Bw, 'right': Bt, 'top': Br, 'bottom': Br})
109
110
111#===============================================================================
112if interactive_visualisation:
113    from anuga.visualiser import RealtimeVisualiser
114    vis = RealtimeVisualiser(domain)
115    vis.render_quantity_height("stage", zScale =10000, dynamic=True)
116    vis.colour_height_quantity('stage', (1.0, 0.5, 0.5))
117    vis.start()
118#===============================================================================
119
120
121#------------------------------------------------------------------------------
122# Evolve system through time
123#------------------------------------------------------------------------------
124
125for t in domain.evolve(yieldstep = 50.0, finaltime = 60*60.):
126    domain.write_time()
127    if interactive_visualisation:
128        vis.update()
129
130if interactive_visualisation:
131    vis.evolveFinished()
132
Note: See TracBrowser for help on using the repository browser.