1 | """Simple water flow example using ANUGA |
---|
2 | |
---|
3 | Water driven up a linear slope and time varying boundary, |
---|
4 | similar to a beach environment. |
---|
5 | |
---|
6 | For the case (H=0.5m, tan beta=1:50, and still water depth 20m), |
---|
7 | the analytical solution for runup height (R) should be 3.97997m. |
---|
8 | |
---|
9 | """ |
---|
10 | |
---|
11 | |
---|
12 | #------------------------------------------------------------------------------ |
---|
13 | # Import necessary modules |
---|
14 | #------------------------------------------------------------------------------ |
---|
15 | |
---|
16 | import sys |
---|
17 | |
---|
18 | from anuga.pmesh.mesh_interface import create_mesh_from_regions |
---|
19 | from abstract_2d_finite_volumes.mesh_factory import rectangular_cross |
---|
20 | from anuga.config import g |
---|
21 | from anuga.shallow_water import Domain |
---|
22 | from anuga.shallow_water import Reflective_boundary |
---|
23 | from anuga.shallow_water import Dirichlet_boundary |
---|
24 | from anuga.shallow_water import Time_boundary |
---|
25 | from anuga.shallow_water import Transmissive_Momentum_Set_Stage_boundary |
---|
26 | from abstract_2d_finite_volumes.util import file_function |
---|
27 | #from pylab import plot, xlabel, ylabel, title, ion, close, savefig,\ |
---|
28 | # figure, axis, legend, grid, hold |
---|
29 | |
---|
30 | |
---|
31 | |
---|
32 | |
---|
33 | #------------------------------------------------------------------------------ |
---|
34 | # Model constants |
---|
35 | |
---|
36 | max_area = 5.0 # Maximal triangle area in runup zone (interior_polygon) |
---|
37 | # This is the variable that we use to measure convergence. |
---|
38 | # Range in [1.0/8; 8.0] |
---|
39 | |
---|
40 | |
---|
41 | |
---|
42 | |
---|
43 | slope = -0.02 # 1:50 Slope, reaches h=20m 1000m from western bndry, |
---|
44 | # and h=0 (coast) at 300m |
---|
45 | highest_point = 6 # Highest elevation (m) |
---|
46 | sea_level = 0 # Mean sea level |
---|
47 | min_elevation = -20 # Lowest elevation (elevation of offshore flat part) |
---|
48 | offshore_depth = sea_level-min_elevation # offshore water depth |
---|
49 | |
---|
50 | amplitude = 0.5 # Solitary wave height H |
---|
51 | normalized_amplitude = amplitude/offshore_depth |
---|
52 | |
---|
53 | coastline_x = -highest_point/slope |
---|
54 | |
---|
55 | # Basin dimensions (m) |
---|
56 | west = 0 # left boundary |
---|
57 | east = 1500 # right boundary |
---|
58 | south = 0 # lower boundary |
---|
59 | north = 100 # upper boundary |
---|
60 | |
---|
61 | |
---|
62 | #------------------------------------------------------------------------------ |
---|
63 | # Setup computational domain all units in meters |
---|
64 | #------------------------------------------------------------------------------ |
---|
65 | |
---|
66 | length = east-west |
---|
67 | width = north-south |
---|
68 | |
---|
69 | # Unstructured mesh |
---|
70 | polygon = [[east,north],[west,north],[west,south],[east,south]] |
---|
71 | interior_polygon = [[400,north],[west+10,north], |
---|
72 | [west+10,south],[400,south]] |
---|
73 | |
---|
74 | simulation_name = 'runup_convergence' + str(max_area) |
---|
75 | meshname = simulation_name + '.msh' |
---|
76 | create_mesh_from_regions(polygon, |
---|
77 | boundary_tags={'top': [0], 'left': [1], |
---|
78 | 'bottom': [2], 'right': [3]}, |
---|
79 | maximum_triangle_area=max_area, |
---|
80 | filename=meshname)#, |
---|
81 | #interior_regions=[[interior_polygon, max_area]]) |
---|
82 | |
---|
83 | |
---|
84 | |
---|
85 | domain = Domain(meshname, use_cache=True, verbose = True) |
---|
86 | #domain.set_minimum_storable_height(0.01) |
---|
87 | #domain.set_minimum_allowed_height(0.01) |
---|
88 | domain.beta_h = 0.0 |
---|
89 | domain.tight_slope_limiters = 1 |
---|
90 | domain.set_name(simulation_name) |
---|
91 | |
---|
92 | |
---|
93 | #------------------------------------------------------------------------------ |
---|
94 | # Setup initial conditions |
---|
95 | #------------------------------------------------------------------------------ |
---|
96 | |
---|
97 | #def topography(x,y): |
---|
98 | # return slope*x+highest_point # Return linear bed slope (vector) |
---|
99 | |
---|
100 | def topography(x,y): |
---|
101 | """Two part topography - slope and flat part |
---|
102 | """ |
---|
103 | |
---|
104 | from Numeric import zeros, Float |
---|
105 | |
---|
106 | z = zeros(len(x), Float) # Allocate space for return vector |
---|
107 | for i in range(len(x)): |
---|
108 | |
---|
109 | z[i] = slope*x[i]+highest_point # Linear bed slope bathymetry |
---|
110 | |
---|
111 | if z[i] < min_elevation: # Limit depth |
---|
112 | z[i] = min_elevation |
---|
113 | |
---|
114 | return z |
---|
115 | |
---|
116 | |
---|
117 | |
---|
118 | |
---|
119 | domain.set_quantity('elevation', topography) # Use function for elevation |
---|
120 | domain.set_quantity('friction', 0.0 ) # Constant friction |
---|
121 | domain.set_quantity('stage', sea_level) # Constant initial stage |
---|
122 | |
---|
123 | |
---|
124 | #------------------------------------------------------------------------------ |
---|
125 | # Setup boundary conditions |
---|
126 | #------------------------------------------------------------------------------ |
---|
127 | |
---|
128 | from math import sin, pi, cosh, sqrt |
---|
129 | Br = Reflective_boundary(domain) # Solid reflective wall |
---|
130 | Bd = Dirichlet_boundary([0.,0.,0.]) # Constant boundary values |
---|
131 | |
---|
132 | |
---|
133 | def waveform(t): |
---|
134 | return sea_level +\ |
---|
135 | amplitude/cosh(((t-50)/offshore_depth)*(0.75*g*amplitude)**0.5)**2 |
---|
136 | |
---|
137 | # Time dependent boundary for stage, where momentum is set automatically |
---|
138 | Bts = Transmissive_Momentum_Set_Stage_boundary(domain, waveform) |
---|
139 | |
---|
140 | # Associate boundary tags with boundary objects |
---|
141 | domain.set_boundary({'left': Br, 'right': Bts, 'top': Br, 'bottom': Br}) |
---|
142 | |
---|
143 | |
---|
144 | # Find initial runup location and height (coastline) |
---|
145 | w0 = domain.get_maximum_inundation_elevation() |
---|
146 | x0, y0 = domain.get_maximum_inundation_location() |
---|
147 | print |
---|
148 | print 'Coastline elevation = %.2f at (x,y)=(%.2f, %.2f)' %(w0, x0, y0) |
---|
149 | |
---|
150 | # Sanity check |
---|
151 | w_i = domain.get_quantity('stage').get_values(interpolation_points=[[x0,y0]]) |
---|
152 | print 'Interpolated elevation at (x,y)=(%.2f, %.2f) is %.2f' %(x0, y0, w_i) |
---|
153 | |
---|
154 | |
---|
155 | #------------------------------------------------------------------------------ |
---|
156 | # Evolve system through time |
---|
157 | #------------------------------------------------------------------------------ |
---|
158 | |
---|
159 | w_max = w0 |
---|
160 | for t in domain.evolve(yieldstep = 1, finaltime = 300): |
---|
161 | domain.write_time() |
---|
162 | |
---|
163 | w = domain.get_maximum_inundation_elevation() |
---|
164 | x, y = domain.get_maximum_inundation_location() |
---|
165 | print ' Coastline elevation = %.2f at (x,y)=(%.2f, %.2f)' %(w, x, y) |
---|
166 | print |
---|
167 | |
---|
168 | if w > w_max: |
---|
169 | w_max = w |
---|
170 | x_max = x |
---|
171 | y_max = y |
---|
172 | |
---|
173 | |
---|
174 | y0 = y_max |
---|
175 | print '**********************************************' |
---|
176 | print 'Coastline elevation = %.2f at (x,y)=(%.2f, %.2f)' %(w0, x0, y0) |
---|
177 | print 'Max coastline elevation = %.2f at (%.2f, %.2f)' %(w_max, x_max, y_max) |
---|
178 | print 'Run up distance = %.2f' %sqrt( (x_max-x0)**2 + (y_max-y0)**2 ) |
---|
179 | print 'Max area in runup zone = %.2f' %max_area |
---|
180 | print '**********************************************' |
---|
181 | |
---|
182 | import sys; sys.exit() |
---|
183 | #----------------------------------------------------------------------------- |
---|
184 | # Interrogate further |
---|
185 | #--------------------------------------------------------------- |
---|
186 | |
---|
187 | # Generate time series of one "gauge" situated at right hand boundary |
---|
188 | from anuga.abstract_2d_finite_volumes.util import sww2timeseries |
---|
189 | production_dirs = {'.': 'test'} |
---|
190 | swwfiles = {} |
---|
191 | for label_id in production_dirs.keys(): |
---|
192 | |
---|
193 | swwfile = simulation_name + '.sww' |
---|
194 | swwfiles[swwfile] = label_id |
---|
195 | |
---|
196 | texname, elev_output = sww2timeseries(swwfiles, |
---|
197 | 'boundary_gauge.xya', |
---|
198 | production_dirs, |
---|
199 | report = False, |
---|
200 | reportname = 'test', |
---|
201 | plot_quantity = ['stage', 'speed'], |
---|
202 | surface = False, |
---|
203 | time_min = None, |
---|
204 | time_max = None, |
---|
205 | title_on = True, |
---|
206 | verbose = True) |
---|
207 | |
---|
208 | |
---|
209 | |
---|
210 | |
---|