""" This script tests the ability of a flowline to match inflow above the flowline by creating constant inflow of 1 m3/sec onto a 5m dia circle at the head of a 20m wide plane dipping at 1:300 with a flowline and gauge downstream of the inflow. """ #------------------------------------------------------------------------------ # Import necessary modules #------------------------------------------------------------------------------ from anuga.abstract_2d_finite_volumes.mesh_factory import rectangular_cross from anuga.shallow_water import Domain from anuga.shallow_water.shallow_water_domain import Reflective_boundary from anuga.shallow_water.shallow_water_domain import Dirichlet_boundary from anuga.shallow_water.shallow_water_domain import Inflow from anuga.shallow_water.data_manager import get_flow_through_cross_section from anuga.abstract_2d_finite_volumes.util import sww2csv_gauges, csv2timeseries_graphs #------------------------------------------------------------------------------ # Setup computational domain #------------------------------------------------------------------------------ length = 300. width = 20. dx = dy = 1 # Resolution: of grid on both axes points, vertices, boundary = rectangular_cross(int(length/dx), int(width/dy), len1=length, len2=width) domain = Domain(points, vertices, boundary) domain.set_name('inflow_flowline_test') # Output name domain.set_default_order(2) domain.H0 = 0.01 domain.tight_slope_limiters = 1 print 'Size', len(domain) #------------------------------------------------------------------------------ # Setup initial conditions #------------------------------------------------------------------------------ def topography(x, y): # General Slope of plane is 1:100 z=-x/300 return z domain.set_quantity('elevation', topography) # Use function for elevation domain.set_quantity('friction', 0.012) # Constant friction of conc surface domain.set_quantity('stage', expression='elevation') # Dry initial condition # #------------------------------------------------------------------------------ # Setup boundary conditions #------------------------------------------------------------------------------ Br = Reflective_boundary(domain) # Solid reflective wall Bo = Dirichlet_boundary([-0.9, 0, 0]) # Outflow stsge at -0.9m d=0.1m domain.set_boundary({'left': Br, 'right': Bo, 'top': Br, 'bottom': Br}) #------------------------------------------------------------------------------ # Seup Inflow #------------------------------------------------------------------------------ fixed_inflow = Inflow(domain, center=(10.0, 10.0), radius=5.00, rate=1.00) # Fixed Flowrate onto Area domain.forcing_terms.append(fixed_inflow) #------------------------------------------------------------------------------ # Evolve system through time #------------------------------------------------------------------------------ for t in domain.evolve(yieldstep = 5.0, finaltime = 300): domain.write_time() #------------------------------------------------------------------------------ # Compute flow thru flowline ds of inflow #------------------------------------------------------------------------------ time, Q = get_flow_through_cross_section('inflow_flowline_test.sww', [[30.0,0.0],[30.0,20.0]], verbose=True) csv_fid= open('inflow_flowline_test.csv', 'w') for j in range(len(time)): csv_fid.write('%f, %f\n' %(time[j], Q[j])) csv_fid.close() #------------------------------------------------------------------------------ # Record stage hydrograph ds of inflow #------------------------------------------------------------------------------ sww2csv_gauges('inflow_flowline_test.sww', 'gauges.csv', quantities=['stage','elevation'], verbose=True)