1 | """Test script that shows issue with outflow forcing in very shallow water. |
---|
2 | There is currently no way of knowing how much water was actually removed |
---|
3 | |
---|
4 | """ |
---|
5 | |
---|
6 | from anuga.abstract_2d_finite_volumes.mesh_factory import rectangular_cross |
---|
7 | from anuga.shallow_water.shallow_water_domain import Domain, Inflow, Reflective_boundary |
---|
8 | from math import pi, cos, sin |
---|
9 | from Numeric import allclose |
---|
10 | import sys |
---|
11 | |
---|
12 | length = 20. |
---|
13 | width = 10. |
---|
14 | |
---|
15 | dx = dy = 2 # 1 or 2 OK for this test |
---|
16 | points, vertices, boundary = rectangular_cross(int(length/dx), |
---|
17 | int(width/dy), |
---|
18 | len1=length, |
---|
19 | len2=width) |
---|
20 | domain = Domain(points, vertices, boundary) |
---|
21 | domain.set_name('test_outflow_conservation') # Output name |
---|
22 | domain.set_default_order(2) |
---|
23 | |
---|
24 | |
---|
25 | # Flat surface |
---|
26 | stage = 0.25 # Values greater than about 0.5 work. Values at 0.3 or less fail |
---|
27 | |
---|
28 | domain.set_quantity('elevation', 0) |
---|
29 | domain.set_quantity('stage', stage) |
---|
30 | domain.set_quantity('friction', 0) |
---|
31 | |
---|
32 | Br = Reflective_boundary(domain) |
---|
33 | domain.set_boundary({'left': Br, 'right': Br, 'bottom': Br, 'top': Br}) |
---|
34 | |
---|
35 | # Apply outflow |
---|
36 | rate = -2.0 |
---|
37 | I = Inflow(domain, rate=rate, center=(15,5), radius=1) |
---|
38 | I.requested_rate = I.rate |
---|
39 | |
---|
40 | domain.forcing_terms = [] |
---|
41 | domain.forcing_terms.append(I) |
---|
42 | initial_volume = domain.quantities['stage'].get_integral() |
---|
43 | predicted_volume = initial_volume |
---|
44 | dt = 0.05 |
---|
45 | for t in domain.evolve(yieldstep = dt, finaltime = 5.0): |
---|
46 | volume = domain.quantities['stage'].get_integral() |
---|
47 | |
---|
48 | I.rate = I.requested_rate |
---|
49 | |
---|
50 | delta_t = domain.timestep |
---|
51 | if delta_t > 0: |
---|
52 | max_Q = sys.maxint |
---|
53 | for i in I.exchange_indices: |
---|
54 | stage = domain.get_quantity('stage').get_values(location='centroids', |
---|
55 | indices=[i])[0] |
---|
56 | elevation = domain.get_quantity('elevation').get_values(location='centroids', |
---|
57 | indices=[i])[0] |
---|
58 | depth = stage-elevation |
---|
59 | area = domain.areas[i] |
---|
60 | print 'exchange', I.exchange_area, 'timestep', delta_t |
---|
61 | |
---|
62 | print i, |
---|
63 | print ', area', area, ', depth', depth |
---|
64 | print 'Requested rate for this triangle = %f m^3/s' % (I.rate/I.exchange_area*area) |
---|
65 | |
---|
66 | Qi = depth*area/delta_t |
---|
67 | print 'Possible rate for this triangle = %f m^3/s' % (-Qi) |
---|
68 | |
---|
69 | print 'Requested rate for exchange area = %f m^3/s' % (I.rate) |
---|
70 | Qtot = Qi/area*I.exchange_area |
---|
71 | #print 'Possible rate for exchange area = %f m^3/s' % (-Qtot) |
---|
72 | Qtot = 0.7*Qtot |
---|
73 | |
---|
74 | max_Q = min(max_Q, Qtot) |
---|
75 | |
---|
76 | |
---|
77 | |
---|
78 | I.rate = -min(-I.requested_rate, max_Q) |
---|
79 | print 'Adjusted_rate for exchange_area = %f m^3/s' % I.rate |
---|
80 | |
---|
81 | |
---|
82 | print t, 'Volume difference:', abs(volume-predicted_volume) |
---|
83 | assert allclose (volume, predicted_volume) |
---|
84 | predicted_volume = predicted_volume + I.rate/pi/100/dt |
---|
85 | |
---|