[7839] | 1 | #! /usr/bin/python |
---|
| 2 | |
---|
| 3 | |
---|
| 4 | |
---|
| 5 | __author__="Stephen Roberts" |
---|
| 6 | __date__ ="$05/06/2010 4:54:58 PM$" |
---|
| 7 | |
---|
| 8 | |
---|
| 9 | def compute_fluxes(domain): |
---|
| 10 | """Compute all fluxes and the timestep suitable for all volumes |
---|
| 11 | in domain. |
---|
| 12 | |
---|
| 13 | Compute total flux for each conserved quantity using "flux_function" |
---|
| 14 | |
---|
| 15 | Fluxes across each edge are scaled by edgelengths and summed up |
---|
| 16 | Resulting flux is then scaled by area and stored in |
---|
| 17 | explicit_update for each of the three conserved quantities |
---|
| 18 | stage, xmomentum and ymomentum |
---|
| 19 | |
---|
| 20 | The maximal allowable speed computed by the flux_function for each volume |
---|
| 21 | is converted to a timestep that must not be exceeded. The minimum of |
---|
| 22 | those is computed as the next overall timestep. |
---|
| 23 | |
---|
| 24 | Post conditions: |
---|
| 25 | domain.explicit_update is reset to computed flux values |
---|
| 26 | domain.timestep is set to the largest step satisfying all volumes. |
---|
| 27 | """ |
---|
| 28 | |
---|
| 29 | import sys |
---|
| 30 | import numpy |
---|
| 31 | |
---|
| 32 | N = domain.number_of_elements |
---|
| 33 | |
---|
| 34 | tmp0 = numpy.zeros(N,numpy.float) |
---|
| 35 | tmp1 = numpy.zeros(N,numpy.float) |
---|
| 36 | |
---|
| 37 | #Shortcuts |
---|
| 38 | Stage = domain.quantities['stage'] |
---|
| 39 | Xmom = domain.quantities['xmomentum'] |
---|
| 40 | Bed = domain.quantities['elevation'] |
---|
| 41 | |
---|
| 42 | #Arrays |
---|
| 43 | stage = Stage.vertex_values |
---|
| 44 | xmom = Xmom.vertex_values |
---|
| 45 | bed = Bed.vertex_values |
---|
| 46 | |
---|
| 47 | |
---|
| 48 | stage_bdry = Stage.boundary_values |
---|
| 49 | xmom_bdry = Xmom.boundary_values |
---|
| 50 | |
---|
| 51 | flux = numpy.zeros(2, numpy.float) #Work numpy.array for summing up fluxes |
---|
| 52 | ql = numpy.zeros(2, numpy.float) |
---|
| 53 | qr = numpy.zeros(2, numpy.float) |
---|
| 54 | |
---|
| 55 | #Loop |
---|
| 56 | timestep = float(sys.maxint) |
---|
| 57 | |
---|
| 58 | for k in range(N): |
---|
| 59 | |
---|
| 60 | flux[:,] = 0. #Reset work numpy.array |
---|
| 61 | #for i in range(3): |
---|
| 62 | for i in range(2): |
---|
| 63 | #Quantities inside volume facing neighbour i |
---|
| 64 | #ql[0] = stage[k, i] |
---|
| 65 | #ql[1] = xmom[k, i] |
---|
| 66 | ql = [stage[k, i], xmom[k, i]] |
---|
| 67 | zl = bed[k, i] |
---|
| 68 | |
---|
| 69 | #Quantities at neighbour on nearest face |
---|
| 70 | n = domain.neighbours[k,i] |
---|
| 71 | if n < 0: |
---|
| 72 | m = -n-1 #Convert negative flag to index |
---|
| 73 | qr[0] = stage_bdry[m] |
---|
| 74 | qr[1] = xmom_bdry[m] |
---|
| 75 | zr = zl #Extend bed elevation to boundary |
---|
| 76 | else: |
---|
| 77 | #m = domain.neighbour_edges[k,i] |
---|
| 78 | m = domain.neighbour_vertices[k,i] |
---|
| 79 | #print i, ' ' , m |
---|
| 80 | #qr = [stage[n, m], xmom[n, m], ymom[n, m]] |
---|
| 81 | qr[0] = stage[n, m] |
---|
| 82 | qr[1] = xmom[n, m] |
---|
| 83 | zr = bed[n, m] |
---|
| 84 | |
---|
| 85 | |
---|
| 86 | #Outward pointing normal vector |
---|
| 87 | normal = domain.normals[k, i] |
---|
| 88 | |
---|
| 89 | #Flux computation using provided function |
---|
| 90 | |
---|
| 91 | |
---|
| 92 | edgeflux, max_speed = flux_function(normal, ql, qr, zl, zr) |
---|
| 93 | |
---|
| 94 | #print 'edgeflux', edgeflux |
---|
| 95 | |
---|
| 96 | # THIS IS THE LINE TO DEAL WITH LEFT AND RIGHT FLUXES |
---|
| 97 | # flux = edgefluxleft - edgefluxright |
---|
| 98 | flux -= edgeflux |
---|
| 99 | #Update optimal_timestep |
---|
| 100 | try: |
---|
| 101 | #timestep = min(timestep, 0.5*domain.radii[k]/max_speed) |
---|
| 102 | timestep = min(timestep, domain.CFL*0.5*domain.areas[k]/max_speed) |
---|
| 103 | except ZeroDivisionError: |
---|
| 104 | pass |
---|
| 105 | |
---|
| 106 | #Normalise by area and store for when all conserved |
---|
| 107 | #quantities get updated |
---|
| 108 | flux /= domain.areas[k] |
---|
| 109 | |
---|
| 110 | #Stage.explicit_update[k] = flux[0] |
---|
| 111 | tmp0[k] = flux[0] |
---|
| 112 | tmp1[k] = flux[1] |
---|
| 113 | |
---|
| 114 | |
---|
| 115 | return tmp0, tmp1 |
---|
| 116 | |
---|
| 117 | |
---|
| 118 | def flux_function(normal, ql, qr, zl, zr): |
---|
| 119 | """Compute fluxes between volumes for the shallow water wave equation |
---|
| 120 | cast in terms of w = h+z using the 'central scheme' as described in |
---|
| 121 | |
---|
| 122 | Kurganov, Noelle, Petrova. 'Semidiscrete Central-Upwind Schemes For |
---|
| 123 | Hyperbolic Conservation Laws and Hamilton-Jacobi Equations'. |
---|
| 124 | Siam J. Sci. Comput. Vol. 23, No. 3, pp. 707-740. |
---|
| 125 | |
---|
| 126 | The implemented formula is given in equation (3.15) on page 714 |
---|
| 127 | |
---|
| 128 | Conserved quantities w, uh, are stored as elements 0 and 1 |
---|
| 129 | in the numerical vectors ql an qr. |
---|
| 130 | |
---|
| 131 | Bed elevations zl and zr. |
---|
| 132 | """ |
---|
| 133 | |
---|
[7840] | 134 | from anuga_1d.config import g, epsilon, h0 |
---|
[7839] | 135 | from math import sqrt |
---|
| 136 | import numpy |
---|
| 137 | |
---|
| 138 | #print 'ql',ql |
---|
| 139 | |
---|
| 140 | #Align momentums with x-axis |
---|
| 141 | #q_left = rotate(ql, normal, direction = 1) |
---|
| 142 | #q_right = rotate(qr, normal, direction = 1) |
---|
| 143 | q_left = ql |
---|
| 144 | q_left[1] = q_left[1]*normal |
---|
| 145 | q_right = qr |
---|
| 146 | q_right[1] = q_right[1]*normal |
---|
| 147 | |
---|
| 148 | #z = (zl+zr)/2 #Take average of field values |
---|
| 149 | z = 0.5*(zl+zr) #Take average of field values |
---|
| 150 | |
---|
| 151 | w_left = q_left[0] #w=h+z |
---|
| 152 | h_left = w_left-z |
---|
| 153 | uh_left = q_left[1] |
---|
| 154 | |
---|
| 155 | if h_left < epsilon: |
---|
| 156 | u_left = 0.0 #Could have been negative |
---|
| 157 | h_left = 0.0 |
---|
| 158 | else: |
---|
| 159 | u_left = uh_left/(h_left + h0/h_left) |
---|
| 160 | |
---|
| 161 | |
---|
| 162 | uh_left = u_left*h_left |
---|
| 163 | |
---|
| 164 | w_right = q_right[0] #w=h+z |
---|
| 165 | h_right = w_right-z |
---|
| 166 | uh_right = q_right[1] |
---|
| 167 | |
---|
| 168 | |
---|
| 169 | if h_right < epsilon: |
---|
| 170 | u_right = 0.0 #Could have been negative |
---|
| 171 | h_right = 0.0 |
---|
| 172 | else: |
---|
| 173 | u_right = uh_right/(h_right + h0/h_right) |
---|
| 174 | |
---|
| 175 | uh_right = u_right*h_right |
---|
| 176 | |
---|
| 177 | #vh_left = q_left[2] |
---|
| 178 | #vh_right = q_right[2] |
---|
| 179 | |
---|
| 180 | #print h_right |
---|
| 181 | #print u_right |
---|
| 182 | #print h_left |
---|
| 183 | #print u_right |
---|
| 184 | |
---|
| 185 | soundspeed_left = sqrt(g*h_left) |
---|
| 186 | soundspeed_right = sqrt(g*h_right) |
---|
| 187 | |
---|
| 188 | #Maximal wave speed |
---|
| 189 | s_max = max(u_left+soundspeed_left, u_right+soundspeed_right, 0) |
---|
| 190 | |
---|
| 191 | #Minimal wave speed |
---|
| 192 | s_min = min(u_left-soundspeed_left, u_right-soundspeed_right, 0) |
---|
| 193 | |
---|
| 194 | #Flux computation |
---|
| 195 | |
---|
| 196 | #flux_left = numpy.array([u_left*h_left, |
---|
| 197 | # u_left*uh_left + 0.5*g*h_left**2]) |
---|
| 198 | #flux_right = numpy.array([u_right*h_right, |
---|
| 199 | # u_right*uh_right + 0.5*g*h_right**2]) |
---|
| 200 | flux_left = numpy.array([u_left*h_left, |
---|
| 201 | u_left*uh_left + 0.5*g*h_left*h_left]) |
---|
| 202 | flux_right = numpy.array([u_right*h_right, |
---|
| 203 | u_right*uh_right + 0.5*g*h_right*h_right]) |
---|
| 204 | |
---|
| 205 | denom = s_max-s_min |
---|
| 206 | if denom == 0.0: |
---|
| 207 | edgeflux = numpy.array([0.0, 0.0]) |
---|
| 208 | max_speed = 0.0 |
---|
| 209 | else: |
---|
| 210 | edgeflux = (s_max*flux_left - s_min*flux_right)/denom |
---|
| 211 | edgeflux += s_max*s_min*(q_right-q_left)/denom |
---|
| 212 | |
---|
| 213 | edgeflux[1] = edgeflux[1]*normal |
---|
| 214 | |
---|
| 215 | max_speed = max(abs(s_max), abs(s_min)) |
---|
| 216 | |
---|
| 217 | return edgeflux, max_speed |
---|
| 218 | |
---|
| 219 | |
---|
| 220 | if __name__ == "__main__": |
---|
| 221 | print "Hello World"; |
---|