""" Script for running a breaking wave simulation of Jon Hinwoods wave tank. Note: this is based on the frinction_ua_flume_2006 structure. Duncan Gray, GA - 2007 """ #---------------------------------------------------------------------------- # Import necessary modules #---------------------------------------------------------------------------- # Standard modules import time from time import localtime, strftime import sys from shutil import copy from os import path, sep from os.path import dirname #, basename # Related major packages from anuga.shallow_water import Domain, Reflective_boundary, \ Dirichlet_boundary, Time_boundary, \ File_boundary, \ Transmissive_Momentum_Set_Stage_boundary from anuga.fit_interpolate.interpolate import interpolate_sww2csv from anuga.abstract_2d_finite_volumes.util import start_screen_catcher, \ copy_code_files, file_function from anuga.abstract_2d_finite_volumes.generic_boundary_conditions\ import File_boundary_time # Scenario specific imports import project # Definition of file names and polygons import create_mesh def elevation_function(x,y): from Numeric import zeros, size, Float xslope = create_mesh.xslope #4 ## Bit of a magic Number print "xslope",xslope z = zeros(size(x), Float) for i in range(len(x)): if x[i] < xslope: z[i] = 0.0 #WARNING: the code in prepare_time_boundary # that calc's momentum assumes this is 0.0 else: z[i] = (x[i]-xslope)*(1./16.) return z def main(friction=0.01, outputdir_name=None, is_trial_run=False): basename = 'zz' + str(friction) if is_trial_run is True: outputdir_name += '_test' yieldstep = 0.1 finaltime = 15. maximum_triangle_area=0.01 else: yieldstep = 0.02 finaltime = 15.1 maximum_triangle_area=0.0001 maximum_triangle_area=0.001 pro_instance = project.Project(['data','flumes','Hinwood_2008'], outputdir_name=outputdir_name, home='.') print "The output dir is", pro_instance.outputdir copy_code_files(pro_instance.outputdir,__file__, dirname(project.__file__) \ + sep + project.__name__+'.py') copy (pro_instance.codedir + 'run_dam.py', pro_instance.outputdir + 'run_dam.py') copy (pro_instance.codedir + 'create_mesh.py', pro_instance.outputdir + 'create_mesh.py') mesh_filename = pro_instance.meshdir + basename + '.msh' #-------------------------------------------------------------------------- # Copy scripts to output directory and capture screen # output to file #-------------------------------------------------------------------------- # creates copy of code in output dir if is_trial_run is False: start_screen_catcher(pro_instance.outputdir, rank, pypar.size()) print 'USER: ', pro_instance.user #------------------------------------------------------------------------- # Create the triangular mesh #------------------------------------------------------------------------- # this creates the mesh #gate_position = 12.0 create_mesh.generate(mesh_filename, maximum_triangle_area=maximum_triangle_area) head,tail = path.split(mesh_filename) copy (mesh_filename, pro_instance.outputdir + tail ) #------------------------------------------------------------------------- # Setup computational domain #------------------------------------------------------------------------- domain = Domain(mesh_filename, use_cache = False, verbose = True) print 'Number of triangles = ', len(domain) print 'The extent is ', domain.get_extent() print domain.statistics() domain.set_name(basename) domain.set_datadir(pro_instance.outputdir) domain.set_quantities_to_be_stored(['stage', 'xmomentum', 'ymomentum']) domain.set_minimum_storable_height(0.001) #domain.set_store_vertices_uniquely(True) # for writting to sww #------------------------------------------------------------------------- # Setup initial conditions #------------------------------------------------------------------------- domain.set_quantity('stage', 0.4) domain.set_quantity('friction', friction) domain.set_quantity('elevation', elevation_function) print 'Available boundary tags', domain.get_boundary_tags() # Create boundary function from timeseries provided in file #function = file_function(project.boundary_file, domain, verbose=True) #Bts = Transmissive_Momentum_Set_Stage_boundary(domain, function) function = file_function(project.boundary_file, domain, verbose=True) Br = Reflective_boundary(domain) #Bd = Dirichlet_boundary([0.3,0,0]) Bts = Time_boundary(domain, function) domain.set_boundary( {'wall': Br, 'wave': Bts} ) #------------------------------------------------------------------------- # Evolve system through time #------------------------------------------------------------------------- t0 = time.time() for t in domain.evolve(yieldstep, finaltime): domain.write_time() print 'That took %.2f seconds' %(time.time()-t0) print 'finished' points = [[2.8,0.5], #-1.8m from SWL [5.1,0.5], #0.5m from SWL [6.6,0.5], #2m from SWL [6.95,0.5], #2.35m from SWL [7.6,0.5], #3m from SWL [8.2,0.5], #3.5m from SWL [9.2,0.5] #4.5m from SWL ] #------------------------------------------------------------------------- # Calculate gauge info #------------------------------------------------------------------------- if False: interpolate_sww2csv(pro_instance.outputdir + basename +".sww", points, pro_instance.outputdir + "depth_manning_"+str(friction)+".csv", pro_instance.outputdir + "velocity_x.csv", pro_instance.outputdir + "velocity_y.csv") return pro_instance #------------------------------------------------------------- if __name__ == "__main__": main( is_trial_run = True, outputdir_name='Hinwood_low_stage_low_velocity_draft')