source: anuga_work/development/Hinwood_2008/run_dam.py @ 5413

Last change on this file since 5413 was 5413, checked in by duncan, 16 years ago

Current Hinwood scenario

File size: 9.1 KB
Line 
1"""
2
3Script for running a breaking wave simulation of Jon Hinwoods wave tank.
4Note: this is based on the frinction_ua_flume_2006 structure.
5
6
7Duncan Gray, GA - 2007
8
9
10
11"""
12
13
14#----------------------------------------------------------------------------
15# Import necessary modules
16#----------------------------------------------------------------------------
17
18# Standard modules
19import time
20from time import localtime, strftime
21import sys
22from shutil import copy
23from os import path, sep
24from os.path import dirname, join  #, basename
25from Numeric import zeros, size, Float
26
27# Related major packages
28from anuga.shallow_water import Domain, Reflective_boundary, \
29                            Dirichlet_boundary,  Time_boundary, \
30                            File_boundary, \
31                            Transmissive_Momentum_Set_Stage_boundary
32from anuga.fit_interpolate.interpolate import interpolate_sww2csv
33from anuga.abstract_2d_finite_volumes.util import start_screen_catcher, \
34      file_function
35from anuga.shallow_water.data_manager import copy_code_files
36from anuga.abstract_2d_finite_volumes.generic_boundary_conditions\
37     import File_boundary_time
38
39# Scenario specific imports
40import project                 # Definition of file names and polygons
41import create_mesh
42from prepare_time_boundary import prepare_time_boundary
43from interp import interp
44
45
46class Elevation_function:
47    def __init__(self, slope):
48        self.xslope_position = [slope['xleft'][0],slope['xtoe'][0],
49                  slope['xbeach'][0],slope['xright'][0]]
50        self.yslope_height = [slope['xleft'][1],slope['xtoe'][1],
51                  slope['xbeach'][1],slope['xright'][1]]
52       
53    def __call__(self, x,y):
54       
55        z = interp(self.yslope_height, self.xslope_position, x)
56        return z
57
58def main(boundary_file,
59         metadata_dic,
60         boundary_path=None,
61         friction=0.01,
62         outputdir_name=None,
63         run_type=0):
64
65   
66    basename = 'zz_' + metadata_dic['scenario_id']
67    if run_type == 1:
68        outputdir_name += '_test'
69        yieldstep = 0.1
70        finaltime = 15.
71        maximum_triangle_area=0.01
72       
73    elif run_type == 2:
74        outputdir_name += '_test_long_time'
75        yieldstep = 0.5
76        finaltime = None
77        maximum_triangle_area=0.01
78       
79    elif run_type == 3:
80        outputdir_name += '_test_good_time_mesh'
81        yieldstep = 0.1
82        finaltime = None       
83        maximum_triangle_area=0.001
84    elif run_type == 4:
85        outputdir_name += '_good_tri_area_0.01_A'
86        # this is not a test
87        # Output will go to a file
88        # The sww file will be interpolated
89        yieldstep = 0.01
90        finaltime = None       
91        maximum_triangle_area=0.01
92    elif run_type == 5:
93        outputdir_name += '_good_tri_area_0.001_A'
94        # this is not a test
95        # Output will go to a file
96        # The sww file will be interpolated
97        yieldstep = 0.01
98        finaltime = None       
99        maximum_triangle_area=0.001
100    elif run_type == 6:
101        outputdir_name += '_good_tri_area_0.0001_A'
102        # this is not a test
103        # Output will go to a file
104        # The sww file will be interpolated
105        yieldstep = 0.01
106        finaltime = None       
107        maximum_triangle_area=0.0001
108     
109    metadata_dic = set_z_origin_to_water_depth(metadata_dic)   
110       
111    pro_instance = project.Project(['data','flumes','Hinwood_2008'],
112                                   outputdir_name=outputdir_name)
113    print "The output dir is", pro_instance.outputdir
114    copy_code_files(pro_instance.outputdir,__file__,
115                    dirname(project.__file__) \
116                    + sep + project.__name__+'.py')
117    copy (pro_instance.codedir + 'run_dam.py',
118          pro_instance.outputdir + 'run_dam.py')
119    copy (pro_instance.codedir + 'create_mesh.py',
120          pro_instance.outputdir + 'create_mesh.py')
121
122    boundary_final_time = prepare_time_boundary(metadata_dic,
123                                       pro_instance.raw_data_dir,
124                                       pro_instance.boundarydir)
125    if finaltime is None:
126        finaltime = boundary_final_time
127    # Boundary file manipulation
128    if boundary_path is None:
129        boundary_path = pro_instance.boundarydir
130    boundary_file_path = join(boundary_path, boundary_file)
131   #  # Convert the boundary file, .csv to .tsm
132#     try:
133#         temp = open(boundary_file_path)
134#         temp.close()
135#     except IOError:
136#         prepare_time_boundary(boundary_file_path)
137   
138    mesh_filename = pro_instance.meshdir + basename + '.msh'
139
140    #--------------------------------------------------------------------------
141    # Copy scripts to output directory and capture screen
142    # output to file
143    #--------------------------------------------------------------------------
144
145    # creates copy of code in output dir
146    if run_type >= 2:
147        #start_screen_catcher(pro_instance.outputdir, rank, pypar.size())
148        start_screen_catcher(pro_instance.outputdir)
149
150    print 'USER:    ', pro_instance.user
151    #-------------------------------------------------------------------------
152    # Create the triangular mesh
153    #-------------------------------------------------------------------------
154
155    # this creates the mesh
156    #gate_position = 12.0
157    create_mesh.generate(mesh_filename, metadata_dic,
158                         maximum_triangle_area=maximum_triangle_area)
159
160    head,tail = path.split(mesh_filename)
161    copy (mesh_filename,
162          pro_instance.outputdir + tail )
163    #-------------------------------------------------------------------------
164    # Setup computational domain
165    #-------------------------------------------------------------------------
166    domain = Domain(mesh_filename, use_cache = False, verbose = True)
167   
168
169    print 'Number of triangles = ', len(domain)
170    print 'The extent is ', domain.get_extent()
171    print domain.statistics()
172
173   
174    domain.set_name(basename)
175    domain.set_datadir(pro_instance.outputdir)
176    domain.set_quantities_to_be_stored(['stage', 'xmomentum', 'ymomentum'])
177    domain.set_minimum_storable_height(0.001)
178    #domain.set_store_vertices_uniquely(True)  # for writting to sww
179
180    #-------------------------------------------------------------------------
181    # Setup initial conditions
182    #-------------------------------------------------------------------------
183
184    domain.set_quantity('stage', 0.) #the origin is the still water level
185    domain.set_quantity('friction', friction)
186    elevation_function = Elevation_function(metadata_dic)
187    domain.set_quantity('elevation', elevation_function)
188
189   
190    print 'Available boundary tags', domain.get_boundary_tags()
191
192    # Create boundary function from timeseries provided in file
193    #function = file_function(project.boundary_file, domain, verbose=True)
194    #Bts = Transmissive_Momentum_Set_Stage_boundary(domain, function)
195    try:
196        function = file_function(boundary_file_path, domain,
197                                 verbose=True)
198    except IOError:
199        msg = 'Run prepare_time_boundary.py. File "%s" could not be opened.'\
200                  %(pro_instance.boundary_file)
201        raise msg
202       
203    Br = Reflective_boundary(domain)
204    Bd = Dirichlet_boundary([0.3,0,0]) 
205    Bts = Time_boundary(domain, function)
206    domain.set_boundary( {'wall': Br, 'wave': Bts} )
207    #domain.set_boundary( {'wall': Br, 'wave': Bd} )
208
209    #-------------------------------------------------------------------------
210    # Evolve system through time
211    #-------------------------------------------------------------------------
212    t0 = time.time()
213
214    # It seems that ANUGA can't handle a starttime that is >0.
215    domain.starttime = 1.0
216    for t in domain.evolve(yieldstep, finaltime):   
217        domain.write_time()
218    print 'That took %.2f seconds' %(time.time()-t0)
219    print 'finished'
220
221    flume_y_middle = 0.5
222    points = []
223    for gauge_x in metadata_dic['gauge_x']:
224        points.append([gauge_x, flume_y_middle])
225    print "points",points
226
227
228    #-------------------------------------------------------------------------
229    # Calculate gauge info
230    #-------------------------------------------------------------------------
231
232    if run_type >= 2:
233        id = metadata_dic['scenario_id']
234        interpolate_sww2csv(pro_instance.outputdir + basename +".sww",
235                            points,
236                            pro_instance.outputdir + "depth_" + id + ".csv",
237                            pro_instance.outputdir + "velocity_x_" + id + ".csv",
238                            pro_instance.outputdir + "velocity_y_" + id + ".csv")
239 
240    return pro_instance
241
242def set_z_origin_to_water_depth(seabed_coords):
243    offset = seabed_coords['offshore_water_depth']
244    keys = ['xleft', 'xtoe', 'xbeach', 'xright']
245    for x in keys:
246            seabed_coords[x][1] -= offset
247    return seabed_coords
248#-------------------------------------------------------------
249if __name__ == "__main__":
250   
251    from scenarios import scenarios
252   
253    run_type = 5
254    for run_data in [scenarios[0]]:
255        main( run_data['scenario_id'] + '_boundary.tsm'  , run_data,
256              run_type = run_type,
257              outputdir_name=run_data['scenario_id'])
258   
Note: See TracBrowser for help on using the repository browser.