source: anuga_work/development/Hinwood_2008/run_dam.py @ 5461

Last change on this file since 5461 was 5461, checked in by duncan, 16 years ago

Current Hinwood scenario

File size: 9.2 KB
Line 
1"""
2
3Script for running a breaking wave simulation of Jon Hinwoods wave tank.
4Note: this is based on the frinction_ua_flume_2006 structure.
5
6
7Duncan Gray, GA - 2007
8
9
10
11"""
12
13
14#----------------------------------------------------------------------------
15# Import necessary modules
16#----------------------------------------------------------------------------
17
18# Standard modules
19import time
20from time import localtime, strftime
21import sys
22from shutil import copy
23from os import path, sep
24from os.path import dirname, join  #, basename
25from Numeric import zeros, size, Float
26
27# Related major packages
28from anuga.shallow_water import Domain, Reflective_boundary, \
29                            Dirichlet_boundary,  Time_boundary, \
30                            File_boundary, \
31                            Transmissive_Momentum_Set_Stage_boundary
32from anuga.fit_interpolate.interpolate import interpolate_sww2csv
33from anuga.abstract_2d_finite_volumes.util import start_screen_catcher, \
34      file_function
35from anuga.shallow_water.data_manager import copy_code_files
36from anuga.abstract_2d_finite_volumes.generic_boundary_conditions\
37     import File_boundary_time
38
39# Scenario specific imports
40import project                 # Definition of file names and polygons
41import create_mesh
42from prepare_time_boundary import prepare_time_boundary
43from interp import interp
44
45
46class Elevation_function:
47    def __init__(self, slope):
48        self.xslope_position = [slope['xleft'][0],slope['xtoe'][0],
49                  slope['xbeach'][0],slope['xright'][0]]
50        self.yslope_height = [slope['xleft'][1],slope['xtoe'][1],
51                  slope['xbeach'][1],slope['xright'][1]]
52       
53    def __call__(self, x,y):
54       
55        z = interp(self.yslope_height, self.xslope_position, x)
56        return z
57
58def main(boundary_file,
59         metadata_dic,
60         boundary_path=None,
61         friction=0.01,
62         outputdir_name=None,
63         run_type=0):
64
65   
66    basename = 'zz_' + metadata_dic['scenario_id']
67    if run_type == 1:
68        outputdir_name += '_test_D'
69        yieldstep = 1.0
70        finaltime = 15.
71        maximum_triangle_area=0.1
72       
73    elif run_type == 2:
74        outputdir_name += '_test_long_time'
75        yieldstep = 0.5
76        finaltime = None
77        maximum_triangle_area=0.01
78       
79    elif run_type == 3:
80        outputdir_name += '_yieldstep_0.1_tri_area_0.01_D'
81        yieldstep = 0.1
82        finaltime = None       
83        maximum_triangle_area=0.01
84    elif run_type == 4:
85        outputdir_name += '_good_tri_area_0.01_D'
86        # this is not a test
87        # Output will go to a file
88        # The sww file will be interpolated
89        yieldstep = 0.01
90        finaltime = None       
91        maximum_triangle_area=0.01
92    elif run_type == 5:
93        outputdir_name += '_good_tri_area_0.001_D'
94        # this is not a test
95        # Output will go to a file
96        # The sww file will be interpolated
97        yieldstep = 0.01
98        finaltime = None       
99        maximum_triangle_area=0.001
100     
101    metadata_dic = set_z_origin_to_water_depth(metadata_dic)   
102       
103    pro_instance = project.Project(['data','flumes','Hinwood_2008'],
104                                   outputdir_name=outputdir_name)
105    print "The output dir is", pro_instance.outputdir
106    copy_code_files(pro_instance.outputdir,__file__,
107                    dirname(project.__file__) \
108                    + sep + project.__name__+'.py')
109    copy (pro_instance.codedir + 'run_dam.py',
110          pro_instance.outputdir + 'run_dam.py')
111    copy (pro_instance.codedir + 'create_mesh.py',
112          pro_instance.outputdir + 'create_mesh.py')
113
114    boundary_final_time = prepare_time_boundary(metadata_dic,
115                                       pro_instance.raw_data_dir,
116                                       pro_instance.boundarydir)
117    #return pro_instance
118    if finaltime is None:
119        finaltime = boundary_final_time
120    # Boundary file manipulation
121    if boundary_path is None:
122        boundary_path = pro_instance.boundarydir
123    boundary_file_path = join(boundary_path, boundary_file)
124   #  # Convert the boundary file, .csv to .tsm
125#     try:
126#         temp = open(boundary_file_path)
127#         temp.close()
128#     except IOError:
129#         prepare_time_boundary(boundary_file_path)
130   
131    mesh_filename = pro_instance.meshdir + basename + '.msh'
132
133    #--------------------------------------------------------------------------
134    # Copy scripts to output directory and capture screen
135    # output to file
136    #--------------------------------------------------------------------------
137
138    # creates copy of code in output dir
139    if run_type >= 2:
140        #start_screen_catcher(pro_instance.outputdir, rank, pypar.size())
141        start_screen_catcher(pro_instance.outputdir)
142
143    print 'USER:    ', pro_instance.user
144    #-------------------------------------------------------------------------
145    # Create the triangular mesh
146    #-------------------------------------------------------------------------
147
148    # this creates the mesh
149    #gate_position = 12.0
150    create_mesh.generate(mesh_filename, metadata_dic,
151                         maximum_triangle_area=maximum_triangle_area)
152
153    head,tail = path.split(mesh_filename)
154    copy (mesh_filename,
155          pro_instance.outputdir + tail )
156    #-------------------------------------------------------------------------
157    # Setup computational domain
158    #-------------------------------------------------------------------------
159    domain = Domain(mesh_filename, use_cache = False, verbose = True)
160   
161
162    print 'Number of triangles = ', len(domain)
163    print 'The extent is ', domain.get_extent()
164    print domain.statistics()
165
166   
167    domain.set_name(basename)
168    domain.set_datadir(pro_instance.outputdir)
169    domain.set_quantities_to_be_stored(['stage', 'xmomentum', 'ymomentum'])
170    domain.set_minimum_storable_height(0.001)
171    #domain.set_store_vertices_uniquely(True)  # for writting to sww
172
173    #-------------------------------------------------------------------------
174    # Setup initial conditions
175    #-------------------------------------------------------------------------
176
177    domain.set_quantity('stage', 0.) #the origin is the still water level
178    domain.set_quantity('friction', friction)
179    elevation_function = Elevation_function(metadata_dic)
180    domain.set_quantity('elevation', elevation_function)
181
182   
183    print 'Available boundary tags', domain.get_boundary_tags()
184
185    # Create boundary function from timeseries provided in file
186    #function = file_function(project.boundary_file, domain, verbose=True)
187    #Bts = Transmissive_Momentum_Set_Stage_boundary(domain, function)
188    try:
189        function = file_function(boundary_file_path, domain,
190                                 verbose=True)
191    except IOError:
192        msg = 'Run prepare_time_boundary.py. File "%s" could not be opened.'\
193                  %(pro_instance.boundary_file)
194        raise msg
195       
196    Br = Reflective_boundary(domain)
197    Bd = Dirichlet_boundary([0.3,0,0]) 
198    Bts = Time_boundary(domain, function)
199    domain.set_boundary( {'wall': Br, 'wave': Bts} )
200    #domain.set_boundary( {'wall': Br, 'wave': Bd} )
201
202    #-------------------------------------------------------------------------
203    # Evolve system through time
204    #-------------------------------------------------------------------------
205    t0 = time.time()
206
207    # It seems that ANUGA can't handle a starttime that is >0.
208    domain.starttime = 1.0
209    for t in domain.evolve(yieldstep, finaltime):   
210        domain.write_time()
211    print 'That took %.2f seconds' %(time.time()-t0)
212    print 'finished'
213
214    flume_y_middle = 0.5
215    points = []
216    for gauge_x in metadata_dic['gauge_x']:
217        points.append([gauge_x, flume_y_middle])
218    print "points",points
219
220
221    #-------------------------------------------------------------------------
222    # Calculate gauge info
223    #-------------------------------------------------------------------------
224
225    if run_type >= 1:
226        id = metadata_dic['scenario_id'] + ".csv"
227        interpolate_sww2csv(pro_instance.outputdir + basename +".sww",
228                            points,
229                            pro_instance.outputdir + "depth_" + id,
230                            pro_instance.outputdir + "velocity_x_" + id,
231                            pro_instance.outputdir + "velocity_y_" + id,
232                            pro_instance.outputdir + "stage_" + id)
233 
234    return pro_instance
235
236def set_z_origin_to_water_depth(seabed_coords):
237    offset = seabed_coords['offshore_water_depth']
238    keys = ['xleft', 'xtoe', 'xbeach', 'xright']
239    for x in keys:
240            seabed_coords[x][1] -= offset
241    return seabed_coords
242#-------------------------------------------------------------
243if __name__ == "__main__":
244   
245    from scenarios import scenarios
246    from slope import gauges_for_slope
247    #from plot import plot
248
249
250    # 4 is 0.01
251    # 5 is 0.001
252    run_type = 4
253    #for run_data in [scenarios[5]]:
254    #scenarios = scenarios[2:]
255    #scenarios = [scenarios[0]]
256    for run_data in scenarios:
257        pro_instance = main( run_data['scenario_id'] + '_boundary.tsm'  ,
258                             run_data,
259                             run_type = run_type,
260                             outputdir_name=run_data['scenario_id'])
261        gauges_for_slope(pro_instance.outputdir,[run_data])
Note: See TracBrowser for help on using the repository browser.