source: anuga_work/development/Hinwood_2008/run_dam.py @ 5494

Last change on this file since 5494 was 5494, checked in by duncan, 17 years ago

Current Hinwood scenario - added plotting of froude number

File size: 9.7 KB
Line 
1"""
2
3Script for running a breaking wave simulation of Jon Hinwoods wave tank.
4Note: this is based on the frinction_ua_flume_2006 structure.
5
6
7Duncan Gray, GA - 2007
8
9
10
11"""
12
13
14#----------------------------------------------------------------------------
15# Import necessary modules
16#----------------------------------------------------------------------------
17
18# Standard modules
19import time
20from time import localtime, strftime
21import sys
22from shutil import copy
23from os import path, sep
24from os.path import dirname, join  #, basename
25from Numeric import zeros, size, Float
26
27# Related major packages
28from anuga.shallow_water import Domain, Reflective_boundary, \
29                            Dirichlet_boundary,  Time_boundary, \
30                            File_boundary, \
31                            Transmissive_Momentum_Set_Stage_boundary
32from anuga.fit_interpolate.interpolate import interpolate_sww2csv
33from anuga.abstract_2d_finite_volumes.util import start_screen_catcher, \
34      file_function
35from anuga.shallow_water.data_manager import copy_code_files
36from anuga.abstract_2d_finite_volumes.generic_boundary_conditions\
37     import File_boundary_time
38
39# Scenario specific imports
40import project                 # Definition of file names and polygons
41import create_mesh
42from prepare_time_boundary import prepare_time_boundary
43from interp import interp
44
45
46class Elevation_function:
47    def __init__(self, slope):
48        self.xslope_position = [slope['xleft'][0],slope['xtoe'][0],
49                  slope['xbeach'][0],slope['xright'][0]]
50        self.yslope_height = [slope['xleft'][1],slope['xtoe'][1],
51                  slope['xbeach'][1],slope['xright'][1]]
52       
53    def __call__(self, x,y):
54       
55        z = interp(self.yslope_height, self.xslope_position, x)
56        return z
57
58def main(boundary_file,
59         metadata_dic,
60         boundary_path=None,
61         friction=0.012,  # planed wood. http://www.lmnoeng.com/manningn.htm
62         outputdir_name=None,
63         run_type=0):
64
65   
66    basename = 'zz_' + metadata_dic['scenario_id']
67    end_tag = '_limiterD'
68    if run_type == 1:
69        outputdir_name += '_test' + end_tag
70        yieldstep = 1.0
71        finaltime = 15.
72        maximum_triangle_area=0.1
73       
74    elif run_type == 2:
75        outputdir_name += '_test_long_time' + end_tag
76        yieldstep = 0.5
77        finaltime = None
78        maximum_triangle_area=0.01
79       
80    elif run_type == 3:
81        outputdir_name += '_yieldstep_0.1_tri_area_0.01' + end_tag
82        yieldstep = 0.1
83        finaltime = None       
84        maximum_triangle_area=0.01
85    elif run_type == 4:
86        outputdir_name += '_good_tri_area_0.01' + end_tag
87        # this is not a test
88        # Output will go to a file
89        # The sww file will be interpolated
90        yieldstep = 0.01
91        finaltime = None       
92        maximum_triangle_area=0.01
93    elif run_type == 5:
94        outputdir_name += '_good_tri_area_0.001' + end_tag
95        # this is not a test
96        # Output will go to a file
97        # The sww file will be interpolated
98        yieldstep = 0.01
99        finaltime = None       
100        maximum_triangle_area=0.001
101     
102    metadata_dic = set_z_origin_to_water_depth(metadata_dic)   
103       
104    pro_instance = project.Project(['data','flumes','Hinwood_2008'],
105                                   outputdir_name=outputdir_name)
106    print "The output dir is", pro_instance.outputdir
107    copy_code_files(pro_instance.outputdir,__file__,
108                    dirname(project.__file__) \
109                    + sep + project.__name__+'.py')
110    copy (pro_instance.codedir + 'run_dam.py',
111          pro_instance.outputdir + 'run_dam.py')
112    copy (pro_instance.codedir + 'create_mesh.py',
113          pro_instance.outputdir + 'create_mesh.py')
114
115    boundary_final_time = prepare_time_boundary(metadata_dic,
116                                       pro_instance.raw_data_dir,
117                                       pro_instance.boundarydir)
118    #return pro_instance
119    if finaltime is None:
120        finaltime = boundary_final_time - 0.1 # Edge boundary problems
121    # Boundary file manipulation
122    if boundary_path is None:
123        boundary_path = pro_instance.boundarydir
124    boundary_file_path = join(boundary_path, boundary_file)
125   #  # Convert the boundary file, .csv to .tsm
126#     try:
127#         temp = open(boundary_file_path)
128#         temp.close()
129#     except IOError:
130#         prepare_time_boundary(boundary_file_path)
131   
132    mesh_filename = pro_instance.meshdir + basename + '.msh'
133
134    #--------------------------------------------------------------------------
135    # Copy scripts to output directory and capture screen
136    # output to file
137    #--------------------------------------------------------------------------
138
139    # creates copy of code in output dir
140    if run_type >= 2:
141        #start_screen_catcher(pro_instance.outputdir, rank, pypar.size())
142        start_screen_catcher(pro_instance.outputdir)
143
144    print 'USER:    ', pro_instance.user
145    #-------------------------------------------------------------------------
146    # Create the triangular mesh
147    #-------------------------------------------------------------------------
148
149    # this creates the mesh
150    #gate_position = 12.0
151    create_mesh.generate(mesh_filename, metadata_dic,
152                         maximum_triangle_area=maximum_triangle_area)
153
154    head,tail = path.split(mesh_filename)
155    copy (mesh_filename,
156          pro_instance.outputdir + tail )
157    #-------------------------------------------------------------------------
158    # Setup computational domain
159    #-------------------------------------------------------------------------
160    domain = Domain(mesh_filename, use_cache = False, verbose = True)
161   
162
163    print 'Number of triangles = ', len(domain)
164    print 'The extent is ', domain.get_extent()
165    print domain.statistics()
166
167   
168    domain.set_name(basename)
169    domain.set_datadir(pro_instance.outputdir)
170    domain.set_quantities_to_be_stored(['stage', 'xmomentum', 'ymomentum'])
171    domain.set_minimum_storable_height(0.0001)
172
173    domain.set_default_order(2) # Use second order spatial scheme
174    domain.set_timestepping_method('rk2')
175    domain.use_edge_limiter = True
176    domain.tight_slope_limiters = True
177   
178    domain.beta_w      = 0.6
179    domain.beta_uh     = 0.6
180    domain.beta_vh     = 0.6
181   
182
183    #-------------------------------------------------------------------------
184    # Setup initial conditions
185    #-------------------------------------------------------------------------
186
187    domain.set_quantity('stage', 0.) #the origin is the still water level
188    domain.set_quantity('friction', friction)
189    elevation_function = Elevation_function(metadata_dic)
190    domain.set_quantity('elevation', elevation_function)
191
192   
193    print 'Available boundary tags', domain.get_boundary_tags()
194
195    # Create boundary function from timeseries provided in file
196    #function = file_function(project.boundary_file, domain, verbose=True)
197    #Bts = Transmissive_Momentum_Set_Stage_boundary(domain, function)
198    try:
199        function = file_function(boundary_file_path, domain,
200                                 verbose=True)
201    except IOError:
202        msg = 'Run prepare_time_boundary.py. File "%s" could not be opened.'\
203                  %(pro_instance.boundary_file)
204        raise msg
205       
206    Br = Reflective_boundary(domain)
207    Bd = Dirichlet_boundary([0.3,0,0]) 
208    Bts = Time_boundary(domain, function)
209    domain.set_boundary( {'wall': Br, 'wave': Bts} )
210    #domain.set_boundary( {'wall': Br, 'wave': Bd} )
211
212    #-------------------------------------------------------------------------
213    # Evolve system through time
214    #-------------------------------------------------------------------------
215    t0 = time.time()
216
217    # It seems that ANUGA can't handle a starttime that is >0.
218    #domain.starttime = 1.0 #!!! what was this doing?
219    for t in domain.evolve(yieldstep, finaltime):   
220        domain.write_time()
221    print 'That took %.2f seconds' %(time.time()-t0)
222    print 'finished'
223
224    flume_y_middle = 0.5
225    points = []
226    for gauge_x in metadata_dic['gauge_x']:
227        points.append([gauge_x, flume_y_middle])
228    print "points",points
229
230
231    #-------------------------------------------------------------------------
232    # Calculate gauge info
233    #-------------------------------------------------------------------------
234
235    if run_type >= 1:
236        id = metadata_dic['scenario_id'] + ".csv"
237        interpolate_sww2csv(pro_instance.outputdir + basename +".sww",
238                            points,
239                            pro_instance.outputdir + "depth_" + id,
240                            pro_instance.outputdir + "velocity_x_" + id,
241                            pro_instance.outputdir + "velocity_y_" + id,
242                            pro_instance.outputdir + "stage_" + id,
243                            pro_instance.outputdir + "froude_" + id)
244 
245    return pro_instance
246
247def set_z_origin_to_water_depth(seabed_coords):
248    offset = seabed_coords['offshore_water_depth']
249    keys = ['xleft', 'xtoe', 'xbeach', 'xright']
250    for x in keys:
251            seabed_coords[x][1] -= offset
252    return seabed_coords
253#-------------------------------------------------------------
254if __name__ == "__main__":
255   
256    from scenarios import scenarios
257    from slope import gauges_for_slope
258    #from plot import plot
259
260
261    # 4 is 0.01
262    # 5 is 0.001
263    run_type = 4
264    #for run_data in [scenarios[5]]:
265    #scenarios = scenarios[2:]
266    #scenarios = [scenarios[0]]
267    for run_data in scenarios:
268        pro_instance = main( run_data['scenario_id'] + '_boundary.tsm'  ,
269                             run_data,
270                             run_type = run_type,
271                             outputdir_name=run_data['scenario_id'])
272        #gauges_for_slope(pro_instance.outputdir,[run_data])
Note: See TracBrowser for help on using the repository browser.