[5413] | 1 | |
---|
| 2 | """ |
---|
| 3 | Plot up files from the Hinwood project. |
---|
| 4 | """ |
---|
| 5 | from os import sep |
---|
| 6 | import project |
---|
[5494] | 7 | from copy import deepcopy |
---|
[5413] | 8 | #from scipy import arange |
---|
[5494] | 9 | from csv import writer |
---|
[5413] | 10 | |
---|
[5494] | 11 | from Numeric import arange, array, zeros, Float, where, greater, less, \ |
---|
[5503] | 12 | compress, argmin, choose, searchsorted |
---|
[5426] | 13 | |
---|
[5413] | 14 | from anuga.fit_interpolate.interpolate import interpolate_sww2csv |
---|
[5426] | 15 | from anuga.shallow_water.data_manager import csv2dict |
---|
[5494] | 16 | from anuga.utilities.numerical_tools import ensure_numeric |
---|
[5413] | 17 | |
---|
[5494] | 18 | |
---|
| 19 | SLOPE_STR = 'stage_slopes' |
---|
| 20 | TIME_STR = 'times' |
---|
| 21 | |
---|
| 22 | TIME_BORDER = 5 |
---|
| 23 | LOCATION_BORDER = .5 |
---|
| 24 | |
---|
| 25 | def load_sensors(quantity_file): |
---|
[5532] | 26 | """ |
---|
| 27 | Load a csv file, where the first row is the column header and |
---|
| 28 | the first colum explains the rows. |
---|
[5710] | 29 | |
---|
| 30 | returns the data as two vectors and an array. |
---|
[5532] | 31 | """ |
---|
[5426] | 32 | #slope, _ = csv2dict(file_sim) |
---|
| 33 | |
---|
| 34 | # Read the depth file |
---|
[5494] | 35 | dfid = open(quantity_file) |
---|
[5426] | 36 | lines = dfid.readlines() |
---|
| 37 | dfid.close() |
---|
[5413] | 38 | |
---|
[5426] | 39 | title = lines.pop(0) |
---|
| 40 | n_time = len(lines) |
---|
| 41 | n_sensors = len(lines[0].split(','))-1 # -1 to remove time |
---|
[5532] | 42 | times = zeros(n_time, Float) #Time |
---|
[5426] | 43 | depths = zeros(n_time, Float) # |
---|
| 44 | sensors = zeros((n_time,n_sensors), Float) |
---|
[5494] | 45 | quantity_locations = title.split(',') #(',') |
---|
| 46 | quantity_locations.pop(0) # remove 'time' |
---|
[5577] | 47 | |
---|
| 48 | # Doing j.split(':')[0] drops the y location |
---|
[5494] | 49 | locations = [float(j.split(':')[0]) for j in quantity_locations] |
---|
| 50 | |
---|
[5426] | 51 | for i, line in enumerate(lines): |
---|
| 52 | fields = line.split(',') #(',') |
---|
| 53 | fields = [float(j) for j in fields] |
---|
[5532] | 54 | times[i] = fields[0] |
---|
[5426] | 55 | sensors[i] = fields[1:] # 1: to remove time |
---|
| 56 | |
---|
[5532] | 57 | #print "times",times |
---|
[5494] | 58 | #print "locations", locations |
---|
[5426] | 59 | #print "sensors", sensors |
---|
[5532] | 60 | return times, locations, sensors |
---|
[5426] | 61 | |
---|
[5494] | 62 | def load_slopes(stage_file): |
---|
| 63 | """ |
---|
| 64 | Finds the slope, wrt distance of a distance, time, quantity csv file. |
---|
| 65 | |
---|
| 66 | returns the times and slope_locations vectors and the slopes array. |
---|
| 67 | """ |
---|
| 68 | times, locations, sensors = load_sensors(stage_file) |
---|
| 69 | n_slope_locations = len(locations)-1 |
---|
[5426] | 70 | n_time = len(times) |
---|
| 71 | slope_locations = zeros(n_slope_locations, Float) # |
---|
| 72 | slopes = zeros((n_time,n_slope_locations), Float) |
---|
| 73 | |
---|
| 74 | # An array of the sensor spacing values |
---|
[5494] | 75 | delta_locations = zeros(n_slope_locations, Float) |
---|
[5426] | 76 | |
---|
| 77 | for i in arange(n_slope_locations): |
---|
[5494] | 78 | delta_locations[i] = (locations[i+1] - locations[i]) |
---|
[5503] | 79 | slope_locations[i] = locations[i] + 0.5*delta_locations[i] |
---|
[5426] | 80 | |
---|
| 81 | for j in arange(n_time): |
---|
| 82 | for i in arange(n_slope_locations): |
---|
[5494] | 83 | slopes[j,i] = (sensors[j,i+1] - sensors[j,i])/delta_locations[i] |
---|
[5426] | 84 | |
---|
| 85 | return times, slope_locations, slopes |
---|
| 86 | |
---|
[5494] | 87 | |
---|
| 88 | def graph_contours(times, x_data, z_data, |
---|
| 89 | y_label='Time, seconds', |
---|
| 90 | plot_title="slope", |
---|
| 91 | x_label='x location, m', |
---|
| 92 | save_as=None, |
---|
| 93 | is_interactive=False, |
---|
| 94 | break_xs=None, |
---|
| 95 | break_times=None): |
---|
[5532] | 96 | """ |
---|
| 97 | Currently used to generate stage slope contour graphs. |
---|
| 98 | |
---|
| 99 | Has been generalised a bit. |
---|
| 100 | """ |
---|
[5494] | 101 | # Do not move these imports. Tornado doesn't have pylab |
---|
[5447] | 102 | from pylab import meshgrid, cm, contourf, contour, ion, plot, xlabel, \ |
---|
| 103 | ylabel, close, legend, savefig, title, figure ,colorbar, show , axis |
---|
[5494] | 104 | |
---|
[5426] | 105 | origin = 'lower' |
---|
[5447] | 106 | |
---|
[5494] | 107 | if is_interactive: |
---|
| 108 | ion() |
---|
| 109 | |
---|
[5447] | 110 | # Can't seem to reshape this info once it is in the function |
---|
[5494] | 111 | CS = contourf(x_data, times, z_data, 10, |
---|
[5447] | 112 | cmap=cm.bone, |
---|
| 113 | origin=origin) |
---|
[5426] | 114 | |
---|
[5494] | 115 | #CS2 = contour(x_data, times, z_data, CS.levels[::1], |
---|
| 116 | # colors = 'r', |
---|
| 117 | # origin=origin, |
---|
| 118 | # hold='on') |
---|
| 119 | |
---|
| 120 | title(plot_title) |
---|
| 121 | xlabel(x_label) |
---|
| 122 | ylabel(y_label) |
---|
[5426] | 123 | |
---|
[5447] | 124 | if break_times is not None and break_xs is not None: |
---|
| 125 | plot(break_xs, break_times, 'ro') |
---|
| 126 | |
---|
[5494] | 127 | |
---|
[5426] | 128 | # Make a colorbar for the ContourSet returned by the contourf call. |
---|
| 129 | cbar = colorbar(CS) |
---|
[5494] | 130 | |
---|
[5426] | 131 | # Add the contour line levels to the colorbar |
---|
[5503] | 132 | cbar.ax.set_ylabel('stage slope') |
---|
[5426] | 133 | #cbar.add_lines(CS2) |
---|
[5494] | 134 | |
---|
| 135 | if is_interactive: |
---|
| 136 | raw_input() # Wait for enter pressed |
---|
| 137 | |
---|
| 138 | if save_as is not None: |
---|
| 139 | savefig(save_as) |
---|
| 140 | close() #Need to close this plot |
---|
[5426] | 141 | |
---|
[5494] | 142 | def graph_froude(times, x_data, z_data, |
---|
| 143 | y_label='Time, seconds', |
---|
| 144 | plot_title="Froude Number", |
---|
| 145 | x_label='x location, m', |
---|
| 146 | save_as=None, |
---|
| 147 | is_interactive=False, |
---|
| 148 | break_xs=None, |
---|
| 149 | break_times=None): |
---|
[5532] | 150 | """ |
---|
[5659] | 151 | Used to generate a froude Number contour graph. |
---|
[5532] | 152 | |
---|
| 153 | """ |
---|
[5494] | 154 | # Do not move these imports. Tornado doesn't have pylab |
---|
| 155 | from pylab import meshgrid, cm, contourf, contour, ion, plot, xlabel, \ |
---|
| 156 | ylabel, close, legend, savefig, title, figure ,colorbar, show , axis |
---|
[5426] | 157 | |
---|
[5494] | 158 | origin = 'lower' |
---|
| 159 | |
---|
| 160 | if is_interactive: |
---|
| 161 | ion() |
---|
| 162 | |
---|
| 163 | # Can't seem to reshape this info once it is in the function |
---|
[5503] | 164 | #CS = contourf(x_data, times, z_data, [-1,0.6,0.8,1,2,4], |
---|
| 165 | # colors = ('black', 'r', 'g', 'b','r'), |
---|
| 166 | # #cmap=cm.bone, |
---|
| 167 | # origin=origin) |
---|
| 168 | CS = contourf(x_data, times, z_data, 10, |
---|
| 169 | #colors = ('black', 'r', 'g', 'b','r'), |
---|
| 170 | cmap=cm.bone, |
---|
[5494] | 171 | origin=origin) |
---|
[5413] | 172 | |
---|
[5494] | 173 | #CS2 = contour(x_data, times, z_data, CS.levels[::1], |
---|
| 174 | # colors = 'r', |
---|
| 175 | # origin=origin, |
---|
| 176 | # hold='on') |
---|
| 177 | |
---|
| 178 | title(plot_title) |
---|
| 179 | xlabel(x_label) |
---|
| 180 | ylabel(y_label) |
---|
| 181 | |
---|
| 182 | if break_times is not None and break_xs is not None: |
---|
| 183 | plot(break_xs, break_times, 'yo') |
---|
| 184 | |
---|
| 185 | |
---|
| 186 | # Make a colorbar for the ContourSet returned by the contourf call. |
---|
| 187 | cbar = colorbar(CS) |
---|
| 188 | |
---|
| 189 | # Add the contour line levels to the colorbar |
---|
[5503] | 190 | cbar.ax.set_ylabel('Froude Number') |
---|
[5494] | 191 | #cbar.add_lines(CS2) |
---|
| 192 | |
---|
| 193 | if is_interactive: |
---|
| 194 | raw_input() # Wait for enter pressed |
---|
| 195 | |
---|
| 196 | if save_as is not None: |
---|
| 197 | savefig(save_as) |
---|
| 198 | close() #Need to close this plot |
---|
| 199 | |
---|
| 200 | def auto_graph_slopes(outputdir_tag, scenarios, is_interactive=False): |
---|
[5532] | 201 | """ |
---|
| 202 | Used to generate all the stage slope contour graphs of a scenario list |
---|
| 203 | """ |
---|
[5494] | 204 | plot_type = ".pdf" |
---|
[5413] | 205 | for run_data in scenarios: |
---|
[5426] | 206 | id = run_data['scenario_id'] |
---|
| 207 | outputdir_name = id + outputdir_tag |
---|
| 208 | pro_instance = project.Project(['data','flumes','Hinwood_2008'], |
---|
| 209 | outputdir_name=outputdir_name) |
---|
| 210 | end = id + ".csv" |
---|
[5494] | 211 | anuga_break_times = [] |
---|
| 212 | for break_time in run_data['break_times']: |
---|
| 213 | anuga_break_times.append( \ |
---|
| 214 | break_time - run_data['ANUGA_start_time']) |
---|
| 215 | stage_file = pro_instance.outputdir + "fslope_stage_" + end |
---|
[5503] | 216 | plot_title = "Stage slope " + id + "\n file:" + \ |
---|
| 217 | outputdir_name + "_slope_stage" + plot_type |
---|
| 218 | print "Creating ", stage_file |
---|
[5494] | 219 | save_as = pro_instance.plots_dir + sep + \ |
---|
| 220 | outputdir_name + "_slope_stage" + plot_type |
---|
| 221 | times, locations, slopes = load_slopes(stage_file) |
---|
[5503] | 222 | #times, slopes = get_band(anuga_break_times[0]-TIME_BORDER, |
---|
| 223 | # 100, times, slopes, 0) |
---|
| 224 | #locations, slopes = get_band( |
---|
| 225 | # min(run_data['break_xs'])- 2*LOCATION_BORDER, |
---|
| 226 | # 100, locations, slopes, -1) |
---|
[5494] | 227 | graph_contours(times, locations, slopes, |
---|
[5495] | 228 | plot_title=plot_title, |
---|
| 229 | break_xs=run_data['break_xs'], |
---|
| 230 | break_times=anuga_break_times, |
---|
| 231 | save_as=save_as, |
---|
[5494] | 232 | is_interactive=is_interactive) |
---|
| 233 | |
---|
| 234 | def auto_graph_froudes(outputdir_tag, scenarios, is_interactive=False): |
---|
[5532] | 235 | """ |
---|
| 236 | Used to generate all the Froude number contour graphs of a scenario list |
---|
| 237 | """ |
---|
[5426] | 238 | |
---|
[5494] | 239 | plot_type = ".pdf" |
---|
| 240 | |
---|
| 241 | for run_data in scenarios: |
---|
| 242 | id = run_data['scenario_id'] |
---|
| 243 | outputdir_name = id + outputdir_tag |
---|
| 244 | pro_instance = project.Project(['data','flumes','Hinwood_2008'], |
---|
| 245 | outputdir_name=outputdir_name) |
---|
| 246 | end = id + ".csv" |
---|
| 247 | anuga_break_times = [] |
---|
| 248 | for break_time in run_data['break_times']: |
---|
| 249 | anuga_break_times.append( \ |
---|
| 250 | break_time - run_data['ANUGA_start_time']) |
---|
[5503] | 251 | plot_title = "Froude Number" + id + "\n file:" + \ |
---|
| 252 | outputdir_name + "_froude" + plot_type |
---|
[5494] | 253 | froude_file = pro_instance.outputdir + "fslope_froude_" + end |
---|
[5503] | 254 | print "Creating ", froude_file |
---|
[5494] | 255 | save_as = pro_instance.plots_dir + sep + \ |
---|
| 256 | outputdir_name + "_froude" + plot_type |
---|
| 257 | dtimes, locations, sensors = load_sensors(froude_file) |
---|
| 258 | dtimes, sensors = get_band(anuga_break_times[0]-TIME_BORDER, |
---|
| 259 | 100, dtimes, sensors, 0) |
---|
[5503] | 260 | locations, sensors = get_band( |
---|
| 261 | min(run_data['break_xs'])-LOCATION_BORDER, |
---|
| 262 | 100, locations, sensors, -1) |
---|
[5494] | 263 | #print "dtimes", dtimes |
---|
| 264 | #print "sensors", sensors |
---|
| 265 | #times, slope_locations, slopes = load_slopes(stage_file) |
---|
| 266 | graph_froude(dtimes, locations, sensors, |
---|
[5495] | 267 | plot_title=plot_title, |
---|
[5494] | 268 | break_xs=run_data['break_xs'], |
---|
| 269 | break_times=anuga_break_times, |
---|
| 270 | save_as=save_as, |
---|
| 271 | is_interactive=is_interactive) |
---|
| 272 | |
---|
[5503] | 273 | def find_froude(times_froude, locations_froude, froudes_array, |
---|
| 274 | times, locations): |
---|
[5532] | 275 | """ |
---|
| 276 | interpolate across location to find froude number values |
---|
| 277 | """ |
---|
| 278 | |
---|
[5503] | 279 | if len(times) == 0: |
---|
| 280 | return [] |
---|
| 281 | time_indexes = searchsorted(times_froude, times) |
---|
| 282 | location_indexes = searchsorted(locations_froude, locations) |
---|
| 283 | |
---|
| 284 | |
---|
| 285 | assert len(time_indexes) == len(location_indexes) |
---|
| 286 | |
---|
| 287 | froudes = [] |
---|
| 288 | for time_i, loc_i, time, location in map(None, time_indexes, |
---|
| 289 | location_indexes, |
---|
| 290 | times, locations): |
---|
| 291 | # the time values should be the same |
---|
| 292 | assert times_froude[time_i] == time |
---|
| 293 | |
---|
| 294 | # The distance value should be half way between the froude locations |
---|
| 295 | midpoint = locations_froude[loc_i-1] + \ |
---|
| 296 | (locations_froude[loc_i]-locations_froude[loc_i-1])*0.5 |
---|
| 297 | #print "location", location |
---|
| 298 | #print "midpoint", midpoint |
---|
| 299 | assert location == midpoint |
---|
| 300 | froude = froudes_array[time_i, loc_i-1] + \ |
---|
| 301 | (froudes_array[time_i, loc_i]- \ |
---|
| 302 | froudes_array[time_i, loc_i-1])*0.5 |
---|
| 303 | froudes.append(froude) |
---|
| 304 | |
---|
| 305 | return froudes |
---|
| 306 | |
---|
| 307 | def auto_find_min_slopes(slope_tag, outputdir_tag, scenarios): |
---|
[5494] | 308 | """ |
---|
[5532] | 309 | Given stage and froude wrt time and location csv files, |
---|
| 310 | find the waves and get the froude number and stage slope |
---|
| 311 | at the wave face. |
---|
| 312 | |
---|
| 313 | For each wave write a csv file giving the location, stage slope, time and |
---|
| 314 | froude number. |
---|
[5494] | 315 | """ |
---|
| 316 | |
---|
| 317 | for run_data in scenarios: |
---|
| 318 | id = run_data['scenario_id'] |
---|
| 319 | outputdir_name = id + outputdir_tag |
---|
| 320 | pro_instance = project.Project(['data','flumes','Hinwood_2008'], |
---|
| 321 | outputdir_name=outputdir_name) |
---|
| 322 | end = id + ".csv" |
---|
| 323 | anuga_break_times = [] |
---|
| 324 | for break_time in run_data['break_times']: |
---|
| 325 | anuga_break_times.append( \ |
---|
| 326 | break_time - run_data['ANUGA_start_time']) |
---|
| 327 | |
---|
[5503] | 328 | stage_file = pro_instance.outputdir + slope_tag + "slope_stage_" + end |
---|
| 329 | froude_file = pro_instance.outputdir + slope_tag + "slope_froude_" + \ |
---|
| 330 | end |
---|
[5494] | 331 | |
---|
| 332 | times, slope_locations, slopes = load_slopes(stage_file) |
---|
[5503] | 333 | #print "slope_locations", slope_locations |
---|
| 334 | times_froude, locations_froude, froudes_a = load_sensors(froude_file) |
---|
| 335 | #print "locations_froude", locations_froude |
---|
[5494] | 336 | waves = find_min_slopes(times, slope_locations, slopes, |
---|
| 337 | anuga_break_times, |
---|
| 338 | run_data['band_offset']) |
---|
[5503] | 339 | |
---|
[5494] | 340 | # write the wave info here |
---|
[5503] | 341 | # and find the froude values |
---|
| 342 | for i, wave in enumerate(waves): |
---|
| 343 | |
---|
| 344 | id = "wave_" + str(i) |
---|
| 345 | wave_file = stage_file[:-4] + '_'+ id + ".csv" |
---|
[5494] | 346 | print "wave_file", wave_file |
---|
[5503] | 347 | froudes = find_froude(times_froude, locations_froude, |
---|
| 348 | froudes_a, wave[TIME_STR], |
---|
| 349 | slope_locations) |
---|
[5494] | 350 | wave_writer = writer(file(wave_file, "wb")) |
---|
[5503] | 351 | wave_writer.writerow(["x location", "min slope", "Time", "Froude"]) |
---|
[5494] | 352 | wave_writer.writerows(map(None, |
---|
| 353 | slope_locations, |
---|
[5503] | 354 | wave[SLOPE_STR], |
---|
| 355 | wave[TIME_STR], |
---|
| 356 | froudes)) |
---|
| 357 | |
---|
[5532] | 358 | def calc_wave_file_min_slope_max_froude(slope_tag, outputdir_tag, scenarios): |
---|
| 359 | """ |
---|
| 360 | Calc the min slope and max froude number in the wave files |
---|
| 361 | Used so all graphs have the same axis. |
---|
| 362 | """ |
---|
| 363 | min_slope = 0 |
---|
| 364 | max_froude = 0 |
---|
| 365 | |
---|
| 366 | for run_data in scenarios: |
---|
| 367 | for wave_file, save_as, wave_number in Get_file_name( |
---|
| 368 | run_data, outputdir_tag, slope_tag): |
---|
| 369 | simulation, _ = csv2dict(wave_file) |
---|
| 370 | slope = [float(x) for x in simulation['min slope']] |
---|
| 371 | froude = [float(x) for x in simulation['Froude']] |
---|
[5494] | 372 | |
---|
[5532] | 373 | min_slope = min(min(slope), min_slope) |
---|
| 374 | |
---|
| 375 | max_froude = max(max(froude), max_froude) |
---|
| 376 | |
---|
| 377 | |
---|
| 378 | return min_slope, max_froude |
---|
| 379 | |
---|
| 380 | class Get_file_name: |
---|
[5503] | 381 | """ |
---|
[5532] | 382 | Used to make the file names, and workout the wave number. |
---|
| 383 | """ |
---|
[5503] | 384 | |
---|
[5532] | 385 | def __init__(self, run_data, outputdir_tag, slope_tag): |
---|
| 386 | |
---|
| 387 | self.plot_type = ".pdf" |
---|
| 388 | # The scenario data |
---|
| 389 | id = run_data['scenario_id'] |
---|
| 390 | |
---|
| 391 | self.outputdir_name = id + outputdir_tag |
---|
| 392 | self.pro_instance = project.Project(['data','flumes','Hinwood_2008'], |
---|
| 393 | outputdir_name=self.outputdir_name) |
---|
| 394 | self.wave_number = -1 |
---|
| 395 | self.max_waves = len(run_data['break_type']) |
---|
| 396 | self.slope_tag = slope_tag |
---|
| 397 | self.end = id + ".csv" |
---|
| 398 | |
---|
| 399 | def next(self): |
---|
| 400 | self.wave_number += 1 |
---|
| 401 | if self.wave_number >= self.max_waves: raise StopIteration |
---|
| 402 | wave_tag = "wave_" + str(self.wave_number) |
---|
| 403 | stage_file = self.pro_instance.outputdir + self.slope_tag + \ |
---|
| 404 | "slope_stage_" + self.end |
---|
| 405 | wave_file = stage_file[:-4] + '_'+ wave_tag + ".csv" |
---|
| 406 | save_as = self.pro_instance.plots_dir + sep + \ |
---|
| 407 | self.outputdir_name + "_" + wave_tag + self.plot_type |
---|
| 408 | return wave_file, save_as, self.wave_number |
---|
| 409 | |
---|
| 410 | def __iter__(self): |
---|
| 411 | return self |
---|
| 412 | |
---|
| 413 | |
---|
| 414 | |
---|
| 415 | |
---|
| 416 | def auto_plot_froude_slopes(slope_tag, outputdir_tag, scenarios): |
---|
[5503] | 417 | """ |
---|
[5532] | 418 | Used to generate all the Froude number, stage slope, time graphs |
---|
| 419 | of a scenario list |
---|
| 420 | """ |
---|
| 421 | |
---|
| 422 | slope_min, froude_max = calc_wave_file_min_slope_max_froude( |
---|
| 423 | slope_tag, outputdir_tag, scenarios) |
---|
[5503] | 424 | |
---|
| 425 | |
---|
| 426 | for run_data in scenarios: |
---|
| 427 | assert len(run_data['break_times']) == len(run_data['break_xs']) |
---|
| 428 | assert len(run_data['break_times']) == len(run_data['break_type']) |
---|
| 429 | |
---|
| 430 | anuga_break_times = [] |
---|
| 431 | for break_time in run_data['break_times']: |
---|
| 432 | anuga_break_times.append( \ |
---|
| 433 | break_time - run_data['ANUGA_start_time']) |
---|
[5494] | 434 | |
---|
[5532] | 435 | for wave_file, save_as, wave_number in Get_file_name( |
---|
| 436 | run_data, outputdir_tag, slope_tag): |
---|
[5503] | 437 | print "wave_file", wave_file |
---|
[5532] | 438 | break_type = run_data['break_type'][wave_number] |
---|
| 439 | plot_title = run_data['scenario_id'] + \ |
---|
| 440 | ' Wave: ' + str(wave_number) + \ |
---|
| 441 | ' Break Type: ' + break_type + '\n' + \ |
---|
| 442 | 'File: ' + wave_file[34:] # not good! |
---|
[5503] | 443 | plot_foude_slope_stage(wave_file, |
---|
[5532] | 444 | anuga_break_times[wave_number], |
---|
| 445 | run_data['break_xs'][wave_number], |
---|
[5503] | 446 | plot_title=plot_title, |
---|
| 447 | break_type=break_type, |
---|
| 448 | save_as=save_as, |
---|
[5532] | 449 | is_interactive=False, |
---|
| 450 | froude_min=0, |
---|
| 451 | froude_max=froude_max, |
---|
| 452 | slope_min=slope_min, |
---|
| 453 | slope_max=0) |
---|
[5494] | 454 | |
---|
[5503] | 455 | |
---|
[5494] | 456 | |
---|
[5503] | 457 | def gauges_for_slope(slope_tag, outputdir_tag, scenarios): |
---|
[5494] | 458 | """ |
---|
| 459 | This is used to create a stage file, using gauges relivent to |
---|
| 460 | finding a slope. |
---|
[5503] | 461 | |
---|
| 462 | It also create's a frounde file. |
---|
[5494] | 463 | """ |
---|
[5577] | 464 | dx = 0.005 |
---|
[5426] | 465 | for run_data in scenarios: |
---|
[5413] | 466 | point_x = arange(run_data['start_slope_x'], |
---|
| 467 | run_data['finish_slope_x'], |
---|
[5426] | 468 | dx).tolist() |
---|
[5577] | 469 | flume_y_middle = 0.0 |
---|
[5413] | 470 | points = [] |
---|
| 471 | for gauge_x in point_x: |
---|
| 472 | points.append([gauge_x, flume_y_middle]) |
---|
| 473 | id = run_data['scenario_id'] |
---|
| 474 | |
---|
| 475 | basename = 'zz_' + run_data['scenario_id'] |
---|
| 476 | outputdir_name = id + outputdir_tag |
---|
| 477 | pro_instance = project.Project(['data','flumes','Hinwood_2008'], |
---|
| 478 | outputdir_name=outputdir_name) |
---|
| 479 | end = id + ".csv" |
---|
[5494] | 480 | interpolate_sww2csv( \ |
---|
| 481 | pro_instance.outputdir + basename +".sww", |
---|
| 482 | points, |
---|
[5503] | 483 | pro_instance.outputdir + slope_tag + "slope_depth_" + end, |
---|
| 484 | pro_instance.outputdir + slope_tag + "slope_velocity_x_" + end, |
---|
| 485 | pro_instance.outputdir + slope_tag + "slope_velocity_y_" + end, |
---|
| 486 | pro_instance.outputdir + slope_tag + "slope_stage_" + end, |
---|
| 487 | pro_instance.outputdir + slope_tag + "slope_froude_" + end, |
---|
[5494] | 488 | time_thinning=1) |
---|
| 489 | |
---|
| 490 | def find_min_slopes(times, slope_locations, slopes, |
---|
[5503] | 491 | anuga_break_times, band_offset): |
---|
[5532] | 492 | """ |
---|
| 493 | |
---|
| 494 | """ |
---|
[5503] | 495 | bands = break_times2bands(anuga_break_times, band_offset) |
---|
[5494] | 496 | |
---|
[5503] | 497 | waves = [] |
---|
[5494] | 498 | for i,_ in enumerate(bands[0:-1]): |
---|
| 499 | max_q, max_q_times = get_min_in_band(bands[i], bands[i+1], |
---|
| 500 | times, slopes) |
---|
[5503] | 501 | waves.append({SLOPE_STR:max_q, TIME_STR:max_q_times}) |
---|
[5494] | 502 | return waves |
---|
| 503 | |
---|
[5426] | 504 | |
---|
[5494] | 505 | def get_band(min, max, vector, quantity_array, axis): |
---|
| 506 | """ |
---|
| 507 | Return a band of vector and quantity, within (not including) the |
---|
| 508 | min, max. |
---|
| 509 | |
---|
| 510 | For a time band, set the axis to 0. |
---|
| 511 | For a location band, set the axis to -1. |
---|
[5426] | 512 | |
---|
[5494] | 513 | """ |
---|
[5413] | 514 | |
---|
[5494] | 515 | SMALL_MIN = -1e10 # Not that small, but small enough |
---|
| 516 | vector = ensure_numeric(vector) |
---|
| 517 | quantity_array = ensure_numeric(quantity_array) |
---|
| 518 | |
---|
| 519 | assert min > SMALL_MIN |
---|
| 520 | no_maxs = where(less(vector,max), vector, SMALL_MIN) |
---|
| 521 | #print "no_maxs", no_maxs |
---|
| 522 | band_condition = greater(no_maxs, min) |
---|
| 523 | band_vector = compress(band_condition, vector, axis=axis) |
---|
| 524 | #print "band_time", band_time |
---|
| 525 | #print "quantity_array", quantity_array.shape |
---|
| 526 | band_quantity = compress(band_condition, quantity_array, axis=axis) |
---|
| 527 | return band_vector, band_quantity |
---|
| 528 | |
---|
| 529 | def get_min_in_band(min_time, max_time, time_vector, quantity_array): |
---|
| 530 | """ |
---|
| 531 | given a quantity array, with the 2nd axis being |
---|
| 532 | time, represented by the time_vector, find the minimum within |
---|
| 533 | the time band. |
---|
| 534 | |
---|
| 535 | Assumes times are positive |
---|
| 536 | """ |
---|
| 537 | |
---|
| 538 | time_vector = ensure_numeric(time_vector) |
---|
| 539 | quantity_array = ensure_numeric(quantity_array) |
---|
| 540 | |
---|
| 541 | band_time, band_quantity = get_band(min_time, max_time, |
---|
| 542 | time_vector, quantity_array, 0) |
---|
| 543 | #print "band_quantity",band_quantity |
---|
[5503] | 544 | try: |
---|
| 545 | max_quantity_indices = argmin(band_quantity, axis=0) |
---|
| 546 | except: |
---|
| 547 | #print "time_vector", time_vector |
---|
| 548 | print "min_time",min_time |
---|
| 549 | print "max_time", max_time |
---|
| 550 | return [],[] |
---|
| 551 | |
---|
[5494] | 552 | #print "max_quantity_indices", max_quantity_indices |
---|
| 553 | max_quantity_times = choose(max_quantity_indices, band_time) |
---|
| 554 | #print "max_quantity_times", max_quantity_times |
---|
| 555 | max_quantities = choose(max_quantity_indices, band_quantity) |
---|
| 556 | #print "max_quantities", max_quantities |
---|
| 557 | |
---|
| 558 | return max_quantities, max_quantity_times |
---|
| 559 | |
---|
| 560 | def break_times2bands(break_times, band_offset): |
---|
| 561 | """ |
---|
| 562 | Break_times is a list of times, ascending. |
---|
| 563 | bands is a list of times, being the midpoints of break_times, with a min |
---|
| 564 | and max band added. |
---|
| 565 | """ |
---|
| 566 | assert len(break_times)>2 |
---|
| 567 | |
---|
| 568 | bands = [] #deepcopy(break_times) |
---|
| 569 | bands.append(break_times[0]-0.5*(break_times[1]-break_times[0])) |
---|
| 570 | |
---|
[5503] | 571 | |
---|
[5494] | 572 | for i,break_x in enumerate(break_times[0:-1]): |
---|
| 573 | bands.append(break_times[i]+0.5*(break_times[i+1]-break_times[i])) |
---|
| 574 | |
---|
| 575 | bands.append(break_times[-1]+0.5*(break_times[-1]-break_times[-2])) |
---|
| 576 | bands = ensure_numeric(bands) |
---|
| 577 | bands += band_offset |
---|
| 578 | return bands |
---|
| 579 | |
---|
[5503] | 580 | def plot_foude_slope_stage(wave_file, |
---|
| 581 | break_time, |
---|
| 582 | break_x, |
---|
| 583 | save_as=None, |
---|
| 584 | plot_title="", |
---|
| 585 | is_interactive=False, |
---|
| 586 | break_type="", |
---|
[5532] | 587 | froude_min=None, |
---|
| 588 | froude_max=None, |
---|
| 589 | slope_min=None, |
---|
| 590 | slope_max=None): |
---|
[5503] | 591 | """ |
---|
| 592 | """ |
---|
| 593 | from pylab import ion, plot, xlabel, ylabel, close, legend, \ |
---|
| 594 | savefig, title, axis, setp, subplot, grid, axvspan |
---|
| 595 | from anuga.shallow_water.data_manager import csv2dict |
---|
| 596 | |
---|
| 597 | |
---|
| 598 | |
---|
| 599 | # Load in the csv files and convert info from strings to floats |
---|
| 600 | simulation, _ = csv2dict(wave_file) |
---|
| 601 | location = [float(x) for x in simulation['x location']] |
---|
| 602 | slope = [float(x) for x in simulation['min slope']] |
---|
| 603 | time = [float(x) for x in simulation['Time']] |
---|
| 604 | froude = [float(x) for x in simulation['Froude']] |
---|
| 605 | |
---|
| 606 | min_location = min(location) |
---|
| 607 | max_location = max(location) |
---|
| 608 | |
---|
| 609 | if is_interactive: |
---|
| 610 | ion() |
---|
| 611 | # The upper subplot |
---|
| 612 | subplot(311) |
---|
| 613 | l_froude = plot(location, froude) |
---|
| 614 | #setp(l_froude, color='r') |
---|
| 615 | |
---|
| 616 | # Add axis stuff |
---|
| 617 | title(plot_title) |
---|
| 618 | y_label = "Froude Number" |
---|
| 619 | ylabel(y_label) |
---|
| 620 | grid(True) |
---|
| 621 | axvspan(break_x-0.001,break_x+0.001, facecolor='g') |
---|
[5532] | 622 | if froude_min is not None and froude_max is not None: |
---|
| 623 | axis(ymin=froude_min, ymax=froude_max) |
---|
[5503] | 624 | |
---|
| 625 | # The slope subplot |
---|
| 626 | subplot(312) |
---|
| 627 | l_slope = plot(location, slope) |
---|
| 628 | setp(l_slope, color='r') |
---|
| 629 | |
---|
| 630 | # Add axis stuff and legend |
---|
[5659] | 631 | x_label = "X location, m" |
---|
| 632 | y_label = "Stage slope" |
---|
| 633 | #xlabel(x_label) |
---|
| 634 | ylabel(y_label) |
---|
| 635 | grid(True) |
---|
| 636 | axvspan(break_x-0.001,break_x+0.001, facecolor='g') |
---|
| 637 | if slope_min is not None and slope_max is not None: |
---|
| 638 | axis(ymin=slope_min, ymax=slope_max ) |
---|
| 639 | |
---|
| 640 | # The time, x location subplot |
---|
| 641 | subplot(313) |
---|
| 642 | l_time = plot(location, time) |
---|
| 643 | setp(l_time, color='g') |
---|
| 644 | #print "break_x", break_x |
---|
| 645 | #print "break_time", break_time |
---|
| 646 | plot([break_x], [break_time], 'yo') |
---|
| 647 | #plot([break_x-1], [], 'yo') |
---|
| 648 | |
---|
| 649 | # Add axis stuff and legend |
---|
| 650 | x_label = "X location, m" |
---|
| 651 | y_label = "time, sec" |
---|
| 652 | xlabel(x_label) |
---|
| 653 | ylabel(y_label) |
---|
| 654 | grid(True) |
---|
| 655 | |
---|
| 656 | |
---|
| 657 | # The order defines the label |
---|
| 658 | #legend((legend_exp, legend_sim),'upper left') |
---|
| 659 | #legend(('Wave front'),'upper left') |
---|
| 660 | |
---|
| 661 | if is_interactive: |
---|
| 662 | # Wait for enter pressed |
---|
| 663 | raw_input() |
---|
| 664 | |
---|
| 665 | if save_as is not None: |
---|
| 666 | savefig(save_as) |
---|
| 667 | |
---|
| 668 | #Need to close this plot |
---|
| 669 | close() |
---|
| 670 | |
---|
| 671 | def plot_foude_elements_stage(wave_file, |
---|
| 672 | break_time, |
---|
| 673 | break_x, |
---|
| 674 | save_as=None, |
---|
| 675 | plot_title="", |
---|
| 676 | is_interactive=False, |
---|
| 677 | break_type="", |
---|
| 678 | froude_min=None, |
---|
| 679 | froude_max=None, |
---|
| 680 | slope_min=None, |
---|
| 681 | slope_max=None): |
---|
| 682 | """ |
---|
| 683 | """ |
---|
| 684 | from pylab import ion, plot, xlabel, ylabel, close, legend, \ |
---|
| 685 | savefig, title, axis, setp, subplot, grid, axvspan |
---|
| 686 | from anuga.shallow_water.data_manager import csv2dict |
---|
| 687 | |
---|
| 688 | |
---|
| 689 | |
---|
| 690 | # Load in the csv files and convert info from strings to floats |
---|
| 691 | simulation, _ = csv2dict(wave_file) |
---|
| 692 | location = [float(x) for x in simulation['x location']] |
---|
| 693 | slope = [float(x) for x in simulation['min slope']] |
---|
| 694 | time = [float(x) for x in simulation['Time']] |
---|
| 695 | froude = [float(x) for x in simulation['Froude']] |
---|
| 696 | |
---|
| 697 | min_location = min(location) |
---|
| 698 | max_location = max(location) |
---|
| 699 | |
---|
| 700 | if is_interactive: |
---|
| 701 | ion() |
---|
| 702 | # The upper subplot |
---|
| 703 | subplot(311) |
---|
| 704 | l_froude = plot(location, froude) |
---|
| 705 | #setp(l_froude, color='r') |
---|
| 706 | |
---|
| 707 | # Add axis stuff |
---|
| 708 | title(plot_title) |
---|
| 709 | y_label = "Froude Number" |
---|
| 710 | ylabel(y_label) |
---|
| 711 | grid(True) |
---|
| 712 | axvspan(break_x-0.001,break_x+0.001, facecolor='g') |
---|
| 713 | if froude_min is not None and froude_max is not None: |
---|
| 714 | axis(ymin=froude_min, ymax=froude_max) |
---|
| 715 | |
---|
| 716 | # The slope subplot |
---|
| 717 | subplot(312) |
---|
| 718 | l_slope = plot(location, slope) |
---|
| 719 | setp(l_slope, color='r') |
---|
| 720 | |
---|
| 721 | # Add axis stuff and legend |
---|
[5503] | 722 | x_label = "X location, m" |
---|
| 723 | y_label = "Stage slope" |
---|
| 724 | #xlabel(x_label) |
---|
| 725 | ylabel(y_label) |
---|
| 726 | grid(True) |
---|
| 727 | axvspan(break_x-0.001,break_x+0.001, facecolor='g') |
---|
[5532] | 728 | if slope_min is not None and slope_max is not None: |
---|
| 729 | axis(ymin=slope_min, ymax=slope_max ) |
---|
[5503] | 730 | |
---|
| 731 | # The time, x location subplot |
---|
| 732 | subplot(313) |
---|
| 733 | l_time = plot(location, time) |
---|
| 734 | setp(l_time, color='g') |
---|
| 735 | #print "break_x", break_x |
---|
| 736 | #print "break_time", break_time |
---|
| 737 | plot([break_x], [break_time], 'yo') |
---|
| 738 | #plot([break_x-1], [], 'yo') |
---|
| 739 | |
---|
| 740 | # Add axis stuff and legend |
---|
| 741 | x_label = "X location, m" |
---|
| 742 | y_label = "time, sec" |
---|
| 743 | xlabel(x_label) |
---|
| 744 | ylabel(y_label) |
---|
| 745 | grid(True) |
---|
| 746 | |
---|
| 747 | |
---|
| 748 | # The order defines the label |
---|
| 749 | #legend((legend_exp, legend_sim),'upper left') |
---|
| 750 | #legend(('Wave front'),'upper left') |
---|
| 751 | |
---|
| 752 | if is_interactive: |
---|
| 753 | # Wait for enter pressed |
---|
| 754 | raw_input() |
---|
| 755 | |
---|
| 756 | if save_as is not None: |
---|
| 757 | savefig(save_as) |
---|
| 758 | |
---|
| 759 | #Need to close this plot |
---|
| 760 | close() |
---|
| 761 | |
---|
[5426] | 762 | #------------------------------------------------------------- |
---|
| 763 | if __name__ == "__main__": |
---|
| 764 | """ |
---|
| 765 | """ |
---|
[5455] | 766 | from scenarios import scenarios |
---|
[5494] | 767 | #scenarios = [scenarios[0]] |
---|
[5503] | 768 | outputdir_tag = "_good_tri_area_0.01_limiterD" |
---|
[5594] | 769 | outputdir_tag = "_nolmts_wdth_0.1_z_0.012_ys_0.05_mta_1e-05_G" |
---|
[5503] | 770 | slope_tag = "" |
---|
[5494] | 771 | #outputdir_tag = "_test_limiterC" |
---|
[5594] | 772 | #scenarios = [scenarios[4]] # !!!!!!!!!!!!!!!!!!!!!! |
---|
[5503] | 773 | #scenarios = scenarios[4:] # !!!!!!!!!!!!!!!!!!!!!! |
---|
| 774 | |
---|
[5594] | 775 | gauges_for_slope(slope_tag, outputdir_tag, scenarios) |
---|
[5503] | 776 | #auto_graph_slopes(outputdir_tag, scenarios) #, is_interactive=True) |
---|
[5590] | 777 | #auto_find_min_slopes(slope_tag, outputdir_tag, scenarios) |
---|
[5503] | 778 | #auto_graph_froudes(outputdir_tag, scenarios) |
---|
[5594] | 779 | #auto_plot_froude_slopes(slope_tag, outputdir_tag, scenarios) |
---|
[5532] | 780 | #g = Get_file_name(scenarios[0], outputdir_tag, slope_tag) |
---|
| 781 | #for wave_file, save_as, wave_number in Get_file_name( |
---|
| 782 | # scenarios[0], outputdir_tag, slope_tag): |
---|
| 783 | # print "**************" |
---|